REMARKS ON CATALAN'S EQUATION OVER FUNCTION FIELDS

ANWESH RAY

Abstract

Let ℓ be a prime number, F be a global function field of characteristic ℓ. Assume that there is a prime P_{∞} of degree 1. Let \mathcal{O}_{F} be the ring of functions in F with no poles outside of $\left\{P_{\infty}\right\}$. We study solutions to Catalan's equation $X^{m}-Y^{n}=1$ over \mathcal{O}_{F} and show that under certain additional conditions, there are no non-constant solutions which lie in \mathcal{O}_{F}, when $m, n>1$.

1. Introduction

Let $m>1$ and $n>1$ be integers, and consider the diophantine equation

$$
X^{m}-Y^{n}=1
$$

The famous Catalan conjecture states that there are no non-trivial integer solutions to the above equation except when $m=2, n=3$ and $(X, Y)=(\pm 3,2)$. The celebrated result of Mihăilescu resolves this conjecture using techniques from the theory of cyclotomic fields (cf. [1]). Given the close analogy between number fields and function fields, it is of interest to study analogues of Catalan's conjecture in characteristic $\ell>0$. The field of rational numbers \mathbb{Q} is the simplest number field to consider, and analogously, the most natural analogue is the field of rational functions $\mathbb{F}(T)$, where T is a formal variable, and \mathbb{F} is a finite field. The ring of integers \mathbb{Z} is thus analogous to the ring of polynomial functions $\mathbb{F}[T]$, which shares similar properties to \mathbb{Z}. The reader is referred to $[2,3]$ for an introduction to the arithmetic of function fields, and further perspectives elaborating the close analogy between number fields and their counterparts in positive characteristic.

Let ℓ be a prime number and F be a global function field of characteristic ℓ. Denote by \mathbb{F}_{ℓ} the finite field with ℓ elements and set κ to denote the algebraic closure of \mathbb{F}_{ℓ} in F. Note that κ is a finite field (by assumption). Recall (from [2, Chapter 5]) that a prime in F is defined to be the maximal ideal v of a discrete valuation ring R contained in F, with fraction field equal to F. The degree of v is defined to be the dimension of R / v over the field of constants κ. Each prime v comes equipped with a valuation $\operatorname{ord}_{v}: F \rightarrow \mathbb{Z} \cup\{\infty\}$. Assume that there exists a prime P_{∞} of F which has degree 1 , and let \mathcal{O}_{F} be the ring of functions in F with no poles outside $\left\{P_{\infty}\right\}$. The point P_{∞} is referred to as the point at infinity and \mathcal{O}_{F} is the ring of integers of F. We say that a solution

[^0]$(X, Y) \in \mathcal{O}_{F}^{2}$ to $X^{m}-Y^{n}=1$ is constant if X and Y are both contained in κ, and non-constant otherwise.

Recall from loc. cit. that a divisor is a finite integral linear combination of primes of F. The principal divisor associated to $g \in F$ is denoted $\operatorname{div}(g)$, and two divisors D_{1} and D_{2} are said to be equivalent if $D_{1}-D_{2}$ is a principal divisor. The group of divisors classes of degree 0 is finite (cf. [2, Lemma 5.6]), and its cardinality is the class number of F, and this quantity is denoted by h_{F}. Given a prime number $p \neq \ell$, let $F\left(\mu_{p}\right)$ be the function field obtained by adjoining the p-th roots of unity μ_{p} to F. Note that $F\left(\mu_{p}\right)=\kappa^{\prime} \cdot F$, where $\kappa^{\prime}=\kappa\left(\mu_{p}\right)$. Thus, $F\left(\mu_{p}\right)$ is a constant field extension of F in the sense of $[2$, Chapter 8].
Theorem 1.1. Let F be a global function field of characteristic $\ell>0$. Let p and q be prime numbers and assume that all the following conditions are satisfied
(1) $p \neq \ell$ and $q \neq \ell$,
(2) if $p \neq q$, then either $q \nmid h_{F\left(\mu_{p}\right)}$ or $p \nmid h_{F\left(\mu_{q}\right)}$.
(3) if $q=2, p \neq 2$ and $q \mid h_{F\left(\mu_{p}\right)}$, then $p \nmid h_{F\left(\mu_{4}\right)}$.

Then, there are no non-constant solutions to $X^{p}-Y^{q}=1$ in \mathcal{O}_{F}. More generally, if $m>1$ and $n>1$ are integers such that m is divisible by a prime p and n by a prime q for which the above conditions are satisfied, then there are no non-constant solutions to $X^{m}-Y^{n}=1$ in \mathcal{O}_{F}.

The condition requiring that p and q are distinct from ℓ is necessary, since if $m=\ell$ for instance, it is easy to construct a large class of non-constant solutions if one of the primes is equal to ℓ (cf. Remark 2.3 for details).

We mention some related work of relevance. Silverman [4] considered a general class of equations of the form $a X^{m}+b Y^{n}=c$ over a general function field K, and proved that under some further conditions, there are only finitely many solutions when $a, b, c \in K^{*}$ are fixed. There is a mistake in the statement of Silverman's result, which has been corrected by Koymans [5]. The result of Koymans moreover applies to fields of larger dimension. The Catalan equation was studied by Nathanson [6] over $K[T]$ and $K(T)$ where K is a field of positive characteristic. It is shown in loc. cit. that if $m>1$ and $n>1$ are coprime to ℓ then there are no solutions to Catalan's equation $X^{m}-Y^{n}=1$ that lie in $K[T]$ but not in K. Specializing to the case when K is a finite field, one obtains the conclusion of Theorem 1.1 for the rational function field. This is because the class number of any rational function field is equal to 0 . Theorem 1.1 can thus be viewed as a generalization of Nathanson's result to general function fields F with added stipulations on (m, n).
1.1. Acknowledgment: The author thanks Peter Koymans for a helpful suggestion. The author is supported by the CRM-Simons postdoctoral fellowship. He thanks the referees for their helpful reports.

2. Proof of the main result

Recall that F is a global function field of characteristic $\ell>0$ with field of constants κ. Let $\bar{\kappa}$ be the algebraic closure of κ in a fixed algebraic closure of
F, and set F^{\prime} to denote the composite $F \cdot \bar{\kappa}$. Also, denote by A the composite $\mathcal{O}_{F} \cdot \bar{\kappa}$. The field F^{\prime} is identified with the function field of a projective curve \mathfrak{X} over $\bar{\kappa}$ and each point in $\mathfrak{X}(\bar{\kappa})$ corresponds to a valuation ring $R \subset F^{\prime}$ with residue field $\bar{\kappa}$ and fraction field F^{\prime}. The valuation ring associated to $w \in \mathfrak{X}(\bar{\kappa})$ is denoted \mathcal{O}_{w}, and we refer to w as a prime of F^{\prime}. We say that w divides (or lies above) a prime v of F if there is a natural inclusion of valuation rings $\mathcal{O}_{v} \hookrightarrow \mathcal{O}_{w}$ induced by the inclusion $F \hookrightarrow F^{\prime}$. Note that since P_{∞} has degree 1, it is totally inert in F^{\prime}. In particular, there is a single prime of F^{\prime} that lies above P_{∞}, which we identify with P_{∞}. Given any prime v of F, set d_{v} to denote - ord_{v} and for any function $g \in F$, we refer to $d_{v}(g)$ as the order of the pole of g at v. Given a prime w of F^{\prime} (i.e., point $\left.w \in \mathfrak{X}(\bar{\kappa})\right)$ and $g \in F^{\prime}$, denote by $d_{w}(g)$ the order of the pole of g at w. We set $d: A \rightarrow \mathbb{Z}_{\geq 0}$ to denote $d_{P_{\infty}}$.
Lemma 2.1. Let $f, g \in A$ be non-zero. The following assertions hold.
(1) $d(g)=0$ if and only if g is a constant function.
(2) We have that $d(f g)=d(f)+d(g)$.
(3) Suppose that $d(f)<d(g)$. Then, $d(g+f)=d(g)$.
(4) We have that $d(f) \geq 0$, and $d(f)>0$ if and only if f is non-constant.

Proof. The proof of parts (1) to (3) are easy, hence, omitted. For part (4) note that a non-constant function $f \in A$ must have a pole at some point. By virtue of being contained in A, f does not have poles outside $\left\{P_{\infty}\right\}$. Therefore, f must have a pole at P_{∞}, and thus, $d(f)>0$. On the other hand, if f is constant, then $d(f)=0$. This proves part (4).
Lemma 2.2. Let $Y \in A$ and $c_{1}, c_{2} \in \bar{\kappa}$ be non-zero constants. If for some prime $p \neq \ell$ we have that

$$
\left(Y+c_{1}\right)^{p}-Y^{p}=c_{2},
$$

then Y is a constant.
Proof. Setting $f(z):=\left(z+c_{1}\right)^{p}-z^{p}-c_{2}$, we find that $f(z)$ is a nonzero polynomial in z with coefficients in $\bar{\kappa}$. Therefore, any solution Y to the equation $f(Y)=0$ must also lie in $\bar{\kappa}$.
Proof of Theorem 1.1. First consider the case when $p=q$. Note that it is assumed that $p \neq \ell$. We show that there are no non-constant solutions to

$$
X^{p}-Y^{p}=1
$$

in A. Note that $(X-Y)$ divides $X^{p}-Y^{p}=1$, hence by Lemma 2.1,

$$
d(X-Y)=d(1)-d\left(X^{p-1}+X^{p-2} Y+\cdots+X Y^{p-2}+Y^{p-1}\right) \leq d(1)=0 .
$$

It follows from Lemma 2.1 part (1) that $(X-Y)$ is a constant $c \in \bar{\kappa}$. We thus deduced that

$$
\begin{equation*}
(Y+c)^{p}-Y^{p}=1 \tag{2.1}
\end{equation*}
$$

Lemma 2.2 implies that (2.1) has no non-constant solutions. Since Y is a constant, it follows that X is as well. If X and Y are in \mathcal{O}_{F}, it follows therefore that $X, Y \in \kappa$.

We assume therefore that p and q are distinct (and distinct from ℓ). Note that there are further conditions on p and q. First, we consider the case when $q \nmid$ $h_{F\left(\mu_{p}\right) \text {. All the variables introduced in the following argument will be contained }}$ in $F\left(\mu_{p}\right)$. Let ζ be a primitive p-th root of 1 . Since it is assumed that $p \neq \ell$, we note that $\zeta \neq 1$. In what follows we consider divisors over $F\left(\mu_{p}\right)$. Given a divisor $D=\sum_{v} n_{v} v$ involving primes v of $F\left(\mu_{p}\right)$, the support consists of all primes v such that the coefficient n_{v} is not equal to 0 . Factor $X^{p}-1$ into linear factors to obtain the following equation

$$
\begin{equation*}
Y^{q}=\prod_{j=0}^{p-1}\left(X-\zeta^{j}\right) \tag{2.2}
\end{equation*}
$$

For $i \neq j$, note that $\left(X-\zeta^{i}\right)-\left(X-\zeta^{j}\right)=\zeta^{j}-\zeta^{i}$, which is a non-zero element of $\kappa\left(\mu_{p}\right)$. Hence, it follows that $\operatorname{div}\left(X-\zeta^{i}\right)$ and $\operatorname{div}\left(X-\zeta^{j}\right)$ have disjoint supports for $i \neq j$. From (2.2), we have the following relation between divisors that are formal linear combinations of primes in $F\left(\mu_{p}\right)$

$$
\sum_{j=0}^{p-1} \operatorname{div}\left(X-\zeta^{j}\right)=q \operatorname{div}(Y)
$$

The elements $\left(X-\zeta^{j}\right)$ are all contained in $F\left(\mu_{p}\right)$, while Y is contained in F. Since the divisors $\operatorname{div}\left(X-\zeta^{j}\right)$ have disjoint supports for $i \neq j$, it follows that for each i, there is a divisor D_{i} (involving linear combinations of primes in $F\left(\mu_{p}\right)$) such that $\operatorname{div}\left(X-\zeta^{i}\right)=q D_{i}$. Since $\operatorname{div}\left(X-\zeta^{i}\right)$ is a principal divisor, it has degree 0 , and hence D_{i} does also have degree zero. Since $q \nmid h_{F\left(\mu_{p}\right)}$, there is no non-trivial q torsion in the divisor class group. As a result, D_{i} is a principal divisor $\operatorname{div}\left(\alpha_{i}\right)$, where $\alpha_{i} \in F\left(\mu_{p}\right)$. Thus, we have deduced that for all i,

$$
X-\zeta^{i}=u_{i} \alpha_{i}^{q}
$$

where $u_{i} \in F\left(\mu_{p}\right)$ is a non-zero function for which $\operatorname{div}\left(u_{i}\right)=0$. Therefore u_{i} is a unit, and consequently, is contained in $\kappa\left(\mu_{p}\right)$. Recall that p and q are distinct, and we have shown that $u_{i} \in \bar{\kappa}$. It follows that u_{i} is the q-th power of an element $v_{i} \in \bar{\kappa}^{\times}$. Replacing α_{i} with $v_{i} \alpha_{i}$, we write

$$
X-\zeta^{i}=\alpha_{i}^{q}
$$

where $\alpha_{i} \in\left(F^{\prime}\right)^{\times}$. Note that α_{i} is contained in A since it has no poles outside $\left\{P_{\infty}\right\}$ (since $X-\zeta^{i}$ does not). We deduce that

$$
\begin{equation*}
\alpha_{0}^{q}-\alpha_{1}^{q}=(X-1)-(X-\zeta)=\zeta-1 \tag{2.3}
\end{equation*}
$$

It follows that $\alpha_{0}-\alpha_{1}$ divides $\zeta-1$, hence has no zeros or poles. As a result, $\alpha_{0}-\alpha_{1}$ is a constant $c \in \bar{\kappa}$. It is clear from (2.3) that c is non-zero. Thus we find that

$$
\left(\alpha_{1}+c\right)^{q}-\alpha_{1}^{q}=\zeta-1 .
$$

Lemma 2.2 then implies that α_{1} and α_{0} are constants. We have thus shown that X, and hence Y are both elements in $\bar{\kappa}$. Since κ is the algebraic closure of \mathbb{F}_{ℓ} in F, and both X and Y are contained in F, it follows that $X, Y \in \kappa$.

It follows from the condition (2) of Theorem 1.1 that if $p \neq q$, then $q \nmid h_{F\left(\mu_{p}\right)}$ or $p \nmid h_{F\left(\mu_{q}\right)}$. We have shown that there are no non-constant solutions when
$p=q$, or when $q \nmid h_{F\left(\mu_{p}\right)}$. Throughout the rest of this proof, we shall therefore assume that $p \nmid h_{F\left(\mu_{q}\right)}$. If both p and q are odd, then we may replace X with $-Y$ and Y with $-X$ to obtain the equation $X^{q}-Y^{p}=1$, and thus the previous argument that gives the result applies in this case. We have therefore dealt with the case when both p and q are odd, and we are left to consider the case when $p \nmid h_{F\left(\mu_{q}\right)}$ and either p or q is 2 .

First consider the case when $p=2$. It has been shown that there no nonconstant solutions when $p=q$ and therefore q must be odd. Moreover, as stated in the previous paragraph, we assume that $2 \nmid h_{F\left(\mu_{q}\right)}$. Then, we find that $X^{2}=Y^{q}+1=Y^{q}-(-1)^{q}=\prod_{j}\left(Y+\zeta^{j}\right)$, where ζ is a primitive q-th root of unity. For $i \neq j$, note that $\left(Y+\zeta^{i}\right)-\left(Y+\zeta^{j}\right)=\zeta^{i}-\zeta^{j}$ is a constant, and therefore, $\operatorname{div}\left(Y+\zeta^{i}\right)$ and $\operatorname{div}\left(Y+\zeta^{j}\right)$ have disjoint supports for $i \neq j$. We thus arrive at the equation

$$
\sum_{j=0}^{q-1} \operatorname{div}\left(Y+\zeta^{j}\right)=2 \operatorname{div}(X)
$$

The divisors $\operatorname{div}\left(Y+\zeta^{j}\right)$ have disjoint supports for $i \neq j$, and therefore, we may write $\operatorname{div}\left(Y+\zeta^{j}\right)=2 D_{j}$ for some divisors D_{j} that are defined over $F\left(\mu_{q}\right)$. Recall that $2 \nmid h_{F\left(\mu_{q}\right)}$. An identical argument to the previous case implies that for all j, we have that

$$
Y+\zeta^{j}=\beta_{j}^{2}
$$

where $\beta_{j} \in A$. We deduce that

$$
\beta_{0}^{2}-\beta_{1}^{2}=(Y+1)-(Y+\zeta)=1-\zeta
$$

It follows that $\beta_{0}-\beta_{1}$ divides $1-\zeta$. Therefore, $\beta_{0}-\beta_{1}$ has no zeros or poles, and hence equals a constant $c \in \bar{\kappa}$. Thus we find that

$$
\left(\beta_{1}+c\right)^{2}-\beta_{1}^{2}=1-\zeta
$$

Lemma 2.2 then implies that $\beta_{1}=Y+\zeta$ and $\beta_{0}=Y+1$ are constants. From this, we deduce that both X and Y are constants.

Finally, assume that p is odd, $q=2$. Note that the result has been proved when $q \nmid h_{F\left(\mu_{p}\right)}$. Therefore, we assume that $q \mid h_{F\left(\mu_{p}\right)}$. It follows from the condition (3) of Theorem 1.1 that $p \nmid h_{F\left(\mu_{4}\right)}$. We consider the equation $X^{p}=$ $Y^{2}+1=(Y+\eta)(Y-\eta)$, where $\eta^{2}=-1$. Note that $F\left(\mu_{4}\right)=F(\eta)$. Since p does not divide the class number of $F(\eta)$, we find that $Y+\eta=\alpha_{0}^{p}$ and $Y-\eta=\alpha_{1}^{p}$, where α_{0}, α_{1} are elements in A. Therefore, $2 \eta=\alpha_{0}^{p}-\alpha_{1}^{p}$. In particular, this implies that $\left(\alpha_{0}-\alpha_{1}\right)$ is a constant c. Since $\eta \neq 0$, it follows that $c \neq 0$. We have the following equation

$$
\left(\alpha_{1}+c\right)^{p}-\alpha_{1}^{p}=2 \eta .
$$

The result follows from Lemma 2.2.
Remark 2.3. At this point, it is pertinent to make a few remarks.

- The assumptions that p and q are not equal to ℓ are necessary. Indeed, suppose that $p=\ell$. Then, setting $X=1+z^{q}$ and $Y=z^{p}$ for any element $z \in \mathcal{O}_{F}$, one would obtain non-constant solutions.
- The methods introduced in this paper could potentially be applied to a more general class of diophantine equations, namely, equations of the form $X^{m}=f(Y)$, where $f(Y) \in \kappa[Y]$, where κ is the field of constants of F.

References

[1] Preda Mihăilescu. Primary cyclotomic units and a proof of Catalan's conjecture. J. Reine Angew. Math., 572:167-195, 2004.
[2] Michael Rosen. Number theory in function fields, volume 210. Springer Science \& Business Media, 2002.
[3] David Goldschmidt. Algebraic functions and projective curves, volume 215. Springer Science \& Business Media, 2006.
[4] Joseph H Silverman. The Catalan equation over function fields. Transactions of the American Mathematical Society, 273(1):201-205, 1982.
[5] Peter Koymans. The generalized Catalan equation in positive characteristic. International Journal of Number Theory, 18(02):269-276, 2022.
[6] Melvyn B Nathanson. Catalan's equation in k (t). The American Mathematical Monthly, 81(4):371-373, 1974.
(A. Ray) Centre de recherches mathématiques, Université de Montréal, Pavillon André-Aisenstadt, 2920 Chemin de la tour, Montréal (Québec) H3T 1J4, Canada

Email address: anwesh.ray@umontreal.ca

[^0]: 2020 Mathematics Subject Classification. 11D41, 11R58.
 Key words and phrases. Catalan's equation, Catalan's conjecture, function field arithmetic, diophantine equations over global function fields, Picard groups of projective curves.

