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REMARKS ON CATALAN’S EQUATION OVER FUNCTION

FIELDS

ANWESH RAY

Abstract. Let ℓ be a prime number, F be a global function field of char-
acteristic ℓ. Assume that there is a prime P∞ of degree 1. Let OF be the
ring of functions in F with no poles outside of {P∞}. We study solutions
to Catalan’s equation Xm − Y n

= 1 over OF and show that under certain
additional conditions, there are no non-constant solutions which lie in OF ,
when m,n > 1.

1. Introduction

Let m > 1 and n > 1 be integers, and consider the diophantine equation

Xm − Y n = 1.

The famous Catalan conjecture states that there are no non-trivial integer so-
lutions to the above equation except when m = 2, n = 3 and (X, Y ) = (±3, 2).
The celebrated result of Mihăilescu resolves this conjecture using techniques
from the theory of cyclotomic fields (cf. [1]). Given the close analogy be-
tween number fields and function fields, it is of interest to study analogues
of Catalan’s conjecture in characteristic ℓ > 0. The field of rational numbers
Q is the simplest number field to consider, and analogously, the most natural
analogue is the field of rational functions F(T ), where T is a formal variable,
and F is a finite field. The ring of integers Z is thus analogous to the ring of
polynomial functions F[T ], which shares similar properties to Z. The reader is
referred to [2, 3] for an introduction to the arithmetic of function fields, and
further perspectives elaborating the close analogy between number fields and
their counterparts in positive characteristic.

Let ℓ be a prime number and F be a global function field of characteristic ℓ.
Denote by Fℓ the finite field with ℓ elements and set κ to denote the algebraic
closure of Fℓ in F . Note that κ is a finite field (by assumption). Recall (from
[2, Chapter 5]) that a prime in F is defined to be the maximal ideal v of a
discrete valuation ring R contained in F , with fraction field equal to F . The
degree of v is defined to be the dimension of R/v over the field of constants κ.
Each prime v comes equipped with a valuation ordv : F → Z ∪ {∞}. Assume
that there exists a prime P∞ of F which has degree 1, and let OF be the ring
of functions in F with no poles outside {P∞}. The point P∞ is referred to as
the point at infinity and OF is the ring of integers of F . We say that a solution
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(X, Y ) ∈ O2
F to Xm − Y n = 1 is constant if X and Y are both contained in κ,

and non-constant otherwise.
Recall from loc. cit. that a divisor is a finite integral linear combination

of primes of F . The principal divisor associated to g ∈ F is denoted div(g),
and two divisors D1 and D2 are said to be equivalent if D1 −D2 is a principal
divisor. The group of divisors classes of degree 0 is finite (cf. [2, Lemma 5.6]),
and its cardinality is the class number of F , and this quantity is denoted by
hF . Given a prime number p 6= ℓ, let F (µp) be the function field obtained by
adjoining the p-th roots of unity µp to F . Note that F (µp) = κ′ · F , where
κ′ = κ(µp). Thus, F (µp) is a constant field extension of F in the sense of [2,
Chapter 8].

Theorem 1.1. Let F be a global function field of characteristic ℓ > 0. Let
p and q be prime numbers and assume that all the following conditions are
satisfied

(1) p 6= ℓ and q 6= ℓ,
(2) if p 6= q, then either q ∤ hF (µp) or p ∤ hF (µq).
(3) if q = 2, p 6= 2 and q | hF (µp), then p ∤ hF (µ4).

Then, there are no non-constant solutions to Xp − Y q = 1 in OF . More gener-
ally, if m > 1 and n > 1 are integers such that m is divisible by a prime p and
n by a prime q for which the above conditions are satisfied, then there are no
non-constant solutions to Xm − Y n = 1 in OF .

The condition requiring that p and q are distinct from ℓ is necessary, since if
m = ℓ for instance, it is easy to construct a large class of non-constant solutions
if one of the primes is equal to ℓ (cf. Remark 2.3 for details).

We mention some related work of relevance. Silverman [4] considered a gen-
eral class of equations of the form aXm + bY n = c over a general function field
K, and proved that under some further conditions, there are only finitely many
solutions when a, b, c ∈ K∗ are fixed. There is a mistake in the statement of
Silverman’s result, which has been corrected by Koymans [5]. The result of
Koymans moreover applies to fields of larger dimension. The Catalan equation
was studied by Nathanson [6] over K[T ] and K(T ) where K is a field of positive
characteristic. It is shown in loc. cit. that if m > 1 and n > 1 are coprime to ℓ
then there are no solutions to Catalan’s equation Xm−Y n = 1 that lie in K[T ]
but not in K. Specializing to the case when K is a finite field, one obtains the
conclusion of Theorem 1.1 for the rational function field. This is because the
class number of any rational function field is equal to 0. Theorem 1.1 can thus
be viewed as a generalization of Nathanson’s result to general function fields F
with added stipulations on (m,n).

1.1. Acknowledgment: The author thanks Peter Koymans for a helpful sug-
gestion. The author is supported by the CRM-Simons postdoctoral fellowship.
He thanks the referees for their helpful reports.

2. Proof of the main result

Recall that F is a global function field of characteristic ℓ > 0 with field of
constants κ. Let κ̄ be the algebraic closure of κ in a fixed algebraic closure of
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F , and set F ′ to denote the composite F · κ̄. Also, denote by A the composite
OF · κ̄. The field F ′ is identified with the function field of a projective curve
X over κ̄ and each point in X(κ̄) corresponds to a valuation ring R ⊂ F ′ with
residue field κ̄ and fraction field F ′. The valuation ring associated to w ∈ X(κ̄)
is denoted Ow, and we refer to w as a prime of F ′. We say that w divides
(or lies above) a prime v of F if there is a natural inclusion of valuation rings
Ov →֒ Ow induced by the inclusion F →֒ F ′. Note that since P∞ has degree
1, it is totally inert in F ′. In particular, there is a single prime of F ′ that lies
above P∞, which we identify with P∞. Given any prime v of F , set dv to denote
− ordv and for any function g ∈ F , we refer to dv(g) as the order of the pole
of g at v. Given a prime w of F ′ (i.e., point w ∈ X(κ̄)) and g ∈ F ′, denote by
dw(g) the order of the pole of g at w. We set d : A → Z≥0 to denote dP∞

.

Lemma 2.1. Let f, g ∈ A be non-zero. The following assertions hold.

(1) d(g) = 0 if and only if g is a constant function.
(2) We have that d(fg) = d(f) + d(g).
(3) Suppose that d(f) < d(g). Then, d(g + f) = d(g).
(4) We have that d(f) ≥ 0, and d(f) > 0 if and only if f is non-constant.

Proof. The proof of parts (1) to (3) are easy, hence, omitted. For part (4) note
that a non-constant function f ∈ A must have a pole at some point. By virtue
of being contained in A, f does not have poles outside {P∞}. Therefore, f must
have a pole at P∞, and thus, d(f) > 0. On the other hand, if f is constant,
then d(f) = 0. This proves part (4). �

Lemma 2.2. Let Y ∈ A and c1, c2 ∈ κ̄ be non-zero constants. If for some
prime p 6= ℓ we have that

(Y + c1)
p − Y p = c2,

then Y is a constant.

Proof. Setting f(z) := (z + c1)
p − zp − c2, we find that f(z) is a nonzero

polynomial in z with coefficients in κ̄. Therefore, any solution Y to the equation
f(Y ) = 0 must also lie in κ̄. �

Proof of Theorem 1.1. First consider the case when p = q. Note that it is
assumed that p 6= ℓ. We show that there are no non-constant solutions to

Xp − Y p = 1

in A. Note that (X − Y ) divides Xp − Y p = 1, hence by Lemma 2.1,

d(X − Y ) = d(1)− d
(

Xp−1 +Xp−2Y + · · ·+XY p−2 + Y p−1
)

≤ d(1) = 0.

It follows from Lemma 2.1 part (1) that (X − Y ) is a constant c ∈ κ̄. We thus
deduced that

(2.1) (Y + c)p − Y p = 1.

Lemma 2.2 implies that (2.1) has no non-constant solutions. Since Y is a
constant, it follows that X is as well. If X and Y are in OF , it follows therefore
that X, Y ∈ κ.



4 A. RAY

We assume therefore that p and q are distinct (and distinct from ℓ). Note
that there are further conditions on p and q. First, we consider the case when q ∤
hF (µp). All the variables introduced in the following argument will be contained
in F (µp). Let ζ be a primitive p-th root of 1. Since it is assumed that p 6= ℓ,
we note that ζ 6= 1. In what follows we consider divisors over F (µp). Given
a divisor D =

∑

v nvv involving primes v of F (µp), the support consists of all
primes v such that the coefficient nv is not equal to 0. Factor Xp−1 into linear
factors to obtain the following equation

(2.2) Y q =

p−1
∏

j=0

(X − ζj).

For i 6= j, note that (X−ζ i)−(X−ζj) = ζj−ζ i, which is a non-zero element of
κ(µp). Hence, it follows that div(X−ζ i) and div(X−ζj) have disjoint supports
for i 6= j. From (2.2), we have the following relation between divisors that are
formal linear combinations of primes in F (µp)

p−1
∑

j=0

div(X − ζj) = q div(Y ).

The elements (X − ζj) are all contained in F (µp), while Y is contained in F .
Since the divisors div(X−ζj) have disjoint supports for i 6= j, it follows that for
each i, there is a divisor Di (involving linear combinations of primes in F (µp))
such that div(X − ζ i) = qDi. Since div(X − ζ i) is a principal divisor, it has
degree 0, and hence Di does also have degree zero. Since q ∤ hF (µp), there is no
non-trivial q torsion in the divisor class group. As a result, Di is a principal
divisor div(αi), where αi ∈ F (µp). Thus, we have deduced that for all i,

X − ζ i = uiα
q
i ,

where ui ∈ F (µp) is a non-zero function for which div(ui) = 0. Therefore ui is a
unit, and consequently, is contained in κ(µp). Recall that p and q are distinct,
and we have shown that ui ∈ κ̄. It follows that ui is the q-th power of an
element vi ∈ κ̄×. Replacing αi with viαi, we write

X − ζ i = αq
i ,

where αi ∈ (F ′)×. Note that αi is contained in A since it has no poles outside
{P∞} (since X − ζ i does not). We deduce that

(2.3) αq
0 − αq

1 = (X − 1)− (X − ζ) = ζ − 1.

It follows that α0 − α1 divides ζ − 1, hence has no zeros or poles. As a result,
α0 − α1 is a constant c ∈ κ̄. It is clear from (2.3) that c is non-zero. Thus we
find that

(α1 + c)q − αq
1 = ζ − 1.

Lemma 2.2 then implies that α1 and α0 are constants. We have thus shown
that X, and hence Y are both elements in κ̄. Since κ is the algebraic closure
of Fℓ in F , and both X and Y are contained in F , it follows that X, Y ∈ κ.

It follows from the condition (2) of Theorem 1.1 that if p 6= q, then q ∤ hF (µp)

or p ∤ hF (µq). We have shown that there are no non-constant solutions when
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p = q, or when q ∤ hF (µp). Throughout the rest of this proof, we shall therefore
assume that p ∤ hF (µq). If both p and q are odd, then we may replace X with
−Y and Y with −X to obtain the equation Xq−Y p = 1, and thus the previous
argument that gives the result applies in this case. We have therefore dealt
with the case when both p and q are odd, and we are left to consider the case
when p ∤ hF (µq) and either p or q is 2.

First consider the case when p = 2. It has been shown that there no non-
constant solutions when p = q and therefore q must be odd. Moreover, as
stated in the previous paragraph, we assume that 2 ∤ hF (µq). Then, we find that
X2 = Y q + 1 = Y q − (−1)q =

∏

j(Y + ζj), where ζ is a primitive q-th root of

unity. For i 6= j, note that (Y + ζ i) − (Y + ζj) = ζ i − ζj is a constant, and
therefore, div(Y +ζ i) and div(Y +ζj) have disjoint supports for i 6= j. We thus
arrive at the equation

q−1
∑

j=0

div(Y + ζj) = 2 div(X).

The divisors div(Y + ζj) have disjoint supports for i 6= j, and therefore, we
may write div(Y + ζj) = 2Dj for some divisors Dj that are defined over F (µq).
Recall that 2 ∤ hF (µq). An identical argument to the previous case implies that
for all j, we have that

Y + ζj = β2
j ,

where βj ∈ A. We deduce that

β2
0 − β2

1 = (Y + 1)− (Y + ζ) = 1− ζ.

It follows that β0 − β1 divides 1− ζ . Therefore, β0 − β1 has no zeros or poles,
and hence equals a constant c ∈ κ̄. Thus we find that

(β1 + c)2 − β2
1 = 1− ζ.

Lemma 2.2 then implies that β1 = Y + ζ and β0 = Y + 1 are constants. From
this, we deduce that both X and Y are constants.

Finally, assume that p is odd, q = 2. Note that the result has been proved
when q ∤ hF (µp). Therefore, we assume that q | hF (µp). It follows from the
condition (3) of Theorem 1.1 that p ∤ hF (µ4). We consider the equation Xp =
Y 2+1 = (Y +η)(Y −η), where η2 = −1. Note that F (µ4) = F (η). Since p does
not divide the class number of F (η), we find that Y + η = αp

0 and Y − η = αp
1,

where α0, α1 are elements in A. Therefore, 2η = αp
0 − αp

1. In particular, this
implies that (α0 − α1) is a constant c. Since η 6= 0, it follows that c 6= 0. We
have the following equation

(α1 + c)p − αp
1 = 2η.

The result follows from Lemma 2.2. �

Remark 2.3. At this point, it is pertinent to make a few remarks.

• The assumptions that p and q are not equal to ℓ are necessary. Indeed,
suppose that p = ℓ. Then, setting X = 1 + zq and Y = zp for any
element z ∈ OF , one would obtain non-constant solutions.
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• The methods introduced in this paper could potentially be applied to
a more general class of diophantine equations, namely, equations of the
form Xm = f(Y ), where f(Y ) ∈ κ[Y ], where κ is the field of constants
of F .
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