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FOURTH POWER MEAN OF THE GENERAL s-DIMENSIONAL

KLOOSTERMAN SUM MOD p

NILANJAN BAG AND ANUP HALDAR

Abstract. In this article, we prove an asymptotic formula for the fourth
power mean of a general s-dimensional hyper-Kloosterman sum. We find the
number of solutions of certain congruence equations mod p which play an
integral part to prove our main result. We use estimates for character sums
and analytic methods to prove our theorem.

1. Introduction and statement of results

In 1926, to study certain positive definite integral quadratic forms, Kloosterman
[7] introduced the exponential sum

S(a, b; q) =
∑

1≤x≤q
(x,q)=1

e

(

ax+ bx

q

)

,

where a, b and q are arbitrary integers with q ≥ 1. Here e is defined as e(y) =
e2πiy and x denotes the multiplicative inverse of x mod q. Such sum is known as
Kloosterman sum. Kloosterman had considerable interest in the order of magnitude
of K(a, b; q). In his paper he proved that

S(a, b; q) = O(q3/4+ǫ(a, q)1/4) (q → ∞),

for every positive ǫ. There are various connections of this sums in number theory.
Kloosterman in his study on cusp forms [8] showed that any non trivial upper
bound for S(a, b; q) gives a corresponding improvement of Hecke’s upper bound for
the Fourier coefficients of certain cusp forms. There are numerous other applications
of the order of magnitude of such sums is analytic number theory.

Further important example is hyper-Klooseterman sums. Hyper-Kloosterman
sums were introduced by P. Deligne. These are higher dimensional generalization
of classical Kloosterman sum. Let q ≥ 3 be a positive integer. For any fixed integer
s ≥ 1, the higher dimensional Kloosterman sum K(m, s; q) is defined by

K(m, s; q) =

q
∑′

x1=1

· · ·
q
∑′

xs=1

e

(

x1 + · · ·+ xs +mx1 · · ·xs
q

)
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2 NILANJAN BAG AND ANUP HALDAR

and the general higher dimensional Kloosterman sum K(m, s, χ; q) is defined by

K(m, s, χ; q) =

q
∑′

x1=1

· · ·
q
∑′

xs=1

χ(x1 · · ·xs)× e

(

x1 + · · ·+ xs +mx1 · · ·xs
q

)

,

where

q
∑′

x=1

denotes the summation over all 1 ≤ x ≤ q such that gcd(x, q) = 1,

m is any integer and χ is a Dirichlet character mod q. Hyper Kloosterman sums
can be interpreted as inverse Mellin transform of powers of Gauss sums. Thus it
is a very important quantity in the study of distribution of Gauss sums. As was
denoted by Katz [6], Deligne’s bound for Kloosterman sums implies that the set
of normalized Gauss sums becomes equi-distributed on unit circle with respect to
uniform probability Haar measure.

Hyper-Kloosterman sums also occur in the theory of automorphic forms, for
instance many has used the fact that powers of Gauss sums occur in the root
number of functional equation of certain automorphic L-functions, Deligne bound
and inverse Mellin transform property to obtain nontrivial estimates for the Lang-
lands parameters of automorphic representations on GLn. Also just as for classical
Kloosterman sums, hyper-Kloosterman sums also occur in the spectral theory of
GLk automorphic forms.

Many authors studied the arithmetical properties of K(m, s; p), and obtained a
series of interesting results. One of such results is due to Mordell [10]. For odd
prime p, he got the following estimate

|K(m, s; p)| ≪ p
s+1

2 .

Later Deligne [3] improved Mordell’s result and obtained the upper bound estimate

|K(m, s; p)| ≤ (s+ 1)p
s
2 . (1.1)

For many other important studies on such sums, see ([9], [12], [13], [14], [15]). It is
well known that, for a principal character χ,

K(m, 1, χ; p) = −2
√
p cos(θ(m)),

where the angles θ(m) are equidistributed in [0, π] with respect to the Sato-Tate
measure 2

π sin2(θ)dθ, for example, see [5]. Thus, moments can be estimated by
evaluating the corresponding integral

1

p− 1

p−1
∑

m=1

|K(m, 1, χ; p)|2ℓ ≈ 22ℓpℓ
2

π

∫ π

0

cos2ℓ θ sin2 θ dθ,

where ℓ is any positive integer. It would be interesting to investigate whether
something similar is known for the higher dimensional generalized Kloosterman
sums.

In this paper, we will concentrate on fourth power mean value of the general
s-dimensional Kloosterman sum

p−1
∑

m=1

∑

χ mod p

∣

∣

∣

∣

∣

p−1
∑

x1=1

· · ·
p−1
∑

xs=1

χ(x1 · · ·xs) · e
(

x1 + · · ·+ xs +mx1 · · ·xs
p

)

∣

∣

∣

∣

∣

4

. (1.2)
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In case of s = 1, it is easy to evaluate (1.2). It can be easily seen that

p−1
∑

m=1

∑

χ mod p

∣

∣

∣

∣

∣

p−1
∑

a=1

χ(a) · e
(

a+ma

p

)

∣

∣

∣

∣

∣

4

= 2p4 − 8p3 + 10p2 − 3p− 1.

For s ≥ 2, Zhang and Li [15] first studied this sum and obtained an exact compu-
tational formula for (1.2) with s = 2. For prime p > 3, they proved the following
identity

p−1
∑

m=1

∑

χ mod p

∣

∣

∣

∣

∣

p−1
∑

a=1

p−1
∑

b=1

χ(ab) · e
(

a+ b+mab

p

)

∣

∣

∣

∣

∣

4

= (p− 1)(2p5 − 7p4 + 2p3 + 8p2 + 4p+ 1).

Later, Zhang and Lv [16] have obtained an asymptotic formula for s = 3. For
example, for p > 3, they prove that

p−1
∑

m=1

∑

χ mod p

∣

∣

∣

∣

∣

p−1
∑

a=1

p−1
∑

b=1

p−1
∑

c=1

χ(abc) · e
(

a+ b+ c+mabc

p

)

∣

∣

∣

∣

∣

4

= 2p8 +O(p
15
2 ). (1.3)

In [1], the first author and Barman improved the above result of Zhang and Lv by
proving that the error term in the asymptotic formula (1.3) is O(p7). Finding an
asymptotic formula for (1.2) with s = 4 seems to be more difficult as the idea used
in [16] to derive (1.3) is not sufficient to get a better estimate than Deligne bound.
Later the first author and Barman [2, Theorem 1] used a result of P. Delign, which
counts the number of Fp points on the surface

(x− 1)(y − 1)(z − 1)(1− xyz)− uxyz = 0 , u 6= 0,

and then take average over u, which played an integral part to prove the asymptotic
formula for fourth power moment of general 4-dimensional Koosterman sums. To
be specific, they proved the following theorem. For any prime p > 3,

p−1
∑

m=1

∑

χ mod p

∣

∣

∣

∣

∣

p−1
∑

x1=1

p−1
∑

x2=1

p−1
∑

x3=1

p−1
∑

x4=1

χ(

4
∏

i=1

xi)e

(

∑4
i=1 xi +m

∏4
i=1 xi

p

)∣

∣

∣

∣

∣

4

= 2p10 +O(p9).

In this paper, we generalize the previous results to get an asymptotic formula for
4-th power mean values of the general s-dimensional hyper-Kloosterman sums and
beat the trivial bound

p−1
∑

m=1

∑

χ mod p

∣

∣

∣

∣

∣

p−1
∑

x1=1

· · ·
p−1
∑

xs=1

χ(

s
∏

i=1

xi)e

(∑s
i=1 xi +m

∏s
i=1 xi

p

)

∣

∣

∣

∣

∣

4

≤ (s+ 1)4p2s+2,

which one can get using Deligne’s estimate given in (1.1) for hyper-Kloosterman
sums. To be specific, we prove the following,

Theorem 1.1. For any prime p > 3 and any positive integer s, we have

p−1
∑

m=1

∑

χ mod p

∣

∣

∣

∣

∣

p−1
∑

x1=1

· · ·
p−1
∑

xs=1

χ(x1 · · ·xs) · e
(

x1 + · · ·+ xs +mx1 · · ·xs
p

)

∣

∣

∣

∣

∣

4

= 2p2s+2 +O(p2s+3/2).
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2. Few Notations

Let p be a prime and Fp denote the finite field of p elements and Fpm be the

finite of order pm over Fp. Throughout the paper,
∑

Xn

stands for the sums over the

n-tuples (x1, ..., xn), where 1 ≤ xi ≤ p− 1. Similarly,
∑

Yn

stands for the sums over

yi’s. We have f = O(g) or f ≪ g to denote |f | ≤ C · g for some fix constant C. We
denote the trivial character by χ0 which is defined as χ0(n) = 1, if gcd(n, p) = 1;
and χ0(n) = 0, if p|n. The classical Jacobi sum is defined as,

J(χ, ψ) =

p−1
∑

x=2

χ(x)ψ(1 − x), (2.1)

where χ, ψ belongs to F̂p, the group of multiplicative characters on Fp. For a
multiplicative character χ, the classical Gauss sum is defined as

G(χ) = −
p−1
∑

x=1

χ(x)e(x),

where e(x) = exp(2πixp ). It is well known that when χψ is primitive, we have [4,

Section 3.4]

J(χ, ψ) =
G(χ)G(ψ)

G(χψ)
. (2.2)

3. Mixed moment of Gauss sums

In this section, we present a result of A. R- León [11] which corresponds to the
general distribution results of Gauss sums. All notations in this section is almost
same as in [11]. Let n ≥ 1 and a1, ..., an be fixed non-zero r-tuples in Zr. Consider
η1, ..., ηn : F×

p → C× be n multiplicative characters. For every m, let Tm be the set

of multiplicative characters χ of (F×
pm)r. Here

χ = (χ1, ..., χr),

where χi : F
×
pm → C×. Let Sm be the subset of Tm consisting of χ such that

ηiχ
a1 := ηiχ

ai1

i · · ·χair

r 6= χ0,

for i = 1, ..., n. For any character χ : F×
pm → C×, denote the corresponding Gauss

sum over Fpm by Gm(χ). For every χ ∈ Sm, the element Φm(χ) ∈ (S1)n is defined
as

Φm(χ) =
(

p−m/2χ(t1)Gm(η1χ
a1), ..., p−m/2χn(tn)Gm(ηnχ

an))
)

, (3.1)

where t1, ..., tn ∈ (F×
p )

r and χ(t) is given by

χ(t) =
r
∏

l=1

χl(tl).

Define the map

Λc : t = (t1, ..., tn) 7→ tc = tc11 · · · tcnn ,
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for some n-tuples (c1, ..., cn) ∈ Zn. Take

Σm(Λc) = |Sm|−1
∑

χ∈Sm

Λ(Φm(χ)). (3.2)

Then in a recent work, A. R-León proved the following result,

Proposition 3.1. [11, Proposition 1] Let a =
∑

iminj:aij=0 |aij |. There exists a

constant A(c) such that, for every m > logp(1 + a),

Σm(Λc) ≤
A(c)(pm − 1)rp−m/2 + a(pm − 1)r−1

(pm − 1)r−1(pm − 1− a)
.

4. multivaribale congruences modulo p

In this section, we obtain number of solutions for certain multivariable congru-
ences modulo p, which play an integral part in proving lemmas in Section 4.

Lemma 4.1. Let p be any prime and s be a positive integer. Let A(s) be the

cardinality of the set
{

(x1, x2, ...xs) ∈ Fs
p| x1 · · ·xs ≡ 1 mod p, 2 ≤ xi ≤ p− 1

}

.

Then we have

A(s) =

{

(p−2)s+(p−2)
p−1 if s is even;

(p−2)s−(p−2)
p−1 if s is odd.

Proof. We prove the lemma using induction. It is trivially true for s = 1. Let for
any positive integer n ≤ s, we have

A(n− 1) =
(p− 2)n−1 + (−1)n−1(p− 2)

p− 1
. (4.1)

Now we use iteration over s for A(s) to get the expression,

A(s) = (p− 1)s−1 −
(

s

1

)

A(s− 1)−
(

s

2

)

A(s− 2)− · · · −
(

s

s− 2

)

A(2).

Now using (4.1) in the above expression we get

A(s) = (p− 1)s−1 − 1

p− 1

[(

s

1

)

(p− 2)s−1 +

(

s

2

)

(p− 2)s−2 + · · ·+
(

s

s− 2

)

(p− 2)2
]

− p− 2

p− 1

[(

s

1

)

(−1)s−1 +

(

s

2

)

(−1)s−2 + · · ·+
(

s

s− 2

)

(−1)2
]

= (p− 1)s−1 − 1

p− 1
[(p− 1)s − (p− 2)s − s(p− 2)− 1]

− p− 2

p− 1
[0− (−1)s − s(−1)− 1]

=
(p− 2)s + (−1)s(p− 2)

p− 1
,

which completes the proof of the lemma.
�
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In the next lemma we replace

x1 · · ·xs ≡ 1 mod p,

by

x1 · · ·xs ≡ u mod p,

where u 6= 1, 0 and we prove the following,

Lemma 4.2. Let p be a prime and s be any positive integer. Let Au(s) be the

cardinality of the set
{

(x1, x2, ..., xs) ∈ Fs
p| x1 · · ·xs = u mod p, 2 ≤ xi ≤ p− 1

}

,

where u 6= 0, 1. Then we have

Au(s) =
(p− 2)s − (−1)s

p− 1
.

Proof. We prove this lemma using the formula for A(s) and induction of s. For
s = 1, it is trivial. Let the statement be true for s− 1. Then we can write Au(s) as

Au(s) = A(s− 1) + (p− 3)Au(s− 1).

Hence from the induction hypothesis and Lemma 4.1, we deduce

Au(s) =
(p− 2)s−1 + (−1)s−1(p− 2)

p− 1
+ (p− 3)

(p− 2)s − (−1)s

p− 1

=
(p− 2)s − (−1)s

p− 1
.

�

Next, we consider more than one congruences modulo p and calculate the number
of simultaneous solutions.

Lemma 4.3. Let p be an odd prime and S(s) be the cardinality of the set

{(x1, ...xs+1, y1, ..., ys) ∈ F2s+1
p | x1 · · · xs+1 ≡ y1 · · · ys mod p,

s
∏

i=1

(xi − 1) ≡
s
∏

i=1

(yi − 1) mod p, 1 ≤ xi ≤ p− 1, 1 ≤ yi ≤ p− 1}.

Then we have

S(s) = [(p− 1)s − (p− 2)s]
2
+ (p− 1)(p− 2)2s−2 +

(p− 2)2s−2(3− 2p) + p− 2

p− 1
.

Proof. For 0 ≤ u ≤ p− 1, let N(u) be the number of solutions of

s
∏

i=1

(xi − 1) ≡ u mod p.

where ≤ x1 ≤ p− 1. Then for u = 0 we get

N(0) =

(

s

1

)

(p− 2)s−1 +

(

s

2

)

(p− 2)s−2 + · · ·+
(

s

s

)

= (p− 1)s − (p− 2)s.

For u = p− 1, one can observe that

N(p− 1) = (p− 2)s−1 −A(s− 1).
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Similarly, for 1 ≤ u < p− 1, we have

N(u) = (p− 2)s−1 −Au(s− 1).

Now for any choice of x1, ..., xs and y1, ..., ys; xs+1 is uniquely determined by

x1 · · · xs+1 ≡ y1 · · · ys mod p.

Hence we get

S(s) =
p−1
∑

u=0

N(u)2

= [(p− 1)s − (p− 2)s]
2

+
[

(p− 2)s−1 −A(s− 1)
]2

+ (p− 2)
[

(p− 2)s−1 −Au(s− 1)
]2

= (p− 2)2s + (p− 1)2s − 2(p− 1)s(p− 2)s + (p− 2)2s−1 + (p− 2)2s−2

+ (p− 2)Au(s− 1)2 − 2(p− 2)sAu(s− 1) +A(s− 1)2 − 2(p− 2)s−1A(s− 1).
(4.2)

Using Lemma 4.1 and (4.2) we get

(p− 2)Au(s− 1)2 =
p− 2

(p− 1)2
[

(p− 2)2s−2 + 1− 2(2− p)s−1
]

, (4.3)

(p− 2)sAu(s− 1) =
1

p− 1

[

(p− 2)2s−1 + (2 − p)s
]

, (4.4)

A(s− 1)2 =
1

(p− 1)2
[

(p− 2)2s−2 + (p− 2)2 − 2(2− p)s
]

, (4.5)

(p− 2)s−1A(s− 1) =
1

p− 1

[

(p− 2)2s−2 − (2− p)s
]

. (4.6)

Adding both side of (4.3) and (4.5) we have

(p− 2)Au(s− 1)2 +A(s− 1)2 =
(p− 2)2s−1 + (p− 2)2s−2 + (p− 2)2 + (p− 2)

(p− 1)2
.

Similarly, adding both side of (4.4) and (4.6) we have

(p− 2)sAu(s− 1) + (p− 2)s−1A(s− 1) =
(p− 2)2s−1 + (p− 2)2s−2

p− 1
.

Now putting the above two expressions in (4.2) we conclude Lemma 4.3 . �

Lemma 4.4. Let p be an odd prime, s be a positive integer and T (s) be the cardi-

nality of the set

{(x1, ..., xs, y1, ..., ys) ∈ F2s
p | x1 · · · xs ≡ y1 · · · ys mod p,

s
∏

i=1

(xi − 1) ≡
s
∏

i=1

(yi − 1) mod p, 1 ≤ xi, yi ≤ p− 1}.

Then we have

T (s) = (p− 1)2s−1 − 2(p− 2)
(

(p− 1)s−1(p− 2)s−1 − ps−1
)

+ f(p, s),
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where

f(p, s) =
p(p− 2)2((p− 2)2s−2 − ps−1)

(p− 1)2
− (p2 − 4)(ps−1 − 1)

(p− 1)2
.

Proof. First we want to divide the Fp-points on the given surface into parts. We
follow the same technique as given in [2, Lemma 5]. In our case, we consider the
bijection xs → xsys to get the form for T (s+ 1) as

T (s+ 1) = (p− 1)2s + pR(s)− 2S(s), (4.7)

where S(s) is same as in the last lemma and R(s) is the cardinality of the set

{(x1, ..., xs+1, y1, ..., ys) ∈ F2s+1
p |

s+1
∏

i=1

xi ≡
s
∏

i=1

yi mod p,

s+1
∏

i=1

(xi − 1) ≡ 0 mod p,

s
∏

i=1

(xi − 1) ≡
s
∏

i=1

(yi − 1) mod p, 1 ≤ xi ≤ p− 1, 1 ≤ yi ≤ p− 1}.

We have

R(s) = T (s) +R′(s),

where R′(s) is the cardinality of the set

{(x1, ..., xs+1, y1, ..., ys) ∈ F2s+1
p |

s+1
∏

i=1

xi ≡
s
∏

i=1

yi mod p,

s
∏

i=1

(xi − 1) ≡
s
∏

i=1

(yi − 1) ≡ 0 mod p,

1 ≤ xi ≤ p− 1, i 6= s+ 1, 2 ≤ xs+1 ≤ p− 1, 1 ≤ yi ≤ p− 1}.
Now we find an exact computational formula for R′(s). Here

R′(s) =

(

s

1

)[(

s

1

)

A(2s− 1) +

(

s

2

)

A(2s− 2) + · · ·+
(

s

s

)

A(s)

]

+

(

s

2

)[(

s

1

)

A(2s− 2) +

(

s

2

)

A(2s− 3) + · · ·+
(

s

s

)

A(s− 1)

]

...

+

(

s

s

)[(

s

1

)

A(s) +

(

s

2

)

A(s− 1) + · · ·+
(

s

s

)

A(1)

]

.

Using Lemma 4.1 we get

R′(s) =

s
∑

i=1

(

s

i

)

(p− 2)s+1−i

p− 1
[(p− 1)s − (p− 2)s] +

s
∑

i=1

(

s

i

)

(−1)i
p− 2

p− 1

=
p− 2

p− 1
[(p− 1)s − (p− 2)s]

2 − p− 2

p− 1

=
p− 2

p− 1

[

((p− 1)s − (p− 2)s)2 − 1
]

.

Hence from (4.7) we get the following recurrence,

T (s+ 1) = (p− 1)2s + pT (s) +
p(p− 2)

p− 1

[

((p− 1)s − (p− 2)s)2 − 1
]

− 2S(s),
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which using Lemma 4.3 takes the form

T (s+ 1) = pT (s) + (p− 1)2sA1 + (p− 2)2s−2A2 + (p− 1)s(p− 2)sA3 +A4,

where Ai’s are constants defined as

A1 =
(p− 1)2 − p

p− 1
;

A2 =
p4 − 8p3 + 20p2 − 16p

p− 1
;

A3 =
−2(p2 − 4p+ 2)

p− 1
;

A4 = −p
2 − 4

p− 1
.

Now we use iteration over s in T (s) to find the expression for T (s+1). In particular,
we get

T (s+ 1) = psT (1)

+A1(p− 1)2s
[

1 +
p

(p− 1)2
+

p2

(p− 1)4
· · ·+ ps−1

(p− 1)2(s−1)

]

+A2
(p− 2)2s

(p− 2)2

[

1 +
p

(p− 2)2
+

p2

(p− 2)4
· · ·+ ps−1

(p− 2)2(s−1)

]

+A3(p− 1)s(p− 2)s
[

1 +
p

(p− 1)(p− 2)
+ · · ·+ ps−1

(p− 1)s−1(p− 2)s−1

]

+A4

[

1 + p+ · · ·+ ps−1
]

= psT (1) +A1(p− 1)2
(p− 1)2s − ps

(p− 1)2 − p
+A2

(p− 2)2s − ps

(p− 2)2 − p

+A3(p− 1)(p− 2)
(p− 1)s(p− 2)s − ps

(p− 1)(p− 2)− p
+A4

ps − 1

p− 1
.

Here T (1) = p− 1. Putting everything together, we get

T (s+ 1) = ps(p− 1) + (p− 1)2s+1 − ps(p− 1)− 2(p− 2)((p− 1)s(p− 2)s − ps)

+ f(p, s+ 1).

Finally replacing s by s− 1, we complete the proof. �

Remark 4.5. It can be easily seen that for any positive integer s, f(p, s) is an
integer which can be observed by comparing the factors in the denominator and
the numerator in the expression of f(p, s).

In [2, Lemma 4] we calculated the number of Fp-points on the surface,

(x− 1)(y − 1)(z − 1)(1− xyz) = uxyz, u 6= 0.

where we used a proof of P. Deligne, which uses deep algebraic geometric method.
In this article, we are interested in same congruence equations but with arbitrary
number of variables. Instead, here we only use elementary method and estimates
on character sums to count the number of points.
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Lemma 4.6. Let p be an odd prime, s be a positive integer and M(s) be the

cardinality of the set

{(x1, ..., xs, y1, ..., ys) ∈ F2s
p |x1 · · · xs ≡ y1 · · · ys ≡ 1 mod p,

s
∏

i=1

(xi − 1) ≡
s
∏

i=1

(yi − 1) 6≡ 0 mod p, 1 ≤ xi, yi ≤ p− 1}.

Then M(s) satisfies the asymptotic formula

M(s) =
(p− 2)2s

(p− 1)3
+O(ps−

1
2 ).

Proof. Using the properties of character sum, the given expression can be re-written
as

∑

Xs

∑

Ys∏s
i=1

xi≡
∏s

i=1
yi≡1 mod p∏

s
i=1

(xi−1)≡
∏

s
i=1

(yi−1) 6≡0 mod p

1

=
1

(p− 1)3

∑

Xs

∑

Ys

∑

χ1, χ2, χ3∈F̂p

χ1

(

s
∏

i=1

xi

)

χ2

(

s
∏

i=1

yi

)

χ3

(

s
∏

i=1

(xi − 1)
s
∏

i=1

(yi − 1)

)

=
1

(p− 1)3

∑

χ1, χ2, χ3∈F̂p

J(x1, χ3)
sJ(χ2, χ3)

s,

where J(·, ·) is the classical Jacobi sum as defined in (2.1). If we split out the trivial
part and write the rest part in terms of Gauss sums using (2.2), we get

∑

Xs

∑

Ys∏s
i=1

xi≡
∏s

i=1
yi≡1 mod p∏

s
i=1

(xi−1)≡
∏

s
i=1

(yi−1) 6≡0 mod p

1

=
(p− 2)2s

(p− 1)3
+

1

(p− 1)3

∑

χ1, χ2, χ3 6=1
χ1χ3 6=1,χ2χ3 6=1

G(χ1)
sG(χ3)

sG(χ2)
sG(χ3)

s

G(χ1χ3)sG(χ2χ3)
s

+O(ps−1).

(4.8)

We already have

G(χ3)G(χ3) = pχ3(−1).

Now we use Proposition 3.1 to get a bound for

∑

χ1, χ2, χ3 6=1
χ1χ3 6=1,χ2χ3 6=1

G(χ1)
sG(χ3)

sG(χ2)
sG(χ3)

s

G(χ1χ3)sG(χ2χ3)
s

= ps
∑

χ1, χ2, χ3 6=1
χ1χ3 6=1,χ2χ3 6=1

χ3(−1)sG(χ1)
sG(χ2)

s

G(χ1χ3)sG(χ2χ3)
s
.

(4.9)

In (3.1), we choose m = 1, t1 = (1, 1,−1), ti = (1, 1, 1), for i = 2, 3, 4; ηi = χ0 for
i = 1, 2, 3, 4. Take ai as the i-th row of the matrix









1 0 0
0 1 0
1 0 1
0 1 −1









.
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Note that, no two rows of the matrix are proportional which is satisfying the re-
quired condition for Proposition 3.1. For more details, see [11, Theorem 1]. This
gives

Φ1(χ) =
(

p−1/2χ3(−1)G(χ1), p
−1/2G(χ2), p

−1/2G(χ1χ3), p
−1/2G(χ2χ3)

)

.

Now we choose r = 3 and c = (s, s,−s,−s) in (3.2) to get

∑

χ∈S1

Λc(Φ1(χ)) =
∑

χ1, χ2, χ3 6=1
χ1χ3 6=1,χ2χ3 6=1

χ3(−1)sG(χ1)
sG(χ2)

s

G(χ1χ3)sG(χ2χ3)
s
.

Hence using Proposition 3.1, we get

1

(p− 1)3

∑

χ1, χ2, χ3 6=1
χ1χ3 6=1,χ2χ3 6=1

χ3(−1)sG(χ1)
sG(χ2)

s

G(χ1χ3)sG(χ2χ3)
s

= O(p−1/2). (4.10)

Finally combining (4.8), (4.9) and (4.10), we prove the lemma.
�

5. Estimates for multivariable character sums.

In this section, we prove a few lemmas which we will apply in the proof of the
main theorem in section 5. The proof of the lemma follows the same approach as
[2, Lemma 1] and [16, Lemma 2.1] but is applicable for general s.

Lemma 5.1. Let p be an odd prime and χ be any Dirichlet character mod p. Then

we have the identity

p−1
∑

m=1

∣

∣

∣

∣

∣

∑

Xs

χ(

s
∏

i=1

xi)e

(∑s
i=1 xi +m

∏s
i=1 xi

p

)

∣

∣

∣

∣

∣

2

=

{

ps+1 − 2ps − ps−1 − · · · − p, if χ 6= χ0;

ps+1 − ps − ps−1 − · · · − p, if χ = χ0.

Proof. We first note the following identity

p−1
∑

m=0

e

(

nm

p

)

=

{

p, if p|n;
0, if p ∤ n.

(5.1)

Using the above identity, we have

p−1
∑

m=0

∣

∣

∣

∣

∣

∑

Xs

χ(
s
∏

i=1

xi)e

(∑s
i=1 xi +m

∏s
i=1 xi

p

)

∣

∣

∣

∣

∣

2

=
∑

Xs

∑

Ys

χ(

s
∏

i=1

xiyi)

p−1
∑

m=0

e

(∑s
i=1 xi −

∑s
i=1 yi +m(

∏s
i=1 xi −

∏s
i=1 yi)

p

)

=
∑

Xs

∑

Ys

χ(
s
∏

i=1

xi)e

(∑s
i=1 yi(xi − 1)

p

)

×
p−1
∑

m=0

e

(

m
∏s

i=1 yi(
∏s

i=1 xi − 1)

p

)

= p
∑

Xs∏
s
i=1

xi≡1 mod p

χ(

s
∏

i=1

xi)
∑

Ys

e

(∑s
i=1 yi(xi − 1)

p

)
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= p
∑

Ys

1 +

(

s

0

)

p

p−1
∑

x1=2

· · ·
p−1
∑

xs=2

∑

Ys∏
s
i=1

xi≡1 mod p

e

(∑s
i=1 yi(xi − 1)

p

)

+

(

s

1

)

p

p−1
∑

x1=2

· · ·
p−1
∑

xs−1=2

∑

Ys
∏s−1

i=1
xi≡1 mod p

e

(

∑s−1
i=1 yi(xi − 1)

p

)

+

(

s

2

)

p

p−1
∑

x1=2

· · ·
p−1
∑

xs−2=2

∑

Ys
∏s−2

i=1
xi≡1 mod p

e

(

∑s−2
i=1 yi(xi − 1)

p

)

+ · · ·+
(

s

s− 2

)

p

p−1
∑

x1=2

p−1
∑

x2=2

∑

Ys∏
2
i=1

xi≡1 mod p

e

(

∑2
i=1 yi(xi − 1)

p

)

= p(p− 1)s +

(

s

0

)

p(−1)sA(s) +

(

s

1

)

p(p− 1)(−1)s−1A(s− 1)

+

(

s

2

)

p(p− 1)2(−1)s−2A(s− 2) + · · ·+
(

s

s− 2

)

p(p− 1)s−2(−1)2A(2),

where A(s) is same as in Lemma 4.1. Now using the formula for A(s), we get

p−1
∑

m=0

∣

∣

∣

∣

∣

∑

Xs

χ(
s
∏

i=1

xi)e

(∑s
i=1 xi +m

∏s
i=1 xi

p

)

∣

∣

∣

∣

∣

2

= p

[

(p− 1)s +

(

s

0

)

(−1)sA(s) +

(

s

1

)

(p− 1)(−1)s−1A(s− 1)

+

(

s

2

)

(p− 1)2(−1)s−2A(s− 2) + · · ·+
(

s

s− 2

)

(p− 1)s−2(−1)s−2A(2)

]

= p(p− 1)s +
(−1)s

p− 1
p

[(

s

0

)

(p− 2)s +

(

s

1

)

(1− p)(p− 2)s−1

+

(

s

2

)

(p− 2)s−2(1− p)2 + · · ·+
(

s

s− 2

)

(1− p)s−2(p− 2)2
]

+
p− 2

p− 1
p

[(

s

0

)

+

(

s

1

)

(p− 1) +

(

s

2

)

(p− 1)2 + · · ·+
(

s

s− 2

)

(p− 1)s−2

]

= p(p− 1)s +
1

p− 1
p+

p− 2

p− 1
ps+1 + (−1)sp

[

s(1− p)s−2(p− 2) + (1− p)s−1
]

− (p− 2)p
[

s(p− 1)s−2 + (p− 1)s−1
]

= p(p− 1)s +
ps+1 − 2ps + 1

p− 1
p− p(p− 1)s.

= p(p− 1)s + ps+1 − p(ps−1 + ps−2 + · · ·+ 1)− p(p− 1)s

= ps+1 − ps − ps−1 − · · · − 1.

Finally using the properties of Gauss sum in (5.1), we complete the proof. �
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Lemma 5.2. Let p be an odd prime and s be a positive integer. Then we have the

identity
∑

Xs

∑

Ys

∏s
i=1

xi≡
∏s

i=1
yi mod p∏

s
i=1

(xi−1)≡
∏

s
i=1

(yi−1) mod p

χ0 ((
∏s

i=1 xi − 1)
∏s

i=1(xi − 1))

= ps + (p−2)2s+1

(p−1)3 +O(ps−1/2).

Proof. We have

∑

Xs

∑

Ys∏s
i=1

xi≡
∏s

i=1
yi mod p∏s

i=1
(xi−1)≡

∏s
i=1

(yi−1) mod p

χ0

(

(

s
∏

i=1

xi − 1)

s
∏

i=1

(xi − 1)

)

=
∑

Xs

∑

Ys∏
s
i=1

xi≡
∏

s
i=1

yi mod p∏s
i=1

(xi−1)≡
∏s

i=1
(yi−1) mod p

1−
∑

Xs

∑

Ys∏
s
i=1

xi≡
∏

s
i=1

yi≡1 mod p∏s
i=1

(xi−1)≡
∏s

i=1
(yi−1) mod p

1

−
∑

Xs

∑

Ys∏s
i=1

xi≡
∏s

i=1
yi mod p∏

s
i=1

(xi−1)≡
∏

s
i=1

(yi−1)≡0 mod p

χ0

(

s
∏

i=1

xi − 1

)

. (5.2)

Notice that the first term in (5.2) is exactly equal to T (s) in Lemma 4.4, where we
deduced

T (s) = (p− 1)2s−1 − 2(p− 2)
(

(p− 1)s−1(p− 2)s−1 − ps−1
)

+ f(p, s), (5.3)

where

f(p, s) =
p(p− 2)2((p− 2)2s−2 − ps−1)

(p− 1)2
− (p2 − 4)(ps−1 − 1)

(p− 1)2
.

Next, we have

∑

Xs

∑

Ys∏s
i=1

xi≡
∏s

i=1
yi≡1 mod p∏

s
i=1

(xi−1)≡
∏

s
i=1

(yi−1) mod p

1 =















∑

Xs∏s
i=1

xi≡1 mod p,∏
s
i=1

(xi−1)≡0 mod p

1















2

+M(s), (5.4)

where M(s) is same as in Lemma 4.6. Now
∑

Xs∏
s
i=1

xi≡1 mod p,∏s
i=1

(xi−1)≡0 mod p

1

=

(

s

1

)

A(s− 1) +

(

s

2

)

A(s− 2) + · · ·+
(

s

s− 2

)

A(2) +

(

s

s− 1

)

A(1),

which using Lemma 4.1 becomes
∑

Xs∏
s
i=1

xi≡1 mod p,∏
s
i=1

(xi−1)≡0 mod p

1 =
1

p− 1
[(p− 1)s − (p− 2)s − 1]− p− 2

p− 1
((−1)s + 1). (5.5)
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Finally, from the properties of reduced residue system mod p we have

∑

Xs

∑

Ys∏
s
i=1

xi≡
∏

s
i=1

yi mod p∏s
i=1

(xi−1)≡
∏s

i=1
(yi−1)≡0 mod p

χ0 (x1 · · ·xs − 1) =

p−1
∑

u=2















∑

Xs∏
s
i=1

xi≡u mod p∏s
i=1

(xi−1)≡0 mod p

1















2

.

(5.6)

Hence using Lemma 4.2 we get

∑

Xs∏s
i=1

xi≡u mod p∏
s
i=1

(xi−1)≡0 mod p

1

=

(

s

1

)

Au(s− 1) +

(

s

2

)

Au(s− 2) + · · ·+
(

s

s− 2

)

Au(2) +

(

s

s− 1

)

Au(1)

=
1

p− 1

[(

s

1

)

(p− 2)s−1 + · · ·+
(

s

s− 2

)

(p− 2)2
]

− 1

p− 1

[(

s

1

)

(−1)s−1 + · · ·+
(

s

s− 2

)

(−1)2
]

+ s

=
1

p− 1
[(p− 1)s − (p− 2)s − s(p− 2)− 1]

− 1

p− 1

[

(−1)s+1 + s− 1
]

+ s

=
1

p− 1
[(p− 1)s − (p− 2)s − s(p− 1) + (−1)s] + s

=
1

p− 1
[(p− 1)s − (p− 2)s + (−1)s] .

Hence (5.6) implies

∑

Xs

∑

Ys∏s
i=1

xi≡
∏s

i=1
yi mod p∏

s
i=1

(xi−1)≡
∏

s
i=1

(yi−1)≡0 mod p

χ0 (x1 · · ·xs − 1) =
p− 2

(p− 1)2
[(p− 1)s − (p− 2)s + (−1)s]

2
.

(5.7)

Combining (5.2), (5.3), (5.4), (5.5), (5.7) and using the estimate forM(s) in Lemma
4.6, we obtain the required result. �

Lemma 5.3. Let p be an odd prime. Then we have

p−1
∑

x1=2

· · ·
p−1
∑

xs=2

p−1
∑

y1=2

· · ·
p−1
∑

ys=2
∏

s
i=1

xi≡
∏

s
i=1

yi mod p

χ0(

s
∏

i=1

xi − 1) = (p− 2)

(

(p− 2)s − (−1)s

p− 1

)2
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Proof. We have

p−1
∑

x1=2

· · ·
p−1
∑

xs=2

p−1
∑

y1=2

· · ·
p−1
∑

ys=2
∏

s
i=1

xi≡
∏

s
i=1

yi mod p

χ0(

s
∏

i=1

xi − 1) =

p−1
∑

u=2









p−1
∑

x1=2

· · ·
p−1
∑

xs=2
∏

s
i=1

xi≡u mod p

1









2

.

Hence using Lemma 4.2 we get

p−1
∑

x1=2

· · ·
p−1
∑

xs=2

p−1
∑

y1=2

· · ·
p−1
∑

ys=2
∏

s
i=1

xi≡
∏

s
i=1

yi mod p

χ0(

s
∏

i=1

xi − 1) = (p− 2)

(

(p− 2)s − (−1)s

p− 1

)2

.

�

Lemma 5.4. Let p be an odd prime and χ be any character mod p. Then for

primitive character χ1 mod p, we have the identity
∣

∣

∣

∣

∣

∣

p−1
∑

m=1

χ1(m)

∣

∣

∣

∣

∣

∑

X

χ(

s
∏

i=1

xi)e

(∑s
i=1 xi +m

∏s
i=1 xi

p

)

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

2

= ps+1

∣

∣

∣

∣

∣

∑

X

χ(

s
∏

i=1

xi)χ1((

s
∏

i=1

xi − 1)

s
∏

i=1

(xi − 1))

∣

∣

∣

∣

∣

2

.

Proof. The proof proceeds along similar lines to the proof of [16, Lemma 2.3]. So
we omit the details for reasons of brevity. �

6. Proof of Theorem 1.1

We now have all the ingredients to prove our main theorem.

Proof of Theorem 1.1. From the orthogonality property of characters mod p we
have

∑

χ mod p

∑

χ1 mod p

∣

∣

∣

∣

∣

∣

p−1
∑

m=1

χ1(m)

∣

∣

∣

∣

∣

∑

Xs

χ(

s
∏

i=1

xi)e

(∑s
i=1 xi +m

∏s
i=1 xi

p

)

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

2

= (p− 1)

p−1
∑

m=1

∑

χ mod p

∣

∣

∣

∣

∣

∑

Xs

χ(

s
∏

i=1

xi)e

(∑s
i=1 xi +m

∏s
i=1 xi

p

)

∣

∣

∣

∣

∣

4

. (6.1)

Also we have

∑

χ mod p

∑

χ1 mod p

∣

∣

∣

∣

∣

∣

p−1
∑

m=1

χ1(m)

∣

∣

∣

∣

∣

∑

X

χ(

s
∏

i=1

xi)e

(∑s
i=1 xi +m

∏s
i=1 xi

p

)

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

2

=
∑

χ mod p

∑

χ1 mod p
χ1 6=χ0

∣

∣

∣

∣

∣

∣

p−1
∑

m=1

χ1(m)

∣

∣

∣

∣

∣

∑

Xs

χ(

s
∏

i=1

xi)e

(∑s
i=1 xi +m

∏s
i=1 xi

p

)

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

2

+
∑

χ mod p

∣

∣

∣

∣

∣

∣

p−1
∑

m=1

∣

∣

∣

∣

∣

∑

Xs

χ(

s
∏

i=1

xi)e

(∑s
i=1 xi +m

∏s
i=1 xi

p

)

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

2

. (6.2)
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Using Lemma 5.1 we obtain

∑

χ mod p

∣

∣

∣

∣

∣

∣

p−1
∑

m=1

∣

∣

∣

∣

∣

∑

Xs

χ(

s
∏

i=1

xi)e

(∑s
i=1 xi +m

∏s
i=1 xi

p

)

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

2

= (p− 2)(ps+1 − 2ps − ps−1 − · · · − −p)2 + (ps+1 − ps − ps−1 − · · · − −p)2

= (p− 1)(p2(s+1) +O(p2s+1)). (6.3)

Now using Lemmas 5.2, 5.3 and 5.4 we have

∑

χ mod p

∑

χ1 mod p
χ1 6=χ0

∣

∣

∣

∣

∣

∣

p−1
∑

m=1

χ1(m)

∣

∣

∣

∣

∣

∑

Xs

χ(

s
∏

i=1

xi)e

(∑s
i=1 xi +m

∏s
i=1 xi

p

)

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

2

= ps+1
∑

χ mod p

∑

χ1 mod p
χ1 6=χ0

∣

∣

∣

∣

∣

∑

Xs

χ(

s
∏

i=1

xi)χ1((

s
∏

i=1

xi − 1)

s
∏

i=1

(xi − 1))

∣

∣

∣

∣

∣

2

= ps+1
∑

χ mod p

∑

χ1 mod p

∣

∣

∣

∣

∣

∑

Xs

χ(

s
∏

i=1

xi)χ1((

s
∏

i=1

xi − 1)

s
∏

i=1

(xi − 1))

∣

∣

∣

∣

∣

2

−ps+1
∑

χ mod p

∣

∣

∣

∣

∣

∑

Xs

χ(

s
∏

i=1

xi)χ0((

s
∏

i=1

xi − 1)

s
∏

i=1

(xi − 1))

∣

∣

∣

∣

∣

2

= ps+1(p− 1)2
∑

Xs

∑

Ys∏
s
i=1

xi≡
∏

s
i=1

yi mod p∏s
i=1

(xi−1)≡
∏s

i=1
(yi−1) mod p

χ0((
s
∏

i=1

xi − 1)
s
∏

i=1

(xi − 1))

−ps+1(p− 1)

p−1
∑

x1=2

· · ·
p−1
∑

xs=2

p−1
∑

y1=2

· · ·
p−1
∑

ys=2
∏

s
i=1

xi≡
∏

s
i=1

yi mod p

χ0(

s
∏

i=1

xi − 1)

= ps+1(p− 1)

[

ps+1 +
(p− 2)2s+1

(p− 1)2
+O(ps+1/2)

]

−ps+1(p− 1)(p− 2)

[

(p− 2)s

(p− 1)
− (−1)s

]2

= (p− 1)
(

p2s+2 +O(p2s+3/2)
)

(6.4)

Hence from (6.2), (6.3) and (6.4) we obtain

∑

χ mod p

∑

χ1 mod p

∣

∣

∣

∣

∣

∣

p−1
∑

m=1

χ1(m)

∣

∣

∣

∣

∣

∑

X

χ(

s
∏

i=1

xi)e

(∑s
i=1 xi +m

∏s
i=1 xi

p

)

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

2

= (p− 1)
(

(p2s+2 +O(p2s+3/2) + (p2s+2 +O(p2s+1)
)

= (p− 1)
(

2p2s+2 +O(p2s+3/2)
)

. (6.5)

Using (6.1) and (6.5) we complete the proof of our main theorem. �
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7. Comments

Note that, putting s = 2, 3, 4 in Theorem 1.1, we can deduce the main results in
[1, 2, 15, 16]. For s = 3, 4; Theorem 1.1 gives weaker results than [1] and [2]. In
[1] ans [2] we followed different approaches to calculate the number of Fp-points on
the surface

(x1 − 1) · · · (xs − 1)(1− x1 · · ·xs) ≡ ux1 · · ·xs mod p.

For s = 3, we use the absolute irreducibility property of the above surface and
for s = 4, we used a result of P. Deligne [2, Lemma 4]. Instead in this article we
followed properties of Jacobi sums and a result of A. R-León [11] which help us
to prove Lemma 4.6, which gives a different approach to study such surface for
general number of variable. At the same time the point counting in Section 4 plays
a very crucial role in generalizing our result. Any improvement of our result in
Theorem 1.1 is directly related to the improvement of the estimate in Lemma 4.6.
Our theorem is important as it gives advancement to the known methods. The
result is more general and establish asymptotic formula for (1.2) of any dimension
for the hyper-Kloosterman sum.
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