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Abstract

In recent years, many digital devices have been equipped with a video camera that allows videos to be recorded in
good quality, free of charge and without restrictions. Concurrently, the widespread use of digital videos via web-
based multimedia systems and mobile smartphone applications such as YouTube, Facebook, Twitter and WhatsApp
is becoming increasing important. However, security challenges have emerged and are spreading worldwide. These
issues may lead to serious problems, particularly in situations where video is a key part of decision-making in crimes,
including movie piracy and child pornography. Thus, to increase the trustworthiness of using digital video in daily
life, copyright protection and video authentication must be used. Although source camera identification based on
digital images has attracted many researchers’ attention, less research has been performed on the forensic analysis
of videos due to certain challenges, such as compression, stabilization, scaling, and cropping, as well as differences
between frame types that can occur when a video is stored in digital devices. Thus, there are insufficient large standard
digital video databases and updated databases with new devices based on new technologies. The goal of this paper is
to offer an inclusive overview of what has been done over the last decade in the field of source video identification by
examining existing techniques, such as photo response nonuniformity (PRNU) and machine learning approaches, and
describing some popular video databases.

Keywords:
Survey, Source camera identification, Video, PRNU, Machine learning methods.

1. Introduction recent research, the identification algorithms that help
identify the image sources are not as effective at identi-

Digital video was commercially introduced in Sony’s fying videos |Hosler et al.|(2019b). Video identification

D-1 format in 1986. The recording of videos as large
amounts of data with information that can be used as a
type of evidence in court is now developing rapidly and
widely. In addition to its use in social media, digital
video data is subject to checking for authenticity, in-
tegrity, and identification. Integrity ensures that video
evidence has not been altered prior to seizure, while
authenticity is the ability to determine whether the evi-
dence is credible. An important aspect of digital video
recording is identifying the digital device that was used
to record a video [Huang et al.| (2015). Many foren-
sic methods have been developed based on digital im-
ages [Lukas et al.| (2006)); Chen et al.| (2008)); Lawgaly
and Khelifi| (2016)); Lawgaly et al.| (2014); Kang et al.
(2011); Ahmed et al.|(2019)), while less research has in-
vestigated the forensic analysis of videos. According to
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algorithms are used to identify and distinguish sensor
types based on video produced by digital cameras. In
recent years, forensic specialists have been particularly
interested in this topic. In general, there are two primary
ways to identify images and videos, examining images
or videos to extract a unique fingerprint of the camera
and using metadata associated with the images or videos
(the DNA of a video). |[Lopez et al.| (2020) demonstrated
that the internal elements and metadata of video can
be used to identify a video’s source. Because meta-
data (DNA) can be removed from an image or video,
extracting a unique fingerprint based on an image and
video is reliable. Two concepts are typically considered
when identifying cameras: source camera model iden-
tification (SCMI) and individual source camera identi-
fication (ISCI). ISCI distinguishes cameras from both
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the different and same camera models, while SCMI is
a subset of ISCI that distinguishes a particular camera
model from others but cannot distinguish between cam-
era devices from the same camera model. More research
has been done on SCMI than on ISCI. In a database, if
there is one device for each model, the ISCI is gener-
ally identical to the SCMI. When the two scenarios can
be different, the number of devices is more than one de-
vice for each model; therefore, SCI and SCMI are two
different problems that should be addressed differently.
For example, if there are two iPhone 8 Plus devices in a
database, two different classes and one class are consid-
ered for ISCI and SCMI, respectively.

Figure 1 shows the common techniques that have
been used in source camera identification based on dig-
ital images, which can be divided into several classes:
digital camera identification based on PRNU estima-
tion |Lukas et al.| (2006); [Mieremet (2019); [Lawgaly
and Khelifi| (2016), statistical methods [Chapman et al.
(2015), dark signal identification Virmontois et al.
(2010), sensor dust Dirik et al.| (2008), optical defects
Kordecki et al.| (2015), and machine learning, such as
deep models Yang et al. (2019) involving convolutional
neural networks. However, source camera identification
methods on videos have focused more on PRNU and
machine learning methods.

This study presents an inclusive overview of what
has been done over the last decade in the field of
source video identification. This review provides in-
sights based on 93 articles as well as additional articles
and supporting publications. Figure 2 shows statistics
about the literature surveyed from 1970 to the present
(March 2022). From 2015 until today (March 2022), the
figure shows an increased interest in the topic among
academics. There are 56 journals, 27 conferences, 2
preprints, and 8 books/dissertations/patents.

A series of representative studies identifying source
cameras were presented. A brief structure of methods
in the field was examined by |[Lefebvre et al. (2009),
and some methods focusing on images were reviewed.
Recently, Bernackil (2020) reviewed methods that were
designed to identify source cameras on images, which
included the categories shown in Figure 1. |Milani
et al.| (2012); Kot and Cao|(2013)); Pandey et al.|(2016);
Pasquini et al.| (2021) provided a brief overview of the
state of digital image forensics. These studies focused
on methods for detecting forgery and tampering. They
also investigated a few methods for source camera iden-
tification using video. To our knowledge, there is no
comprehensive paper that presents methods in conjunc-
tion with videos. In-depth analysis is critical when iden-
tifying source cameras with a focus on video and to ex-

pand future research pathways. Therefore, it is essential
to conduct a comprehensive review and summary of ex-
isting research in order to continue to advance this field
in the future, particularly for researchers who wish to
enter the field.

In addition to reviewing the literature, this study pro-
vides a description of available video databases that can
be used for camera identification methods.

The following cases are considered to prepare the sur-
vey:

e A literature review of papers with titles, abstracts,
keywords, or experimental results that used video
databases or explicitly referenced videos through-
out the paper was conducted. Keywords for the
search included “source camera identification on
video, machine learning methods, PRNU, stabi-
lization videos and social media videos”; however,
these words were not the only ones used. We
then selected only papers that referred to videos
and those that created databases. Topics related to
forensics, such as fake video detection, are not part
of this survey.

e To be considered for inclusion in this review,
papers must meet the following criteria: peer-
reviewed English journals, peer-reviewed confer-
ence proceedings, or recent manuscripts from
open-source archives. In addition, we have ad-
hered to studies conducted by authors who are
renowned and experts in the field. All distin-
guished and expert authors in the area of interest
were explored in Google Scholar with key words
related to topics of interest, such as media foren-
sics, multimedia forensics, and multimedia secu-
rity.

e We have also presented databases on this topic be-
cause a database is an essential part of any applica-
tion in the field.

e All contributions to the sections (text, tables,
graphs and plots) are sorted by category and year
of publication.

The remainder of this paper is organized as follows.
Section 2 presents basic definitions in this field of re-
search that are relevant to the following sections. Sec-
tion 3 considers methods that can be used to identify
source camera models in two categories: PRNU and
machine learning. Section 4 describes video databases
that can be used to identify source cameras on videos.
The final section discusses open research questions that
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Figure 1: Categories for source camera identification on the image based on|Bernacki| (2020)
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Figure 2: Number of papers used in this survey by publication year
(from 1970 to August 2021).

can be addressed in the future and provides a conclu-
sion.

2. Basic definitions

Video creating process: Understanding the basics
of how digital cameras produce video is crucial and is
shown schematically in Figure 3. As a first step, the
light of the scene is captured by the lens. A key pro-
cessing step in creating a video is to reduce the size
of the full-frame sensor output to reduce the amount
of data that must be processed. Both acquisition and
colour processing could be performed as follows: by
downsampling colour-interpolated image data and sub-
sampling pixel readout data in acquisition. A common
method of compensating blur caused by camera shake
is electronic image stabilization, which modern cameras
use in postprocessing. In addition, the images can also
be scaled and cropped during this postprocessing, which
further reduces their size. To make the storing and trans-
ferring of the postprocessed images as efficient as pos-
sible, the sequence is encoded into a standard video for-
mat.

Charge-coupled device (CCD): CCD sensors are an
important technology that are used in digital imaging.
In the CCD, light is converted into electrical signals. A

CCD array (Figure 4) generates two-dimensional image
signals by arranging thousands or millions of CCD el-
ements at regular intervals in rows and columns. The
light-sensing element is known as a pixel. The output
signal of CCD lines is always affected by noise. There
are two types of noise: random noise and noise with a
fixed pattern Boyle and Smith|(1970).

Complementary metal oxide semiconductor
(CMOS): In digital camera technology, such as cell
phone cameras and web cameras, the CMOS sensor is
similar to the CCD sensor. Metal oxide semiconductors
(MQSs) are the primary component of both types of
sensors, and both function similarly, although there are
some differences in how the pixels are scanned and how
the readout of the charges is performed.

The output information from CCD sensors must be
processed in an additional chip, which increases the cost
of manufacturing. A CMOS sensor has its own active
pixels, and because the sensor can perform digitizing,
it offers higher speeds, a smaller size, and a lower cost.
Despite similar characteristics, CCD arrays have the ad-
vantage of capturing light simultaneously, providing a
more consistent output. Because the readout process is
typically performed as progressive scanning, which is
free of blooming, CCD sensors offer a markedly larger
dynamic range and better noise suppression than CMOS
sensors. CMOS sensors are more sensitive to light,
which makes them more effective in low-light condi-
tions. CCD sensors used to be superior to CMOS sen-
sors, but this gap is nearly closed today. As the strength
of CCD technology has reached its limit, CMOSs are
gradually being improved and developed so that most
smartphones use CMOS sensors instead of CCD sen-
sors. CMOS/CCD sensors store data in a digital format,
which is then sent to a processor for processing. The
image processor eliminates noise and other anomalies
once it receives the digital signal. The signal is also sub-
jected to colour interpolation, gamma correction, and
colour correction.

PRNU: PRNU, which is understood to be the unique
fingerprint of the camera, is often referred to as resid-
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Figure 3: The steps in the image processing of a camera when generating a video based on [Corcoran et al| (2014).
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Figure 4: Overview of a CCD array (based on[Kurosawa et al| (1999)).

ual noise or sensor pattern noise (SPN). Fixed pattern
noise (FPN) occurs when the CCD or CMOS sensor
processes the input (light) and converts it into a digital
signal. FPN typically refers to two dark signal nonuni-
formity (DSNU) and PRNU parameters. DSNU is the
offset from the average across the imaging array at a
particular setting (temperature, integration time) but no
external illumination. PRNU characterizes imperfec-
tions are caused by the manufacturing process due to
a lack of homogeneity in the silicon area in the imag-
ing sensor [Lawgaly and Khelifi (2016). Although cur-
rent imaging devices are becoming more sophisticated,
making PRNU noise less effective, current research is
investigating whether it can still be used as a powerful
tool to identify the camera source if some improvements
are considered [uliani et al.|(2021)); /Altinisik and Sencar|

(2020). The noise due to sensor imperfections is a weak
signal of the same dimensions as the output image in-
dicated in this study by K € R"*V, where W x V is
the dimension of the sensor. Even though sensors can
be different from one device to another, the final digital
image output can be expressed as |[Lawgaly and Khelifi

;[Lawgaly et al. :
2016); Lawgaly et al.| (2014
I=°+I°K+©

6]

where I° refers to the original input multimedia file, I°K
represents the PRNU term and ® is a random noise fac-
tor.

To estimate PRNU based on video, first, the video V
is decomposed into frames I;, where i = 1,..., N with
N being the total number of frames in the video. The
reference pattern noise can be approximated by aver-
aging I;. During this process, each frame should only
contain pattern noise, not a scene. The denoising filter
F removes all scene content per frame /;, thus leaving
only the noise residual n;, which is used to determine
the pattern of noise.

n=1; = F(I) ()

Increasing the number of frames I; in V results in
smoother spatial pattern noise Py in the video:

(©)

Typically, N > 50 is recommended [Lukas et al.| (2006).

Denoising filter As mentioned in the PRNU defini-
tion, a denoising filter F' is used to extract pattern noise.
Wavelet-based filters can be considered to have better
performance than approaches such as Wiener and me-
dian filters. Areas around edges are typically misinter-
preted by the latter two. For details on how this denois-

ing filter works, see[Lukas et al.| (2006).
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Normalized cross correlation (NCC): NCC mea-
sures the similarity between two PRNUs, which are ref-
erence and query patterns. The reference pattern is ob-
tained by averaging the PRNUs that are extracted from
frames of a video or multiple videos of a device. To
evaluate the video identification system, the PRNU can
be extracted from the query video, as shown in (3).
The computed correlation p¢ between the given pattern
given (query) Py and the reference pattern P¢ is used to
check whether video V was recorded with camera C:

(Py — Py).(Pc — Pc)
1Py =Py cPe = Po

where the mean is shown by the bar above a symbol.
Using the right denoising filter can improve correla-
tions. Due to the noise sensitivity of the NCC, these
methods are not accurate when used with highly com-
pressed and low-resolution videos.

Peak-to-correlation energy (PCE): Based on NCC,
PCE, a resolution-independent similarity metric, is cal-
culated as follows:

pc(V) = corr(Py, Pc) =

2
P peak

) T S pees PPy PP
mn—|S| &Pv.PcéS v.c

®)

where ppeak, S, and |S| are the maximum value of the
NCC matrix, a small region surrounding pp.q, and the
cardinality of S, respectively. p,.q can be replaced by
p(1,1) if the fingerprint and the noise estimates have
the same matrix resolution. When PCE(p) exceeds a
threshold ¢, the query image with noise estimate Py is
considered to be taken with the same camera Pc.

There is an additional complication that arises from
the observation that PCE values for PRNU matching
in videos are lower than those for images. Downsiz-
ing operations and compression of video have caused
this decline in PCE values. As shown in Figure 5, even
though the correlation is low overall, PCE can be classi-
fied by such a peach into positive matching versus neg-
ative matching. Also, |Goljan et al.| (2009) have shown
that peak-to-correlation energy (PCE) is an additional
attribute that provides an additional level of robustness
to normalized correlation.

Video Codec: Video files are compressed with
codecs, which must always balance quality and size
(better quality vs. larger file size). Video files can
be compressed to reduce their size, which can reduce
bandwidth usage and increase streaming speed. For
encoding high-definition video, AVC is the standard
codec used by several online video services, includ-
ing YouTube and Vimeo. The MPEG-4 and H.264
standards were implemented by the library ‘libx264’ in
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Figure 5: Normalized cross-correlation matrices when matching is
positive (a) versus negative (b). (based on|Ferrara and Beslay|(2020)).

FFmpeg. The constant rate factor (CRF) setting is the
easiest setting to change the applied compression to a
certain quality for the output video. With CRF set to
0, you can achieve loss less compression. Although the
compressed video with CRFs 18 and 20 is still of high
quality, it is smaller than the original.

One of the most widely used video compression stan-
dards is H.264/AVC, which is managed by the JVT
(Joint Video Team) and is currently used in nearly all
smartphones and social media. Detailed descriptions
of video coding are beyond the scope of this paper;
Van Houten and Geradts| (2009) and [Telecom et al.
(2003) provide a detailed description of the H.264/AVC
video coding standard and technical approaches. The
H.264/AVC encoder shares several basic steps, such as
block processing, prediction, transformation, quantiza-
tion, and entropy coding, as shown in Figure 6.
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Figure 6: Primary steps of a H.264/AVC encoder (based on
Van Houten and Geradts|(2009)).

FFmpegB FFmpeg is one of the most popular multi-
media frameworks that can decode, encode, transcode,
mux, demux, stream, filter and play anything that hu-
mans and machines have created. From ancient to mod-
ern formats, the software supports different frameworks:

Uhttps://www.ffmpeg.org/



Linux, Mac OS X, Microsoft Windows, the BSDs, So-
laris, etc. FFmpeg is used to re-encode original flatfield
videos to have the same resolution as natural videos if
the resolution changes. A software package included in
ffmpeg (ffprobe) is used to extract video frames (type,
frame rate, bit rate, resolution, etc.) and save them in an
uncompressed format. Additionally, to extract I, B, and
P frames and motion vectors, these tools can be used.
Group of Pictures (GOP): GOP consists of I-
frames, P-frames and B-frames as intra-coded picture,
predictive-coded picture, and bi-predictive coded pic-
ture, respectively in coding standards such as MPEG se-
ries and H.264. Although modern codecs are based on
instantaneous decoder refresh (IDR) frames, all meth-
ods investigated in this review used I-frames to identify
the source camera. [-frames are the least compressible
and do not require other video frames for decoding. P-
frames can be decompressed using data from previous
frames and are more compressible than I-frames. For B-
frames, previous and forward viewed frames can also be
used as data references to achieve the highest compres-
sion. An I-frame is typically more detailed than a P- or
B-frame. GOP size can generally be divided into fixed
vs. unfixed and is the number of the B- and P-frames
between two consecutive I-frames. The three types of
frames are divided into blocks of pixels (macroblocks)
that are represented by motion vectors in the H.264 stan-
dard, which can play an important role in the compres-
sion step and estimating fingerprint patterns. The first
step to compress any macroblock is to search in the cur-
rent frame, or in previous or future frames, for a mac-
roblock that is similar to the macroblock we want to
compress. Then, the best location of the macroblock
in the frame is found, and the location information is
sent to the decoder. The samples of the motion vectors
predicted in a P-frame are shown in Figure 7.
Stabilization: Video stabilization uses digital pro-
cessing to minimize the effects of vibration and cam-
era shake on video quality, which are common in hand-
held devices. Video stabilization compensates for in-
voluntary user movements using geometric transforma-
tions (e.g., translations, similarities, homographs, etc.)
to capture video frames |Grundmann et al.| (2016). The
result is a misalignment of individual pixels across
frames, which complicates PRNU fingerprint estima-
tion. PRNU estimation is much more difficult for videos
than for images because videos are typically highly
compressed and are often subject to video stabilization.
Optical stabilization and digital stabilization are
methods that can stabilize images or videos. In the for-
mer, a hardware-based stabilization mechanism is used,
and camera movement is not fully transferred to the

video. In the latter, image processing methods are ap-
plied by moving and warping to align frames. It is pos-
sible to combine both stabilization approaches in one
camera to achieve more effective results |Altinisik and
Sencar] (2020).

Video stabilization has less effect on the first frame of
the video, which is not the case with the newly created
iPhone |Grundmann et al.| (2016). Thus, some cameras
seem to activate stabilization when set to video, even be-
fore recording begins Altinisik and Sencar|(2020). Dur-
ing the digital stabilization process, video frames are
cropped, warped, and inpainted Elharrouss et al.| (2020)
to eliminate unwanted camera movement. To identify
a source camera, these transformations must be blindly
inverted.

The effect of video stabilization shown in Figure 8,
where the visual content is aligned between two frames.
The example shows that the line describing the edge of
a wall changes its orientation when it appears in suc-
cessive frames of an unstabilized video, but such a line
is properly aligned after video stabilization, producing
more stable visual content.

Deep learning methods: A special class of machine
learning techniques called deep learning (or deep struc-
tured learning) is based on artificial neural networks
with a deep learning structure that can be supervised,
semi-supervised or unsupervised. Convolutional neural
networks (CNNs) form the basis of most deep learning
models, although they may also contain propositional
formulae or latent variables organized in layers, such as
the nodes in deep belief networks or deep Boltzmann
machines LeCun et al.|(2015). Currently, convolutional
layers are primarily used to capture scene content in-
stead of camera detection features such as noise pat-
terns. In addition, deep learning methods such as CNN
and Siamese networks (Cozzolino and Verdolival (2018])
can be used for the aim.

Challenges and metrics: When a video is produced,
challenges such as compression, stabilization, scaling,
cropping, and differences between frame types can be
considered. A new challenge is related to new databases
that include devices with new technologies to test the
effectiveness of existing methods. While reported re-
sults based on ISCI and SCMI scenarios on the new
databases based on existing methods show that an im-
provement is essential, ISCI compared to SCMI needs
more improvement. Thus, developing and introducing
new databases, improving existing methods and intro-
ducing new methods to address the ISCI and SCMI
scenarios are essential. Additionally, moving videos
(videos captured while the device was moving) are more
challenging compared with still videos (videos captured
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Figure 7: Motion vector calculated by FFmpeg.

by fixed devices).

To evaluate the performance of source camera identi-
fication techniques, the common measures used by the
different authors are mentioned in this section. In ad-
dition to NCC and PCE values, accuracy, true positive
rate (TPR) and false positive rate (FPR) can be con-
sidered. Additionally, receiver operating characteristic
(ROC) curves can be used to obtain the area under the
curve (AUC).

3. Methods

Source camera identification is reviewed on videos in
two categories: PRNU and machine learning methods.

3.1. PRNU methods

The methods are classified into general, stabilization
and resizing, social media videos, and network streamed
videos. The methods presented based on PRNU are
summarized in Table 1. There are three primary steps in
the type of methods: frame extraction, PRNU estima-
tion for both query and reference videos, and matching
query with reference video.

3.1.1. General

In this subsection, we focus on methods that improve
PRNU estimation to identify source cameras in videos.

In many methods, the improvement is performed by in-
troducing denoising filters.

McCloskey| (2008) extended and improved methods
proposed by |Chen et al.| (2007). They focused on videos
with edge and texture content, and their method was
based on a map function that gives each pixel a weight.
Using a Gaussian kernel, the mapping function emulates
the spreading of errors caused by wavelet denoising at
multiple scales. Canon and Kodak cameras with indoor
scenes were the primary target in the study to obtain
videos with high-frequency content (e.g., edges).

Chuang et al (2011)) and [Goljan et al| (2016) stud-
ied the impact of compression on estimating PRNU in
video frames. While/Chuang et al.|(2011) considered re-

ordering and weighting the frame, (Goljan et al.| (2016)
applied an adjustment step to make a correct decision to

choose the threshold. They tested different scenarios to
find the best condition in selecting the threshold using
with frames and real images in the M-JPEG and MPEG-
4 formats. Based on Monte Carlo simulations, theoreti-
cal analysis and experiments show a marked increase in
the variances of normalized correlation and PCE when
JPEG is compressed. Therefore, it is necessary to ad-
just the decision threshold to reduce the probability of a
false alarm. The authors calculated this adjustment fac-
tor experimentally by comparing different JPEG CRFs
with 1-Mpixel still images. Their experiments showed
that the quality of the compression and the increase in




(b)

Figure 8: Stabilization effects on subsequent frames in digital video.
(a) The frames are not stabilized, which means that the red and green
lines that highlight the content do not align with the content due to
hand movements. (b) Stabilizing the frames ensures alignment (lines)

of the content based on |Ferrara and Beslay|(2020).

positive bias both affect the normalized correlation.

A PRNU method based on a minimum average cor-
relation energy (MACE) filter[Mahalanobis et al.| (1987)
was used by [Hyun et al] (2012). The filter was used
to reduce the impact of noise on NCC. After extracting
PRNU from reference videos, this filter is applied but
did not affect the test (query) videos. This method was
performed on 7 camcorders, and results showed that this
filter can increase accuracy up to a maximum of 10%.

[Villalba et al.| (2016) followed the structure of a clas-
sification approach for identifying source cameras based
on PRNU. They extracted features from PRNU esti-
mated from frames to classify videos. The features
are based on decomposing wavelet subbands. Support
vector machine (SVM) was used to classify the feature
space.

The idea behind the method presented by
[Athamneh et al.| (2016) was simple, but results showed
that they achieved promising results. They extracted
PRNU only from the green channel of each frame in-
stead of all three RGB channels because the green chan-
nel is the noisiest channel among the three RGB chan-

nels. Once the frames were extracted, they were resized
to 512 x 512 pixels. Wavelet denoising was applied to
obtain the residual signal for each frame. The method
was applied to 256 videos captured by 6 devices. Resiz-
ing was thus shown to effectively improve the results of
source camera identification.

In parts of the thesis of (2019), a case study
was considered to evaluate existing methods to identify
source cameras. The study further can be considered for
fresh researchers in the field.

estimated PRNU from extracted I-
frame camera video rolls, which is defined as rotation
around the camera axis. When capturing videos with
180-degree rolling, the video can be rolled back 180 de-
grees with a mobile phone. After obtaining the PRNU
for reference video, an enhancement step based on the
Wiener filter (WF) and the zero-mean (ZM) was used in
the Fourier domain as described in [Chen et al.| (2008)).
Then, a rotation normalization step is applied to the en-
hanced frames. This method was evaluated on the VI-
SION database [Shullani et al] (2017). Results showed
some improvements compared with a few methods.

Lopez et al.|(2021) aimed to improve PRNU using an
enhancement step and clustering approach. In the first
step, PRNU was estimated from a macroblock within
the frame. Then, to enhance it, the method introduced
in|Li was considered. In this step, the high fre-
quency components of the scene are represented in such
a way that their magnitude surpasses that of the noise
pattern due to the details of the scene. Therefore, it is
important to remove fragments from the high-frequency
scene to improve the fingerprint of sensor noise. To
achieve this, on PRNU, smaller weighting factors were
applied to the strong components of the signal in the
wavelet transform domain. Finally, the unsupervised
agglomerative clustering used in [Caldelli et al.| (2010)
was applied to classify videos of the VISION database
[Shullani et al| 2017).

Ferrara et al.| (2022) explored which type of frame
is suitable for source camera identification while con-

sidering compression and stabilization. They showed
that I-frames obtain better results when stabilization oc-
curs and that the most significant PRNU information is
provided by the first I-frame. Among the P-frames, the
most reliable PRNU information is provided within the
P-frames of the first GOP. This finding is explored on
the VISION database.

3.1.2. Stabilization and resizing

A major challenge in PRNU-based camera identifi-
cation from a video is image stabilization during cap-
ture and/or post-processing. Essentially, digital stabi-



Table 1: Methods presented based on PRNU.

Method Category Year Content
McCloskey|(2008) General 2008 dealing with videos with edge and texture content
“|Chuang et al.[(2011) General 2011 estimating PRNU in video frames on compression status
“|Hyun et al.[(2012] General 2012 reduce impact of noises on NCC
“|Goljan et al.[(2016) General 2016 estimating PRNU in video frames on compression status
“|Villalba et al.[(2016) General 2016 extracting features from PRNU pattern and using SVM classifier
"|Al-Athamneh et al.[(2016) General 2016  extracted PRNU only from Green channel of each frame instead of all three channel RGB

~|Wales|(2019] General 2019 case study to evaluate existing methods to identify source camera
“|Yang et al.[(2021} General 2021 estimated PRNU from I-frame extracted cameras rolling
7L6pez et al.|(2021} General 2021 improve PRNU by using a enhancement step and clustering approach
" |Ferrara et al.|(2022) General 2022 exploring which kind of frame is useful in the field
“|Hoglund et al.|(2011} Stabilization 2011 a simple transformation on PRNU patterns
" [Taspinar et al. |(2016) Stabilization 2016 to correct for both the shift and rotation applied, inverse affine transformations are used
" |Iuliani et al.|(2019} Stabilization 2019 searching the proper amount of scaling, shifting, and cropping
that should be applied to each frame

Mandelli et al.|(2019) Stabilization 2019 searching for transform parameters using PSO
" |Altinisik and Sencar|(2020} Stabilization 2020 assumes a larger degree of freedom in the search for stabilization

transformations that consider spatially variant natures

Ferrara and Beslay |(2020) Stabilization 2020 shifting and inverse transformation on flat I-frames

creating a robust reference instead of eliminating stabilization on queries frames
Mandelli et al. |(2020) Stabilization 2020 a fast search of inverse transform
(Fourier-Mellin Transform)

Taspinar et al. |(2020) Resizing 2020 considering different aspect ratios (resizing and cropping) of images and videos
~|Van Houten and Geradts|(2009] Social media 2009 investigating the usage of PRNU for source attribution of YouTube videos
“|Scheelen and van der Lelie|(2012) Social media 2012 exploring impact of video Codec on YouTube videos
" |Brouwers and Mousa|(2017) Social media 2017 exploring impact of PRNU videos on YouTube
“|Amerini et al.|(2017] Social media 2017 exploring impact of PRNU videos on Facebook and Twitter
"|Meij and Geradts|(2018) Social media 2018 identifying source when videos transmitted by WhatsApp
" |Kouokam and Dirik 12019) Social media 2019 Estimated PRNU videos transmitted in Youtube

“IPande et al. i2013} Streamed videos in network 2013

a hardware architecture for source identification in networked cameras

“|Chen et al. (2014} Streamed videos in network 2015

identify source camera in a wireless stream
with blocking and blurring

" |Kaur and Randhawa Streamed videos in network 2020

deal with blocking and blurring issues by adding
Gaussian mixture models (GMM) using k-means clustering

lization involves three primary steps: estimating mo-
tion, smoothing, and aligning frames based on the cor-
rected motion analysis. Using a parametric model or by
considering the geometric relationship between succes-
sive frames, feature trajectories are calculated by track-
ing key points across frames and estimating motion Xu
et al.| (2012); (Grundmann et al.| (2011); [Thivent et al.
(2017). When stabilizing a camera, whether the motion
can be reproduced in a two-dimensional (2D) or three-
dimensional (3D) representation is important. Modern
methods consider 3D motion models to overcome the
limitations of 2D modelling. Because reconstructing
3D with depth information, is not trivial, these meth-
ods simplify the structure of 3D and rely heavily on
feature tracking accuracy |[Liu et al.| (2009); Wang et al.
(2018). The primary goal of video stabilization is to
align successive frames by geometric registration. To
compensate for any type of perspective distortion, Eu-
clidean transformations (scaling, rotation, and transla-
tion individually or in combination) can be applied to a
spatially varying warping transform, depending on the
complexity of the camera motion throughout the cap-
ture. Because these transformations are applied to each

frame, there is sufficient variance in camera motion to
easily remove pixel-to-pixel correspondences between
frames. Frame-level PRNU pattern alignment or aver-
aging is ineffective at estimating a reference PRNU pat-
tern. Finally, in stabilized video, determining and in-
verting the frame-level transformations is necessary for
source attribution.

In source camera identification on images, search
methods for the geometric transform parameters are
applied karakucuk et al| (2015) (Goljan and Fridrich
(2008).

The overall results of the algorithms are shown in
Figure 9. The focus of algorithms is to present a trans-
formation that can deal with alignment issues in the
cases. In the methods that extract reference patterns,
the transformation can be images captured by the same
camera for capturing videos and flat frames and first
frames from videos by averaging them.

While [Hoglund et al.| (2011) compensated for stabi-
lization by a simple inverted transformation method in
extracting the noise pattern, Taspinar et al.| (2016), sta-
bilization in each video was detected in the first step by
matching the PRNU of the beginning and end frames.
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Figure 9: Overall stabilization methods

If the frames match, the video is not stabilized. Af-
ter extracting I-frames, one of the I-frames is set as a
reference. The inverse affine transformation to correct
rotation and shift is applied to I-frames aligned to the
reference. After aligning the I-frames, the PRNU pat-
tern derived from an unstabilized video is compared to
the pattern derived from the aligned I-frames.

Tuliani et al.| (2019) identified the source camera by
assuming that the reference PRNU pattern could have
been determined by images or from an unstabilized
video. When matching, the videos and images have
different resolutions. The PRNU patterns for 5-10 I-
frames are aligned with the reference PRNU pattern by
determining the proper amount of scaling, shifting, and
cropping for each frame. An aligned PRNU pattern is
created by combining frames that yield a matching.

The PRNU pattern was estimated by Mandelli et al.
(2019) by taking weakly stabilized video into account.
This approach generates an alignment reference based
on a set of frames. Pairwise matching is performed be-
tween PRNU estimates obtained from each frame and
other frames to detect stabilization. A reference PRNU
pattern is then generated by combining the largest group
of frames that yield a sufficient match, and the remain-
ing frames are aligned to this pattern. When the refer-
ence PRNU pattern is already known at another resolu-
tion, as in|luliani et al.[(2019)), then the reference pattern
is used to compare all other PRNU patterns using parti-
cle swarm optimization (PSO) to search the transforma-
tion parameters Sammut and Webb| (2011)). To speed up
the search for weakly stabilized videos, they observed
that rotation can be ignored. An estimate of the PRNU
pattern is first based on flat and still content that has
been weakly stabilized. To verify the stabilized video,
five I-frames are extracted and compared with this ref-
erence PRNU pattern. An evaluation of results obtained
using the VISION database demonstrates the effective-
ness of the method.
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Altinisik and Sencar| (2020) extends |Altinisik and
Sencar, who presented a method for verifying source
cameras for a video that considers how stabilization
transformations vary spatially and assumes a higher de-
gree of freedom for their search. Transformations are
identified at the subframe level, a variety of constraints
are included to verify their correctness, and computa-
tional flexibility is provided in the search for the right
transformation. Transformations also take a holistic ap-
proach to neutralize the disruptive effects of video cod-
ing and downsizing steps for more reliable mapping.
Seven steps were involved in this method. To reduce
artefacts after a filtering process in the decoder (i.e., the
loop filter), the bitstream is decoded into video frames.
In the next step, each extracted frame is then processed
to extract the PRNU pattern. Prior to analysis, the
videos are also evaluated for the level of stabilization
to eliminate unstabilized and weakly stabilized videos
based on [[uliani et al.| (2019); Mandelli et al.| (2019).
Then, smaller blocks are cropped from each PRNU pat-
tern to address the spatially variable nature of the stabi-
lization transformations; the best results were achieved
with 500 x 500 blocks. The PRNU transformation pa-
rameters are identified by a search for each block to
avoid false inversions. A weighting procedure consid-
ers the compressed levels of inverse transformed blocks
before they are combined. The final evaluation of the
match is performed by comparing the estimated PRNU
pattern with the reference PRNU pattern.

Ferrara and Beslay Ferrara and Beslay| (2020) fo-
cused on creating a robust reference instead of elimi-
nating stabilization on query frames as in the previous
methods mentioned above. They applied the primary
steps of cropping, shifting and inverse transformation to
flat I-frames. They also propose an optimal strategy for
comparing PRNUs extracted from motion stabilization
videos.

Mandelli et al|(2020) suggested a search method for
scaling and rotation parameters in the frequency domain
to quickly find inverse transformations. The Fourier-
Mellin transform was used to estimate transformations
of scale, rotation, and shift between two images when
they are in closed form Reddy and Chatterji/ (1996). Ex-
periments performed on the VISION database showed
that the method is much faster than existing methodolo-
gies.

Using a combination of cropping and scaling on the
visual object can help downsize images or frames when
the sensor resolution exceeds the desired resolution. To
scale down still images, cameras use bicubic scaling or
Lanczos scaling (or their derivatives). Pixel binning or
line skipping techniques are also used to reduce camera



processing costs. These techniques are typically used in
video capture. Using only the central pixels of a sensor
and discarding the surrounding pixels is one approach.
There is a serious disadvantage of cropping for still im-
ages, the change in the field of view, which is narrowed
when the cropped region is large. Thus, cropping is
often combined with resizing. [Taspinar et al| (2020)
extends (Taspinar et al.| (2021), who considered differ-
ent aspect ratios (resizing and cropping) of images and
videos to identify the source camera. They also intro-
duce a database for resizing and cropping issues.

3.1.3. Social media videos

Van Houten and Geradts| (2009) investigated the
use of PRNU for YouTube video source identification.
Videos were recorded and encoded using a range of we-
bcams and codecs. YouTube was used for uploading
and downloading the videos. To determine a source
device’s PRNU, the downloaded videos were analysed.
Despite positive results, the findings of this study are
outdated because YouTube users now use handheld de-
vices (video cameras) rather than fixed-lens cameras.

Scheelen and van der Lelie| (2012) examined videos
that are re-encoded with the Advanced Video Codec, as
found on YouTube. Their results showed that YouTube
applied a similar compression level as CRFs between
27 and 30. These videos were matched to the original
cameras based on the noise pattern extracted from them.

As with previous tests, |Brouwers and Mousa| (2017)
tested the PRNU correlation procedure with YouTube
videos to see if it still performed effectively. They also
tested how effective PRNU pattern extraction is using
cell phone cameras and YouTube videos. This correla-
tion can be demonstrated by testing various mobile cam-
eras, but it depends on the type of camera used.

Amerini et al.| (2017) evaluated methods |Chen et al.
(2007); |Goljan et al.| (2016) to build a series of exper-
iments in social media. They built the reference pat-
tern based on original, Facebook and Twitter videos.
Also, they explored the PRNU on I-frames and showed
when various videos are first uploaded and then down-
loaded from Facebook or Twitter can still be considered
to identify the source camera.

Meij and Geradts| (2018) extracted PRNU for source
camera identification using software developed by the
Netherlands Forensic Institute Pl The PRNU can be
extracted using four different filters: 4th order extrac-
tion filter, wavelet (Daubechies), wavelet (Coiflet) and
the 2nd order (FSTV) extraction filter. This study uses

2https://Www.forensischinstituut.nl/
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a second-order (FSTV) extraction filter due to its su-
perior performance Brouwers and Mousa| (2017) com-
pared to the other methods; the authors studied videos
transmitted by YouTube. They estimated PRNU based
on videos transmitted by WhatsApp 2.17.79 (Android)
and 2.17.20 (I0S), and also showed that video trans-
missions by WhatsApp can also be identified by their
source.

In Kouokam and Dirik| (2019), a block-based method
was used to simulate all the processes of the H.264/AVC
video compression standard. In the simulation, the
effects of PRNU noise on the operations applied to
an encoded frame block were considered and investi-
gated. This method was tested on videos transmitted on
YouTube that are part of the VISION database [Shullani
et al.|(2017). They showed that based on their method,
their results contradict previous literature, which states
that using all frames (I, B, and P) is more accurate than
using only I frames, even when YouTube recompresses
the videos under study. This result means that PRNU
noise in P and B frames is still valid despite compres-
sion to improve source camera identification. The pri-
mary advantage of this method is that it estimates PRNU
fingerprints based only on frame blocks that have the
correct PRNU components.

3.1.4. Streamed videos in network

As a result of packet loss during network transmis-
sion, video streaming is typically blocked and blurred.
Source camera identification methods can fail when
degradation occurs with blocking and blurring. There-
fore, the methods should be improved to consider the
problems in the network stream.

Pande et al. (2013)) introduced a hardware architec-
ture for identifying source cameras in networked cam-
eras. They designed the hardware to estimate PRNU
by combining an orthogonal inverse wavelet trans-
form with minimum mean square error based estima-
tion using frames extracted from videos. Parallelism,
pipelining, and hardware reuse techniques were used to
maximize hardware utilization and accelerate through-
put. Device prototyping was implemented on a Xilinx
Virtex-6 FPGA hardware with a clock frequency of 167
MBs, processing 30 frames with a size of 640 X 480 in
0.17 s.

Chen et al.| (2014) extends |Chen et al.[| (2013)), who
identified a source camera in a wireless stream. They
compared the existing PRNU-based method|Lukas et al.
(2006) with their own method to show impact block-
ing and blurring in the results. They added two steps
when detecting wirelessly streamed videos with block-
ing and blurring that are based on wavelet to|Lukas et al.



(2006). Two aspects of video blocking affect sensor pat-
tern noise extraction. First, the details and the noise in
the patterns are lost within the blocks (8 or 16 pixel
blocks). Second, the edges of the blocking provide a
signal that survives extraction and averaging. In this
study, only blur caused by packet loss was considered,
although video blur can be caused by many other fac-
tors, including high compression ratios, limited lens res-
olutions, and fast motion. Blurring is caused by the loss
of high frequency information rather than the loss of all
data in a block, but this information loss is still block-
based. One block may appear blurrier than another.

Kaur and Randhawal investigate blocking and blur-
ring issues by adding Gaussian mixture models
(GMMs) using k-means clustering to initialize clusters
for GMM to estimate the PRNU step. The experi-
ment involved 20 tests, each performed on eight videos
from eight wireless cameras by randomly selecting five
frames from each video.

3.2. Machine learning methods

The methods presented based on machine learning
are summarized in Table 2. Two studies |[Lopez et al.
(2021)) and |Villalba et al.| (2016) mentioned in gen-
eral categories can also be considered machine learning
methods.

Su et al.| (2010) identified source cameras based on
the features extracted from bit stream, quantification
factor and motion vectors and classified them into cam-
era classes by an SVM classifier. They extracted the
motion vectors of each macroblock in P-frames. For
bit stream features, the number of bits, P-frames, and
B-frames of a GOP, and the average and variance of
the relative difference between adjacent P-frames and
B-frames. For quantization factor features, the maxi-
mum number of consecutive macroblocks with the same
quantization parameter in a frame of type I, P and B with
the order left to right and top to bottom; the average
and variance of the number of consecutive macroblocks
with the same quantization parameter in a frame of type
I, P and B with the above order; the maximum difference
value of the quantization parameters between adjacent
macroblocks in a type I, P and B frame; and the average
difference value of the quantization parameters between
adjacent macroblocks in a type I, P and B frame were
extracted. For motion vector features, a search window
was considered such that the maximum horizontal and
vertical dimensions were estimated.

Yahaya et al.| (2012) introduced a feature extraction
method based on conditional probability (CP) for source
camera identification. The features reported promising
results in steganalysis applications |Wahab et al.|(2009),
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where conditional probabilities refers to the probability
of B when A has already occurred. The JPEG DCT co-
efficient array was extracted from each frame, and then,
the CP features were obtained from the coefficients. The
features were extracted in blocks with size 8 in each
frame. The features were classified by an SVM clas-
sifier to identify the source camera. The method was
only tested on videos captured by four devices.

In |[Kirchner and Johnson| (2019), a CNN based on
sensor pattern noise (SPN) called SPN-CNN was pre-
sented. They implemented the CNN based on the idea
that CNN has the ability to extract signals character-
ized by noise from a set of images [Zhang et al.| (2017)).
Therefore, they trained a network to identify a noise pat-
tern. The method was tested on the VISION database
Shullani et al.|(2017)), and experiments showed that the
experiments obtained better results than the Wavelet de-
noiser. Additionally, they showed that when I-frames
were considered to feed into CNN, the results improved.

Timmerman et al.| (2020) and [Hosler et al.| (2019a)
proposed a deep learning method (MISLnet CNN archi-
tecture) for source camera identification using frames to
train the network. They extended a version of a con-
strained convolutional layer introduced in Bayar and
Stamm| (2018). A majority vote was used to make de-
cisions at the video level using frames fed into the net-
work. The constrained convolutional layer was added
as the first layer that used three kernels with size 5. This
layer is constructed such that there are relationships be-
tween adjacent pixels that are independent of the con-
tent of the scene. The methods were tested on the VI-
SION database [Shullani et al.| (2017). The experiments
showed that the layer can improve the results compared
with deep learning architectures without the layer. The
difference between the two methods is the size of the
images and the type of color modes. [Timmerman et al.
(2020) and Hosler et al.| (2019a) used RGB and gray
scale modes, respectively. The patches used in the for-
mer are 480, while the latter are patched with 256.

Mayer et al.| (2020) used a CNN introduced in |Bayar
and Stamm| (2018)), similar to the two previous studies,
to extract features and a similarity network to verify the
source camera. The similarity network maps two input
deep feature vectors to a 2D similarity vector. To do
this, they followed the design of the similarity network
developed by Mayer and Stamm|(2019). To obtain a de-
cision at the video level, a fusion approach based on the
mean of the inactivated output layer from the similarity
network was presented. This method was tested on the
SOCRAatES dataset|Galdi et al.|(2019). The experiments
showed that the method improved traditional methods,
such as|Goljan et al.[(2009).



Table 2: The methods presented based on machine learning.

Method Machine learning approach ~ Year Content
Su et al.|(2010) SVM classifier 2010 extracting features: bit stream, quantization factor and motion vectors
" [Yahaya et al.[(2012] SVM classifier 2012 feature extraction method based on Conditional Probability (CP)
“|Villalba et al. 12016) SVM classifier 2016 features based on wavelet transform
" [Kirchner and Johnson|{2019] CNN architecture 2019 extracting well-characterized noise signals from a given frame
“|[Hosler et al.[(2019a) MISLnet CNN architecture 2020 adding a constrained convolutional layer on gray scale mode
Timmerman et al.|(2020) MISLnet CNN architecture 2020 adding a constrained convolutional layer on RGB mode
Mayer et al.|(2020) MISLnet CNN architecture 2012 the similarity network maps two input deep feature vectors to a 2D similarity vector

The structure of the CNN for the three studies is
shown in Figure 10. As shown in the figure, a con-
strained convolutional layer is added to a simple CNN.

4. Video databases

Although there are several databases that can be used
to identify source cameras for images |Gloe and Bohme
(2010); Shaya et al.|(2018)), there are few databases for
videos. The databases presented based on videos are
summarized in Table 3. For a database, it is important
to have the following options: number of videos and
camera, resolution, codec, GOP, suitable for ISCM or
ISCL

One of the primary reasons for the lower exploration
of videos compared to images is that there are few stan-
dard digital video databases to develop such methods
Hosler et al.| (2019b). We thus explore these databases
in this section.

CAMCOM2010 Houten et al. is a contest designed
to identify source YouTube videos. Two participants
submitted results despite a satisfactory number of par-
ticipants at first. However, the database is not available
publicly.

The University of Surrey’s website provides access
to the SULFA database |Qadir et al.| (2012) E] that con-
tains original videos and forged videos. The original
videos are suitable for source camera identification pur-
poses. Approximately 150 videos were collected from
three sources. The method presented in [Rosenfeld and!
Sencar (2009) was tested in the study. This dataset was
also extended by D’ Amiano et al.|(2015).

The VISION database ] was introduced in [Shullani
et al|(2017), which is the most popular database in the

3http://sulfa.cs.surrey.ac.uk/
4https://lesc.dinfo.uniﬁ.it/V ISION/
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field. In total, 35 portable devices from 11 major brands
contributed 34,427 images and 1914 videos, all in na-
tive format and social format: Facebook, YouTube and
WhatsApp are included. There are videos captured in
indoor, outdoor, and flat scenarios. Videos of flat sur-
faces such as walls and sky are included in the flat sce-
nario. Videos depicting offices or shops are included
in the indoor scenario, while videos depicting gardens
are included in the outdoor scenario. Three recording
modes were used for each scenario. In still mode, the
user stands still while the video is recorded. While
capturing the video, the user walks. The panrot mode
combines a pan with a rotation to achieve a recording.
YouTube and WhatsApp social media platforms were
used to exchange videos belonging to each scenario. In
the study, they evaluated the database by the method
presented in (Chen et al.| (2008)).

The video-ACID databaseE] was presented in [Hosler
et al. (2019b) to source camera identification that is ac-
cessible publicly. Over 12,000 videos were collected
from 46 physical cameras representing 36 different cam-
era models in the video-ACID database. All of these
videos were shot manually to represent a range of light-
ing conditions, content, and motion. This database is
suitable for both ISCM or ISCI scenarios, which can be
used to evaluate the deep learning method presented in
Hosler et al.| (2019a).

Tian et al| (2019) presented a Daxing smartphone
identification databaseﬂ which include both images and
videos from extensive smartphones of different brands,
models and devices. The data from 90 smartphones,
representing 22 models and 5 brands, includes 43400
images and 1400 videos. In the case of the iPhone 6S

Smisl.ece.drexel.edu/video-acid
Shttps://github.com/xyhcn/Daxing
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Figure 10: Architecture of ConstrainedNet. (Based on (2018))

Table 3: The databases presented based on videos.

Method Availability ~ Year Description
SULFA |Qadir et al. 12012, Public 2012 150 videos collected from three camera sources
VISION [Shullani et al. 12017| Public 2017 34,427 images and 1914 videos, 35 portable devices of 11 major brands
Video-ACID [Hosler et al. 12019b, Public 2019 12 000 videos from 46 physical devices representing 36 unique camera models
Daxing Tian et al. 12019} Public 2019 43400 images and 1400 videos captured

by 90 smartphones of 22 models belonging to 5 brands
SOCRatES |Galdi et al. 12019' Public 2019 9700 images and 1000 videos captured with 103 different smartphones
QUFVD |Akbari et al. (2022} Public 2022 6000 videos captured with 20 different smartphones

(Plus), 23 different smartphone models are available.
Scenes selected normally include a sky, grass, rocks,
trees, stairs, a vertical printer, a lobby wall, and a white
wall in a classroom, among others. The videos were
shot vertically in each scene. Each scene contains at
least three videos. In addition, all videos were recorded
over 10 seconds. The database was evaluated by the

method presented in|Goljan et al|(2009).

SOCRatES database [[||Galdi et al| (2019) was cap-
tured by smartphones. Approximately 9700 images and
1000 videos were taken by 103 different smartphones

from 15 different brands. [Lukas et al| (2006) and
were assessed on the database.

QUFVD database [f] [Akbari et al| (2022) included
6000 videos from 20 modern smartphones representing
five brands, each brand has two models, and each model
has two identical smartphone devices. This database
was evaluated by the deep learning method presented
in [Bayar and Stamm| (2018). This database is suitable
for deep learning methods, and the results from this
database show that new databases with devices based on
new technologies need more improvement in both ISCI
and SCMI scenarios.

7http ://socrates.eurecom.fr/
8https://Www.dropbox.com/sh/an43na9qq0wlaz/
AAACc5N8ecjawk2KIVF8kfkrya?dl=0
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5. Discussion and conclusion

As reported in recent studies such as [Akbari et al|
(2022);[Tian et al.|(2019)), due to the development of de-
vices with new technologies in imaging, existing meth-
ods must be improved or new methods must be devel-
oped. Concurrently, developing new databases with de-
vices based on new technologies is important. In prac-
tice, identifying source video devices in a large dataset
is more challenging than model classification. Although
both scenarios need improvement, as shown in the eval-
uation of new databases, there is more room for im-
provements on ISCI systems. This fact may lead to
more studies being performed recently that focus more
on ISCI. Among new databases, only a few databases
are suitable for the application of deep learning meth-
ods; thus, a combination of existing and new databases
may be a solution. In addition, the daily development
of deep learning methods in the field can be considered,
and deep learning should focus on independence from
the content of the video scene (i.e., separating content
from noise). Another way to improve results may be to
combine the methods and take advantage of both PRNU
and machine learning approaches (e.g., using loss func-
tions that can be based on PRNU). In addition, provid-
ing pretrained models based on old and new databases
for use in new deep learning methods can be useful to
improve results.

It is important to present studies that address some




questions and open research issues. What is the differ-
ence between old and new databases? Whether PRNU
is extracted by devices with new compression and stabi-
lization technologies is different from older devices. A
comparison showing the impact of compression, resolu-
tion, and codec for the new databases compared to ex-
isting databases may be useful. The introduction of new
databases, particularly video smartphone databases, is
essential due to rapid growth. Although deep learning
methods are explored in more depth in new databases,
a comprehensive comparison between the PRNU and
deep learning methods is important for future research.
Although there are methods that consider video stabi-
lization, these methods must be improved. Existing
methods can also be tested on new social media such as
Telegram and TikTok. Another aspect that has been less
studied in the literature is the identification of source
cameras based on stream networks.

The well-studied topic of digital camera identification
on video was examined in this review, and an overview
of the definitions and challenges in this field of study
was provided. PRNU and machine learning are the two
research categories into which we place the methods.
A description of video databases that can be used to
evaluate camera identification methods is also included.
Challenges such as ISCI, SCMI, stabilization, and com-
pression were discussed. As discussed in this review,
deep learning methods must be improved to achieve bet-
ter results in both ISCI and SCMI scenarios.
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