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Abstract

Let Fq be a finite field with q elements, f ∈ Fq[x1, . . . , xn] a polynomial in n variables
and let us denote by N(f) the number of roots of f in F

n
q . In this paper we consider

the family of fully triangular polynomials, i.e., polynomials of the form

f(x1, . . . , xn) = a1x
d1,1
1 + a2x

d1,2
1 x

d2,2
2 + · · · + anx

d1,n
1 · · · x

dn,n
n − b,

where di,j > 0 for all 1 ≤ i ≤ j ≤ n. For these polynomials, we obtain explicit formulas
for N(f) when the augmented degree matrix of f is row-equivalent to the augmented
degree matrix of a linear polynomial or a quadratic diagonal polynomial.

Keywords— triangular polynomials, degree matrix, augmented degree matrix, generalized
Markoff-Hurwitz equation

1 Introduction

The classical Markov equation is of the form x2+y2+z2 = 3xyz and it was studied by Markov in the
integer ring. In particular, he showed that the solutions of this equation satisfy a recursive relation,
such that the solutions can be ordered forming a binary tree. Hurwitz considered a generalization
of the form

x21 + · · ·+ x2n = ax1x2 · · · xn,

and he showed that this equation does not have non-trivial integer solutions when a > n ≥ 3.
This equation can be further generalized in many ways such as changing the number of variables

and the exponents, considering the equation in other rings or fields, etc. Many authors have
considered generalizations where the equation is over finite fields.

One possible generalization is to consider equations of the form

a1x
m1

1 + a2x
m2

2 + · · ·+ anx
mn
n = bx1 · · · xn, (1)
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where mj > 0, aj ∈ F
∗
q for all j = 1, . . . , n and b ∈ F

∗
q, where Fq is the finite field with q elements.

These equations were studied by Carlitz and Baoulina [4, 5], which determined the number of
solutions in F

n
q under certain restrictions of the exponents.

The generalized Markoff-Hurwitz equation is an equation of the form

xm1

1 + xm2

2 + · · ·+ xmn
n = bxt11 x

t1
2 . . . xtnn . (2)

where mj, tj > 0 for all j = 1, . . . , n and b ∈ F
∗
q. The equation in the case when m1 = m2 =

· · · = mn = n and t1 = · · · = tn = 1 defines a hypersurface known as Calabi-Yau’s hypersurface
and it has been intensively studied by some authors [6, 7]. Some results about the number of
solutions for the general equation (2) can be found in the literature; for instance, the number of
solutions over Fq was calculated by Carlitz in the case when gcd(m

∑n
i=1 ti/mi − m, q − 1) = 1,

where m = m1m2 · · ·mn. The case when gcd(m
∑n

i=1 ti/mi−m, q− 1) > 1 was considered by Cao,
Jiang and Gao [1, 2], assuming some arithmetic conditions.

Cao, Wen and Wang [3] have also determined the number of solutions in F
n
q for equations of

the form
a1x

d1,1
1 · · · x

d1,n
n + · · · + anx

dn,1

1 · · · x
dn,n
n = 0,

where di,j > 0, i.e., all exponents are positive, assuming that the matrix (di,j)i,j is row equivalent
to a diagonal matrix D, when the elements in the diagonal of D are only 1’s and 2’s.

In this paper we will determine the number of solutions of equations

a1x
d1,1
1 + a2x

d1,2
1 x

d2,2
2 + · · ·+ anx

d1,n
1 · · · x

dn,n
n = b,

where di,j > 0 for all 1 ≤ i ≤ j ≤ n and the exponents di,j satisfy some arithmetical conditions. In
fact, we show sufficient conditions in order to the equation to have, in (F∗

q)
n, the same number of

solutions of a more simple equation. In this case we say that the equations are ∗-equivalent. Next,
we use this equivalence in order to calculate the total number of solutions.

The remainder of the paper will be organized as follows. In Section 2, we will introduce some
preliminary results. In Section 3, we will describe triangular polynomials and relations among
them. The main results will be given in Section 4.

2 Preliminaries

Let p be a prime number, q a power of p and Fq[x1, . . . , xn] the polynomial ring over Fq with n

variables. For each D = (d1, . . . , dn) ∈ Z
n
≥0 let us define the monomial XD = xd11 · · · x

dn
n . Given a

polynomial f ∈ Fq[x1, . . . , xn] of the form

f(x1, . . . , xn) =

m∑

j=1

ajX
Dj , (3)

where Dj = (d1j , . . . , dnj) ∈ Z
n
≥0 and aj 6= 0 for all j = 1, . . . ,m, we define N(f) as the number

of roots of f(x1, . . . , xn) over F
n
q and N∗(f) as the number of roots over (F∗

q)
n. Let us define
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the degree matrix of f as Df = (DT
1 , . . . ,D

T
m) and the augmented degree matrix of f as D̃f =

((D̃1)
T , . . . , (D̃m)T ), where (D̃j)

T = (1,Dj).
It is well known that the group of multiplicative characters of a finite field is cyclic. Let ω be a

multiplicative character over Fq with order q−1, and therefore ω is a generator of the multiplicative

characters group, i.e., F̂∗
q = {ωk : k = 0, 1, . . . , q − 2}. Let us define Tr as the trace function from

Fq to Fp and δp be a primitive p-th complex root of unity. For each integer 0 ≤ k ≤ q−2, we define
the Gauss sum of ω−k over Fq as follows:

G(k) =
∑

a∈F∗

q

ω(a)−kδTr(a)
p .

The following result allows us to express N∗(f) in terms of ω and the Gauss sums.

Lemma 1. Let f be a polynomial of the form (3), then

N∗(f) =
(q − 1)n

q
+

(q − 1)n+1−m

q

∑ m∏

j=1

ω(aj)
vjG(vj),

where the sum is taken over all vectors v = (v1, . . . , vm) with 0 ≤ vi ≤ q − 2 for i = 1, . . . ,m such
that D̃fv

T ≡ 0 (mod q − 1).

Proof. See Lemma 2.4 in [1].

Definition 2. Two polynomials f =
∑m

j ajX
D
j and g =

∑m
j ajX

D′

j are said to be ∗-equivalent if

they have the same coefficient vector (a1, . . . , am) and the congruences D̃fv
T ≡ 0 (mod q − 1) and

D̃gv
T ≡ 0 (mod q − 1) have the same set of solutions.

It follows from Lemma 1 that if f and g are ∗-equivalent polynomials, then N∗(f) = N∗(g),
i.e., they have the same number of roots over (F∗

q)
n.

It is easy to check that the coefficient vectors of two polynomials are equal, but we’d like to
know when the linear systems D̃fv

T = 0 and D̃gv
T = 0 have the same set of solutions. It can

be verified that two matrices D and E with coefficients in Z
m
q−1 such that DvT ≡ 0 (mod q − 1)

and EvT ≡ 0 (mod q − 1) have the same set of solutions if there is an invertible matrix M over
Zq−1 such that MD = E, and in this case, we say that D and E are row-equivalent. Hence, if two
polynomials f and g have the same coefficient vector and there is an invertible matrix M over Zq−1

such that MD̃f = D̃g, then f and g are ∗-equivalent.
In particular, the elementary row operations are

(i) swapping two rows;

(ii) adding a multiple of a row to another;

(iii) multiplying a row by an element in Z
∗
q−1;
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which can be represented by multiplying invertible matrices, so if we can apply these operations
in D̃f to obtain D̃g, the congruence systems have the same solutions. We will use this sufficient
criterion to prove ∗-equivalency when needed.

It is worth noting that even though N∗(f) = N∗(g) for two ∗-equivalent polynomials f and
g, that doesn’t mean they have the same set of roots. For instance, the polynomials f(x, y) =
x2y3+xy2 and g(x, y) = xy+x3y2 in F5[x, y] are ∗-equivalent, but it can be verified that they have
distinct sets of roots over (F∗

5)
2.

3 Triangular polynomials

Let f be a polynomial in Fq[x1, . . . , xk], and let us define fk ∈ Fq[x1, . . . , xk] as

fk(x1, . . . , xk) = f(x1, . . . , xk, 0, . . . , 0).

We say that f and g are totally ∗-equivalent if fk is ∗-equivalent to gk for all 1 ≤ k ≤ n. In general,
it is not true that f being ∗-equivalent to g implies that fk is ∗-equivalent to gk for all k.

Let us introduce a class of polynomials for which a sufficient criterion for total ∗-equivalence
can be determined. We say that f ∈ Fq[x1, . . . , xn] is a triangular polynomial if it is of the form

f(x1, . . . , xn) =

n∑

i=1

ajX
Dj − b; a1, . . . , an ∈ F

∗
q, b ∈ Fq, (4)

where Dj = (d1,j , . . . , dj,j, 0, . . . , 0), dj,j > 0 for all 1 ≤ j ≤ n and di,j ≥ 0 for all 1 ≤ i < j. If
we additionally have that di,j > 0 for all 1 ≤ i ≤ j ≤ n, we refer to this polynomial as a fully
triangular polynomial.

Lemma 3. Let f, g ∈ Fq[x1, . . . , xn] be two ∗-equivalent triangular polynomials, M the invertible
(n+1)× (n+1) matrix over Zq−1 such that MD̃f = D̃g and Mk the submatrix obtained from M by
picking the first k + 1 rows and columns. If Mk is invertible, then fk and gk are also ∗-equivalent.

Proof. Since f and g are triangular matrices, we can partition their degree matrices and the matrix
M into blocks

D̃f =

[
D̃fk D1

0 D2

]
, D̃g =

[
D̃gk E1

0 E2

]
, M =

[
Mk N1

N2 N3

]
,

such that D̃gk and D̃fk are (k + 1) × k blocks, Mk is a (k + 1) × (k + 1) block and the blocks
D1,D2, E1, E2, N1, N2, N3 have appropriate dimensions. From the ∗-equivalency between f and g
we know that [

D̃gk E1

0 E2

]
= D̃g = MD̃f

=

[
Mk N1

N2 N3

] [
D̃fk D1

0 D2

]

=

[
MkD̃fk MkD1 +N1D2

N2Mk N2D1 +N3D2

]
,
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where considering the equality of the upper left block gives us MkD̃fk = D̃gk , implying that fk and
gk are ∗-equivalent because Mk is invertible.

Hence, if f, g are two ∗-equivalent triangular polynomials, with MD̃f = D̃g and the submatrices
Mk are invertible for every 1 ≤ k ≤ n − 1, then f and g are totally ∗-equivalent. We now
present a specific set of operations which always results in transformation matrices that satisfy
these conditions.

Lemma 4. Let f ∈ Fq[x1, . . . , xn] be a triangular polynomial. Let us denote by r1, . . . , rn+1 the
rows in D̃f and consider the following invertible row operations:

(i) ri ← c · ri, 2 ≤ i ≤ n+ 1, c ∈ Z
∗
q−1.

(ii) rj ← rj + c · ri, 2 ≤ j < i, c ∈ Zq−1.

Any ∗-equivalency obtained using only these row operations is totally ∗-equivalent.

Proof. Any matrix M obtained from those operations is of the form

M =




1 0 0 · · · 0 0
0 m1,1 m1,2 · · · m1,n−1 m1,n

0 0 m2,2 · · · m2,n−1 m2,n
...

...
...

. . .
...

...
0 0 0 · · · mn−1,n−1 mn−1,n

0 0 0 · · · 0 mn,n



, (5)

where mi,j ∈ Zq−1 and the elements in the diagonal are invertible. For every 1 ≤ k < n − 1

the determinant of Mk is
∏k

i=1mi,i, which is invertible over Zq−1 and thus every Mk is invertible,
making the ∗-equivalency total.

Although one could believe that all complete equivalences between triangular matrices can be
attained using those two operations, this assumption is not correct. For instance, f = x1+x31x

5
2, g =

x21+x41x2 ∈ F7[x1, x2] are totally ∗-equivalent polynomials, i.e., MD̃f = D̃g whereM is the invertible
matrix

M =



1 0 0
1 1 0
0 0 5


 ,

but from a straightforward calculation it can be proved that there is no invertible upper triangular
matrix N that satisfies ND̃f = D̃g. The following result tells us when a triangular polynomial is
totally ∗-equivalent to a diagonal polynomial through the two operations given in Lemma 4.

Theorem 5. Let f be a triangular polynomial of the form (4) and

g(x1, . . . , xn) = a1x
e1
1 + · · ·+ anx

en
n − b,

be a diagonal polynomial where e1, . . . , en ∈ Z>0. Then f is totally ∗-equivalent to g if the following
two conditions are true:

5



(i) for all 1 ≤ j ≤ n there is a mj,j ∈ Z
∗
q−1 such that dj,j = mj,jej ,

(ii) for all 1 ≤ i < j ≤ n we have gcd(dj,j, q − 1) | di,j.

Proof. The augmented degree matrices of f and g are

D̃f =




1 1 1 · · · 1 1 1
d1,1 d1,2 d1,3 · · · d1,n−1 d1,n 0
0 d2,2 d2,3 · · · d2,n−1 d2,n 0
0 0 d3,3 · · · d3,n−1 d3,n 0
...

...
...

. . .
...

...
...

0 0 0 · · · dn−1,n−1 dn−1,n 0
0 0 0 · · · 0 dn,n 0




, D̃g =




1 1 1 · · · 1 1 1
e1 0 0 · · · 0 0 0
0 e2 0 · · · 0 0 0
0 0 e3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · en−1 0 0
0 0 0 · · · 0 en 0




,

where the last columns are present only if b 6= 0.
Let us suppose that conditions (i) and (ii) are true. Since (i) implies that there is an element

mj,j ∈ Z
∗
q−1 such that dj,j = mj,jej , condition (ii) becomes gcd(ejmj,j, q−1) | di,j. As gcd(mj,j, q−

1) = 1, that implies condition (ii) is equivalent to (ej , q − 1) | di,j , which is in turn equivalent to
the existence of mi,j ∈ Zq−1 such that di,j = mi,jej over Zq−1. We can then use these values of mi,j

to construct an invertible matrix M of the form (5), such that when we multiply M by D̃g gives us

MD̃g =




1 1 1 · · · 1 1 1
m1,1e1 m1,2e2 m1,3e3 · · · m1,n−1en−1 m1,nen 0

0 m2,2e2 m2,3e3 · · · m2,n−1en−1 m2,nen 0
0 0 m3,3e3 · · · m3,n−1en−1 m3,nen 0
...

...
...

. . .
...

...
...

0 0 0 · · · mn−1,n−1en−1 mn−1,nen 0
0 0 0 · · · 0 mn,nen 0




,

that is equal to D̃f .

For the specific cases where the diagonal polynomials are linear or quadratic this criterion is
simpler.

Corollary 6. Let f be a triangular polynomial of the form (4) and

g(x1, . . . , xn) = a1x
e
1 + · · ·+ anx

e
n − b,

be a diagonal polynomial, where e ∈ Z>0.

a) If e = 1 and gcd(dj,j, q − 1) = 1 for all 1 ≤ j ≤ n, then f is totally ∗-equivalent to g.

b) If e = 2, q is odd, that there exists a mj,j ∈ Z
∗
q−1 such that dj,j = 2mj,j for all 1 ≤ j ≤ n and

that 2 | di,j for all 1 ≤ i < j ≤ n, then f is ∗-equivalent to g.

Proof. The statements in each item imply the conditions given in Theorem 5. In fact,
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a) If gcd(dj,j , q − 1) = 1, then condition (ii) is always verified and dj,j is invertible, verifying
condition (i).

b) The statement that there is an invertible mj,j in Zq−1 such that dj,j = 2mj,j for all 1 ≤ j ≤ n
is, in this case, equivalent to condition (i). Since mj,j is invertible, we have gcd(mj,j, q−1) =
1, which implies that gcd(2, q − 1) = gcd(2mj,j, q − 1) = gcd(dj,j , q − 1). Considering q odd,
we have gcd(2, q − 1) = 2, and the statement 2 | di,j for all 1 ≤ i < j ≤ n is equivalent to
condition (ii).

We remark that two polynomials being ∗-equivalent does not mean that they have the same
number of roots in F

n
q . For instance, the polynomials f(x, y, z) = 11x13 +5x21y19 + 12x2y3z17 and

g(x, y, z) = 11x+ 5y + 12z are ∗-equivalent in F31[x, y, z], thus N
∗(f) = 870 = N∗(g). However, it

can be verified that N(f) = 1861 6= 961 = N(g).
Let f be a fully triangular polynomial. For any root (c1, c2, . . . , cn) of f , if cj = 0 and j

is the smallest index that satisfies this condition, then f(c1, . . . , cj−1, 0, c
′
j+1, . . . , c

′
n) = 0 for any

c′j+1, . . . , c
′
n ∈ Fq. This is due to the fact that the terms involving the variables xj+1, . . . , xn vanish,

thereby not impacting the value of the polynomial. Thus, by adding over the indices of the first
coordinates that are equal to 0 among the roots, we derive the following identity:

N(f) =

{
N∗(f) +

∑n−1
k=1 N

∗(fk)q
n−k−1, if b 6= 0,

qn−1 +N∗(f) +
∑n−1

k=1 N
∗(fk)q

n−k−1, if b = 0.
(6)

Now, let f be totally ∗-equivalent to a polynomial g. From Lemma 1 we have that N∗(fk) = N∗(gk)
for all 1 ≤ k ≤ n. Thus,

N(f) =

{
N∗(g) +

∑n−1
k=1 N

∗(gk)q
n−k−1, if b 6= 0,

qn−1 +N∗(g) +
∑n−1

k=1 N
∗(gk)q

n−k−1, if b = 0.
(7)

Therefore, if we know that f is totally ∗-equivalent to a polynomial g, and N∗(gk) is known for any
k, we can substitute these values into (7) to compute N(f).

For instance, let us consider the polynomials f, g ∈ F10007[x, y] given by f(x, y, z) = x1001 +
x2001y3001+x4001y5001z6001+7001 and g(x, y, z) = x+y+z+7001. By straightforward calculation,
we can verify that f is totally ∗-equivalent to g, so

N(f) = N∗(x+ y + z + 7001) +N∗(x+ y + 7001) + qN∗(x+ 7001)

= 100110031 + 10005 + 10007 · 1

= 100130043.

3.1 Roots with non-zero coordinates for diagonal polynomials

Let g be the linear polynomial given by

g(x1, . . . , xn) = a1x1 + · · ·+ anxn − b, (8)
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where a1, . . . , an ∈ F
∗
q and b ∈ Fq. In this case the exact value of N∗(gk) is known, which can be

substituted in (7) to compute N(f) for any f polynomial ∗-equivalent to g.

Lemma 7. For a linear polynomial g of the form (8), the number of roots in (F∗
q)

k of gk is

N∗(gk) =

{
(q−1)k

q − (−1)k

q , if b 6= 0,
(q−1)k

q − (−1)k

q + (−1)k, if b = 0.
(9)

Proof. See Lemma 2 in [2].

In the case when f is totally ∗-equivalent to a quadratic diagonal polynomial

g(x1, . . . , xn) = a1x
2
1 + · · ·+ anx

2
n − b, (10)

where a1, . . . , an ∈ F
∗
q and b ∈ Fq, we will need a way to compute the number of roots of gk,

1 ≤ k ≤ n in F
∗
q. The following result about quadratic forms is classic.

Theorem 8. Let Fq be a finite field, where q is odd, and g a polynomial as in (10). The number
of roots of g(x1, . . . , xn) in F

n
q is

N(g) =





qn−1 − η((−1)n/2a1 · · · an)q
(n−2)/2, if n even and b 6= 0,

qn−1 + η((−1)(n−1)/2ba1 · · · an)q
(n−1)/2, if n odd and b 6= 0,

qn−1 + η((−1)n/2a1 · · · an)(q
n/2 − q(n−2)/2), if n even and b = 0,

qn−1, if n odd and b = 0,

(11)

where η is the quadratic multiplicative character in Fq.

Proof. See Theorem 10.5.1 in [8].

We notice from this result that the number of roots only depends on the values of η(aj) for
1 ≤ j ≤ n and η(b).

We also remark that Theorem 11 let us calculate N(gk) for any k. We will need the following
definitions and results in order to calculate N∗(gk) for any k.

Definition 9. Let η be the quadratic character in Fq. For a coefficient vector (a1, a2, . . . , an) ∈
(F∗

q)
n let us define the following functions:

r(k) = #{1 ≤ j ≤ k : η(aj) = 1}, s(k) = #{1 ≤ j ≤ k : η(aj) = −1}, 1 ≤ k ≤ n.

For simplicity, let us denote r = r(n), s = s(n).

Let us partition the set of roots of gk in classes Ai,j fixing the number i (respectively j) of
non-zero coordinates of the roots whose corresponding coefficients are squares (respectively non-
squares). For any root in Ai,j , let {u1, . . . , ui+j} be the indices of the i + j non-zero coordinates.
Then the non-zero coordinates, arranged in the same order, form a root in (F∗

q)
i+j of the polynomial

gu1,...,ui+j
= au1

x2u1
+ · · ·+ aui+j

x2ui+j
− b.

8



Let gu′

1
,...,u′

i+j
be any other polynomial of the same form with the same numbers i and j of square

and non-square coefficients. It is easy to construct a bijection between the roots of gu1,...,ui+j
and

gu′

1
,...,u′

i+j
in F

i+j
q , and also in (F∗

q)
i+j . Thus, N(gu1,...,ui+j

) and N∗(gu1,...,ui+j
) depend only on i and

j. Since the number of roots is the only information that matters to us, we will denote any such
polynomial simply by gi,j and the quantities as N(gi,j) and N∗(gi,j). Thus, the number of roots in

each class Ai,j is
(r(k)

i

)(s(k)
j

)
N∗(gi,j), and the total number of roots of gk is

N(gr(k),s(k)) = N(gk) =
∑

0≤i≤r(k)
0≤j≤s(k)

(
r(k)

i

)(
s(k)

j

)
N∗(gi,j). (12)

The following Binomial Inversion Lemma will allow us to obtain an expression of N∗(gk) in
terms of N(gi,j).

Lemma 10. Let G be an abelian group and f : Z≥0 → G a function. Let F be the function defined
by F (r) =

∑r
i=0

(r
i

)
f(i), then f can be written in terms of F as

f(r) =
r∑

i=0

(−1)r+i

(
r

i

)
F (i).

Proof. See Section 5.3 in [11].

Using Lemma 10 twice in (12), it follows that

N∗(gr(k),s(k)) = N∗(gk) =

r(k)∑

i=0

s(k)∑

j=0

(−1)r(k)+s(k)+i+j

(
r(k)

i

)(
s(k)

j

)
N(gi,j). (13)

From Theorem 8, and the fact that η(−1) = (−1)(q−1)/2, we obtain that

N(gi,j) =





qi+j−1 − (−1)j(−1)(q−1)(i+j)/4q(i+j−2)/2, if i+ j even and b 6= 0,

qi+j−1 + (−1)j(−1)(q−1)(i+j−1)/4η(b)q(i+j−1)/2, if i+ j odd and b 6= 0,

qi+j−1 + (−1)j(−1)(q−1)(i+j)/4(q(i+j)/2 − q(i+j−2)/2), if i+ j even and b = 0,

qi+j−1, if i+ j odd and b = 0.

(14)

By expressing N∗(gk) in terms of N(gi,j), we can use (14) to get an explicit value for N∗(gk),
which can be used in (7) to determine N(f).

Theorem 11. Let Fq be a finite field with q an odd number, g a quadratic diagonal polynomial as
in (10), and r(k), s(k) be as in Definition 9. Let us define the complex constants

ζ1 = (q(−1)(q−1)/2)1/2 − 1, ζ2 = −(q(−1)
(q−1)/2)1/2 − 1.

We have that

9



a) if b 6= 0, then

N∗(gk) =
(q − 1)k

q
−

1

2q
(ζ

r(k)
1 ζ

s(k)
2 + ζ

r(k)
2 ζ

s(k)
1 )

+
η(b)

2(q(−1)(q−1)/2)1/2
(ζ

r(k)
1 ζ

s(k)
2 − ζ

r(k)
2 ζ

s(k)
1 ).

(15)

b) if b = 0, then

N∗(gk) =
(q − 1)k

q
−

q − 1

2q
(ζ

r(k)
1 ζ

s(k)
2 + ζ

r(k)
2 ζ

s(k)
1 ). (16)

Proof. Firstly, we remark that both constants ζ1 and ζ2 are related to the values of geometric sums.
For any positive integer u, we have

ζu1 = (−1)u
u∑

i=0

(
u

i

)
(−1)i(q(−1)(q−1)/2)i/2, ζu2 = (−1)u

u∑

i=0

(
u

i

)
(q(−1)(q−1)/2)i/2.

We will now establish the proof for the scenario when b 6= 0 and the analogous case can be
reasoned in a similar fashion. Since b 6= 0, (14) reduces to

N(gi,j) =

{
qi+j−1 − (−1)j(−1)(q−1)(i+j)/4q(i+j−2)/2, if i+ j even,

qi+j−1 + (−1)j(−1)(q−1)(i+j−1)/4η(b)q(i+j−1)/2, if i+ j odd,

which can be rewritten as

N(gi,j) = qi+j−1 +
(1 + (−1)i+j)

2

(
−(−1)j(−1)(q−1)(i+j)/4q(i+j−2)/2

)

+
(1− (−1)i+j)

2

(
(−1)j(−1)(q−1)(i+j−1)/4η(b)q(i+j−1)/2

)
.

This can be used in (13) to obtain an equation with a right-hand side that can be partitioned into
geometric sums, through a straightforward computation, yields our result.

4 Main results

We are going to determine the number of roots of fully triangular polynomials in some cases,
starting by the simplest case, when it is totally ∗-equivalent to a linear polynomial.

Theorem 12. Let f be a fully triangular polynomial as in (4) that is totally ∗-equivalent to a linear
polynomial g of form (8). Then,

N(f) =

{
qn−(−1)n

q+1 , if b 6= 0,
2qn+(−1)n(q−1)

q+1 , if b = 0.

10



Proof. Let us consider the case where b 6= 0, because the other is analogous. In this case, (9) from

Lemma 7 tells us N∗(gk) =
(q−1)k

q − (−1)k

q , and (7) implies N(f) = N∗(g) +
∑n−1

k=1 N
∗(gk)q

n−k−1.
Therefore,

N(f) =
(q − 1)n

q
−

(−1)n

q
+

n∑

k=1

qn−k−1

[
(q − 1)k

q
−

(−1)k

q

]

=
(q − 1)n

q
−

(−1)n

q
+ qn−2

[
n∑

k=1

(
q − 1

q

)k

+

(
−1

q

)k
]

=
qn − (−1)n

q + 1
.

We remark that notably, the number of roots in F
n
q of the fully triangular polynomial f is not

equal to the number of roots of the linear polynomial g, which is equal to qn−1. We also remark
that diagonal polynomials are triangular but not fully triangular, thus any result that requires f
to be fully triangular cannot be used on diagonal polynomials.

Notice that the coefficient vector of the fully triangular polynomial does not affect the number
of roots of fully triangular polynomials ∗-equivalent to linear polynomials, yielding the following
result:

Corollary 13. Let f and h be two fully triangular polynomial with n variables of the form (4),
such that the constant terms are zero in both of them or non-zero in both of them. If f and h are
totally ∗-equivalent to linear polynomials they have the same number of roots.

Proof. Even when f and h have different coefficients, Theorem 12 implies that the number of roots
depends only on the number of variables and also if the constant term is zero or not.

In the following result we consider the cases when the fully triangular polynomial is totally
∗-equivalent to a quadratic diagonal polynomial.

Theorem 14. Let Fq be a finite field with q an odd number and f be a fully triangular polynomial
of the form (4). Let us suppose that f is totally ∗-equivalent to a quadratic diagonal polynomial g
of the form (10). Let ζ1, ζ2 be the constants as in Theorem 11. We have that

a) if b 6= 0, then

N(f) = qn−2(q − 1)−
1

2q
· (ζr1ζ

s
2 + ζr2ζ

s
1) +

η(b)

2(q(−1)(q−1)/2)1/2
· (ζr1 ζ

s
2 − ζr2 ζ

s
1)

+

n−1∑

k=1

qn−k−1

(
−

1

2q
· (ζ

r(k)
1 ζ

s(k)
2 + ζ

r(k)
2 ζ

s(k)
1 ) +

η(b)

2(q(−1)(q−1)/2)1/2
· (ζ

r(k)
1 ζ

s(k)
2 − ζ

r(k)
2 ζ

s(k)
1 )

)
;

11



b) if b = 0, then

N(f) = qn−1 + qn−2(q − 1) +

(
q − 1

2q

)
(ζr1ζ

s
2 + ζr2ζ

s
1)

+

(
q − 1

2

) n−1∑

k=1

qn−k−2(ζ
r(k)
1 ζ

s(k)
2 + ζ

r(k)
2 ζ

s(k)
1 ).

Proof. Let us prove the result in the case when b 6= 0, because the other case is analogous. In this
case, (15) in Theorem 14 implies

N∗(gk) =
(q − 1)k

q
−

1

2q
(ζ

r(k)
1 ζ

s(k)
2 + ζ

r(k)
2 ζ

s(k)
1 )

+
η(b)

2(q(−1)(q−1)/2)1/2
(ζ

r(k)
1 ζ

s(k)
2 − ζ

r(k)
2 ζ

s(k)
1 ),

and from (7) we have N(f) = N∗(g) +
∑n−1

k=1 N
∗(gk)q

n−k−1. Therefore,

N(f) =
(q − 1)n

q
−

1

2q
· (ζr1 ζ

s
2 + ζr2ζ

s
1) +

η(b)

2(q(−1)(q−1)/2)1/2
· (ζr1 ζ

s
2 − ζr2 ζ

s
1)

+
n−1∑

k=1

qn−k−1

(
(q − 1)k

q
−

1

2q
· (ζ

r(k)
1 ζ

s(k)
2 + ζ

r(k)
2 ζ

s(k)
1 ) +

η(b)

2(q(−1)(q−1)/2)1/2
· (ζ

r(k)
1 ζ

s(k)
2 − ζ

r(k)
2 ζ

s(k)
1 )

)
,

which simplifies to obtain the desired result.

Notice that the specific values in the vector coefficient (a1, a2, . . . , an,−b) do not matter. In
fact, to determine the number of roots is which of the coefficients aj’s and b are squares or not.
Thus we have the following result:

Corollary 15. Let Fq be a finite field with q an odd number. Let f and h be two fully trian-
gular polynomial with n variables of the form (4) with coefficient vectors (a1, a2, . . . , an,−b) and
(c1, c2, . . . , cn,−d) respectively. Let us suppose that η(a1) = η(c1), . . . , η(an) = η(cn), η(b) = η(d).
If f and h are totally ∗-equivalent to quadratic diagonal polynomials, they have the same number
of roots.

Proof. The values of r(k) and s(k) for 1 ≤ k ≤ n will be the same for both polynomials. Hence
from Theorem 15 they both have the same number of roots in F

n
q .

Then for every choice of which coefficients in the coefficient vector we have fixed values for
r(k), s(k) for 1 ≤ k ≤ n. We can substitute these values in Theorem 8 to find a closed expression
for the number of roots. We will do this for two specific cases.

Corollary 16. Let Fq be a finite field with q an odd number and f be a fully triangular polynomial
of the form (4) such that the coefficients a1, . . . , an are either all squares, or are all non squares in
Fq. Let us suppose that f is totally ∗-equivalent to a quadratic diagonal polynomial g of the form
(10). We have that

12



a) if b 6= 0, then

N(f) = qn−2(q − 1)−
1

2q
·

(
ζn+1
1 − (q − 1)ζn1 − ζ1q

n−1

ζ1 − q
+

ζn+1
2 − (q − 1)ζn2 − ζ2q

n−1

ζ2 − q

)

+
εη(b)

2(q(−1)(q−1)/2)1/2
·

(
ζn+1
1 − (q − 1)ζn1 − ζ1q

n−1

ζ1 − q
−

ζn+1
2 − (q − 1)ζn2 − ζ2q

n−1

ζ2 − q

)
;

where

ε =

{
1, if a1, . . . , an are squares,

−1, if a1, . . . , an are non squares.

b) if b = 0, then

N(f) = 2qn−1 − qn−2

+
q − 1

2q

(
ζn+1
1 − (q − 1)ζn1 − ζ1q

n−1

ζ1 − q
+

ζn+1
2 − (q − 1)ζn2 − ζ2q

n−1

ζ2 − q

)
,

in both cases.

Proof. In the case when a1, . . . , an are squares we have r(k) = k, s(k) = 0 for 1 ≤ k ≤ n. Substi-
tuting into the expressions in Theorem 14 and computing the geometric sums yields the result.

For the case when none of the coefficients a1, . . . , an is a square, we can multiply f by a non
square coefficient a to obtain a polynomial with exactly the same roots, but whose coefficients
aa1, . . . , aan are squares, and the constant term ab is such that η(ab) = −η(b). Thus in the case
when b = 0 the number of roots is exactly the same as the all squares case, and in the case b 6= 0
the expression is essentially the same with a couple signs changed.
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