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Abstract11
A new scheme based on multi-objective hierarchical genetic algorithm (MOHGA) is proposed to extract in-

terpretable rule-based knowledge from data. The approach is derived from the use of multiple objective genetic13
algorithm (MOGA), where the genes of the chromosome are arranged into control genes and parameter genes.
These genes are in a hierarchical form so that the control genes can manipulate the parameter genes in a more15
effective manner. The effectiveness of this chromosome formulation enables the fuzzy sets and rules to be optimally
reduced. Some important concepts about the interpretability are introduced and the fitness function in the MOGA17
will consider both the accuracy and interpretability of the fuzzy model. In order to remove the redundancy of the
rule base proactively, we further apply an interpretability-driven simplification method to newborn individuals. In19
our approach, we first apply the fuzzy clustering to generate an initial rule-based model. Then the multi-objective
hierarchical genetic algorithm and the recursive least square method are used to obtain the optimized fuzzy models.21
The accuracy and the interpretability of fuzzy models derived by this approach are studied and presented in this
paper. We compare our work with other methods reported in the literature on four examples: a synthetic nonlinear23
dynamic system, a nonlinear static system, the Lorenz system and the Mackey–Glass system. Simulation results
show that the proposed approach is effective and practical in knowledge extraction.25
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1. Introduction1

The fundamental concept of fuzzy reasoning was first introduced by Zadeh [35] in 1973 and since
then, its use in engineering disciplines has been widely studied. One of the most important motivations3
for building up a fuzzy model is to let users gain a deep insight into an unknown system through the
easily understandable fuzzy rules. Another main attraction undoubtedly lies in the unique characteristics5
that the fuzzy logic systems possess. They are capable of handling complex, nonlinear, and sometimes
mathematically intangible dynamic systems. However, when the fuzzy rules are extracted by the traditional7
learning methods, there is often a lack of interpretability in the resulting fuzzy rules. Consequently,
two common problems are found: (1) the number of rules is usually larger than necessary, and (2) the9
topology of the fuzzy sets is inappropriate. So there is always a trade-off between the interpretability
and the accuracy of the fuzzy model constructed from sampling data. Recently, attentions have been11
increasingly paid to improve the interpretability of fuzzy systems, and several approaches have been
proposed [4,14,15,17,18,24–26,32–34]. Genetic algorithm (GA) is one of such techniques that received13
a lot of attention owing to its parallel characteristics and its ability in searching for optimal solutions in
irregular and high-dimensional solution spaces.15

In this paper, we propose a new and efficient approach to construct first-orderTS fuzzy models from data,
considering both their accuracy and interpretability. First, we use the fuzzy clustering method to preprocess17
the sampling data and to form the rule antecedents of the initial model. Then, the recursive least square
(RLS) method is applied to determine the rule consequents. Thus, a reasonably good initial model instead19
of random ones is first obtained for the GA. We will then use the multi-objective hierarchical genetic
algorithm (MOHGA) to generate the optimized fuzzy models. In this step, we apply the hierarchical21
chromosome formulation so that it can perform the simultaneous optimization of the rule antecedents and
the number of rules. Then we use the RLS method instead of GA to compute the rule consequents. Thus,23
it can greatly improve the search efficiency of GA and exploit the training data in a more effective way.
When comparing our simulation results with those of other approaches in the literature, it shows that the25
combination of MOHGA and RLS is a very effective approach to obtain interpretable TS fuzzy models of
high accuracy. In order to reduce the burden of the GA optimization, we apply an interpretability-driven27
rule base simplification (IDRBS) method to the newborn individuals during evolutionary optimization to
reduce the redundancy of the fuzzy rule base.29

The paper is organized as follows. Section 2 discusses the interpretability issues of fuzzy systems. The
generation of an initial fuzzy model is given in Section 3. Then the proposed multi-objective hierarchical31
genetic algorithm and the interpretability-driven rule base simplification method are introduced in Sec-
tion 4. In Section 5, we compare the proposed approach with existing methods on four examples taken33
from the literature: a synthetic nonlinear dynamic system, a nonlinear static system, the Lorenz system
and the Mackey–Glass system. Comparative simulation results demonstrate that the proposed approach35
can obtain fuzzy models with better interpretability and with comparable or higher accuracy. Finally,
Section 6 draws the conclusion.37

2. Interpretability of fuzzy systems

A good method for constructing fuzzy models should not aim to find the best approximation of data only,39
but to extract knowledge from sampling data in the form of fuzzy rules that can be easily understood and
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Fig. 1. Fuzzy partitioning: (a) overlap moderately, (b) overlap too little, (c) overlap too much.

interpreted. Interpretability (also called transparency) of fuzzy systems has not received much attention1
in the field of fuzzy modeling until the last few years. One reason is that most researchers believe that
fuzzy rules are always easy for human beings to understand. However, it is not necessarily true especially3
for complex systems. In the following, we will discuss some important concepts about the interpretability
of fuzzy systems.5

2.1. Completeness and distinguishability

The discussion of completeness and distinguishability is necessary if fuzzy systems are obtained by7
automatically learning from data. The partitioning of fuzzy sets for each fuzzy variable should be complete
and well distinguishable. The completeness of fuzzy systems means that for each input variable, at least9
one fuzzy set is fired. We formulate this idea with the following definition.

Definition 2.1 (Completeness). For each input variable xi (an element of the input vector X=[x1, x2, . . . ,11
xn]T), there exists Mi fuzzy sets represented by A1(x), A2(x), . . . , AMi(x). Then the partition of the fuzzy
sets is complete if the following conditions are satisfied:13

∀xi ∈ Ui, i ∈ [0, . . . , n], ∃Aj(xi) > 0, j ∈ [1, . . . , Mi], (1)

where Ui is the universe of xi , n is the dimension of the input vector.15

The concepts of completeness and distinguishability of fuzzy systems are usually expressed through a
fuzzy similarity measure in the literature [4,10,19,28]. This similarity measure can be interpreted in many17
different ways depending on the context of the application. However, one important definition given in
[28] is that similarity between fuzzy sets as the degree to which the fuzzy sets are equal. Based on the19
similarity measure, three kinds of similarities can be identified: (1) similarity between two fuzzy sets
for a given fuzzy variable; (2) similarity of a fuzzy set to the universal set U (uU(x) = 1, ∀x ∈ X);21
and (3) similarity of a fuzzy set to a singleton set. We will present the interpretability-driven rule base
simplification method to manage these three kinds of similarities in Section 4. In fact, if the similarity of23
two neighboring fuzzy sets is zero or too small, it means that the fuzzy partitioning in this fuzzy variable
is incomplete or the two fuzzy sets do not have enough overlap. On the other hand, if the similarity is too25
big, then it indicates that the two fuzzy sets overlap too much with each other and the distinguishability
between them is poor (Fig. 1).27

In the following, let A and B be two fuzzy sets of fuzzy variable x (on the universe U ) with the
membership functions uA(x) and uB(x), respectively. The symbol s represents the similarity value of29
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these two fuzzy sets: s = S(A, B), s ∈ [0, 1]. A similarity measure will be considered as a possible1
criterion if it satisfies the following four conditions [28]:

(1) Non-overlapping fuzzy sets should be considered totally non-equal, s = 0.3

S(A, B) = 0 ⇔ uA(x)uB(x) = 0, ∀x ∈ U (2)

(2) Overlapping fuzzy sets should have a similarity value s > 0.5

S(A, B) > 0 ⇔ ∃x ∈ U, uA(x)uB(x) �= 0. (3)

(3) Only equal fuzzy sets should have a similarity value s = 1.7

S(A, B) = 1 ⇔ uA(x) = uB(x), ∀x ∈ U. (4)

(4) Similarity between two fuzzy sets should not be influenced by scaling or shifting the domain on9
which they are defined:

S(A′, B ′) = S(A, B), uA′(kx + l) = uA(x),

uB ′(kx + l) = uB(x), k, l ∈ IR, k > 0, ∀x ∈ U. (5)

We use the following similarity measure which satisfies the above four criteria to determine the simi-11
larity between fuzzy sets:

S(A, B) = M(A ∩ B)

M(A ∪ B)
= M(A ∩ B)

M(A) + M(B) − M(A ∩ B)
, (6)13

where M(A) denotes the cardinality of the fuzzy set A, and the operators ∩ and ∪ represent the intersection
and union, respectively. There are several methods to calculate the similarity. One form on the continuous15
domain is given in [19]

M(A) =
∫ ∞

−∞
uA(x) dx (7)

17

Another form in [25,26] is described as

S(A, B) =
∑m

j=1[uA(xj ) ∧ uB(xj )]∑m
j=1[uA(xj ) ∨ uB(xj )] (8)

19

on a discrete universe U = {xj | j = 1, 2, . . . , m}. ∧ and ∨ in Eq. (8) are the minimum and maximum
operators, respectively. In our approach, we use the latter to calculate the similarity of fuzzy sets because21
it is computationally simple and effective.

However, using the similarity measure does not necessarily guarantee a sound evaluation of the dis-23
tinguishability of fuzzy systems in the cases where a fuzzy set covers another fuzzy set. In Fig. 2(a)–(c),
we can see that the similarity between A and B is moderate, but the fuzzy sets distribution of A and B25
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Fig. 2. (a–d) Four cases: fuzzy set A covers fuzzy set B.

is bad because the definition domain of A covers that of B. We use the term covering to describe these1
cases and it is defined as follows.

Definition 2.2 (Covering). For a fuzzy variable x: if there are two fuzzy sets represented by A(x) and3
B(x), then fuzzy set A is said to cover fuzzy set B if and only if the following conditions are satisfied:

U(A) = {x | uA(x) > 0, x ∈ U},
U(B) = {x | uB(x) > 0, x ∈ U},
U(A) ⊇ U(B), (9)

where U is the universe of x, uA(x) and uB(x) represent the membership functions of fuzzy sets A and5
B, respectively.

We will discuss the covering issues with the aid of the trapezoidal membership functions. This is7
because other types of membership functions can also be easily transformed to the trapezoidal type such
as the triangular and Gaussian membership functions. Let the parameter vector [a1, a2, a3, a4] represents9
the membership function parameters of fuzzy set A and [b1, b2, b3, b4] of fuzzy set B (Fig. 2(d)), where
a1 is the lower bound of the support of the fuzzy A, a2 is the left center, a3 is the right center and a4 is11
the upper bound. We define the following terms to describe the degree of covering between fuzzy sets A

and B.13

Definition 2.3 (Complete covering). Fuzzy set A completely covers fuzzy set B if the following condi-
tions are satisfied (Fig. 2(b)):15

a1 � b1, a2 � b2, a3 � b3, a4 � b4,

a1 � a2 � a3 � a4, b1 � b2 � b3 � b4. (10)17

Definition 2.4 (Restricted covering). Fuzzy set A restrictedly covers fuzzy set B if the following condi-
tions are satisfied (Fig. 2(a)):19

a1 � b1, a4 � b4, [b2, b3] /⊂ [a2, a3], [b2, b3] ∩ [a2, a3] �= ∅,

a1 � a2 � a3 � a4, b1 � b2 � b3 � b4. (11)21
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Definition 2.5 (Relaxed covering). Fuzzy set A relaxedly covers fuzzy set B if the following conditions1
are satisfied (Fig. 2(c) and (d)):

a1 � b1, a4 � b4, [b2, b3] ∩ [a2, a3] = ∅,3

a1 � a2 � a3 � a4, b1 � b2 � b3 � b4. (12)

For fuzzy systems with good interpretability, it is preferable that one fuzzy set does not cover another5
one. In Section 4, we will discuss how to use the similarity value and the covering ideas to simplify the
rule base of the fuzzy systems.7

2.2. Non-redundancy

To improve the interpretability of fuzzy rules, it is also needed to reduce the redundancy of fuzzy rule9
base. In [7], a rule is said to be redundant with respect to the rule base if it brings nothing new to the
rule base. From a computational point of view, it is important to improve the non-redundancy of fuzzy11
rule base since redundancy will sometimes lead to useless computations.

In our work, non-redundancy of the rule base is based on the similarity degree among fuzzy rules.13
Definitions about the similarity among fuzzy rules are given in [19]. The similarity of rule antecedents
(SRA) and the similarity of rule consequents (SRC) are calculated with the help of aforementioned fuzzy15
similarity measure. Considering two rules in the rule base:

Ri : If x1 is Ai1(x1) and x2 is Ai2(x2) and . . . xn is Ain(xn), then y1 is Bi1(y1)

and . . . ym is Bim(ym),

Rj : If x1 is Aj1(x1) and x2 is Aj2(x2) and . . . xn is Ajn(xn), then y1 is Bj1(y1)

and . . . ym is Bjm(ym).

Then SRA and SRC of these two rules are defined as follows:17

SRA(i, j) = n

min
k=1

S(Aik, Ajk) (13)

SRC(i, j) = m

min
k=1

S(Bik, Bjk). (14)19

Since we apply the Takagi–Sugeno (TS) fuzzy system [30] and use the recursive least square method
to obtain the rule consequents, we do not consider the SRC and use the following form to calculate the21
non-redundancy value among the fuzzy rules:

NRdd(Ri, Rj ) = 1 − SRA(i, j). (15)23

One characteristic of the above definition of non-redundancy is that the degree of non-redundancy tends
to be high, if the antecedents of the two rules are very different. If the non-redundancy value of the two25
rules is equal to zero, it means that the antecedents of these rules are the same. So we can eliminate one
of them from the rule base resulting in a more compact fuzzy system. We apply Eq. (15) is applied to27
compute the non-redundancy value for the following two reasons: (1) it is easy and simple to implement,
and (2) the other is that with Eq. (38), which is a maximum problem to reduce the similarity degree29
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Fig. 3. A fuzzy system with two input variables (three fuzzy sets for each variable) and three rules: (a) sufficient utility, (b)
insufficient utility because fuzzy set B2 is not utilized by any rules.

among fuzzy rules in the rule base, we can decrease the possibility that rule antecedents of two rules are1
very similar and the corresponding rule consequents are very different. This is a reason that we use the
MOHGA and incorporate the non-redundancy issue as one of the multiple objectives.3

2.3. Compactness

A compact fuzzy system means that it has the minimal number of fuzzy sets and fuzzy rules. In addition,5
the number of fuzzy variables is also worth being considered. In this paper, we only consider the following
two issues: the number of fuzzy sets and the number of fuzzy rules for evaluating the compactness of7
fuzzy systems. A compact fuzzy system is always desirable when the number of input variables increases.

2.4. Utility9

We noted that even if the partitioning of the fuzzy variables is complete and distinguishable, it is not
guaranteed that each of the fuzzy sets be used by at least one rule. We use the term utility to describe11
such cases. If a fuzzy system is of sufficient utility, then all of the fuzzy sets are utilized as antecedents
or consequents by the fuzzy rules. Whereas, a fuzzy system of insufficient utility indicates that there13
exists at least one fuzzy set that is not utilized by any of the rules (Fig. 3(b)). In our proposed approach,
we will impose some constraints on the hierarchical chromosome to guarantee the sufficient utility of15
fuzzy systems.

3. Initial fuzzy model17

In our proposed approach, we use the fuzzy clustering method to form the rule antecedents of the initial
TS fuzzy model, then we apply the recursive least square method to specify the rule consequents. TS fuzzy19
system [30] is very suitable for the approximation of dynamic systems. Instead of using a linguistic term
with an associated membership function, the consequents of the TS fuzzy system are usually constant21
values (singletons) or expressed as the functions of the inputs:

Ri : If x1 is Ai1 and x2 is Ai2 and, . . . , and xn is Ain, then bi = gi(x1, x2, . . . , xn).23
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The choice of the function gi depends on the application being considered. The first-order TS model is1
very common and effective:

gi(x1, x2, . . . , xn) = ai1x1 + · · · + ainxn + ai0. (16)3

Here x = [x1, x2, . . . , xn]T is the input vector, bi is the output of the ith rule, and Ai1, Ai2, . . . , Ain are
the antecedent fuzzy sets. The model output is expressed as follows:5

y =
∑R

i=1 biui(x)∑R
i=1 ui(x)

, (17)

where R is the total number of rules, ui is the fire-strength, also called weight of the ith rule:7

ui(x) = uAi1(x1) ∧ uAi2(x2) ∧ · · · ∧ uAin(xn), i = 1, 2, . . . , R, (18)

∧ is the and operator, minimum and product are the most common and operators.9
The initial fuzzy model is obtained in two steps. First, we use the fuzzy C-means clustering method

[1,10,13] to determine the rule antecedents. Then the recursive least square method is implemented to cal-11
culate the consequents from the rule antecedents. For clustering, a regression matrix X = [x1, x2, . . . , xN ]T

and an output matrix Y = [y1, y2, . . . , yN ]T are constructed from the sampling data, where N is the num-13
ber of data pairs. However, fuzzy clustering can be done using the input–output data, input data only, or
output data only. In our approach, we want to use all of the available information. We therefore apply15
the clustering to the product space X × Y. Then we project the fuzzy partition matrix already obtained
by the clustering method to each of the input variables and approximate the projections with parametric17
functions.

Concerning the least square estimation methods, the batch least square (BLS) and the recursive least19
square (RLS) methods are two common choices. While the BLS method has proven to be very successful
for a variety of applications [25,26], it is a “batch” method by its very nature [23]. For a small number21
of sampling data, we could clearly repeat the batch calculation. As more data are gathered, it is almost
impossible to compute the inverse of the sampling data matrix XTX. Therefore, the RLS method is selected23
because it allows us to update the parameter vectors recursively. Considering the TS fuzzy system given
by Eqs. (16)–(18), we can rewrite Eq. (18) in the following form:25

y =
∑R

i=1 ai0ui(x)∑R
i=1 ui(x)

+
∑R

i=1 ai1x1ui(x)∑R
i=1 ui(x)

+ · · · +
∑R

i=1 ainxnui(x)∑R
i=1 ui(x)

. (19)

Given27

�i(x) = ui(x)∑R
i=1 ui(x)

, (20)

�(x) = [�1(x), . . . , �R(x), x1�1(x), . . . , x1�R(x), . . . , xn�1(x), . . . , xn�R(x)]T, (21)29

� = [a10, . . . , aR0, a11, . . . , aR1, . . . , a1n, . . . , aRn]T, (22)

so that31

f (x | �) = �T�(x) (23)
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represents the TS fuzzy system. We use the RLS method to train the parameter vectors �:1

P(k) = 1

�
(I − P(k − 1)�k(�I + (�k)TP(k − 1)�k)−1(�k)T)P (k − 1),

�(k) = �(k − 1) + P(k)�k(yk − (�k)T�(k − 1)), (24)

where k is the time index, 0 � k � N , � is the forgetting factor. We need to initialize the RLS method at
the time step k = 0. In our approach we set �(0) = 0 and P(0) = aI for some large a > 0 (for example3
10,000), � = 1.

4. Multiobjective hierarchical genetic algorithm and interpretability-driven rule base5
simplification method

In this section, we will discuss how to use the multi-objective hierarchical genetic algorithm to obtain7
good candidates for the data-driven fuzzy modeling. A hierarchical chromosome formulation is used to
represent the individual solutions with a rule matrix structure. In each generation, an interpretability-driven9
simplification method is applied to newborn individuals in order to actively reduce the redundancy of the
fuzzy system. Unlike other GA-based methods for generating fuzzy rules, the rule consequents are not11
involved in the chromosome encoding. Instead we use the RLS method to calculate the rule consequents.
This approach has a limitation in that it is only suitable for the first-order TS fuzzy modeling. However,13
a clear advantage of doing so is that it can save the searching time and fully exploit the sampling data.
The flowchart of the proposed approach is shown in Fig. 4.15

4.1. Individual expression based on the hierarchical chromosome structure

Inspired by the insight of biological DNA structure, a hierarchical chromosome formulation for GA17
is introduced in [20,31]. The chromosome consists of the control genes and the parameter genes. The
activation of the parameter genes is governed by the value of the control genes. When a control gene19
is “1”, then the corresponding parametric gene is activated. Otherwise, it is deactivated. The hierarchi-
cal architecture implies that the chromosome contains more information than that of the conventional21
GA structure. Hence, it is called hierarchical genetic algorithm (HGA). Fig. 5 illustrates the concept
further.23

Since the HGA is well suitable for solving the topological structure of an unknown system, it is a good
candidate for determining the fuzzy membership functions and rules. In our proposed approach, we use25
the two-level hierarchical structure with restrictions on the control genes and the parameter genes.

4.1.1. Control genes and parameter genes27
Given c_max, c_min, and the number of control genes are denoted by num_gene, it should satisfy the

following conditions:29

c_ min � num_gene � c_ max; c_ min, c_ max ∈ N and c_ min > 0. (25)

In our approach, we set c_max equal to the total number of fuzzy sets of the initial model and c_min equal31
to the number of input variables, because at least one fuzzy set should remain for each input variable.
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Fig. 4. Flow chart of the proposed approach.

Otherwise, the input variable can be eliminated from the fuzzy system. So strictly speaking, at least one1
control gene with value “1” should exist in each control domain of the input variables. The concept of
control domain is illustrated in Fig. 6.3

We apply the Gaussian combinational membership functions (abbreviated as Gauss2mf) to depict the
antecedent fuzzy sets, i.e., a combination of two Gaussian functions. The Gaussian function depends on5
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Fig. 5. Example of hierarchical chromosome representation: (a) two level gene structure with phenotype XA = (2, 6, 7), (b)
three level gene structure with phenotype XB = (7, 6).

Fig. 6. Considering a three-input fuzzy system with 1, 4 and 3 fuzzy sets, respectively. So the control domain of input x has the
control genes {1}, the control domain of input x has the control genes {0 1 1 0}, and {1 0 1} for input x.

Fig. 7. An example of Hierarchical formulation in our approach.

the two parameters, � and c, is given by the following:1

u(x, �, c) = exp

{−(x − c)2

2�2

}
. (26)

So we use the parameter list [�1, c1, �2, c2] to represent one parameter gene, where �1 and c1 determine3
the shape of the leftmost curve. The shape of the rightmost curve is specified by �2 and c2. The Gauss2mf
is a kind of smooth membership functions, so the resulting model will in general have a high accuracy in5
fitting the training data. Another characteristic of Gauss2mf is that the completeness of fuzzy system is
guaranteed because the it covers the universe sufficiently. An example of the relationship between control7
genes and parameter genes is given in Fig. 7.
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4.1.2. Rule structure1
The rule structure coding is important because the size of a fuzzy system is fully specified by the

rule structure. When the hierarchical chromosome is used, the number of fuzzy sets may vary from one3
chromosome to another. So it becomes impossible to set a universal rule table for all chromosomes as
the traditional approach. Unlike the work proposed in [20,31] in which only one rule chromosome is5
associated with the subgroup specified by the type of control genes, we instead adopt the strategy that a
rule structure is embedded in the chromosome. Suppose that there are n input variables and each input7
variable xi has a maximum number of fuzzy sets Mi , then the rule base has at most R = M1×M2×· · ·×Mn

fuzzy rules. We use a multi-dimensional matrix RM called rule matrix to describe the rule structure. The9
RM has n dimensions with size (M1 + 1) × (M2 + 1) × · · · × (Mn + 1), where the cell value is “1” or
“0”. The cell with value “1” in RM means that the corresponding fuzzy sets form the antecedents of a11
rule, whereas the one with value “0” does not form a rule. If RM(. . . , Mi + 1, . . .) = 1, then it indicates
that the variable xi does not appear in the resulting rule (called incomplete rule in [10]). Note that the cell13
RM(M1 + 1, . . . , Mi + 1, . . . , Mn + 1) should be equal to zero, otherwise, it is meaningless. In order
to guarantee the sufficient utility of fuzzy systems, at least one cell in RM corresponding to that active15
control gene should have the cell value “1”. In the following, we will give a concrete example to show
the ideas about the rule structure.17

Example. Considering an individual chromosome of three input variables (x1, x2 and x3) with equally
three fuzzy sets for each of them (Aij denotes the j th fuzzy set of the ith input variable), the control genes19
are given as {1 0 1 1 1 1 0 1 0}. So the rule matrix RM is a three-dimensional matrix with size 4 × 4 × 4
and the control domain for input x1, x2 and x3 is {1 0 1}, {1 1 1} and {0 1 0}, respectively. Giving the cell21
values of RM as: RM(1, 1, 2) = 1, RM(3, 2, 4) = 1, RM(2, 2, 2) = 1, and RM(4, 3, 4) = 1; the other
cell values are equal to 0. We can extract three rules based on the values of RM, the rule antecedents23
are: (1) if x1 is A11 and x2 is A21 and x3 is A32; (2) if x1 is A13 and x2 is A22; (3) if x2 is A23. Rules 2
and 3 are incomplete rules because the antecedent is defined by a subset of the available variables only.25
Noted that the cell RM(2, 2, 2) does not play a role in rule generation even if RM(2, 2, 2) = 1 because
the 2nd control gene of x1 is not active. The utility of this fuzzy system represented by this chromosome27
is sufficient because all of the active fuzzy sets are utilized by rules.

We use the RLS method to calculate rule consequents in our work, thus the coding of consequent29
structure is unnecessary.

4.2. Interpretability-driven rule base simplification31

In GA, the newborn individuals often introduce redundancy to the rule base leading to bad interpretabil-
ity of fuzzy systems. Although some individuals representing interpretable rule base may emerge after a33
certain number of iterations, the searching efficiency of GA is sometimes unsatisfactory. To address this
problem, an interpretability-driven rule base simplification method is applied to the newborn individuals35
in each generation in order to actively reduce the redundancy of the rule base. As we have discussed
in the previous section, the completeness and the sufficient utility of fuzzy systems are guaranteed by37
means of the hierarchical chromosome expression. The simplification method is mainly based on the
similarity measure and the judgment of the type of covering. In this method, we define a fuzzy set A that39
uses the membership function uA(x; a1, a2, a3, a4), where a1, a2, a3, and a4 are the lower bound, left
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Fig. 8. Merging A and B to create C.

center, right center and upper bound of the definition domain, respectively (a1 � a2 � a3 � a4). In our1
proposed approach, we use the Gauss2mf as the membership function. So this is not easy to obtain a1 and
a4 as the triangular or the trapezoidal ones. We need to calculate a1 and a4 using a very small number �3
(for example 0.001) which is very close to zero, i.e. uA(a1; a1, a2, a3, a4) = uA(a4; a1, a2, a3, a4) = �.
Nevertheless, the interpretability-driven simplification method is also applicable to all other types of5
membership functions besides Gauss2mf. Because the hierarchical chromosome expression is used, the
interpretability-driven simplification method is implemented to those active fuzzy sets when the control7
genes’ values are equal to one.

4.2.1. Merging similar fuzzy sets9
An example of the similarity measure between two fuzzy sets is given as in Eq. (8). If the similarity value

is greater than a given threshold, then we merge these two fuzzy sets to generate a new one. Considering11
two fuzzy sets A and B with the membership functions uA(x; a1, a2, a3, a4) and uB(x; b1, b2, b3, b4),
the resulting fuzzy set C with the membership function uC(x; c1, c2, c3, c4) is defined from merging A13
and B by:

c1 = min(a1, b1),

c2 = �2a2 + (1 − �2)b2,

c3 = �3a3 + (1 − �3)b3,

c4 = max(a4, b4). (27)

The parameters �2, �3 ∈ [0, 1] determines which of the fuzzy sets A and B has the most influence on C.15
The threshold for merging similar fuzzy sets plays an important role in the improvement of interpretability.
According to our experience, values in the range [0.4, 0.7] may be a good choice. In our approach, we17
set the threshold to 0.45. Fig. 8 illustrates the case for merging A and B to create C.

After merging the similar fuzzy sets, the control genes and the rule matrix should be adjusted accord-19
ingly. If C replaces A and B in the rule antecedents, then the control gene associated with B is set to
zero.21

4.2.2. Removing fuzzy sets similar to the universal set or similar to a singleton set
If the similarity value of a fuzzy set to the universal set U(uU(x) = 1, ∀x ∈ X) is greater than a upper23

threshold (�U) or smaller than a lower threshold (�S), and if this fuzzy set is not the only one fuzzy set of
its input variable, then we can remove it from the rule base. In the first case, the fuzzy set is very similar to25
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Fig. 9. Merging A and B to create C based on the covering judgment.

the universal set. In fact, the latter case is similar to a singleton set. Neither of these cases is desirable for1
interpretable rule base generation. However, if the fuzzy set is the only one of its input variable, it should
be kept in the rule base because for each given input variable at least one fuzzy set should be defined,3
otherwise this input variable should not be introduced into the fuzzy system. We set �U to 0.8 and �S to
0.05 in this work. If a fuzzy set is removed, then the corresponding control gene will update its value5
from 1 to 0 and the rule antecedents associated with this fuzzy set is removed from the corresponding
rules. This is done by adjusting the cell value in the rule matrix.7

4.2.3. Removing fuzzy sets to deal with complete covering
As we have discussed in Section 2.1, using the similarity measure does not necessarily guarantee a9

sound evaluation of the distinguishability of fuzzy systems due to covering. If fuzzy set A completely
covers fuzzy set B, then we should remove B from the rule base in order to maintain the distinguishable11
distribution of the fuzzy sets. Then the control gene associated with set B is set to zero and B is replaced
by A in the corresponding rule antecedents.13

4.2.4. Merging fuzzy sets to deal with restricted covering
If fuzzy set A restrictedly covers set B, then we use the merging similar fuzzy sets method to create a15

set C. Fig. 9 illustrates the case for merging A and B to create C.

4.2.5. Adjusting fuzzy sets to deal with relaxed covering17
If fuzzy set A relaxedly covers set B, then we adjust the membership function parameters according to

the relative position between A and B. If set A is in the left of set B, i.e., a3 < b2, the newborn set A∗ and19
B∗ are described as:

Case 1: If a3 < b2, Then21

a∗
1 = a1, a∗

2 = a2, a∗
3 = a3, a∗

4 = b4,

b∗
1 = b1, b∗

2 = b2, b∗
3 = b3, b∗

4 = a4. (28)23

Otherwise set A is in the right of set B, i.e., b3 < a2,
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Fig. 10. Set A relaxedly covers set B: (a) Case 1: A in the left of B (b) Case 2: A in the right of B.

Case 2: If b3 < a2, then1

a∗
1 = b1, a∗

2 = a2, a∗
3 = a3, a∗

4 = a4,

b∗
1 = a1, b∗

2 = b2, b∗
3 = b3, b∗

4 = b4. (29)3

Fig. 10 shows both of these two cases.

4.3. Multi-objective hierarchical genetic algorithm5

The interpretability and performance of fuzzy systems are greatly dependent on the learning algorithm
and it is usually impossible to achieve both of aims at the same time. There is often a trade-off between7
the interpretability and the accuracy of fuzzy models. Thus, it is a kind of multi-objective optimization
problems by nature. In other words, we can get only a set of Pareto-optimal solutions of which the9
improvement in one of the objectives will degrade other objectives. There are a lot of evolutionary multi-
objective optimization approaches to solve this problem [5,6]. Among these approaches, we use the11
Pareto-based multi-objective genetic algorithm (MOGA) introduced by Fonseca and Fleming in 1993
[9]. Because we use the hierarchical chromosome structure and a number of corresponding operators, we13
call our approach as multi-objective hierarchical genetic algorithm (MOHGA).

4.3.1. Initial population15
As previously mentioned, an initial fuzzy model is generated using the fuzzy clustering method, and

this is directly copied to the first generation. The remaining individuals are initialized in the following17
way. Suppose that there are n input variables and each input variable xi has a maximum number of fuzzy
sets Mi : consider that the initial individual s1: s1.c_gene represents the control genes with length clength19
equal to the total number of fuzzy sets introduced by the fuzzy clustering method, i.e., M1+M2+· · ·+Mn;
s1.p_gene(i) represents the ith parameter gene corresponding to the ith control gene s1.c_gene(i) in the21
form of [�1

i1, c
1
i1, �1

i2, c
1
i2] representing a Gauss2mf; s1.RM is the rule matrix with size (M1 +1)× (M2 +

1) × · · · × (Mn + 1). Then the j th individual sj .c_gene is generated randomly with the constraint that at23
least one control gene of value “1” exists in each control domain of the input variables (CONSTRAINT 1)
and the length of sj .c_gene is equal to clength. The rule matrix sj .RM which is the same size as s1.RM is25
initialized randomly with the constraint that at least one cell in sj .RM associated with the active control
genes should have the cell value “1” (CONSTRAINT 2). This is to guarantee the sufficient utility of the27
fuzzy systems. The parameter gene sj .p_gene(i) which represents a fuzzy set of the input variable xk in
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the form of [�j
i1, c

j
i1, �j

i2, c
j
i2] is initialized with random values within certain permissible ranges, that is1

as follows:

�j
i1 = �1

i1 rand1
Mk

2
, �j

i2 = �1
i2 rand2

Mk

2
(30)3

and

c
j
i1 = min{U(xk) rand3 + min(xk), U(xk) rand4 + min(xk)},5

c
j
i2 = max{U(xk) rand3 + min(xk), U(xk) rand4 + min(xk)}, (31)

where rand1 and rand2 are random numbers in (0, 1], rand3 and rand4 are random numbers in [0, 1],7
U(xk) is the universe of the input variable xk which has Mk fuzzy sets. By doing so, the left center c

j
i1 is

smaller than or equal to the right center c
j
i2, and the left width �j

i1 and the right width �j
i2 are larger zero.9

It satisfies the topological conditions of Gauss2mf (CONSTRAINT 3).

4.3.2. Crossover operators11
Considering there are two types of genes in the chromosome, the crossover operation is applied to

control genes and parameter genes separately. For control genes, multi-point crossover is applied consid-13
ering the reason of simplicity. Then the rule matrix exchanges the corresponding cell values. Note that
the crossover operation may violate CONSTRAINT 1 and CONSTRAINT 2. If a newborn individual does15
not satisfy these two constraints, then we adjust the control genes and the rule matrix randomly to obtain
qualified candidates. As for the parameter genes which are represented in real numbers, BLX-� crossover17
[8] is applied because BLX-� (in particularly � = 0.5) crossover has turned out to be the best crossover
operators for the real-coded GA based on the experiment results reported in [12]. In our approach, we19
apply BLX-� crossover with CONSTRAINT 3.

4.3.3. Mutation operators21
The mutation is applied to control genes, parameter genes and the rule matrix, separately. Multi-point

mutation is applied to the control genes with CONSTRAINT 1 for its simplicity, then we will check if the23
rule matrix violates CONSTRAINT 2 or not. If CONSTRAINT 2 is not satisfied, we will adjust the rule
matrix accordingly. Regarding the parameter genes, Non-uniform mutation is applied [21] with CON-25
STRAINT 3, because it has been demonstrated that Non-uniform mutation is very appropriate for the
real-coded GA [12]. In addition, multi-point bit mutation is used for the rule matrix with CONSTRAINT27
2. The selected cell of the rule matrix for mutation is flipped (“1” or “0”) if a probability test is satis-
fied (a random number is smaller than a predefined rate). In the current work, the hierarchical genetic29
algorithm is used. As far as the parameter genes are concerned, the typical BLX-� crossover operator
and non-uniform mutation operator are implemented because of their advantages stated in [12]. We also31
notice the mutation operators applied in the evolutionary strategies, especially the self-adaptive parameter
control mechanisms [11,27]. The distinguishing feature of self-adaptation mechanism is that the control33
parameters (different from the objective parameters that define points in search space) are evolved by
the evolutionary algorithms, rather than exogenously defined or modified according to some fixed sched-35
ule [3]. The self-adaptation mechanism uses evolutionary learning principles on two levels at the same
time: the level of solutions and the level of the search strategy, and works well. We are inspired by such37
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beautiful ideas and the mutation operators with the self-adaptive parameter control mechanism would be1
incorporated and explored into our work in the future research.

4.3.4. Multi-objective decision making and Pareto-based fitness assignment3
In our approach, we consider both the accuracy and the interpretability of fuzzy systems. The accuracy

is measured in terms of mean squared error (MSE). Whilst the concept of interpretability is translated5
into the completeness and the distinguishability of fuzzy sets expressed through fuzzy similarity measure,
the non-redundancy of fuzzy rules by means of non-redundancy measure, and the compactness of fuzzy7
systems expressed in terms of the number of rules and the number of fuzzy sets. Because we have
already guaranteed the sufficient utility of fuzzy systems through the chromosome formulation and genetic9
operators with constraints, we do not incorporate the utility item into the interpretability considerations
for fitness evaluation.11

(a) The objective for accuracy: The MSE is described as follows:

fitacc = 1

N

N∑
i=1

[(yi
1 − ŷi

1)
2 + (yi

2 − ŷi
2)

2 + · · · + (yi
m − ŷi

m)2], (32)
13

where Y = [y1, y2, . . . , ym]T is the true output vector, Ŷ = [ŷ1, ŷ2, . . . , ŷm]T is the model output vector,
N is the number of sampling data pairs.15

(b) The objective for completeness and distinguishability: The similarity measure is given in Eq. (8).
We consider two cases about the number of fuzzy sets of input variables: one case is that a variable has17
only one fuzzy set, and the other is that a variable has more than one fuzzy set. In the former case, we
denote: Ŝ = {xi | Ma

i = 1} where Ma
i is the number of active fuzzy sets of variable xi . In the latter case,19

Š = {xi | Ma
i > 1}. For each input variable xi ∈ Ŝ, Ai is the only fuzzy set of variable xi and Ui is the

universal set of xi . Two parameters �l and �u are the desired lower and upper bounds of the similarity21
measure between the fuzzy set and the universal set. We define the following:

If �l � S(Ai, Ui) � �u, �
�

i = 1; otherwise �
�

i = 0; ∀xi ∈ Ŝ, (33)23

�
� =

n∑
i=1

�
�

i, i = {j | xj ∈ Ŝ}, (34)

where n is the size of Ŝ. In our approach, we set �l = 0.4 and �u = 0.8. On the other hand, for each input25
variable xi ∈ Š, Ai

k and Ai
k+1 are two neighboring fuzzy sets of variable xi . Two parameters �low and

�up are the lower and upper bounds of the similarity measure between fuzzy sets and they are defined as27
follows:

If �low � S(Ai
k, A

i
k+1) � �up, �̆

i

k = 1; otherwise �̆
i

k = 0, k = 1, . . . , Ma
i − 1; ∀xi ∈ S̆. (35)29

�̆ =
m∑

l=1

Ma
l −1∑

k=1

�̆
l

k, l = {j | xj ∈ S̆}, (36)
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where m is the size of Š. In our approach, we set �low = 0 and �up = 0.4. Then the fitness function for1
completeness and distinguishability evaluation is shown as below:

fitsim = �
� + �̆

n + ∑m
l=1(M

a
l − 1)

. (37)
3

The fitness item fitsim ranges from 0 to 1.
(c) The objective for non-redundancy: In our approach, the non-redundancy value of rule Ri and Rj is5

given as in Eq. (15). Based on this definition, the non-redundancy of fuzzy rule base is evaluated by the
following equation:7

fitNRdd =
∑R−1

i=1
∑R

j=i+1 NRdd(Ri, Rj )

(R − 1)R/2
if R > 1, fitcons = 1 if R = 1, (38)

where R is the number of fuzzy rules. It is a maximization problem and the values of fitNRdd range from9
0 to 1.

(d) The objective for compactness: The compactness of fuzzy systems can be expressed in terms of the11
number of fuzzy sets fitnFS and the number of fuzzy rules fitnRule:

fitnFS =
n∑

i=1

Ma
i (39)

13

fitnRule = R (40)

where n is the number of input variables, Ma
i is the number of active fuzzy sets for input variable xi and15

R is the number of rules.
Based on the above discussions, the objectives of the multi-criteria in our approach is to find the17

maxima in Eqs. (37) and (38) and the minima in Eqs. (32), (39) and (40). We will use the MOGA
Fitness Assignment Procedure with dynamically updating of the sharing parameter �share [6] to assign19
the fitness among the candidates. In fitness assignment, we will determine the dominance relationship
between the two selected solutions by comparing these five objectives. This procedure requires O(MN2)21
comparisons, where N is the size of population and M is the number of objectives, i.e., M = 5 in our
approach. For comparison, we pre-define the preference over these five objectives, for example, the first23
priority for fitacc, the second priority for fitnFS and fitnRule, and the third and the fourth priority for fitsim
and fitNRdd, respectively. Thus we do not need to have a prior knowledge about the weights among those25
objectives, and it is similar to the human decision-making process. The drawback is that the comparison
takes more computational time than the weighted method [16,22]. However, different sets of fuzzy rules27
that emphasize different aspects of interpretability and accuracy may be built based on the preferences.
This is a topic worthwhile further study and is not the concern of this paper.29

4.3.5. Selection operators
In the MOHGA, we use the stochastic universal sampling (SUS) [2] to select the next population. SUS31

provides zero bias and minimum spread.
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4.4. Recursive least square method to train rule consequents1

For each individual, we use its control genes, parameter genes and rule matrix to train the rule conse-
quents using the recursive least square method. Then we will build the corresponding fuzzy model and3
compute its accuracy in terms of the MSE.

5. Comparative experiment results5

We have set up a few experiments to test the effectiveness of our proposed method. The following
sub-sections describe the results of our work and it shows that the proposed approach is effective.7

5.1. Example: nonlinear plant with two inputs and one output

The second-order nonlinear plant is studied by Wang and Yen in [32–34]; Roubos and Setnes [25,26]9
and Jiménez et al. [14]:

y(k) = g(y(k − 1), y(k − 2)) + u(k), (41)11

where

g(y(k − 1), y(k − 2)) = y(k − 1)y(k − 2)(y(k − 1) − 0.5)

1 + y2(k − 1) + y2(k − 2)
. (42)13

The goal is to approximate the nonlinear component g(y(k − 1), y(k − 2)) of the plant with a fuzzy
model. In [14,25,26,32], 400 sampling data points were generated from the plant model. Two hundred15
samples of training data were obtained with a random input signal u(k) uniformly distributed in the
interval [−1.5 1.5], while the last 200 validation data points were obtained by using a sinusoid input17
signal u(k) = sin(2�k/24). The 400 simulated data points are shown in Fig. 11.

We compare our results with those obtained by different approaches in [14,25,26,32–34]. However,19
we put more focus on [25,26] because the approaches used there are more similar to ours especially in
the use of initial rule base construction and the rule base simplification method. These approaches are21
described below, and the best results are summarized in Table 1.

Fig. 11. Input u(k), unforced system g(k), and output y(k) of the plant in (41).
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Table 1
Fuzzy models of the nonlinear plant of Section 5.1

Ref. No. of rules No. of sets Consequent MSE train MSE validation

[32] 40 rules (initial) 40 Gauss. Singleton 3.2884e − 4 6.9152e − 4
28 rules (optimized) 28 Gauss. Singleton 3.3299e − 4 5.9595e − 4

[34] 25 rules (initial) 25 Gauss. Singleton 2.3092e − 4 4.0717e − 4
20 rules (optimized) 20 Gauss. Singleton 6.8341e − 4 2.3836e − 4

[33] 36 rules (initial) 12 B-splines Singleton 2.7743e − 5 5.1163e − 3
23 rules (optimized) 12 B-splines Singleton 3.1746e − 5 1.4776e − 3
36 rules (initial) 12 B-splines Linear 1.9465e − 6 2.9211e − 3
24 rules (optimized) 12 B-splines Linear 1.9835e − 6 6.4120e − 4

[25] 7 rules (initial) 14 triangular Singleton 1.6e − 2 1.2e − 3
7 rules (optimized) 14 triangular Singleton 3.0e − 3 4.9e − 4
5 rules (initial) 10 triangular Linear 5.8e − 3 2.5e − 3
5 rules (optimized) 8 triangular Linear 7.5e − 4 3.5e − 4
4 rules (optimized) 4 triangular Linear 1.2e − 3 4.7e − 4

[26] 5 rules (initial) 10 triangular Linear 4.9e − 3 2.9e − 3
5 rules (optimized) 10 triangular Linear 1.4e − 3 5.9e − 4
5 rules (optimized) 5 triangular Linear 8.3e − 4 3.5e − 4

[14] 5 rules (optimized) 5 trapezoidal Linear 2.0e − 3 1.3e − 3
5 rules (optimized) 6 trapezoidal Linear 5.9e − 4 8.8e − 4

This paper
Fig. 12(a) 5 rules (initial) 10 Gauss2mf. Linear 1.4032e − 3 2.6267e − 3
Fig. 12(b) 5 rules (optimized) 3 Gauss2mf. Linear 2.3773e − 4 3.0116e − 4
Fig. 12(c) 4 rules (optimized) 3 Gauss2mf. Linear 5.4611e − 4 5.4360e − 4
Fig. 12(d) 4 rules (optimized) 3 Gauss2mf. Linear 5.6086e − 4 2.4885e − 4

In [32], the authors proposed an algorithm that combines the advantages of GA’s search capability1
and the Kalman filter’s fast convergence. The antecedent fuzzy sets of 40 rules encoded by Gaussian
membership functions were determined initially by clustering and kept fixed. A binary GA was used to3
select a subset of the initial 40 rules in order to produce a more compact rule base. Then the consequents
were calculated by the Kalman filter, and the Schwarz–Rissanen criterion (SRC) was used as evalua-5
tion function to balance the trade-off between the number of rules and the model
accuracy.7

In [34], the authors proposed several orthogonal transformation-based methods for rule selection. They
used an initial model with 25 rules. Finally, 20 rules remained and five redundant rules were eliminated9
from the rule base.

In [33], several information theoretic optimality criterions were used to pick up rules from a set of11
36 rules in order to obtain a compact and accurate model. The role of these optimality criteria in fuzzy
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modeling is discussed and their practical applicability is illustrated using the nonlinear system example1
in Eq. (41).

In [25], a two-step approach is proposed for data-driven fuzzy modeling. First, the fuzzy clustering3
method and the BLS method are used to obtain an initial rule-based model with 5 rules and 10 fuzzy
sets encoded with the triangular membership functions. Then the initial fuzzy model is optimized by a5
real-coded GA subjected to certain constraints for maintaining the semantic properties of fuzzy rules.

In [26], an iterative fuzzy identification technique starting at fuzzy clustering with some redundancy7
of fuzzy rule base is proposed. First, fuzzy clustering method is applied to obtain an initial rule base
model from the sampling data. Successively, similarity driven rule base simplification and GA-based9
optimization are applied in an iterative manner resulting in a compact rule base of low complexity and
high accuracy. Finally, a GA-based optimization is performed to increase accuracy and interpretability11
of the fuzzy rule base.

shows the distribution of the fuzzy sets and the simulation results about the initial model and the13
optimized models, respectively. We present the antecedent and consequent parameters of the fuzzy rules
in Table 2.15

In [14] a Pareto-based multi-objective evolutionary algorithm for fuzzy modeling is proposed. This
algorithm has a variable-length, real-coded representation. Each individual of the population contains a17
variable number of rules between 1 and max, where max is defined by the decision maker.

In our work, we first use the fuzzy C-means clustering method and the RLS method to construct the19
initial fuzzy model. In order to compare the results with [25,26], we also set the cluster number equal to
5. So the initial rule base is obtained by partitioning each of the two inputs y(k −1) and y(k −2) into five21
fuzzy sets. Unlike the triangular membership functions used in [25,26], we use the Gaussian combination
membership functions. After obtaining an initial fuzzy model, the MOHGA-RLS was applied with a23
population size: L = 40 and the number of generation T=200. Table 1 describes the experimental results
when compared with those in [14,25,26,32–34]. Fig. 1225

5.2. Example: nonlinear static system with two inputs and one output

Let us consider a nonlinear static system with two inputs x1 and x2, and a single output y studied by27
Sugeno and Yasukawa [29] and by Rojas et al. [24]:

y = (1 + x−2
1 + x−1.5

2 )2, 1 � x1, x2 � 5. (43)29

In [29], the fuzzy clustering method is used to identify the structure of fuzzy models. Then the parameter
identification is applied to obtain the parameters of fuzzy models. In [24], a three-step approach for fuzzy31
system generation is proposed. Step 1 outlines a very simple initial fuzzy system.A new and more suitable
topology is decided for the fuzzy system in Step 2. A best fuzzy system considering both the accuracy33
and the complexity of the fuzzy rules is selected in Step 3. In order to make a quantitative comparison of
the results obtained in [24,29], we used the same 50 data points described in [29]. The initial model was35
obtained with six clusters, resulting in a model with six rules and twelve fuzzy sets. Table 3 describes
the experimental results compared with those in [24,29]. Fig. 13 shows the distribution of the fuzzy sets37
and the simulation results about the initial model and the optimized models, respectively. We present the
antecedent and consequent parameters of the fuzzy rules in Table 4.39
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Fig. 12. Fuzzy sets distribution and the simulation results of Section 5.1: (a) initial model with 5 rules and 10 sets, (b) optimized
model with 5 rules and 3 sets, (c) and (d) optimized model with 4 rules and 3 sets.
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Fig. 12. (Continued.)
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Table 2
Fuzzy model parameters for Fig. 12(b)–(d)

(b) Rule expression
R1: If y(k − 1) is middle and y(k − 2) is small, then g(k) = 0.9595y(k − 1) − 0.1801y(k − 2) − 0.8555
R2: If y(k − 1) is middle and y(k − 2) is big, then g(k) = −2.4551y(k − 1) − 0.4372y(k − 2) − 1.4300
R3: If y(k − 1) is middle, then g(k) = 0.8033y(k − 1) − 0.0883y(k − 2) + 1.3722
R4: If y(k − 2) is small, then g(k) = 0.1030y(k − 1) + 0.1406y(k − 2) − 0.5434
R5: If y(k − 2) is big, then g(k) = −0.1503y(k − 1) + 0.0591y(k − 2) + 0.6716

Antecedent parameters
y(k − 1): middle = [0.8810, −0.6619, 0.6714, −0.3693]
y(k − 2): small = [1.2114, −1.6839, 0.9514, −0.8601], big = [1.0104, 1.1024, 1.1600, 2.1794]

(c) Rule expression
R1: If y(k − 1) is big and y(k − 2) is small, then g(k) = −1.3585y(k − 1) + 0.2023y(k − 2) + 0.5208
R2: If y(k − 1) is big and y(k − 2) is big, then g(k) = 0.9723y(k − 1) + 0.0871y(k − 2) − 0.1519
R3: If y(k − 2) is small, then g(k) = 0.5563y(k − 1) − 0.1032y(k − 2) − 0.1863
R4: If y(k − 2) is big, then g(k) = −0.4673y(k − 1) + 0.0124y(k − 2) + 0.0341

Antecedent parameters
y(k − 1): big = [0.9133, 1.6594, 0.3006, 2.3074]
y(k − 2): small = [1.2491, −2.2310, 0.8097, −1.1593], big = [1.0651, 1.1110, 1.1608, 2.1766]

(d) Rule expression
R1: If y(k − 1) is small and y(k − 2) is small, then g(k) = 1.1417y(k − 1) − 0.3714y(k − 2) − 0.4983
R2: If y(k − 1) is small, then g(k) = −0.5174y(k − 1) − 0.1560y(k − 2) + 0.2069
R3: If y(k − 1) is middle and y(k − 2) is small, then g(k) = −0.0049y(k − 1) − 0.4959y(k − 2) + 0.1679
R4: If y(k − 2) is small, then g(k) = 0.1070y(k − 1) + 0.4692y(k − 2) − 0.1884

Antecedent parameters
y(k − 1): small = [0.3652, −1.3556, 0.3526, −0.9812], middle = [0.7459, 0.0324, 0.6682, 0.2102]
y(k − 2): small = [0.6629, −1.6519, 0.7631, −1.0252]

5.3. Example: Lorenz system1

The Lorenz system studied in [19] is described by the following differential equations:

ẋ = −y2 − z2 − a(x − F), (44)3

ẏ = xy − bxz − y + G, (45)

ż = bxy + xz − z. (46)5

In order to make a comparison with the results obtained in [19], we use the same means to generate
the sampling data. That is to say, a = 0.25, b = 4.0, F = 8.0 and G = 1.0. In the simulation, we predict7
x(t) from x(t − 1), y(t − 1) and z(t − 1). Two thousand data points are obtained from the Eqs. (44)–(46)
using the fourth order Runge–Kutta method with a step length of 0.05, where 1000 pairs of data are used9
for training and the other 1000 for test. The sampling data pairs are shown in Fig. 14.
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Fig. 13. Fuzzy sets distribution and the simulation results of Section 5.2: (a) initial model with 6 rules and 12 sets, (b) optimized
model with 7 rules and 6 sets, (c) optimized model with 4 rules and 3 sets, (d) optimized model with 3 rules and 2 sets.
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Fig. 13. (Continued.)
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Table 3
Fuzzy models of the nonlinear plant of Section 5.2

Ref. No. of rules No. of Fuzzy sets MSE train

[29]a

Before parameter identification 6 rules 18 trapezoid 0.318
After parameter identification 6 rules 18 trapezoid 0.079
Using position gradient model 6 rules 12 trapezoid 0.010

[24]
Configuration 1 9 rules 6 triangular 0.263
Configuration 2 16 rules 8 triangular 0.126
Configuration 3 25 rules 10 triangular 0.0523

This paper
Fig. 13(a) 6 rules (initial) 12 Gauss2mf. 3.0852e − 2
Fig. 13(b) 7 rules (optimized) 6 Gauss2mf. 8.9507e − 4
Fig. 13(c) 4 rules (optimized) 3 Gauss2mf. 2.7389e − 3
Fig. 13(d) 3 rules (optimized) 2 Gauss2mf. 5.1733e − 3

aNote that the 42nd data point in Table 2 of [29] should be corrected.
The value of “y” should not be “1.97” but “3.11”.

In [19] an initial fuzzy system is generated using the evolutionary algorithm based method. Then this1
fuzzy system is converted to an RBF neural network and continued to be trained with the conventional gra-
dient method. After the training algorithm converges, the adaptive weight sharing algorithm for extracting3
fuzzy rules is implemented.

In our approach, an initial fuzzy model is generated using the fuzzy C-means clustering method and the5
RLS method with 5 rules and 15 fuzzy sets (equally 5 sets for each of the three input variables x(t − 1),
y(t − 1), and z(t − 1)). Then we use the interpretability-driven rule base simplification method, multi-7
objective hierarchical genetic algorithm based on the interpretability and accuracy objectives to construct
fuzzy models. Table 5 describes the experimental results compared with those in [19]. Table 6 presents9
the antecedent and consequent parameters of the fuzzy rules obtained by our approach. The distribution
of the fuzzy sets and the simulation results are shown in Fig. 15.11

5.4. Example: Mackey–Glass time series

The Mackey–Glass time series studied in [18] is described as follows:13

ẋ = ax(t − r)

1 + xb(t − r)
− cx(t). (47)

We set the same value to the parameters in order to make a comparison with the results obtained in15
[18]. That is to say, a = 0.2, b = 10, c = 0.1 and r = 30. The goal is to predict x(t) from x(t − 1),
x(t − 2) and x(t − 3). 1000 data points are obtained from Eq. (47) using the fourth order Runge–Kutta17
method with a step length of 1 and the initial condition x(0) = 1.2, where 500 pairs of data are used for
training and the other 500 for test. The sampling data pairs are shown in Fig. 16.19
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Table 4
Fuzzy model parameters for Fig. 13(b)–(d)

(b) Rule expression
R1: If x1 is middle and x2 is middle, then y = −0.0746x1 − 1.5580x2 + 7.8487
R2: If x1 is middle and x2 is big, then y = −0.4408x1 + 0.0018x2 + 2.7997
R3: If x1 is middle and x2 is small, then y = −1.9667x1 − 5.7073x2 + 14.2118
R4: If x1 is small and x2 is middle, then y = −7.7450x1 − 1.0939x2 + 18.0300
R5: If x1 is small and x2 is big, then y = −3.5432x1 + 2.0367x2 − 0.0838
R6: If x1 is big and x2 is big, then y = 0.0284x1 − 0.1485x2 + 2.0844
R7: If x1 is big and x2 is small, then y = −0.7829x1 − 2.2814x2 + 10.9001

Antecedent parameters
x1: small = [0.1972, 1.0500, 0.1972, 1.1612], middle = [1.4037, 1.4443, 0.9690, 2.9655]

big = [0.5281, 3.5462, 0.5281, 4.1387]
x2: small = [0.1697, 1.0380, 0.7601, 1.1421], middle = [0.6491, 2.1408, 0.7046, 2.5604]

big = [0.6846, 4.0472, 0.6323, 4.3567]

(c) Rule expression
R1: If x1 is middle and x2 is middle, then y = 0.3725x1 − 2.5924x2 − 19.2852
R2: If x1 is middle, then y = −0.5159x1 − 2.2213x2 + 15.8310
R3: If x1 is small and x2 is middle, then y = 1.9520x1 − 0.6571x2 + 6.1666
R4: If x2 is middle, then y = −0.2506x1 − 1.4928x2 + 13.1501

Antecedent parameters
x1: small = [0.4093, 0.9737, 0.1357, 1.0719], middle = [1.6026, 2.8305, 1.6420, 4.1938]
x2: middle = [1.0368, 2.0892, 1.5006, 3.2139]

(d) Rule expression
R1: If x1 is middle and x2 is middle, then y = −7.1554x1 + 1.0645x2 − 7.6321
R2: If x1 is middle, then y = −1.0802x1 − 0.5307x2 + 11.4291
R3: If x2 is middle, then y = 7.1143x1 − 1.4932x2 + 7.8529

Antecedent parameters
x1: middle = [0.6706, 1.7988, 6.5565, 2.7640]
x2: middle = [0.8107, 2.1321, 1.7888, 3.6582]

In [18], the evolution strategies are used to generate an initial fuzzy model using a scalar function.1
Then this fuzzy model is converted to an RBF network to refine the obtained knowledge. Finally, the
adaptive weight sharing regularization technique is applied to extract interpretable fuzzy rules. In our3
approach, an initial fuzzy model is generated with 5 rules and 15 fuzzy sets (equally 5 sets for each of
the three input variables x(t − 1), x(t − 2) and x(t − 3)). Then the multi-objective hierarchical genetic5
algorithm is implemented to extract interpretable fuzzy systems with the interpretability-driven rule base
simplification method applied to the newborn individuals. Table 7 describes the experimental results7
compared with those in [18]. Fig. 17 shows the distribution of the fuzzy sets and the simulation results
about the initial model and the optimized model, respectively. We give the antecedents and consequents9
of the fuzzy rules in Table 8.

Remarks and analysis: Simulation results show that a better interpretable fuzzy system with a high11
accuracy can be obtained by using our proposed approach.
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Fig. 14. Input x(t − 1), y(t − 1) and z(t − 1), output x(t) of the Lorenz system.

Table 5
Fuzzy models of the nonlinear plant of Section 5.3

Ref. No. of rules No. of fuzzy sets MSE train MSE validation

[19] 4 rules 7 Gauss. Not mentioned Not mentioned

This paper
Fig.15(a) 5 rules (initial) 15 Gauss2mf. 5.0523e − 4 4.6257e − 4
Fig.15(b) 3 rules (optimized) 3 Gauss2mf. 6.8435e − 5 6.5679e − 5
Fig.15(c) 2 rules (optimized) 3 Gauss2mf. 1.1907e − 4 9.5102e − 5
Fig.15(d) 2 rules (optimized) 3 Gauss2mf. 2.6534e − 4 2.5116e − 4

Firstly, we compare our results with those obtained by other approaches reported in the literature mainly1
in terms of the number of rules, the number of fuzzy sets, the MSE for training and validation (test) data.
From Tables 1, 3, 5 and 7, it can be clearly seen that our proposed approach can obtain solutions with better3
interpretability and a comparable or higher accuracy than those obtained by other approaches reported in
the literature.5

Secondly, diverse solutions can be found in our approach due to the multi-objective hierarchical genetic
algorithm. We only present three typical solutions from the different alternatives that we have obtained for7
each of the four examples. Diversity means that not only the number of fuzzy rules, the number of fuzzy
sets or the MSE is different among the alternatives, but also the distribution of fuzzy sets are different9
from one solution to another when considering the same or similar factors above. For example, in Fig.
12(c) vs. (d), Fig. 15(c) vs. (d), and Fig. 17(c) vs. (d), the number of rules and the number of fuzzy sets11
of the two compared fuzzy models are the same, the MSE between them are similar, whereas the fuzzy
partitions are quite different.13
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Table 6
Fuzzy model parameters for Fig. 15(b)–(d)

(b) Rule expression
R1: If x(t − 1) is middle and y(t − 1) is small and z(t − 1) is big,

then x(t) = 0.9690x(t − 1) + 0.4707y(t − 1) − 0.1118z(t − 1) + 0.5942
R2: If x(t − 1) is middle and z(t − 1) is big,

then x(t) = 0.9952x(t − 1) − 0.1856y(t − 1) − 0.1673z(t − 1) + 1.1332
R3: If x(t − 1) is middle, then x(t) = 0.9792x(t − 1) + 0.0430y(t − 1) − 0.1719z(t − 1) − 0.9265

Antecedent parameters
x(t − 1): middle = [3.1992, −0.0243, 0.2455, 1.4921]
y(t − 1): small = [0.9359, −1.6004, 1.4568, −1.2401]
z(t − 1): big = [2.0055, 1.4497, 1.9562, 1.8957]

(c) Rule expression
R1: If x(t − 1) is middle and y(t − 1) is small and z(t − 1) is big,

then x(t) = 0.9783x(t − 1) + 0.1987y(t − 1) − 0.2612z(t − 1) + 1.1554
R2: If x(t − 1) is middle, then x(t) = 0.9834x(t − 1) + 0.0966y(t − 1) − 0.0630z(t − 1) − 0.5092

Antecedent parameters
x(t − 1): middle = [0.2170, 1.0405, 0.1218, 1.5640]
y(t − 1): small = [1.8230, −1.5130, 1.7763, −1.2380]
z(t − 1): big = [2.0119, 1.4863, 2.0147, 1.8887]

(d) Rule expression
R1: If x(t − 1) is middle and y(t − 1) is small and z(t − 1) is middle,

then x(t) = 1.0240x(t − 1) + 0.3557y(t − 1 − 0.2190z(t − 1) + 1.5143
R2: If x(t − 1) is middle, then x(t) = 0.9486x(t − 1) − 0.1905y(t − 1) + 0.2012z(t − 1) − 1.2809

Antecedent parameters
x(t − 1): middle = [1.1800, 0.3837, 1.1654, 1.1581]
y(t − 1): small = [3.1054, −1.3900, 3.5833, −1.2057]
z(t − 1): middle = [1.9911, −0.6432, 1.5705, 0.6044]

Thirdly, our approach is able to search for interpretable fuzzy models with a high accuracy. From the1
simulation results on the four examples, we can see that better interpretable rule base with a comparable
or higher accuracy than the initial one can be obtained starting from the initial fuzzy model. From the3
initial fuzzy model with five rules, ten fuzzy sets and MSE equal to 1.4032 × 10−3 for the training data
in Section 5.1, a better interpretable rule base with a higher accuracy is obtained such as the fuzzy model5
with four rules, three fuzzy sets and MSE equal to 5.6086 × 10−4 (Fig. 12(c)). Similar results have also
been obtained from Sections 5.2–5.4.7

Fourthly, from the simulation results summarized in Tables 1, 3, 5 and 7, it is noticed that better
interpretability usually leads to a lower approximation accuracy among the optimized models obtained9
by our approach. For instance, in Section 5.2 we obtain a better interpretable rule base with four rules
and three fuzzy sets (Fig. 13(c)) compared with another one with seven rules and six fuzzy sets (Fig.11
13(b)), whereas the accuracy in terms of MSE is improved from 2.7389 × 10−3 to 8.9607 × 10−4. This
is consistent with the human common sense, and the trade-off between accuracy and interpretability of13
fuzzy systems is also easily understood.
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Fig. 15. Fuzzy sets distribution and the simulation results of Section 5.3: (a) initial model with 5 rules and 15 sets, (b) optimized
model with 3 rules and 3 sets, (c) and (d) optimized model with 2 rules and 3 sets.



UNCORRECTED P
ROOF

32 H. Wang et al. / Fuzzy Sets and Systems ( ) –

FSS4439

ARTICLE IN PRESS

Fig. 15. (Continued.)
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Fig. 16. Input x(t − 1), x(t − 2) and x(t − 3), output x(t) of the Mackey–Glass system.

Fifthly, in order to guarantee a good trade-off between the interpretability and accuracy of fuzzy1
systems, the hierarchical chromosome formulation is used to optimize the structure of fuzzy systems
at the same time to keep accuracy. And the interpretability-driven rule base simplification method and3
three constraints are applied to get good interpretability of fuzzy systems. Assuming there are m fuzzy
variables each of which has n fuzzy sets initially. In the worst case, the computational complexity for5
the interpretability-driven rule base simplification method is about O(mn2). This is not the general case.
When we initialize the active control genes, the parameters c_max and c_min are used to get the number7
of active control genes: num_gene. In our approach, c_max is equal to n and c_min equal to 1. And
the parameter num_gene has the same probability to be set an integer between 1 and n. So the average9
computational complexity for the interpretability-driven rule base method is O(m(n + 1)2/4). However,
we merge similar fuzzy sets, merge fuzzy sets to deal with restricted covering, remove fuzzy sets to deal11
with complete covering and remove fuzzy sets which is similar to universal set or singleton set. So the
number of active control genes would be reduced and the average computational complexity decreases.13
Another step which costs much computational time is the multi-objective decision making mechanism.As
we have mentioned, this procedure requires O(MN2) comparisons, where N is the size of population and15
M is the number of objectives. In our simulation work, we use the Matlab 6.1 to implement experiments.
The CPU is 1.8 GHZ and the RAM is 128M. The average computational time is about 130 min for the17
first example Nonlinear plant, 100 min for the second example Nonlinear static system, 220 min for the
third example Lorenz system, and 200 min for the fourth example Mackey–Glass Time Series.19

Finally, the highlight of our approach is that we apply the combination of MOGA and hierarchical
GA to study the interpretability of fuzzy systems and the trade-off between interpretability and accuracy.21
We proposed the covering and utility concepts to study the interpretability of fuzzy systems generated
from learning data for the first time we have ever known in the literature. Based on the understanding23
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Table 7
Fuzzy models of the nonlinear plant of Section 5.4

Ref. No. of rules No. of fuzzy sets Consequent MSE train MSE validation

[17] 5 rules 6 Gauss. Singleton 0.016 0.016

This paper
Fig. 17(a) 5 rules (initial) 15 Gauss2mf. Linear 6.0589e − 6 4.5485e − 6
Fig. 17(b) 2 rules (optimized) 3 Gauss2mf. Linear 3.8582e − 6 3.5776e − 6
Fig. 17(c) 1 rules (optimized) 3 Gauss2mf. Linear 3.9637e − 6 3.2976e − 6
Fig. 17(d) 1 rules (optimized) 3 Gauss2mf. Linear 3.9637e − 6 3.2976e − 6

of interpretability of fuzzy systems, we apply MOHGA to extract interpretable fuzzy systems from data.1
The completeness and distinguishability and covering issues are guaranteed through the interpretability-
driven rule base simplification method. Additionally, the shapes of fuzzy sets are controlled within such3
a method by regulating the parameters of membership functions. We use the hierarchical chromosome
formulation to optimize both the structure of fuzzy systems and their parameters. Five objectives are5
applied and the Pareto-based MOGA decision making and fitness assignment is implemented to study the
improvement of interpretability and the trade-off between interpretability and accuracy of fuzzy systems.7

6. Conclusion

In this paper, we presented an approach to construct TS fuzzy models that take both the accuracy and9
the interpretability of fuzzy systems into accounts. Some important concepts such as covering and utility
are introduced in discussing different aspects of interpretability like distinguishability and completeness.11
A fuzzy clustering method and the recursive least square method are employed to obtain an initial fuzzy
model for the GA-based optimization. Then the interpretability-driven rule base simplification and the13
multi-objective hierarchical genetic algorithm are used to generate optimized fuzzy models with a high
accuracy and good interpretability. Instead of encoding the consequent parameters of rules in the chro-15
mosome, we used the recursive least square method to determine them.

The proposed approach has successfully been applied to four problems taken from the literature: a17
synthetic nonlinear dynamic system, a nonlinear static system, the Lorenz system and the Mackey–Glass
system. Comparative simulation results demonstrate that the proposed approach can obtain fuzzy models19
with better interpretability without deteriorating the approximation accuracy. Our proposed method shows
a comparable or higher accuracy compared to other fuzzy models reported in the literature. A systematic21
framework for describing interpretability issues and how to effectively express the trade-off between
accuracy and interpretability in the context of multi-objective optimization are open for future research.23
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Fig. 17. Fuzzy sets distribution and the simulation results of Section 5.4: (a) initial model with 5 rules and 15 sets, (b) optimized
model with 2 rules and 3 sets, (c) and (d) optimized model with 1 rules and 3 sets.
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Fig. 17. (Continued.)
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Table 8
Fuzzy model parameters for Fig. 17(b)–(d)

(b) Rule expression
R1: If x(t − 1) is middle and x(t − 2) is middle and x(t − 3) is big, then x(t) = 2.5176x(t − 1) − 2.0750x(t − 2) + 0.5605

x(t − 3) − 0.0016
R2: If x(t − 3) is big, then x(t) = 3.0216x(t − 1) − 3.1014x(t − 2) + 1.0763x(t − 3) + 0.0018

Antecedent parameters
x(t − 1): middle = [0.5179, 0.7645, 0.4260, 0.9987]
x(t − 2): middle = [0.2527, 0.8045, 0.1904, 1.1599]
x(t − 3): big = [0.0961, 0.8324, 1.7097, 1.2256]

(c) Rule expression
R1: If x(t − 1) is small and x(t − 2) is small and x(t − 3) is middle, then x(t) =

2.8415x(t − 1) − 2.7308x(t − 2) + 0.8881x(t − 3) + 0.0011

Antecedent parameters
x(t − 1): small = [0.1995, 0.1041, 0.0826, 0.6594]
x(t − 2): small = [0.0566, 0.1603, 0.1485, 0.6137]
x(t − 3): middle = [0.1034, 0.4042, 0.1110, 0.8492]

(d) Rule expression
R1: If x(t − 1) is small and x(t − 2) is middle and x(t − 3) is middle, then x(t) =

2.8415x(t − 1) − 2.7308x(t − 2) + 0.8881x(t − 3) + 0.0011

Antecedent parameters
x(t − 1): small = [0.0351, 0.2237, 0.3354, 0.5683]
x(t − 2): middle = [0.1048, 0.8976, 0.0909, 1.3329]
x(t − 3): middle = [0.0487, 0.5793, 0.0400, 1.2668]
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