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ON THE DISTRIBUTION OF THE ENTRIES OF A

FIXED-RANK RANDOM MATRIX OVER A FINITE FIELD

CARLO SANNA†

Abstract. Let r > 0 be an integer, let Fq be a finite field of q elements, and let A be a
nonempty proper subset of Fq. Moreover, let M be a random m × n rank-r matrix over Fq

taken with uniform distribution. We prove, in a precise sense, that, as m,n → +∞ and r, q,A

are fixed, the number of entries of M that belong to A approaches a normal distribution.

1. Introduction

Let Fq be a finite field of q element. For every matrix M over Fq, let wt(M) be the weight
of Fq, that is, the number of nonzero entries of M.

Migler, Morrison, and Ogle [3] proved a formula for the expected value of wt(M) when M

is taken at random, with uniform distribution, from the set of m× n rank-r matrices over Fq.
Furthermore, they suggested that, as m,n → +∞ and r, q are fixed, an appropriate scaling
of wt(M) approaches a normal distribution. Sanna [6] proved this last claim for q = 2 and
assuming that m/n converges to a positive real number.

For every A ⊆ Fq and for every matrix M over Fq, let ctA(M) be the number of entries
of M that belong to A. Moreover, put γA(q) :=

∑
a∈A γa(q), where γ0(q) := q−1 − 1 and

γa(q) := q−1 for each a ∈ F∗
q, and let

µA(q,m, n) :=
(
|A|q−1 − γA(q)q

−r
)
mn,

σ2A(q,m, n) := γA(q)
2q−r(1− q−r)(m+ n)mn,

for all integers m,n > 0. Note that γA(q) 6= 0 unless A = ∅ or A = Fq.
Our result is the following.

Theorem 1.1. Fix an integer r > 0 and a nonempty set A ( Fq. Let M be taken at random,
with uniform distribution, from the set of m×n rank-r matrices over Fq. Then, as m,n→ +∞,
we have that

(1)
ctA(M)− µA(q,m, n)

√
σ2A(q,m, n)

converges in distribution to a standard normal random variable.

Roughly speaking, Theorem 1.1 asserts that, as m and n both grow, ctA(M) approaches
a normal random variable with expected value µA(q,m, n) and variance σ2A(q,m, n). Note
that, if the condition on the rank is dropped, that is, if M is taken at random with uniform
distribution from the set of m × n matrices over Fq, then an easy application of the central
limit theorem yields that ctA(M) approaches a normal random variable with expected value
|A|q−1mn and variance |A|q−1

(
1− |A|q−1

)
mn.

Before we proceed, let us outline the main ideas of the proof of Theorem 1.1. First, using
full-rank factorization and the well-known formula for the number ofm×n rank-r matrices over
Fq, it is shown that, for the sake of proving Theorem 1.1, we can assume that M = XY, where
X and Y are m× r and r × n independent random matrices taken with uniform distribution
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2 C. SANNA

from their respective spaces. Second, the event that the product of a row of X and a column
of Y is equal to a prescribed element of Fq is handled via the Fourier transform of Fq respect
to multiplicative characters. The use of multiplicative characters is necessary to conveniently
“separate” the entries of X by the entries of Y in two factors of a product. However, it
introduces some complications (essentially because the Fourier inversion formula holds only
for functions Ftq → C that are supported on (F∗

q)
t), which are dealt with by a kind of Möbius

transform. Finally, all of this makes possible to write (1) as a main term, which converges in
distribution to a standard normal random variable, plus an error term, which is shown to be
negligible.

It might be interesting to strenghten Theorem 1.1 by letting also r goes to infinity, but in a
way controlled by m and n (see Remark 5.1).

2. General notations and definitions

For every finite set A, we let |A| be the number of elements of A. For each statement S,
we let 1[S] be equal to 1 if S is true, and to 0 if S is false. For every event E, we let P[E]
be the probability that E occurs. For each real or complex random variable X, we write E[X]
and V[X] for the expected value and the variance of X. For every sequence (Xn) of random

variables, we write Xn
d−→ X to denote that (Xn) converges in distribution to X. For a complex

random variable Z = X+ iY , where X and Y are real random variables and i is the imaginary
unity, the covariance matrix of Z is the covariance matrix of the random vector (X,Y ). Also,
we say that Z is a complex normal random variable if the random vector (X,Y ) follows a
bivariate normal distribution. For each integer r > 0, we set [r] := {1, . . . , r}. We say that a
function f : X → C is supported on a set Y if f(x) = 0 for every x ∈ X \Y. We adopt the usual
convention that the empty sum and the empty product are equal to 0 and 1, respectively.

3. Preliminaries on the Fourier transform

3.1. Characters of finite fields. We recall some basics facts about characters of finite
fields (see, e.g., [2, Chapter 5, Section 1] and [4, Chapter 10, Section 1]).

Given a finite abelian group G, a character of G is a group homomorphism G → C∗. The

set of characters of G is denoted by Ĝ and is a finite abelian group respect to the pointwise

product of functions. The identity of Ĝ is the trivial character, which sends each element of

G to 1, while the inverse of each χ ∈ Ĝ is the pointwise complex conjugation of χ, which is
denoted by χ.

The additive characters of Fq are the characters of Fq as an additive group. We let ψ0 denote
the trivial additive character of Fq. The multiplicative characters of Fq are the characters of F

∗
q

as a multiplicative group. We let χ0 denote the trivial multiplicative character of Fq. Moreover,
we extend each multiplicative character χ of Fq to a function Fq → C by setting χ(0) := 0.

The additive and multiplicative characters of Fq satisfy the orthogonality relations:

(2)
1

q

∑

ψ∈F̂q

ψ(a) = 1[a = 0] (3)
1

q − 1

∑

χ∈F̂∗
q

χ(a) = 1[a = 1]

for every a ∈ Fq, and

(4)
1

q

∑

a∈Fq

ψ(a) = 1[ψ = ψ0] (5)
1

q − 1

∑

a∈Fq

χ(a) = 1[χ = χ0]

for every ψ ∈ F̂q and χ ∈ F̂∗
q.

For every function f : Ftq → C that is supported on (F∗
q)
t, the Fourier transform of f is the

function f̂ : F̂q
t → C defined by

(6) f̂(χ1, . . . , χt) :=
1

(q − 1)t

∑

a1,...,at∈Fq

f(a1, . . . , at)χ1(a1) · · ·χt(at)
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for every χ1, . . . , χt ∈ F̂∗
q.
1 From the orthogonality relation (3), it easily follows that

(7) f(a1, . . . , at) =
∑

χ1,...,χt∈F̂∗
q

f̂(χ1, · · · , χt)χ1(a1) · · ·χt(at)

for every a1, . . . , at ∈ Fq, which is the Fourier inversion formula.

3.2. Möbius transform. We need a kind ofMöbius transform and its corresponding inversion
formula, which is essentially a consequence of the inclusion-exclusion principle (see, e.g., [7,
Example 3.8.3]).

First, note that from the binomial theorem it easily follows that

(8)
∑

A⊆B

(−1)|A| = 1

[
B = ∅

]
,

for every finite set B.
Throughout the rest of Section 3, let r > 0 be a fixed integer. For every S ⊆ [r], we write

aS to denote the |S|-tuple (ak1 , . . . , ak|S|
), where k1 < · · · < k|S| are the elements of S. (If S is

empty, then aS is the empty tuple). Moreover, we write a(S) to denote the r-tuple (b1, . . . , br),
where bk := 0 if k /∈ S, and bk := ak if k ∈ S.

For every function f : Frq → C and for every S ⊆ [r], we define the function fS : F
|S|
q → C by

(9) fS(aS) :=
∑

T ⊆S

(−1)|S\T |f(a(T )),

for every aS ∈ F
|S|
q .

Lemma 3.1. Let f : Frq → C. Then, for every S ⊆ [r], the function fS is supported on (F∗
q)

|S|.
Moreover, we have that

(10) f(a1, . . . , ar) =
∑

S⊆[r]

fS(aS)

for every a1, . . . , ar ∈ Fq.

Proof. First, let us prove that for every S ⊆ [r] the function fS is supported on (F∗
q)

|S|. Pick

any aS ∈ F
|S|
q \ (F∗

q)
|S|. Hence, there exists k0 ∈ S such that ak0 = 0. Therefore, by (9) we

have that

fS(aS) =
∑

T ⊆S\{k0}

(−1)|S\T |f(a(T )) +
∑

{k0}⊆T ⊆S

(−1)|S\T |f(a(T ))

=
∑

T ⊆S\{k0}

(−1)|S\T |f(a(T ))−
∑

T ′⊆S\{k0}

(−1)|S\T
′|f(a(T ′)) = 0,

where we used the fact that each set T satisfying {k0} ⊆ T ⊆ S can be written in a unique
way as T = T ′ ∪ {k0} with T ′ ⊆ S \ {k0}. The claim is proven.

Let us prove (10). From (9) and (8), we get that
∑

S⊆[r]

fS(aS) =
∑

S⊆[r]

∑

T ⊆S

(−1)|S\T |f(a(T )) =
∑

T ⊆[r]

f(a(T ))
∑

T ⊆S⊆[r]

(−1)|S\T |

=
∑

T ⊆[r]

f(a(T ))
∑

S′⊆[r]\T

(−1)|S
′| = f(a1, . . . , ar),

where we wrote S = S ′ ∪ T . The proof is complete. �

1We normalize the Fourier transform by the factor (q − 1)−t because later this simplifies some formulas.



4 C. SANNA

3.3. Möbius–Fourier inversion formula. We can combine the results of Sections 3.1 and 3.2
to obtain a Möbius–Fourier inversion formula.

Lemma 3.2. Let f : Frq → C. Then we have that

f(a1, . . . , ar) =
∑

S⊆[r]

∑

χS∈F̂∗
q

|S|

f̂S(χS)
∏

k∈S

χk(ak),

for every a1, . . . , ar ∈ Fq.

Proof. The claim easily follows from the Fourier inversion formula (7) and Lemma 3.1. �

For every function f : Frq → C and for every S ⊆ [r], let f(S) : F
|S|
q → C be the function

defined by f(S)(aS) := f(a(S)) for each aS ∈ F
|S|
q .

Lemma 3.3. Let f : Frq → C and S ⊆ [r]. Then we have that

f̂S(χS) =
∑

{χk 6=χ0:k∈S}⊆T ⊆S

(−1)|S\T |f̂(T )(χT ),

for every χS ∈ F̂∗
q

|S|
.

Proof. From (6) and (9), we get that

f̂S(χS) =
1

(q − 1)|S|

∑

aS∈F
|S|
q

fS(aS)
∏

k∈S

χk(ak)(11)

=
1

(q − 1)|S|

∑

aS∈F
|S|
q

∑

T ⊆S

(−1)|S\T |f(a(T ))
∏

k∈S

χk(ak)

=
∑

T ⊆S

(−1)|S\T |


 1

(q − 1)|T |

∑

aT ∈F
|T |
q

f(T )(aT )
∏

k∈T

χk(ak)




·


 1

(q − 1)|S\T |

∑

aS\T ∈F
|S\T |
q

∏

k∈S\T

χk(ak)


 .

Furthermore, for every U ⊆ [r], we have that

(12)
∑

aU∈F
|U|
q

∏

k∈U

χk(ak) =
∏

k∈U


∑

a∈Fq

χk(a)


 = (q − 1)|U|

1[χk = χ0 for each k ∈ U ],

where we employed the orthogonality relation (5). At this point, the claim follows by combin-
ing (6), (11), and (12). �

3.4. Some Fourier transforms. For every a ∈ Fq, define the function f (a) : Frq → C by

f (a)(a1, . . . , ar) = 1

[
r∑

k=1

ak = a

]
,

for every a1, . . . , ar ∈ Frq.
Furthermore, let χ0 denote a tuple (χ0, . . . , χ0), where the length will be always clear from

the context.

Lemma 3.4. For every a ∈ Fq and T ⊆ [r], we have that

f̂
(a)
(T )(χ0) =

1

q
− γa(q)

(1− q)|T |
.
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Proof. This is essentially the evaluation of a generalized Jacobi sum of trivial characters, which
is a well-known subject (see, e.g., [4, Theorem 6.1.35]), but we include the details for com-
pleteness.

First, from (4) it follows that

(13)
∑

aT ∈(F∗
q)

|T |

∏

k∈T

ψ(ak) =
∏

k∈T


∑

a∈F∗
q

ψ(a)


 =

{
(q − 1)|T | if ψ = ψ0;

(−1)|T | if ψ 6= ψ0;

for every ψ ∈ F̂q. Then, from (6), (2), and (13), we get that

f̂
(a)
(T )(χ0) =

1

(q − 1)|T |

∑

aT ∈F
|T |
q

f
(a)
(T )(aT )

∏

k∈T

χ0(ak) =
1

(q − 1)|T |

∑

aT ∈(F∗
q)

|T |

f
(a)
(T )(aT )

=
1

(q − 1)|T |

∑

aT ∈(F∗
q)

|T |

1

[∑

k∈T

ak = a

]
=

1

(q − 1)|T |

∑

aT ∈(F∗
q)

|T |

1

q

∑

ψ∈F̂q

ψ

(∑

k∈T

ak − a

)

=
1

q(q − 1)|T |

∑

ψ∈F̂q

∑

aT ∈(F∗
q)

|T |

∏

k∈T

ψ(ak)ψ(a) =
1

q
+

1

q(1− q)|T |

∑

ψ∈F̂q\{ψ0}

ψ(a)

=
1

q
+

1

q(1− q)|T |



∑

ψ∈F̂q

ψ(a)− 1


 =

1

q
− γa(q)

(1− q)|T |
,

since γa(q) = q−1 − 1[a = 0]. The proof is complete. �

Lemma 3.5. For every a ∈ Fq and S ⊆ [r], we have that

f̂
(a)
S (χ0) =

1[S = ∅]

q
− γa(q)

(
1

q
− 1

)−|S|

.

Proof. By Lemma 3.3 and Lemma 3.4, we have that

f̂
(a)
S (χ0) =

∑

T ⊆S

(−1)|S\T |f̂
(a)
(T )(χ0) =

∑

T ⊆S

(−1)|S\T |

(
1

q
− γa(q)

(1− q)|T |

)

=
1

q

∑

T ⊆S

(−1)|S\T | − γa(q)
∑

T ⊆S

(−1)|S\T |(1− q)−|T |

=
1[S = ∅]

q
− γa(q)

(
1

q
− 1

)−|S|

,

where we used (8) and the more general fact that
∑

A⊆B

s|B\A| t|A| = (s+ t)|B|

for every finite set B and for all real numbers s and t. �

4. Further preliminaries

For every field K, let Km×n be the vector space of m×n matrices over K, and let Km×n,r be
the set of m× n rank-r matrices over K. The next lemma regards the full-rank factorization
of matrices and it is well known (cf. [5, Theorem 2]).

Lemma 4.1. Let K be a field. For every N ∈ Km×n,r there exist X0 ∈ Km×r,r and Y0 ∈ Kr×n,r

such that N = X0Y0. Moreover, if N = XY for some X ∈ Km×r and Y ∈ Kr×n, then there
exists R ∈ Kr×r,r such that X = X0R and Y = R

−1
Y0.



6 C. SANNA

Proof. See, e.g., [6, Lemma 2.1]. There the second part of the lemma is stated with X ∈ Km×r,r

and Y ∈ Kr×n,r instead of X ∈ Km×r and Y ∈ Kr×n. However, if X ∈ Km×r and Y ∈ Kr×n

satisfy XY ∈ Km×n,r, then X ∈ Km×r,r and Y ∈ Kr×n,r. Therefore, the two versions are
equivalent. �

Lemma 4.2. Let M ∈ F
m×n,r
q , X ∈ Fm×r

q , and Y ∈ Fr×nq be independent random matrices
uniformly distributed in their respective spaces. Then we have that

(14)
∑

N∈Fm×n
q

∣∣P
[
XY = N

]
− P

[
M = N

]∣∣→ 0,

as m,n→ +∞ and r is fixed.

Proof. It is well-known (see, e.g., [3, Formula 3]) that

(15) |Fs×t,rq | =
r−1∏

i=0

(qs − qi)(qt − qi)

qr − qi
,

for all integers s, t, r > 0 with r ≤ min(s, t).
Furthermore, we have that

(16)

∏r−1
i=0 (q

m − qi)(qn − qi)

qmr · qrn =

r−1∏

i=0

(qm − qi)(qn − qi)

qm · qn =

r−1∏

i=0

(1− qi−m)(1− qi−n) → 1.

as m,n→ +∞ and r is fixed.
Let us split the sum in (14) into three sums Σ(<), Σ(=), Σ(>) according to the rank of

N being less than, equal to, or greater than r, respectively. We have to prove that, in the
aforementioned limit, each of these sums goes to zero.

For every matrix Z over Fq, let rk(Z) denote the rank of Z. From (15) and (16), we get that

Σ(<) =
∑

N∈Fm×n
q

rk(N)<r

P
[
XY = N

]
= P

[
rk(XY) < r

]
= 1− P[X ∈ Fm×r,r

q ]P[Y ∈ Fr×n,rq ]

= 1− |Fm×r,r
q ||Fr×n,rq |
|Fm×r
q ||Fr×nq | = 1−

∏r−1
i=0 (q

m − qi)(qn − qi)

qmr · qrn → 0,

where we used the fact that rk(XY) ≤ r with equality if and only if rk(X) = rk(Y) = r.

If N ∈ F
m×n,r
q then, by Lemma 4.1, there exist matrices X0 ∈ F

m×r,r
q and Y0 ∈ F

r×n,r
q such

that N = X0Y0. Moreover, again by Lemma 4.1, we have that XY = N if and only if there
exists R ∈ F

r×r,r
q such that X = X0R and Y = R

−1
Y0. Consequently, we have that

P
[
XY = N

]
=

∑

R∈Fr×r,r
q

P
[
X = X0R

]
P
[
Y = R

−1
Y0

]
=

|Fr×r,rq |
|Fm×r
q ||Fr×nq | .

Therefore, we get that

Σ(=) =
∑

N∈Fm×n,r
q

∣∣P
[
XY = N

]
− P

[
M = N

]∣∣ =
∑

N∈Fm×n,r
q

∣∣∣∣∣
|Fr×r,rq |

|Fm×r
q ||Fr×nq | −

1

|Fm×n,r
q |

∣∣∣∣∣

=

∣∣∣∣∣
|Fr×r,rq ||Fm×n,r

q |
|Fm×r
q ||Fr×nq | − 1

∣∣∣∣∣ =
∣∣∣∣∣

∏r−1
i=0 (q

m − qi)(qn − qi)

qmr · qrn − 1

∣∣∣∣∣→ 0,

where we employed (15) and (16).
Finally, since XY and M have rank not exceeding r, it follows that Σ(>) = 0. Thus all the

three sums go to zero and the proof is complete. �

The next result is a version of Slutsky’s lemma (cf. [9, Lemma 2.8]).
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Lemma 4.3. Let (Un) and (Vn) be sequences of complex random variables such that Un
d−→ U

and Vn
d−→ c as n → +∞, where U is a random variable and c is a constant. Then we have

that:

(i) Un + Vn
d−→ U + c; and

(ii) UnVn
d−→ Uc;

as n→ +∞.

Proof. In [9, Lemma 2.8] the result is stated for real random variables. However, the proof can
be easily adapted by identifying C with R2 and applying [9, Theorem 2.7] accordingly; noting
that, with this identification, the addition and the multiplication of two complex numbers are
continuous functions R2 × R2 → R2. �

Lemma 4.4. Let c1, c2 be real numbers, and let N1, N2 be independent normal random variables
of expected values µ1, µ2 and variances σ21 , σ

2
2, respectively. Then c1N1 + c2N2 is a normal

random variable of expected value c1µ1 + c2µ2 and variance c21σ
2
1 + c22σ

2
2.

Proof. This fact is well known (cf. [8, Exercise 2.1.9]). �

5. Proof of Theorem 1.1

Letm,n, r > 0 be integers with r ≤ min(m,n). Let X ∈ Fm×r
q andY ∈ Fr×nq be independent

random matrices taken with uniform distribution from their respective spaces.

For every S ⊆ [r] and χS ∈ F̂∗
q

|S|
, define the complex random variables

(17) XS,χ :=
m∑

i=1

∏

k∈S

χk(xi,k) and YS,χ :=
n∑

j=1

∏

k∈S

χk(yk,j),

and also the real random variables

Z :=
m∑

i=1

r∏

k=1

(
1− χ0(xi,k)

)
and W :=

n∑

i=1

r∏

k=1

(
1− χ0(yk,j)

)
,

where xi,j and yi,j denote the entries of X and Y, respectively.
The next two lemmas provide the expected values of XS,χ and YS,χ, and the expected values

and the variances of Z and W .

Lemma 5.1. For all S ⊆ [r] and χS ∈ F̂∗
q

|S|
, we have that

E[XS,χ] = C(χS)

(
1− 1

q

)|S|

m and E[YS,χ] = C(χS)

(
1− 1

q

)|S|

n,

where

C(χS) := 1[χk = χ0 for each k ∈ S ].

Proof. Fix χ ∈ F̂∗
q and let c ∈ Fq be taken at random with uniform distribution. From (5) it

follows that

E[χ(c)] =
1

q

∑

a∈Fq

χ(a) =

(
1− 1

q

)
1[χ = χ0].

Consequently, if cS ∈ F
|S|
q is a random tuple taken with uniform distribution, then

E

[∏

k∈S

χk(ck)

]
=
∏

k∈S

E
[
χk(ck)

]
= C(χS)

(
1− 1

q

)|S|

.

At this point, the formulas for the expected values of XS,χ and YS,χ follow by linearity. �
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Lemma 5.2. We have that

E[Z] =
1

qr
m, V[Z] =

1

qr

(
1− 1

qr

)
m, E[W ] =

1

qr
n, V[W ] =

1

qr

(
1− 1

qr

)
n.

Proof. The claim follows easily by noticing that Z and W are binomial random variables of m
and n trials, respectively, and probability of success equal to q−r. �

We can now prove a formula for ctA(XY), for every A ⊆ Fq.

Lemma 5.3. For every a ∈ Fq, we have that
∑

S⊆[r]

∑

χS∈F̂∗
q

|S|

f̂
(a)
S (χS)E[YS,χ]XS,χ =

1

q
mn− γa(q)nZ,(18)

∑

S⊆[r]

∑

χS∈F̂∗
q

|S|

f̂
(a)
S (χS)E[XS,χ]YS,χ =

1

q
mn− γa(q)mW,(19)

∑

S⊆[r]

∑

χS∈F̂∗
q

|S|

f̂
(a)
S (χS)E[XS,χ]E[YS,χ] =

(
1

q
− γa(q)

qr

)
mn.(20)

Proof. From Lemma 5.1 and Lemma 3.5, it follows that

∑

S⊆[r]

∑

χS∈F̂∗
q

|S|

f̂
(a)
S (χS)E[YS,χ]XS,χ = n

∑

S⊆[r]

f̂
(a)
S (χ0)

(
1− 1

q

)|S|

XS,χ0

= n
∑

S⊆[r]

(
1[S = ∅]

q
− γa(q)

(
1

q
− 1

)−|S|
)(

1− 1

q

)|S|

XS,χ0

=
1

q
mn− γa(q)n

∑

S⊆[r]

(−1)|S|XS,χ0
,

since X∅,χ0
= m. Furthermore, from (17), we have that

∑

S⊆[r]

(−1)|S|XS,χ0
=
∑

S⊆[r]

(−1)|S|
m∑

i=1

∏

k∈S

χ0(xi,k) =

m∑

i=1

∑

S⊆[r]

∏

k∈S

(
−χ0(xi,k)

)

=

m∑

i=1

r∏

k=1

(
1− χ0(xi,k)

)
= Z,

and (18) follows. The proof of (19) proceeds similarly.
Finally, taking the expected value of both sides of (18), and employing Lemma 5.2, we

obtain (20). �

Lemma 5.4. For every A ⊆ Fq, we have that

ctA(XY) = µA(q,m, n) +
∑

S⊆[r]

∑

χS∈F̂∗
q

|S|

∑

a∈A

f̂
(a)
S (χS)

(
XS,χ − E[XS,χ]

)(
YS,χ − E[YS,χ]

)

− γA(q)n
(
Z − E[Z]

)
− γA(q)m

(
W − E[W ]

)
.

Proof. Let a ∈ Fq. From Lemma 3.2 and (17), we have that

ct{a}(XY) =
m∑

i=1

n∑

j=1

1

[
r∑

k=1

xi,kyk,j = a

]
=

m∑

i=1

n∑

j=1

f (a)(xi,1y1,j, . . . , xi,ryr,j)

=

m∑

i=1

n∑

j=1

∑

S⊆[r]

∑

χS∈F̂∗
q

|S|

f̂
(a)
S (χS)

∏

k∈S

χk(xi,kyk,j)
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=
∑

S⊆[r]

∑

χS∈F̂∗
q

|S|

f̂
(a)
S (χS)

(
m∑

i=1

∏

k∈S

χk(xi,k)

)


n∑

j=1

∏

k∈S

χk(yk,j)




=
∑

S⊆[r]

∑

χS∈F̂∗
q

|S|

f̂
(a)
S (χS)XS,χYS,χ.

Then, from the identity

XS,χYS,χ =
(
XS,χ − E[XS,χ]

)(
YS,χ − E[YS,χ]

)

+ E[YS,χ]XS,χ + E[XS,χ]YS,χ − E[YS,χ]E[XS,χ],

we get that

ct{a}(XY) =
∑

S⊆[r]

∑

χS∈F̂∗
q

|S|

f̂
(a)
S (χS)

(
XS,χ − E[XS,χ]

)(
YS,χ − E[YS,χ]

)

+
∑

S⊆[r]

∑

χS∈F̂∗
q

|S|

f̂
(a)
S (χS)E[YS,χ]XS,χ +

∑

S⊆[r]

∑

χS∈F̂∗
q

|S|

f̂
(a)
S (χS)E[XS,χ]YS,χ

−
∑

S⊆[r]

∑

χS∈F̂∗
q

|S|

f̂
(a)
S (χS)E[YS,χ]E[XS,χ].

At this point, the claim follows easily by applying Lemma 5.3 and Lemma 5.2, and by summing
over all a ∈ A. �

Fix a nonempty A ( Fq and, for the sake of brevity, let

c̃tA(N) :=
ctA(N)− µA(q,m, n)

√
σ2A(q,m, n)

for every N ∈ Fm×n
q . Moreover, hereafter, let m,n→ +∞.

Note that each of the complex random variables XS,χ and YS,χ is the sum of independent
identically distributed random variables with finite covariance matrices. Therefore, by the
Central Limit Theorem in R2 (see, e.g., [1, Theorem 3.9.6]), we have that

(
XS,χ−E[XS,χ]

)
/
√
m

and
(
YS,χ − E[YS,χ]

)
/
√
n converge in distribution to some complex normal random variables,

which we call X ′
S,χ and Y ′

S,χ, respectively.
Similarly, each of the real random variables Z and W is the sum of independent identically

distributed random variables. Hence, it follows from the Central Limit Theorem (in R) that(
Z−E[Z]

)
/
√

V[Z] and
(
W−E[W ]

)
/
√

V[W ] converge in distribution to standard normal random
variables, which we call Z ′ and W ′, respectively.

From Lemma 5.4 and Lemma 5.2, it follows that

(21) c̃tA(XY) =
∑

S⊆[r]

∑

χS∈F̂∗
q

|S|

cA,S,χ(q)√
m+ n

X ′
S,χY

′
S,χ −

Z ′

√
1 +m/n

− W ′

√
1 + n/m

,

where each cA,S,χ(q) depends only on A, S, χS , q, r, and not on m and n.

Since X ′
S,χ and Y ′

S,χ are independent, their product converges in distribution to X̃S,χỸS,χ.

Therefore, from Lemma 4.3(ii), we get that each term of the double sum in (21) converges
in distribution to the constant 0. Consequently, by Lemma 4.3(i), the double sum in (21)
converges in distribution to the constant 0.

Since Z̃ and W̃ are independent, from Lemma 4.4 it follows that

U := − Z̃√
1 +m/n

− W̃√
1 + n/m
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is a standard normal random variable.

Moreover, from Z ′ d−→ Z̃, W ′ d−→ W̃ , and the fact that 1/
√

1 +m/n and 1/
√

1 + n/m belong
to (0, 1), we get easily that

Z̃ − Z ′

√
1 +m/n

d−→ 0 and
W̃ −W ′

√
1 + n/m

d−→ 0.

Therefore, Lemma 4.3(i) yields that

− Z ′

√
1 +m/n

− W ′

√
1 + n/m

= U +
Z̃ − Z ′

√
1 +m/n

+
W̃ −W ′

√
1 + n/m

d−→ U.

From a last application of Lemma 4.3(i) we get that c̃tA(XY) converges in distribution to U .

Let M be a random matrix taken with uniform distribution from F
m×n,r
q . Thanks to

Lemma 4.2, for every real number t, we have that
∣∣P[c̃tA(M) ≤ t]− P[c̃tA(XY) ≤ t]

∣∣ =
∣∣∣
∑

N∈Fm×n
q

c̃tA(N)≤t

(
P[M = N]− P[XY = N]

)∣∣∣

≤
∑

N∈Fm×n
q

∣∣P[XY = N]− P[M = N]
∣∣→ 0.

Consequently, we get that c̃tA(M) and c̃tA(XY) have the same limiting distribution (if it
exists). Since we already proved that c̃tA(XY) converges in distribution to a standard normal

random variable, we get that c̃tA(M) also converges in distribution to a standard normal
random variable.

The proof of Theorem 1.1 is complete.

Remark 5.1. A crucial part of the proof is the fact that, since r is fixed, the double sum in (21)
has a fixed number of terms, and so it is possible to prove that it converges in distribution
to the constant 0 without having to closely inspect its terms. If one let r → +∞, in a way
controlled by m and n, then it seems likely that understanding the behavior of c̃tA(XY) would
require a more detailed study of the terms of the double sum in (21), since the number of such
terms grows with r.
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