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Abstract. We describe a construction of three-dimensional Hada-
mard matrices of even order v such that v−1 is a prime power. The
construction covers infinitely many orders for which the existence
was previously open.

1. Introduction

An n-dimensional matrix of order v over the set S is a function
H : {1, . . . , v}n → S. A k-dimensional layer of H is a restriction ob-
tained by fixing n− k coordinates. Two layers are parallel if the same
coordinates are fixed and the values of the fixed coordinates agree,
except (possibly) one. An n-dimensional Hadamard matrix is an ma-
trix over {−1, 1} such that all (n − 1)-dimensional parallel layers are
mutually orthogonal, i.e.

∑

1≤i1,...,îj ,...,in≤v

H(i1, . . . , a, . . . , in)H(i1, . . . , b, . . . , in) = vn−1δab
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holds for all j ∈ {1, . . . , n} and a, b ∈ {1, . . . , v}. Proper n-dimensional

Hadamard matrices satisfy the stronger condition that all 2-dimensional
layers are Hadamard, i.e. {−1, 1} matrices with orthogonal rows and
columns.
Higher-dimensional Hadamard matrices were introduced by Paul J.

Schlichta [7, 8]. These matrices have been extensively studied and have
applications in signal processing, error correction coding and cryptog-
raphy; see [4, 10]. A central question is determining the orders v for
which Hadamard matrices exist. By the famous Hadamard conjecture,
2-dimensional matrices exist for all v divisible by 4. The conjecture
remains open with the smallest order for which no example is known
currently being v = 668. By the following theorem of Yang [9], the
existence of proper n-dimensional Hadamard matrices is equivalent to
the 2-dimensional case.

Theorem 1.1 (Product construction). If h = [hij] is a 2-dimensional

Hadamard matrix of order v, then

H(i1, . . . , in) =
∏

1≤j<k≤n

hij ik

is a proper n-dimensional Hadamard matrix of order v.

On the other hand, orders of improper higher-dimensional Hadamard
matrices are not necessarily divisible by 4, but only even. The book [10]
contains many constructions for Hadamard matrices of orders v ≡ 2
(mod 4) and dimensions n ≥ 4. A question whether such matrices
exist for all even orders is raised [10, Question 12, p. 419]. There are
theorems giving higher-dimensional Hadamard matrices from lower-
dimensional ones, for example [10, Theorem 6.1.5]:

Theorem 1.2. If h : {1, . . . , v}n → {−1, 1} is an n-dimensional

Hadamard matrix, then

H(i1, . . . , in, in+1) = h(i1, . . . , in−1, in + in+1)

is an (n+ 1)-dimensional Hadamard matrix of the same order v. The

sum in the last coordinate is taken modulo v.

This construction does not preserve propriety, i.e. H needs not be
proper even if h is proper. Less is known about Hadamard matrices
of dimension 3. A construction based on perfect binary arrays [10,
Theorem 3.2.2] gives examples for orders v = 2 · 3k, k ≥ 0. The
existence of 3-dimensional Hadamard matrices of orders v ≡ 2 (mod 4)
that are not of this form has been a long-standing open problem [10,
Questions 5 and 6, p. 419]. We give an affirmative answer for all even
orders v such that v − 1 is a prime power.
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In the next section we present a construction based on squares in fi-
nite fields of odd orders q similar to Paley’s construction of 2-dimensional
Hadamard matrices [6]. Our three-dimensional matrices are indexed
by points of the projective line PG(1, q) and are invariant under the
projective special linear group PSL(2, q). The construction covers in-
finitely many orders for which three-dimensional Hadamard matrices
were not known. We conclude the paper in Section 3 by considering
the smallest order not covered by our construction that is still open.

2. The construction

Shlichta suggested to generalise known algebraic constructions of
Hadamard matrices to higher dimensions [8, Section VI, Problem (a)].
A famous early construction using finite fields is due to Paley [6].
It can be described as follows. Let q be an odd prime power and
χ : F∗

q → {1,−1} a function that takes the value 1 for non-zero squares
in the field Fq and −1 for non-squares. Note that χ is a homomorphism
from the multiplicative group of Fq to {1,−1}. The rows and columns
of the matrix h are indexed by the projective line PG(1, q) = {∞}∪Fq

and the elements are

h(x, y) =















−1, if x = y = ∞,

1, if x = y 6= ∞ or x = ∞ 6= y

or y = ∞ 6= x,

χ(y − x), otherwise.

(1)

If q ≡ 3 (mod 4), this is a Hadamard matrix of order q + 1 called the
Paley type I matrix. For q ≡ 1 (mod 4) there is a similar construction
of Paley type II Hadamard matrices of orders 2(q + 1).
Hammer and Seberry [3, Example 2] assume χ(0) = −1 and define

the n-dimensional Paley cube as

H(x1, . . . , xn) =

{

1, if xi = ∞ for at least one i,

χ(x1 + . . .+ xn), otherwise.

For n = 2 this matrix is equivalent to the Paley type I matrix, but
for n ≥ 3 the (n − 1)-dimensional layers are not orthogonal and it
is not a higher-dimensional Hadamard matrix. Hammer and Seberry
call it “almost Hadamard” because the 2-dimensional layers are either
Hadamard matrices or matrices of all ones.
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We propose an alternative definition for n = 3:

H(x, y, z) =











































−1, if x = y = z,

1, if x = y 6= z

or x = z 6= y

or y = z 6= x,

χ(z − y), if x = ∞,

χ(x− z), if y = ∞,

χ(y − x), if z = ∞,

χ((x− y)(y − z)(z − x)), otherwise.

(2)

In the last four rows the coordinates are assumed to be all distinct. We
first describe the symmetries of this three-dimensional matrix.

Lemma 2.1. The matrix (2) is invariant under cyclic shifts of the

coordinates, i.e. H(x, y, z) = H(y, z, x) = H(z, x, y).

Proof. Follows directly from the definition. �

Lemma 2.2. The matrix (2) is invariant under linear fractional trans-
formations of the coordinates with determinant 1, i.e. under the action

of PSL(2, q) on the projective line.

Proof. Let f : PG(1, q) → PG(1, q) be defined by f(x) = ax+b
cx+d

for
a, b, c, d ∈ Fq, ad − bc = 1. If the denominator is zero then f(x) = ∞,
and f(∞) = a

c
. We claim that H(f(x), f(y), f(z)) = H(x, y, z) for all

x, y, z ∈ PG(1, q). Since f is a bijection, this clearly holds if x = y = z

or two of the coordinates are equal. Assume that the three coordinates
are all distinct and ∞ does not appear among x, y, z, f(x), f(y), f(z).
Because ad − bc = 1, we have f(x) − f(y) = x−y

(cx+d)(cy+d)
, so (f(x) −

f(y))(f(y)−f(z))(f(z)−f(x)) = (x−y)(y−z)(z−x)
(cx+d)2(cy−d)2(cz+d)2

. The denominator

is a square, hence the χ-value of this expression agrees with χ((x −
y)(y − z)(z − x)). Similarly one can check that H(f(x), f(y), f(z)) =
H(x, y, z) if x, y, z are distinct and ∞ does appear among x, y, z, f(x),
f(y), f(z). �

Theorem 2.3. For every odd prime power q, equation (2) defines a

three-dimensional Hadamard matrix of order q + 1. If q ≡ 3 (mod 4),
the matrix is proper with all 2-dimensional layers equivalent to the Pa-

ley type I matrix (1).

Proof. Because of Lemma 2.1 we may fix the last coordinate. We claim
that for all distinct a, b ∈ PG(1, q),

∑

x,y∈PG(1,q)

H(x, y, a)H(x, y, b) = 0.



THREE-DIMENSIONAL HADAMARD MATRICES OF PALEY TYPE 5

Now, because PSL(2, q) acts 2-transitively on PG(1, q) and Lemma 2.2,
we may take a = 0 and b = ∞ without loss of generality. We divide
the sum into two parts:

∑

x

H(x, x, 0)H(x, x,∞) +
∑

x 6=y

H(x, y, 0)H(x, y,∞).

The first part is readily seen to be q − 3. For the second part we
distinguish whether 0, ∞ are among x, y or not. If x = 0, y = ∞ or
x = ∞, y = 0 the summand is 1, so up to now the total is q − 1. If
x ∈ F

∗
q, y = ∞, the sum is

∑

x∈F∗

q

H(x,∞, 0)H(x,∞,∞) =
∑

x∈F∗

q

χ(x) = 0

because there are equally many squares and non-squares in F
∗
q. Simi-

larly we see that the cases x ∈ F
∗
q, y = 0; x = ∞, y ∈ F

∗
q ; and x = 0,

y ∈ F
∗
q sum up to 0. The final part of the sum is over x, y ∈ F

∗
q, x 6= y:

∑

H(x, y, 0)H(x, y,∞) =
∑

χ((x− y)(y − 0)(0− x))χ(y − x) =

=
∑

χ(x)χ(y) =
∑

x

χ(x)
∑

y 6=x

χ(y) =
∑

x

χ(x)(−χ(x)) = 1− q.

The grand total is q−1+1− q = 0 and the first part of the theorem is
proved. For the second part notice that thanks to Lemmas 2.1 and 2.2
we may, without loss of generality, fix the third coordinate to z = ∞
and look at the 2-dimensional layer obtained by varying x and y. In this
case equation (2) reduces to (1), and this is a Paley type I Hadamard
matrix if q ≡ 3 (mod 4). �

3. Concluding remarks

Theorem 2.3 proves the existence of three-dimensional Hadamard
matrices of orders v = 10, 14, 26, 30, 38, 42, and infinitely many
other orders that were previously unknown. The construction is imple-
mented in our GAP [2] package Prescribed Automorphism Groups [5].
Examples can be easily obtained by typing Paley3DMat(v).
The smallest order v ≡ 2 (mod 4) not covered by Theorem 2.3 is

v = 22. A four-dimensional Hadamard matrix of order 22 can be con-
structed by [10, Theorem 6.1.4] from a 2-dimensional Hadamard matrix
of order 222 = 484. Theorem 1.2 then covers all dimensions n > 4. As
far as we know, the existence of a three-dimensional Hadamard matrix
of order 22 is an open problem. We tried constructing examples by
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prescribing automorphism groups (see [1] for the relevant definitions)
but we did not succeed.
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