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2 Girth of the algebraic bipartite graph

D(k, q) ∗

Ming Xu, Xiaoyan Cheng and Yuansheng Tang†

School of Mathematical Sciences, Yangzhou University, Jiangsu, China‡

Abstract: For integer k ≥ 2 and prime power q, the algebraic bipartite graph

D(k, q) proposed by Lazebnik and Ustimenko (1995) is meaningful not only in

extremal graph theory but also in coding theory and cryptography. This graph is

q-regular, edge-transitive and of girth at least k + 4. Its exact girth g = g(D(k, q))

was conjectured in 1995 to be k+5 for odd k and q ≥ 4. This conjecture was shown

to be valid in 2016 when k+5

2
|p(q− 1), where p is the characteristic of Fq and m|pn

means that m divides prn for some nonnegative integer r. In this paper, for t ≥ 1

we prove that (a) g(D(4t + 2, q)) = g(D(4t + 1, q)); (b) g(D(4t + 3, q)) = 4t + 8

if g(D(2t, q)) = 2t + 4; (c) g(D(8t, q)) = 8t + 4 if g(D(4t − 2, q)) = 4t + 2; (d)

g(D(2s+2(2t− 1)− 5, q)) = 2s+2(2t− 1) if p ≥ 3, (2t− 1)|p(q− 1) and 2s‖(q− 1). A

simple upper bound for the girth of D(k, q) is proposed in the end of this paper.

Keywords: Bipartite graph; Edge-transitive; Backtrackless walk; Girth; Homoge-

neous polynomial;

1 Introduction

The graphs considered in this paper are undirected, without loops and mul-
tiple edges. A graph G is said to be edge-transitive provided, for any two
edges e1, e2 of G, that there exists an automorphism φ of G such that φ
maps the ends of e1 into those of e2. A backtrackless (or non-recurrent) walk
of length n means a sequence v1, v2, . . . , vn of vertices of G such that any two
consecutive vertices are adjacent in G and vj 6= vj+2 for j = 1, 2, . . . , n− 2.
A backtrackless walk v1, v2, . . . , vn is called a backtrackless circuit of length
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n further if n is greater than 2 and v3, v4, . . . , vn, v1, v2 is still a backtrackless
walk. For any graph G which is not a tree, its girth, denoted by g(G), is
equal to the length of the shortest backtrackless circuits in G.

Graphs with large girth and a high degree of symmetry have been ap-
plied to variant problems in extremal graph theory, finite geometry, coding
theory, cryptography, communication networks and quantum computations
(c.f. [1]–[21]). In this paper, we concetrate on the algebraic bipartite graph
D(k, q), proposed by Lazebnik and Ustimenko in [3], which is edge-transitive
and of girth at least k + 4, where k ≥ 2 and q = pm is a power of prime
p. The graph D(k, q) has been investigated quite well in literature (c.f. [3]–
[20]). For the exact girth of D(k, q), the following conjecture was proposed
in [5]:

Conjecture 1. D(k, q) has girth k + 5 for all odd k and all q ≥ 4.

This conjecture was shown to be valid in [5] for the case that (k + 5)/2 is
a factor of q − 1, in [19] for the case that (k + 5)/2 is a power of p, and in
[20] for the case that (k + 5)/2 is a factor of q − 1 multiplied by a power of
p, respectively. For a few small k’s, the girth cycles (namely, the shortest
backtrackless circuits) of D(k, q) are determined completely in [22].

In this paper, we will investigate the girth of D(k, q) further by means
of a compact expression of some backtrackless walks of the bipartite graph
Λk,q, which is defined as follows (c.f. [19], [20] and [22]). The left part
of vertices of Λk,q, denoted by Lk, is the set of (k + 1)-dimensional vec-
tors [l] = (l0, l1, l2, . . . , lk) over Fq with l1 = l2. The right part of vertices
of Λk,q, denoted by Rk, is the set of (k + 1)-dimensional vectors 〈r〉 =
(r0, r1, r2, . . . , rk) over Fq with r1 = 0. Two vertices (l0, l1, . . . , lk) ∈ Lk and
(r0, r1, . . . , rk) ∈ Rk are adjacent in Λk,q if and only if, for 2 ≤ i ≤ k,

li + ri =

{

r0li−2 if i ≡ 2, 3 mod 4,

l0ri−2 if i ≡ 0, 1 mod 4.
(1)

Since Λk,q is isomorphic to D(k, q) [19], Λk,q is also edge-transitive and of
girth at least k+4. All the consequent arguments will be made on the graph
Λk,q instead of the original graph D(k, q).

This paper is arranged as follows. In Section 2 we introduce a class of
homogeneous polynomials in several indeterminates and a compact expres-
sion for vertices over some backtrackless walks in Λk,q. An identity on such
polynomials is shown in Section 3. By using of this identity, in Section 3 we
show, for any t ≥ 1, that each backtrackless circuit in Λ4t+1,q implies a back-
trackless circuit in Λ4t+2,q of the same length, and g(Λ4t+2,q) = g(Λ4t+1,q)
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is then deduced. In Section 4, we construct some backtrackless circuits in
Λ4t+3,q by using those in Λ2t,q, and show for n ≥ 3 that g(Λ4t+3,q) ≤ 4n if
g(Λ2t,q) ≤ 2n. A few results on the exact girth of Λk,q are also given in this
section. In Section 5, we deduce an upper bound for the girth of Λk,q by
combining a known result from [20] and the new results shown in Section 4.
Some concluding remarks are given in Section 6.

2 Backtrackless Walks in Λk,q

At first, we introduce a class of homogeneous polynomials in several inde-
terminates which were defined in [19]. For indeterminates ω1, . . . , ωn whose
values are usually limited to the set F∗

q, let

ρ0(ω1, . . . , ωn) = ω1 · · ·ωn

and, for 1 ≤ s ≤ ⌊n2 ⌋, let ρs(ω1, . . . , ωn) denote the homogeneous polynomial
of order n− 2s defined by

ρs(ω1, . . . , ωn) =
∑

1≤i1<···<is≤n−s

∏n
j=1 ωj

∏s
j=1 ωij+j−1ωij+j

,

where each term in the summation is a product of the remaining elements
in the sequence ω1, . . . , ωn after deleting from it s disjoint pairs {ωi, ωi+1}
of consecutive elements. If n < 2s or s < 0, ρs(ω1, . . . , ωn) is defined as 0.
For the null sequence η, we define ρs(η) as

ρs(η) =

{

1 if s = 0,

0 if s 6= 0.

One can show easily (c.f. [19], [20] and [22])

ρs(ω1, . . . , ωn) = ρs−1(ω1, . . . , ωn−2) + ωnρs(ω1, . . . , ωn−1), (2)

and, for 0 ≤ j ≤ n,

ρn−j(ω1, . . . , ω2n) =
∑

1≤s1≤t1<s2≤t2<···<sj≤tj≤n

j
∏

k=1

ω2sk−1ω2tk , (3)

ρn−j(ω1, . . . , ω2n+1) =

n
∑

s=j

ρs−j(ω1, . . . , ω2s)ω2s+1

=
∑

1≤s0≤t1<s1≤t2<s2≤···≤tj<sj≤n+1

ω2s0−1

j
∏

k=1

ω2tkω2sk−1. (4)
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For a, b ∈ F
∗
q, let ω

′
2s−1 = aω2s−1 and ω′

2s = bω2s for s = 1, 2, . . ., then from
(3) and (4) we see easily

ρn−j(ω
′
1, . . . , ω

′
2n) = ajbjρn−j(ω1, . . . , ω2n), (5)

ρn−j(ω
′
1, . . . , ω

′
2n+1) = aj+1bjρn−j(ω1, . . . , ω2n+1). (6)

Since the graph Λk,q is edge-transitive, without loss of generality, we
will concentrate on the backtrackless walks which are leading by the two
vertices expressed by the all-zero vector. Let Γ = [l(1)]〈r(1)〉[l(2)]〈r(2)〉 · · ·
be such a given backtrackless walk of Λk,q, where [l(1)] = (0, 0, . . . , 0) and
〈r(1)〉 = (0, 0, . . . , 0). For i ≥ 1, let xi and yi denote the first entries (or
colors) of [l(i)] and 〈r(i)〉, respectively, and write

ui = xi+1 − xi, vi = yi+1 − yi. (7)

Clearly, we have ui 6= 0 and vi 6= 0. As a refinement of a closed-form expres-
sion given in [19] for the backtrackless walks leading by [l(1)] = (0, 0, . . . , 0),
the following lemma was shown in [22].

Lemma 1. For any i ≥ 1 and j ≥ 0, let l
(i+1)
j denote the (j + 1)-th entries

of [l(i+1)]. Then, we have

l
(i+1)
4j = ρi−j−1(u1, v1, . . . , ui−1, vi−1, ui), (8)

l
(i+1)
4j+1 = ρi−j−2(v1, u2, . . . , vi−1, ui), (9)

l
(i+1)
4j+2 = yi+1l

(i+1)
4j − ρi−j−1(u1, v1, . . . , ui, vi), (10)

l
(i+1)
4j+3 = yi+1l

(i+1)
4j+1 − ρi−j−2(v1, u2 . . . , vi−1, ui, vi). (11)

This lemma shows a compact expression for the vertices on the walk Γ.
For convenience, we say the walk Γ is of type (u1, v1, u2, v2, . . .). If the first
2i vertices in the walk Γ form a circuit in Λk,q of length 2i, we also call it a
backtrackless circuit of type (u1, v1, . . . , ui, vi).

We note that

ρi−1(v1, u2 . . . , vi−1, ui, vi) = v1 + · · ·+ vi = yi+1 = y1 = 0 (12)

is always a necessary condition for Λk,q to have a backtrackless circuit of
type (u1, v1, . . . , ui, vi).



5

3 Backtrackless Circuits in Λ4t+2,q

In this section we show an identity on the homogeneous polynomials intro-
duced in Section 2 at first. By using this identity, we show then that each
backtrackless circuit in Λ4t+1,q ensures the existence of a backtrackless cir-
cuit of the same type in Λ4t+2,q and deduce g(Λ4t+2,q) = g(Λ4t+1,q) for any
t ≥ 1 in final.

Lemma 2. For any integers n, t with n ≥ 1, let

∆n
2t−1 =ρn−t(v1, u2, . . . , vn−1, un, vn), (13)

∇n
2t−1 =ρn−t(u1, v1, . . . , un−1, vn−1, un), (14)

∆n
2t =ρn−1−t(v1, u2, . . . , vn−1, un), (15)

∇n
2t =ρn−t(u1, v1, . . . , un, vn). (16)

Then, for n ≥ 1 we have
∑

s

(−1)s∇n
s∆

n
2j−s = 0, for j ≥ 1. (17)

Proof. From ∆1
0 = ∇1

0 = 1, ∆1
1 = v1, ∇

1
1 = u1, ∇

1
2 = u1v1, ∆

1
s = ∇1

t = 0 for
any s 6∈ {0, 1} and t 6∈ {0, 1, 2}, it can be checked easily that (17) is valid
for n = 1.

To show that (17) is valid for n > 1, we note that for any integer t
according to (2) we have

∆n
2t−1 =ρn−t−1(v1, u2, . . . , vn−2, un−1, vn−1)

+ vnρn−t−1(v1, u2, . . . , vn−2, un−1)

+ vnunρn−t(v1, u2, . . . , vn−2, un−1, vn−1)

=∆n−1
2t−1 + vn∆

n−1
2t−2 + vnun∆

n−1
2t−3,

∇n
2t−1 =ρn−t−1(u1, v1, . . . , un−2, vn−2, un−1)

+ unρn−t(u1, v1, . . . , un−1, vn−1)

=∇n−1
2t−1 + un∇

n−1
2t−2,

∆n
2t =ρn−2−t(v1, u2, . . . , vn−2, un−1)

+ unρn−1−t(v1, u2, . . . , vn−2, un−1, vn−1)

=∆n−1
2t + un∆

n−1
2t−1,

∇n
2t =ρn−t−1(u1, v1, . . . , un−1, vn−1),

+ vnρn−t−1(u1, v1, . . . , un−2, vn−2, un−1)

+ vnunρn−t(u1, v1, . . . , un−1, vn−1)

=∇n−1
2t + vn∇

n−1
2t−1 + vnun∇

n−1
2t−2,
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then we get

∑

s

(−1)s∇n
s∆

n
2j−s

=
∑

t

(∇n−1
2t + vn∇

n−1
2t−1 + vnun∇

n−1
2t−2)(∆

n−1
2j−2t + un∆

n−1
2j−2t−1)

−
∑

t

(∇n−1
2t−1 + un∇

n−1
2t−2)(∆

n−1
2j−2t+1 + vn∆

n−1
2j−2t + vnun∆

n−1
2j−2t−1)

=
∑

t

(∇n−1
2t ∆n−1

2j−2t −∇n−1
2t−1∆

n−1
2j−2t+1)

+ un
∑

t

(∇n−1
2t ∆n−1

2j−2t−1 −∇n−1
2t−2∆

n−1
2j−2t+1)

=
∑

s

(−1)s∇n−1
s ∆n−1

2j−s.

Therefore, one can show easily by induction that (17) is valid for any positive
integer n.

The following theorem is then a simple corollary of Lemmas 1 and 2.

Theorem 1. For t ≥ 1, Λ4t+2,q has a backtrackless circuit of type (u1, v1, . . . ,
ui, vi) if and only if Λ4t+1,q has a backtrackless circuit of the same type. In
particular, we have g(Λ4t+2,q) = g(Λ4t+1,q) for t ≥ 1.

Proof. Assume that there is a backtrackless circuit of type (u1, v1, . . . , ui, vi)
in Λ4t+1,q, that is,

v1 + · · · + vi = yi+1 = y1 = 0

and l
(i+1)
k

= 0 for 0 ≤ k ≤ 4t + 1. According to Lemma 1, by using the
notations defined in Lemma 2 we have ∆i

2t+2 = 0 and ∆i
k = ∇i

k = 0 for
1 ≤ k ≤ 2t+ 1. Therefore, from ∆i

0 = 1 and Lemma 2 we see

l
(i+1)
4t+2 = yi+1l

(i+1)
4t −∇i

2t+2 =

2t+1
∑

s=0

(−1)s∇i
s∆

i
2t+2−s = 0,

and then Λ4t+2,q also has a backtrackless circuit of type (u1, v1, . . . , ui, vi).
On the other hand, we note that Λ4t+2,q has a backtrackless circuit of type
(u1, v1, . . . , ui, vi) implies naturally that Λ4t+1,q has a backtrackless circuit
of the same type. The proof is complete.
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4 Backtrackless Circuits in Λ4s+3,q

All the arguments given in this section will be based on the existence of
backtrackless circuits of type (u1, v1, . . . , u2n, v2n) with

v2j−1 = −v2j = 1, j = 1, 2, . . . , n, (18)

in the graph Λk,q. To show the existence of such circuits, we deduce some
equalities on the homogeneous polynomials ρs(·, . . . , ·) at first.

Lemma 3. For any integer t and tuple (u1, v1, . . . , u2n, v2n) over F
∗
q with

(18), we have

ρ2n−2t(u1, v1, . . . , u2n−1, v2n−1, u2n)

=(−1)t−1ρn−t(u1, . . . , u2n) + (−1)tρn−t−1(u2, . . . , u2n−1), (19)

ρ2n+1−2t(u1, v1, . . . , u2n−1, v2n−1, u2n)

=(−1)t−1ρn−t(u2, . . . , u2n) + (−1)t−1ρn−t(u1, . . . , u2n−1), (20)

ρ2n−1−2t(v1, u2, . . . , v2n−1, u2n) = (−1)tρn−t−1(u2, . . . , u2n−1), (21)

ρ2n−2t(v1, u2, . . . , v2n−1, u2n) = (−1)t−1ρn−t(u2, . . . , u2n), (22)

ρ2n−2t(u1, v1, . . . , u2n, v2n) = (−1)tρn−t(u1, . . . , u2n), (23)

ρ2n+1−2t(u1, v1, . . . , u2n, v2n) = (−1)tρn−t(u2, . . . , u2n), (24)

ρ2n−2t(v1, u2, . . . , v2n−1, u2n, v2n) = (−1)tρn−t(u2, . . . , u2n), (25)

ρ2n+1−2t(v1, u2, . . . , v2n−1, u2n, v2n) = 0. (26)

Proof. We give a proof only for the equality (19). The others can be proved
similarly.

It is obvious that (19) is valid if t ≤ 0 or t ≥ n. Since for 1 ≤ s ≤ n we
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have y2s−1 = 0 and y2s = 1, according to (3) and (4), for 1 ≤ t < n, we have

ρ2n−2t(u1, v1, . . . , u2n−1, v2n−1, u2n)

=
∑

1≤j1≤j2<j3≤···≤j4t−2<j4t−1≤2n

uj1

2t−1
∏

s=1

vj2suj2s+1

=
∑

1≤j1<j3<···<j4t−1≤2n

uj1

2t−1
∏

s=1

uj2s+1

∑

j2s−1≤l<j2s+1

vj2s

=
∑

1≤j1<j3<···<j4t−1≤2n

uj1

2t−1
∏

s=1

uj2s+1
(yj2s+1

− yj2s−1
)

=(−1)t−1
∑

1≤i1≤i2<i3≤i4<···<i2t−1≤i2t≤n

t
∏

s=1

u2i2s−1−1u2i2s

+ (−1)t
∑

1≤i1<i2≤i3<i4≤···≤i2t−1<i2t≤n

t
∏

s=1

u2i2s−1
u2i2s−1

=(−1)t−1ρn−t(u1, . . . , u2n) + (−1)tρn−t−1(u2, . . . , u2n−1),

i.e. (19) is valid for 1 ≤ t < n.

The following lemma shows that, from any backtrackless circuit of length
2n in Λ2s,q, one can construct a backtrackless circuit of length 4n in Λ4s+3,q,
for any s ≥ 1 and n ≥ 3.

Lemma 4. Assume that s ≥ 1 and n ≥ 3. The graph Λ4s+3,q has a back-
trackless circuit of type (u1, v1, . . . , u2n, v2n) with (18) if and only if Λ2s,q

has a backtrackless circuit of length 2n.

Proof. Assume that v1, . . . , v2n ∈ F
∗
q satisfy (18). According to Lemma 1,

the graph Λ4s+3,q has a backtrackless circuit of type (u1, v1, . . . , u2n, v2n) if
and only if























ρ2n−j−2(v1, u2, . . . , v2n−1, u2n, v2n) = 0,

ρ2n−j−1(u1, v1, . . . , u2n, v2n) = 0,

ρ2n−j−2(v1, u2, . . . , v2n−1, u2n) = 0,

ρ2n−j−1(u1, v1, . . . , u2n−1, v2n−1, u2n) = 0,

for 0 ≤ j ≤ s. (27)

If s = 2w is even, according to Lemma 3 we see that (27) is equivalent
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to ρn−1(u1, . . . , u2n−1) = ρn−1(u2, . . . , u2n) = 0 and























ρn−j−1(u1, . . . , u2n−1) = 0,

ρn−j−1(u2, . . . , u2n) = 0,

ρn−j(u1, . . . , u2n) = 0,

ρn−j−1(u2, . . . , u2n−1) = 0,

for 1 ≤ j ≤ w, (28)

that is, the graph Λ4w,q has a backtrackless circuit of type (u1, . . . , u2n) on
account to Lemma 1.

If s = 2w−1 is odd, according to Lemma 3 we see that (27) is equivalent
to























ρn−j(u1, . . . , u2n) = 0,

ρn−j−1(u2, . . . , u2n−1) = 0,

ρn−j(u1, . . . , u2n−1) = 0,

ρn−j(u2, . . . , u2n) = 0,

for 1 ≤ j ≤ w. (29)

that is, the graph Λ4w−2,q has a backtrackless circuit of type (u1, . . . , u2n)
on account to Lemma 1.

Based on the existence of backtrackless circuits of type (u1, v1, . . . , u2n, v2n)
with (18), on the girth of Λk,q one can show the following theorem by using
Lemmas 1, 3 and 4.

Theorem 2. Assume n ≥ 3 and s,w ≥ 1.

1. If g(Λ2s,q) ≤ 2n, then g(Λ4s+3,q) ≤ 4n.

2. If g(Λ2n−4,q) = 2n, then g(Λ4n−5,q) = 4n.

3. If g(Λ4w−2,q) = 4w + 2, then g(Λ8w,q) = 8w + 4.

4. If q is a power of 2 and g(Λ4w,q) ≤ 2n, then g(Λ8w+4,q) ≤ 4n.

Proof. The first statement follows simply from Lemma 4. Furthermore, the
second statement follows immediately on account to g(Λ4n−5,q) ≥ 4n.

To show the third statement, we set n = 2w + 1 and assume that the
graph Λ4w−2,q has a backtrackless circuit of type (u1, . . . , u2n). Then, ac-
cording to Lemma 1 we have (29). If ρn−w−1(u2, . . . , u2n) = 0, then Λ4w−1,q

has a backtrackless circuit of type (u1, . . . , u2n), contradicts g(Λ4w−1,q) ≥



10

4w + 4 > 2n. If ρn−w−1(u1, . . . , u2n−1) = 0, then Λ4w−1,q has a backtrack-
less circuit of type (u2n, . . . , u1), contradicts g(Λ4w−1,q) ≥ 4w + 4 > 2n too.
Hence, we have ρn−w−1(u2, . . . , u2n)ρn−w−1(u1, . . . , u2n−1) 6= 0. Let

α = −ρn−w−1(u2, . . . , u2n)/ρn−w−1(u1, . . . , u2n−1).

We multiply the entries with odd indices in the tuple (u1, . . . , u2n) by α,
and denote the resulting tuple by the same notation. Then, according to (5)
and (6) one can check easily that the modified tuple (u1, . . . , u2n) satisfies
(29) and

ρn−w−1(u2, . . . , u2n) + ρn−w−1(u1, . . . , u2n−1) = 0.

Hence, according to Lemma 3 we have

ρ2n−2w−1(u1, v1, . . . , u2n−1, v2n−1, u2n) = 0

and (27) with s = 2w−1, where the tuple (v1, . . . , v2n) satisfies (18). There-
fore, according to Lemma 1 we see Λ8w,q has a backtrackless circuit of type
(u1, v1, . . . , u2n, v2n) and thus we have g(Λ8w,q) ≤ 4n = 8w+4. Hence, from
g(Λ8w,q) ≥ 8w + 4 we see g(Λ8w,q) = 8w + 4.

To show the last statement, we assume that q is a power of 2 and that
the graph Λ4w,q has a backtrackless circuit of type (u1, . . . , u2n). Then,
according to Lemma 1 we have

ρn−1(u1, . . . , u2n−1) = ρn−1(u2, . . . , u2n) = 0

and (28), that is, ∇n
t = ∆n

t = 0 holds for 1 ≤ t ≤ 2w + 1 when we modify
accordingly the definition of the notations ∇n

t , ∆
n
t . Therefore, according to

Lemma 2 and that the characteristic of Fq is 2, we see

ρn−w−2(u2, . . . , u2n−1)− ρn−w−1(u1, . . . , u2n)

=∆n
2w+2 −∇n

2w+2

=2∆n
2w+2 +

2w+1
∑

s=1

(−1)s∇n
s∆

n
2w+2−s = 0.

Hence, according to Lemma 3 we have

ρ2n−2w−2(u1, v1, . . . , u2n−1, v2n−1, u2n) = 0

and (27) with s = 2w, where the tuple (v1, . . . , v2n) satisfies (18). Therefore,
according to Lemma 1 we see Λ8w+4,q has a backtrackless circuit of type
(u1, v1, . . . , u2n, v2n) and thus we have g(Λ8w+4,q) ≤ 4n.
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Example 1. • For k ≥ 2, the girth of Λk,2 has been determined [19]:
g(Λk,2) = 2s, where s is the integer with 2s−1 − 4 < k ≤ 2s − 4.

• Suppose q ≥ 3. According to Theorem 2, from g(Λ2,q) = 6 [19] we
see g(Λ7,q) = g(Λ8,q) = 12, g(Λ18,q) ≤ g(Λ19,q) = 24, g(Λ38,q) ≤
g(Λ39,q) ≤ 48, g(Λ78,q) ≤ g(Λ79,q) ≤ 96 and g(Λ159,q) ≤ 192.

• Suppose q > 3. According to Theorem 2, from g(Λ4,q) = 8 [22] we see
g(Λ11,q) = 16. According to Theorem 1, from g(Λ5,q) = 10 [22] we see
g(Λ6,q) = 10 and then, according to Theorem 2, we have g(Λ15,q) =
g(Λ16,q) = 20 and g(Λ35,q) = 40.

When the characteristic of Fq is 2, one can deduce further the following
corollary easily.

Corollary 1. Assume g(Λ2s,q) = 2s+4, where q is a power of 2 and s ≥ 1.
Then, for any t ≥ 1 we have

g(Λ2t(s+2)−4,q) = g(Λ2t(s+2)−5,q) = 2t(s+ 2),

where Λ1,q is defined as a graph isomorphic to Λ2,q for convenience.

Proof. From g(Λk,q) ≥ k+4 and Theorem 2, we see easily that g(Λ2t(s+2)−4,q)
= 2t(s + 2) is valid for any t ≥ 1. Furthermore, g(Λ2t(s+2)−5,q) = 2t(s + 2)
follows from 2t(s+ 2) ≤ g(Λ2t(s+2)−5,q) ≤ g(Λ2t(s+2)−4,q).

Example 2. Assume that q ≥ 4 is a power of 2. According to Corollary 1,
we have the following three statements.

• From g(Λ2,q) = 6, we see g(Λ2t3−4,q) = g(Λ2t3−5,q) = 2t3 for t ≥ 1.

• From g(Λ4,q) = 8, we see g(Λ2t+2−4,q) = g(Λ2t+2−5,q) = 2t+2 for t ≥ 1.

• From g(Λ6,q) = 10, we see g(Λ2t5−4,q) = g(Λ2t5−5,q) = 2t5 for t ≥ 1.

For prime p, we write m|pn if m|(npr) for some r ≥ 0. The following
lemma is from [20].

Lemma 5. For q = ps and t ≥ 1 with (t+ 2)|p(q − 1),

g(Λ2t−1,q) = g(Λ2t,q) = 2t+ 4. (30)

The following theorem follows simply from Theorem 2 and Lemma 5.
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Theorem 3. Assume that q is a power of odd prime p and s, t are positive
integers with (2t − 1)|p(q − 1) and 2s‖(q − 1). Then, Conjecture 1 is valid
when k = 2s+2(2t− 1)− 5, i.e.

g(Λ2s+2(2t−1)−5,q) = 2s+2(2t− 1). (31)

Proof. Clearly, we have 2s(2t− 1)|p(q − 1). Hence, from Lemma 5 we see

g(Λ2s+1(2t−1)−5,q) = g(Λ2s+1(2t−1)−4,q) = 2s+1(2t− 1),

therefore, from Theorem 2 we see (31).

We note that the result shown in this theorem is not included by Lemma 5.
At the end of this section, we investigate the girth of Λk,3 for small k.

Example 3. • The positive integer t’s satisfying (t + 2)|3(3 − 1) are
1, 4, 7, 16, 25, 52, 79, 160, . . .. Then, according to Lemma 5 we have
g(Λ2,3) = 6, g(Λ7,3) = g(Λ8,3) = 12, g(Λ13,3) = g(Λ14,3) = 18,
g(Λ31,3) = g(Λ32,3) = 36, g(Λ49,3) = g(Λ50,3) = 54, g(Λ103,3) =
g(Λ104,3) = 108, g(Λ157,3) = g(Λ158,3) = 162, g(Λ319,3) = g(Λ320,3) =
324, . . ..

• From g(Λ32,3) = 36, according to Theorem 2 we see g(Λ66,3) ≤ g(Λ67,3)
= 72, g(Λ134,3) ≤ g(Λ135,3) ≤ 144 and g(Λ271,3) ≤ 288.

• From g(Λ104,3) = 108, according to Theorem 2 we see g(Λ211,3) = 216.

The known results on the girth of Λk,3 for 2 ≤ k ≤ 320 are summarized
in the following table.

Table 1: Girth of Λk,3 for 2 ≤ k ≤ 320.

2 3 4 5 6 7 8 13 14 19*
6 8 12 12 12 12 12 18 18 24

31 32 39* 49 50 67* 79* 103 104 135*
36 36 ≤ 48 54 54 72 ≤ 96 108 108 ≤ 144

157 158 159* 211* 271* 319 320
162 162 ≤ 192 216 ≤ 288 324 324

In this table, the mark * indicates the exact values or upper bounds of
g(Λk,3) are obtained by the methods proposed in this paper. We note that
the girth cycles of Λk,3 were determined in [22] for 3 ≤ k ≤ 8. In particular,
the results g(Λ3,3) = 8 and g(Λk,3) = 12 for 4 ≤ k ≤ 8 can be found therein.
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5 Upper Bound of g(Λk,q)

In this section, we manage to deduce an upper bound for the girth of Λk,q

for q ≥ 3.
Assume that q ≥ 3 is a given prime power and the number of positive

factors of q − 1 is n. Let k1, k2, . . . be the odd integers in ascending order
with ki+5

2 |p(q − 1), where p is the characteristic of Fq. Let i0 be the integer
with ki0 = 2q − 5.

Lemma 6. For any i ≥ i0

ki+n = pki + 5p− 5. (32)

Proof. Suppose q = pm. For 0 ≤ j ≤ m − 1, let dj,1, . . . , dj,tj denote the
different factors of q − 1 with pj ≤ dj,t < pj+1 for t = 1, . . . , tj . Then, we
have

∑m−1
j=0 tj = n and for any s ≥ 0 from (p, dj,t) = 1 we see

{ki0+sn+i|0 ≤ i < n} =
⋃

0≤j<m

{

2dj,tp
s+m−j − 5

∣

∣ 1 ≤ t ≤ tj
}

,

which implies (32).

Let

Tq = max
i≥i0

ki+1 + 5

ki + 5
. (33)

From Lemma 6 we see that Tq can also be given by

Tq = max
i0≤i<i0+n

ki+1 + 5

ki + 5
. (34)

Clearly, 1 < Tq < p, and for any i ≥ i0 we have
ki+1+5

2 ≤ Tq
ki+5
2 , i.e.

ki+1 ≤ Tqki + 5Tq − 5. (35)

Example 4. If q = 52, then the positive factors of 52−1 = 24 are 1, 2, 3, 4, 6,
8, 12, 24 and the positive integers t with t|524 are

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 125, . . .

Hence, Tq = max{6/5, 8/6, 10/8, 12/10, 15/12, 20/15, 24/20, 25/24} = 4/3.
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From Lemma 5 we see g(Λki−1,q) ≤ g(Λki,q) = ki + 5, hence from Theo-
rem 2 we see

g(Λ2(ki−1)+2,q) ≤ g(Λ2(ki−1)+3,q) ≤ 2(ki + 5)

and by induction we have

g(Λ2s(ki+1)−2,q) ≤ g(Λ2s(ki+1)−1,q) ≤ 2s(ki + 5), for any s ≥ 0. (36)

Theorem 4. Let q be a prime power.

1. If Tq ≤ 2, then for k ≥ q we have

g(Λk,q) ≤ Tq(k + 4). (37)

2. If Tq > 2 and k ≥ max{q, 8T 2
q − 10Tq − 3}, then we have

g(Λk,q) ≤ 2k + 4Tq + 1. (38)

Proof. Without loss of generality, we assume ki < k < ki+1 for some i ≥ i0.
If Tq ≤ 2, then from (35) and Lemma 5 we see

g(Λk,q) ≤ g(Λki+1,q) = ki+1 + 5 ≤ Tq(ki + 5) ≤ Tq(k + 4),

i.e. (37) is valid.
Now we assume Tq > 2 and k ≥ 8T 2

q − 10Tq − 3.

If ki+1

2 < k ≤ ki+1, then from Lemma 5 we have

g(Λk,q) ≤ g(Λki+1,q) = ki+1 + 5 ≤ 2k + 4. (39)

If ki < k <
ki+1

2 , for the integer s with

2s(ki + 1) ≤ k < 2s+1(ki + 1) (40)

from (35) we see

2s(ki + 1) ≤ k ≤
ki+1 − 1

2
≤

Tqki + 5Tq − 6

2
,

and then from (36) and (40) we have

g(Λk,q) ≤g(Λ2s+1(ki+1)−1,q)

≤2s+1(ki + 5)

≤2k + 2s+3

≤2k + 4Tq +
16Tq − 24

ki + 1
. (41)
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From (35) and k ≥ 8T 2
q − 10Tq − 3 we see also

Tqki + 5Tq − 5 ≥ ki+1 ≥ 2k + 1 ≥ 16T 2
q − 20Tq − 5

and thus we have (16Tq − 24)/(ki + 1) ≤ 1. Therefore, from Tq > 1, (39)
and (41) we see that (38) is valid.

6 Concluding Remarks

Conjecture 1 was shown to be valid in [5] for the case k+5
2 |(q − 1) based

on the existence of a special automorphism of D(k, q), in [19] for the case
k+5
2 is a power of p based on the existence of backtrackless circuit of type

(1, 1, . . . , 1, 1), and in [19] for the case k+5
2 |p(q − 1) based on the existence

of backtrackless circuit of type (1, 1, b, b, . . . , bn, bn), respectively, where p
is the characteristic of Fq. A few new results on the girth of D(k, q) are
obtained in the present paper based on the existence of backtrackless circuit
of type (u1, v1, . . . , u2n, v2n) with (18). For example, Conjecture 1 is shown
to be valid in Theorem 3 for a new class of infinite pairs (k, q): p ≥ 3, k =
2s+2(2t−1)−5 for positive integers s, t with 2s‖(q−1) and (2t−1)|p(q−1).
Almost the recent progresses made on the study of the girth of D(k, q) rely
heavily on the computation of the homogeneous polynomial ρs(ω1, . . . , ωn).
It is then of great interest to investigate the properties of these polynomials
further in future.
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