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Abstract. In this paper we contribute to the terminological debate about Atanassov’s use of
the term “Intuitionistic” in defining his structure based on orthopairs of fuzzy sets.

In particular we stress that it is defined as “intuitionistic” a negation which from one side
does not satisfy a standard property of the intuitionistic Brouwer negation (contradiction law)
and on the contrary asserts some principles rejected by intuitionism (strong double negation law
and one of the de Morgan laws).

An algebraic Brouwer negation is studied in the context of IFS showing that it can be induced
from a Heyting implication. A similar situation occurs in the case of standard Fuzzy Sets (FS).
Some conditions which allow one to distinguish from the algebraic point of view FS from IFS
are treated.

Finally, a particular subclass of IFS consisting of orthopairs of crisp sets (denoted by ICS)
is studied, showing that shadowed sets can be algebraically identified with ICSs.

1. Introduction

The mathematical structure introduced by Atanassov in [6, 1, 2] on the basis of ortho–pairs
of fuzzy sets, and called “intuitionistic fuzzy sets”, recently raised a terminological debate (see
[12, 13]) based on a first comment appeared several years before in [19, p.183]. Successively
an explicit discussion about this terminological controversy as been published in [25], with the
consequent answers in [30, 5].

The main point of discussion is that in the above quoted seminal Atanassov’s papers it is
constructed a particular distributive lattice equipped with a complementation ¬p which does not
satisfy the algebraic version of excluded middle law ∀p : p∨¬p = 1. Since this law is not accepted
by intuitionistic logic, Atanassov claimed that the structure can be characterized as intuitionistic.
This is explicitly asserted in the Atanassov’s first widely accessible paper of 1986:

“The definition makes clear that for the so constructed new type of fuzzy sets [i.e.,
ortho–pairs of standard fuzzy sets] the logical law of excluded middle is not valid,
similarly to the case in intuitionistic mathematics.” [1].

The crucial point with respect to this claim is that the Atanassov’s complementation satisfies the
algebraic version of the “strong” double negation law (∀p : ¬¬p = p, algebraically called property
of involution), which is rejected by intuitionism (precisely, it is rejected that ∀p : ¬¬p ≤ p), and
does not satisfy the contradiction law (∀p : p ∧ ¬p = 0) which on the contrary is assumed to hold
in intuitionistic logic. This has been recognized and stressed by one of us in a paper of 1989:

“The remark we have to do to [Atanassov’s] claim is that the only form of comple-
mentation considered by Atanassov is (...) involutive, and this law is not accepted
by the intuitionistic mathematics, whereas the law of contradiction is not valid
too, and this is accepted in the intuitionistic mathematics.” [19].

Our point of view about this debate is that it is not at all correct to assume a term (precisely,
intuitionistic), very articulated in its assumptions, from the fact that only some of its asserted
principles are satisfied. It is as if in the ancient Greek mathematical tradition, after the widely
accepted definition of a circle as the plane figure whose points have the same distance from a fixed
point called center, someone asserts that a square is a circle from the only fact that its vertices
have the same distance from the square center.
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After the criticism presented in [25] on the Atanassov’s adoption of the term “intuitionistic”
in his original algebraic structures, a defense of his position is given by Atanassov in [5] by an
“a posteriori” argument. Indeed, in [25] besides the above discussed argument about the use of
“intuitionistic” term attributed to an algebraic negation which does not satisfy the great part of
the accepted principles of intuitionistic logic, it is stressed that in a paper of 1984 [56] the term
“intuitionistic fuzzy set theory by Takeuti and Titani is an absolute legitimate approach, in the
scope of intuitionistic logic, but it has nothing to do with Atanassov’s intuitionistic fuzzy sets.”
Denoted by A-IFS the abbreviation of “intuitionistic fuzzy sets” in Atanassov’s approach and by
T-IFS the abbreviation of the Takeuti and Titani use of the same term, it is argued by Atanassov
that:

“As far as publication statistics are concerned, I must note that, according to
Science Citation Index, the ratio of citations of papers on A–IFS to those of T–
IFS is greatly in favour of the former. So far, data is available about more than
800 papers of A–IFS by more than 150 authors from more than 30 countries. More
than 25 Ph.D. or higher theses have been defended or are in preparation in at least
10 countries.
The change of name would lead to terminological chaos, having in mind that there
are other notions close to A–IFS.” [5].

In this argumentation it is possible to distinguish two points: (1) the fact that the number of
papers published on the A–IFS context is greater than the number of the T–IFS published ones;
(2) the terminological chaos subsequent to any change of name in front of this large number of
papers dedicated to A–IFS.

As to the first point, the different number of publications has nothing to do with the fact that
(as we show later) the A–IFS structure based on the standard operations listed for instance on
the book [4] is not a model of intuitionistic logic, and so the term intuitionistic is totally incorrect,
contrary to the fact that T–IFS is an extension of Gentzen’s LJ axiomatization of intuitionistic
logic (plus 6 “extra” axioms), with associated algebraic semantic. In other words, whether the
number of persons which work on squares, unfortunately called circles by members of a peculiar
community, is numerically relevant has nothing to do with the fact that squares are squares and
circles are circles, of course according to the standard tradition. At the most, this large number
of papers can be considered as a good index of the interest and relevance in studying this kind of
structures both from the theoretical and the applicative point of views. On the other hand, if one
makes a count of the number of papers published about intuitionism, or simply to the semantic of
intuitionism, it is possible to conjecture that it is enormously greater than the number of papers
about A–IFS, with of course the correct use of the term intuitionism.

As to the second point, we think that a new terminology preserving the widely used acronym
IFS in the Atanassov’s approach would be a correct compromise avoiding the “terminological
chaos” previously suggested. In other words we agree with [30] when they claim that

“the term “intuitionistic fuzzy sets” is very unfortunate because the structure
suggested by Atanassov has nothing in common with intuitionistic mathematics
and logic.

We also agree that – although many theoretical and applied paper devoted to
intuitionistic fuzzy sets have appeared – this name should be changed since it is
so misleading and generates superfluous polemics.

However, taking into account the numerous papers published under this unsuit-
able name, we suggest that looking for the appropriate name for Atanassov’s sets
would be desirable as maintaining the acronym IFS.”

Personally, we prefer the name of ortho–pair of fuzzy sets (OFS or OPFS) to denote Atanassov’s
pairs 〈f, g〉 of ordinary fuzzy sets f, g ∈ [0, 1]X under the “orthogonality” relation:

f ≤ 1− g (or equivalently g ≤ 1− f)

In this way we add another terminology to the one listed in [30]. On the other hand, for the sake
of continuity with a well consolidated tradition, in this paper we will use the acronym IFS leaving
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the freedom of interpreting the letter “I” as any possible term different from “Intuitionistic” (for
instance, following [30], incomplete, inaccurate, imperfect, indefinite, indeterminate, indistinct
and so on). Another proposal could be the one of “Iper Fuzzy Sets (IFS)”. where the term “Iper”
(Italian version of the English “Hyper”) means that we are considering not a single fuzzy set, but
(precisely orthogonal) pairs of such fuzzy sets.

Finally, for the relationship between IFSs and interval-valued fuzzy sets see the section 3 of
[25].

2. The role of negation in intuitionistic logic

As pointed out in the introduction, the main argument of discussion is about the term “Intu-
itionistic” imposed by Atanassov to his structure on the basis of an alleged intuitionistic behavior
of the involved negation. The fact that the negation plays a fundamental role in intuitionistic
logic is stressed by Heyting in [33, p.99]: “the main differences between classical and intuitionistic
logics are in the properties of the negation.” For this reason in this section we summarize the
main points of the intuitionistic negation making reference to the just quoted Heyting book.

(NI-1) “In the theory of negation the principle of excluded middle fails. p∨ ∼ p demands a
general method to solve every problem, or more explicitly, a general method which for any
proposition p yields by specialization either a proof of p or a proof of ¬p.
As we do not possess such a method of construction, we have no right to assert the
principle.

(NI-2) Another form of the principle is ∼∼ p→ p. We have met many examples of propositions
for which this fails. [...]

(NI-3) Of course, the [...] formula ∼ q →∼ p · → · p→ q is not assertible. [...]
(NI-4) ∼ (p ∧ q)→∼ p∨ ∼ q cannot be asserted.” [33, p.100].

If this is the “negative” part of the intuitionistic negation (in particular, the rejection of classical
principles of excluded middle NI-1 and of a strong behavior of the double negation law NI-2), let
us now list from the same book the accepted principles involving negation, once marked (according
to Heyting) asserted formulas with symbol ⊢:

(I-1) “However,

(1) ⊢ p→∼∼ p

It is clear that from p it follows that it is impossible that p is impossible.
(I-2) Another important formula is

(2) ⊢ p→ q · → · ∼ q →∼ p

[compare with the above point (NI-3), our comment].
(I-3) By substitution in (1) we find

(3a) ⊢∼ p→∼∼∼ p

If we substitute ∼∼ p for q in (2), we find, using (1),

(3b) ⊢∼∼∼ p→∼ p

(3a) and (3b) show that we need never consider more than two consecutive negations.
(I-4) From ⊢ p → p ∨ q follows, by (2), ⊢ ∼ (p ∨ q) →∼ p ; in the same way we have

⊢∼ (p ∨ q)→∼ q, so

(4a) ⊢∼ (p ∨ q)→∼ p∧ ∼ q

The inverse formula is easily seen to be also true:

(4b) ⊢∼ p∧ ∼ q →∼ (p ∨ q)

(4a) and (4b) form one of the de Morgan’s equivalence.
(I-5) The other one is only half true:

(5) ⊢∼ p∨ ∼ q →∼ (p ∧ q)

[compare with the above point (NI-4)].
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(I-6)

(6) ⊢∼∼ (p∨ ∼ p)

For ∼ (p∨ ∼ p) would imply, by (4a), ∼ p∧ ∼∼ p, which is a contradiction.” [33,
p.100–101].

We can summarize the main points of the above discussion quoting from [27]:

“In Heyting’s logic the operations of addition [i.e., disjunction], multiplication
[i.e., conjunction], negation, and implication are taken as fundamental. Since the
law of double negation does not hold, it happens that these four operations are
independent; no one of them is definable in terms of the other three. [...].
Heyting’s sum, product, and negation satisfy all Boolean laws [...] except the laws
of double negation and excluded middle. In particular the law of contradiction
holds.”

3. The algebraic approach to intuitionistic negation

Let us translate this Heyting introduction to intuitionistic negation according to the algebraic
semantic of logic, in order to better understand the uncorrect use of the term “Intuitionistic”
assigned by Atanassov to his negation. First of all, let us recall that “when interpreting [com-
plemented lattice] structures from the viewpoint of logic, it is customary to interpret the lattice
elements [a, b, . . .] as propositions, the meet operation [∧] as conjunction [and], the join operation
[∨] as disjunction [or], and the orthocomplement [¬] as negation [not].” [32]. In this lattice context
“it is generally agreed that the partial ordering ≤ of a lattice [...] can be logically interpreted as
a relation of implication, more specifically semantic entailment.” [31]. To be precise,

• the partial order relation of “implication” a ≤ b between lattice elements a and b corre-
sponds to semantic entailment relation between formulas A and B of the object language;
to be precise, it is the algebraic counterpart of the statement “A ⊃ B is true” (or “as-
serted” in Heyting terminology) with respect to some implication connective ⊃ involving
formulas.

From this point of view, the implication relation must not be confused with an implication or con-
ditional operation, i.e., a logical connective which like conjunction and disjunction, forms propo-
sitions out of propositions remaining at the same linguistic level. The statement “A semantically
entails B” is not a formula in the object language, but occurs in the metalanguage, whereas on
the contrary the statement “A implies B” is really a formula of the language.

Thus, it is of a certain interest the introduction of a binary operation→ on the lattice structure
playing the role of algebraic counterpart of the implication connective ⊃ of the language, and which
assigns to each pair of lattice elements a, b another lattice element a→ b. However,

“since not just any binary lattice operation should qualify as a material impli-
cation, we must determine what criteria must (should) be satisfied by a lattice
operation in order to be regarded as a material implication. First, it seems plau-
sible to require that every implication operation → be related to the implica-
tion relation (≤) in such a way that if a proposition a implies (is [less or equal
to]) a proposition b, then the conditional proposition a → b is universally true,
and conversely. [...] Translating this into the general lattice context, we obtain
a → b = 1 iff a ≤ b. Here 1 is the lattice unit element, which corresponds to
the universally true proposition” [32].

In this just quoted paper, this condition is assumed as one of the minimal implicative conditions.
Let us stress that if according to Birkhoff the lattice identity α = 1 (‘α is true’) will be denoted
by ⊢ α [10, p.281], then we can reformulate the minimal implicative condition as follows:

(7) ⊢ a→ b iff a→ b = 1 iff a ≤ b.

On the basis of these considerations, the intuitionistic negation in the lattice–algebraic approach
is a unary mapping ∼: L 7→ L on a distributive lattice 〈L,∧,∨, 0, 1〉 bounded by the least element
0 and the greatest element 1 with respect to the partial order relation ≤ of semantic entailment
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induced by the lattice operations. Thus, according to (7), the above points (I-1), (I-2), and (I-6)
can be algebraically realized respectively by the laws:

(B − 1) ∀a ∈ L : a ≤∼∼ a (weak double negation)

(B − 2) ∀a, b ∈ L : a ≤ b implies ∼ b ≤∼ a (contraposition)

(B − 3) ∀a ∈ L : ∼∼ (a∨ ∼ a) = 1 (contradiction)

Moreover, even if it is not explicitely formulated in the above discussed Heyting presentation of
intuitionistic negation, we add the following condition:

(B − 4) ∼ 1 = 0 (coherence)

In this way, the structure 〈L,∧,∨,∼, 0, 1〉 can be called a distributive lattice with Brouwer com-
plementation, or Brouwer–complemented lattice for short. Since it will be useful in the sequel to
consider lattice structures with a complementation which satisfies only conditions (B-1) and (B-2),
following [26] a structure of this kind is called a distributive lattice with minimal complementation,
or shortly min–complemented lattice.

In the following example it is shown that the coherence condition (B–4) is independent from
the other ones.

Example 3.1. Let the distributive (totally ordered) lattice based on three distinct elements
{0, h, 1} be defined by the Hasse diagram of figure 1.

•
1 =∼∼ 1 =∼ 0 =∼ h

•h =∼ 1 = • =∼∼ h =∼∼ 0

•
0

Figure 1. An example of a lattice in which ∼ 1 6= 0.
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Trivially, 0 ≤ h =∼∼ 0, h =∼∼ h, 1 =∼∼ 1; moreover, 0 ≤ h ≤ 1 implies ∼ 1 ≤∼ h =∼ 0.
Lastly, the following table shows that (B–3) holds:

x ∼ x x∨ ∼ x ∼∼ (x∨ ∼ x)

0 1 1 1
h 1 1 1
1 h 1 1

but ∼ 1 6= 0. �

Let us now show that condition (B-3) is independent from the other ones.

Example 3.2. Let us consider the lattice of figure 2.

•
1 =∼ 0

• a =∼ a

•
0 =∼ 1

Figure 2. An example of a lattice in which ∼∼ (a∨ ∼ a) 6= 1.

In this lattice conditions (B-1), (B-2) and (B-4) are satisfied, but we have that ∼∼ (a∨ ∼ a) =
a 6= 1. �

These independencies being stated, let us prove that all the other intuitionistic principles
about negation (I-3), (I-4), and (I-5) can be derived from conditions (B-1)–(B-4) of Brouwer–
complemented lattices.

Proposition 3.3. Under condition (B-1), the contraposition law (B-2) is equivalent to the fol-
lowing de Morgan law:

(dM1) ∼ (a ∨ b) =∼ a∧ ∼ b (intuitionistic de Morgan)

which is the algebraic translation of (4a) and (4b) of above point (I-4).

Proof. First of all let us assume that the contraposition is true. From a, b ≤ a∨b, by contraposition,
∼ (a ∨ b) ≤∼ a,∼ b, i.e., ∼ (a ∨ b) is a lower bound of the pair ∼ a,∼ b. Now, let c be any lower
bound of this pair, c ≤∼ a,∼ b, then by contraposition and (B1) a, b ≤ ∼∼a,∼∼b ≤∼ c from
which it follows that a ∨ b ≤∼ c and by contraposition and (B1) c ≤ ∼∼c ≤∼ (a ∨ b), i.e., this
latter is the greatest lower bound of the pair ∼ a,∼ b.

Vice versa, let ∼ (a ∨ b) =∼ a∧ ∼ b be true, then if a ≤ b we have that ∼ b =∼ (a ∨ b) =∼
a∧ ∼ b ≤∼ a. �

Proposition 3.4. In any min–complemented lattice the following holds.

(8) ∀a ∈ L : ∼∼∼a =∼ a

algebraic version of (3a) and (3b) of point (I-3) which allows one to assert that “in Heyting’s
logic we have a law of triple negation” [27]. Moreover one has that

(9) ∀a, b ∈ L : ∼ a∨ ∼ b ≤∼ (a ∧ b)

algebraic version of the other de Morgan law of point (I-5).
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Proof. Indeed, since (B-1) is true for any element of Σ, if we apply it to the element ∼ a we obtain
∼ a ≤ ∼∼∼a; on the other hand, applying the contraposition law of the Brouwer complementation
to (B-1) we obtain ∼∼∼a ≤∼ a.

Applying contraposition to a ∧ b ≤ a, b we get ∼ a,∼ b ≤∼ (a ∧ b) from which it follows that
∼ a∨ ∼ b ≤∼ (a ∧ b). �

Example 3.5. In the Brouwer–complemented lattice whose Hasse diagram is depicted in figure
3 it is not true that the dual de Morgan law with respect to (dM1) holds.

•
1 =∼ 0

• a

• c
??

??
??

??

•

0 =∼ a =∼ b =∼ c =∼ 1

��
��

��
��

•b ????????

•
��������

Figure 3. Hasse diagram relative to a Brouwer–complemented lattice for which
∼ (b ∧ c) 6=∼ b∨ ∼ c.

�

Finally, let us prove that the contradiction law expressed in the above form (B-3) is equivalent
to the standard considered one. Before this proof we must note that in every min–complemented
lattice one has that ∼ 0 = 1. Indeed, this result follows from the fact that condition 0 ≤∼ 1, by
contraposition and weak double negation laws, leads to 1 ≤∼∼ 1 ≤∼ 0, i.e., 1 =∼ 0.

Proposition 3.6. In any min–complemented lattice satisfying (B-4), condition (B-3) is equivalent
to the condition:

(B-3a) ∀a ∈ L : a∧ ∼ a = 0 (contradiction)

Proof. If for every element a of the lattice one has that a∧ ∼ a = 0, then applying this law to the
element ∼ a one obtains ∼ a∧ ∼∼ a = 0, from which, by (dM1), it follows that ∼ (a∨ ∼ a) = 0,
and so ∼∼ (a∨ ∼ a) =∼ 0 = 1.

Let (B-3) be true. Then ∼ a∧ ∼∼ a = (by (dM1)) ∼ (a∨ ∼ a) = (by (8)) ∼ (∼∼ (a∨ ∼ a)) =
(by (B-3)) ∼ 1 = (by (B-4)) 0. But from (B-1) it follows that ∼ a ∧ a ≤∼ a∧ ∼∼ a = 0. �

3.1. The peculiar theoretical status of (NI-4). Let us now investigate the role of the negative
principles of intuitionistic negation, characterized by the above points (NI-1)–(NI-4), showing that
in some sense (NI-1)–(NI-3) play a “stronger” role with respect to (NI-4). First of all, it is trivial
to verify that any Boolean lattice is a Brouwer–complemented lattice too, and so it is interesting
to characterize Boolean lattices inside Brouwer–complemented lattices.

Proposition 3.7. Let 〈L,∧,∨,∼, 0, 1〉 be a Brouwer–complemented lattice. Then, the following
are equivalent.

(1) L is a Boolean lattice.
(2) ∀a ∈ L, a∨ ∼ a = 1 (excluded middle, algebraic version of (NI-1)).
(3) ∀a ∈ L, a =∼∼ a (strong double negation, algebraic version of (NI-2)).
(4) ∀a, b ∈ L, ∼ a ≤∼ b implies b ≤ a (dual contraposition, algebraic version of (NI-3)).
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Proof. Trivially, in any Boolean lattice conditions (2) and (3) both hold for definition, and it is
easy to prove that also condition (4) is true.

If 1 = a∨ ∼ a, then ∼∼ a =∼∼ a∧ (a∨ ∼ a) = (∼∼ a∧ a)∨ (∼ (∼ a)∧ (∼ a)) = (by (B-1) and
(B-3a)) a, i.e., the (3).

If the (3) holds, then ∼ (a∨ ∼ a) = (by (dM1)) (∼ a)∧ ∼ (∼ a) = (by (B-3a)) 0, from which
it follows by the hypothesis and (B-4) a∨ ∼ a =∼∼ (a∨ ∼ a) =∼ 0 = 1. Moreover, (dM1) in the
particular case of the elements ∼ a and ∼ b leads to ∼∼ a∧ ∼∼ b =∼ (∼ a∨ ∼ b), and making use
of the (3) this result can be written as a ∧ b =∼ (∼ a∨ ∼ b), and so ∼ (a ∧ b) =∼∼ (∼ a∨ ∼ b) =
(by (3)) ∼ a∨ ∼ b.

In this way we have proved the equivalence among points (1), (2) and (3). Now, from the (8),
in the form ∼ a ≤∼ (∼∼ a), applying the hypothesis (4) it follows ∼∼ a ≤ a. �

On the basis of these results, it is interesting to single out those Brouwer–complemented lat-
tices which are not Boolean, the so–called genuine Brouwer–complemented lattices, since they
correspond to real (i.e., non Boolean) algebraic models of the intuitionistic negation. A sufficient
criterium, which is satisfied in all the algebraic structures considered in this paper, consists in
admitting at least one element n 6= 1 such that ∼ n = 0, called half element. Indeed, from this
condition it follows that n ≤∼∼ n = 1 with n 6=∼∼ n; moreover n∨ ∼ n = n ∨ 0 = n 6= 1 and so
the excluded middle law does not hold and finally ∼ n ≤∼ 1 (i.e., 0 ≤ 0) does not imply 1 ≤ n and
so the dual contraposition law does not hold. Note that in example 3.5 a, b, c are all half elements.

A peculiar comment can be done about the negative principle (N-4) whose algebraic description
consists in the following de Morgan property dual with respect to (dM1):

(dM2) ∼ (a ∧ b) =∼ a∨ ∼ b

Indeed, from the Heyting point of view expressed in [33], property (dM2) “cannot be asserted”
by the intuitionistic negation, but it is possible to find genuine Brouwer–complemented lattice
structures in which (N-4) holds.

Example 3.8. In any totally ordered lattice L with at least three elements and bounded by 0
and 1, let us define the Brouwer genuine complementation

∼ a :=

{

1 if a = 0

0 otherwise

Let us consider two generic elements x and y supposing, without any lost in generality, that x ≤ y.
Then, from (B-2) it follows that ∼ y ≤∼ x and so ∼ (x ∧ y) =∼ x =∼ x∨ ∼ y. �

Let us note that the simplest extension of classical two–valued logic toward many–valued ones
consists in the introduction of a third “intermediate”, or “neutral” or “indeterminate” value.
 Lukasiewicz developed this idea in [37] (English version: On three–valued logic, in [11, p. 87]). In
such a paper he introduced a third truth value to take into account propositions which are neither
true nor false, defining in this way a three–valued logic. This logic was then extended to deal
with d truth values as well as with an infinite number of truth values, in particular the ℵ0 and ℵ1

cardinalities. For instance, one deals with the following sets of truth values, treated as numerical
sets equipped with the standard total order relation induced by R:

• Ld =
{

0, 1
d−1 , 2

d−1 , . . . , d−2
d−1 , 1

}

, with d ≥ 2, for d–valued logics;

• Lℵ0
= [0, 1] ∩ Q, that is the set of rational values in the interval [0, 1], for infinite–valued

logics with ℵ0 truth values;
• Lℵ1

= [0, 1], that is the set of real values in the interval [0, 1], for infinite–valued logics
with ℵ1 truth values.

The numbers of Lα, α ∈ {d,ℵ0,ℵ1}, are interpreted after  Lukasiewicz as the possible truth values
which logical sentences can be assigned to. As usually done in literature, the values 1 and 0 denote
respectively truth and falseness, whereas all the other values are used to indicate different degrees
of indefiniteness.

Therefore, example 3.5 shows that condition (NI-4) is independent from the other three (NI-
1)–(NI-3) and example 3.8 shows a whole class of genuine Brouwer complemented lattices in
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which condition (NI-4) can be verified. In other words, the theoretical status of (N-4) is differ-
ent from the one of (NI-1)–(NI-3) since the algebraic version of condition (NI-4) applied to a
Brouwer–complemented lattice does not necessary collapse the structure in the one of Boolean
lattice (classical logic).

This says that there is a structure which is stronger than the one of Brouwer–complemented
lattice. This structure, also called (dM) Brouwer–complemented lattice,

(i) is an algebraic model of a logic which satisfies all the principles (I-1)–(I-5) asserted by the
intuitionistic negation,

(ii) moreover under the existence of at least one half element is a genuine (i.e., non Boolean)
model of the intuitionistic negation since it refuses conditions (NI-1)–(NI-3),

(iii) but it does assert principle (NI-4) which “cannot be asserted” in the intuitionistic version of
negation discussed by Heyting in his book [33].

This put the interesting question whether one can consider (NI-4), or its algebraic version
(dM2), as an accepted principle of some intuitionistic logic. To this purpose, let us quote the
following Heyting statement:

“The word ‘logic’ has many different meanings. I shall not try to give a definition
of intuitionistic logic [...]. Here I shall only call your attention to some formulas
which express interesting methods of reasoning and show why these methods are
intuitively clear within the realm of intuitionistic mathematics” [33, p.96].

As to this argument a stronger comment can be found in Rasiowa and Sikorski:

“it is difficult for mathematicians to understand exactly the idea of intuitionists
since the degree of precision in the formulation of intuitionistic ideas is far from
the degree of precision to which mathematicians are accustomed in their daily
work.

The subject of our studies will not be intuitionism itself but intuitionistic logic
(the formalization of intuitionistic logic is due to A. Heyting), which is a sort of
reflection of intuitionistic ideas formulated in formalized deductive systems. A
precise definition of intuitionistic logic offers no difficulty.” [53, p.378–379].

Owing to this “imprecision” in the formulation of intuitionistic ideas it is possible to assume
some degrees of freedom and consider the following two meta–possibilities:

(M-1) Brouwer complemented lattices without condition (dM2) are algebraic models of a partic-
ular version of intuitionistic negation, for instance the one supported by Heyting in [33].

(M-2) Brouwer complemented lattices with condition (dM2) are particular models of another
version of intuitionistic negation, the one supported by Gödel in the specific context of the
many–valued approach to intuitionism (see for instance [54, p.45], with the very interesting
comments about the relationship between intuitionistic propositional calculus as proposed
by Heyting in [33] and the Gödel approach to many–valued systems).

An interesting question is whether total ordering characterizes genuine Brouwer–complemented
lattice with condition (dM2). The answer is negative, since there exist genuine Brouwer–complemented
lattices satisfying (dM2) and which are not totally ordered. An example is given in figure 4.

4. The pseudo–Boolean lattice approach to intuitionistic logic: Heyting
algebras

Up to now we investigated the algebraic approach to intuitionistic logic from the point of view
of the negation connective only: Brouwer–complemented distributive lattice is a good algebraic
axiomatization of a logic with intuitionistic negation. This according to the Heyting claim that
the main difference between classical logic and intuitionistic one consists just in the very different
behavior of negation, which in the intuitionistic context refuse the validity of the double negation
law in its strong version, the excluded middle principle, and the dual of the contraposition law
(see proposition 3.7). Anyway, in order to have a real algebraic semantic of intuitionistic logic it is
necessary to introduce a lattice structure 〈L,∧,∨, 0, 1〉 equipped by a primitive binary operation,
denoted by →: L × L 7→ L, which plays the algebraic role of implication connective. To this
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•
1 =∼ 0

• a

• c
??

??
??

??

• d
��

��
��

��

•

0 =∼ a =∼ b =∼ c =∼ d =∼ 1

•b ????????

•
��������

Figure 4. Hasse diagram relative to a (dM2) Brouwer–complemented lattice
which is not totally ordered.

extent the more suitable algebraic structure is the so–called (by Birkhoff in [10, p.45]) Brouwerian
lattice. As to this terminology there is some confusion in literature since, for instance, Rasiowa
and Sikorski call this algebraic structure as relatively pseudo–complemented lattice, whereas “every
relatively pseudo–complemented lattice with zero element is called a pseudo–Boolean algebra” [53,
p.59]. Moreover in a note of the same page they underline that the corresponding dual lattices
are called Brouwer algebras by McKinsey and Tarski in [39].

Following [53] we present now the equationally complete version of an abstract pseudo–Boolean
lattice.

Definition 4.1. An abstract algebra 〈A,∧,∨,→,∼〉 with three binary operations ∧,∨,→ and a
unary operation ∼ is a pseudo–Boolean lattice iff the following hold:

(1) The substructure 〈A,∧,∨〉 is a lattice.
(2) The lattice operations ∧,∨ and the unary operation ∼ are linked to the implication con-

nective by the following axioms:

(l1) a ∧ (a→ b) = a ∧ b

(l2) (a→ b) ∧ b = b

(l3) (a→ b) ∧ (a→ c) = a→ (b ∧ c)

(l4) (a→ a) ∧ b = b

(l5) ∼ (a→ a) ∨ b = b

(l6) a→ (∼ (a→ a)) =∼ a

In particular, (l5) asserts that for every element b one has that ∼ (a→ a) ≤ b whatever be a, i.e.,
∼ (a → a) is the least element 0 of the lattice; on the other hand, (l4) means that b ≤ (a → a)
whatever be a, i.e., a → a is the greatest element 1 of the lattice. Moreover, from (l6) it follows
that ∼ a = a→ 0 for every a.

A simpler set of axioms for pseudo–Boolean algebras has been introduced by Monteiro in [43],
where this structure is called Brouwer algebra and in which it is proved the equivalence with
pseudo–Boolean lattices together with the independence of the introduced axioms. In a successive
paper [44] the same structure is called Heyting algebra. In order to stress the semantical relevance
of these structures with respect to intuitionistic logic, we adopt here the Monteiro’s terminology
of Heyting algebra instead of pseudo–Boolean lattice.

Definition 4.2. A Heyting algebra is a structure 〈A,∧,∨,→, 0〉 which satisfies the following
axioms:
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(H1) a→ a = b→ b
(H2) (a→ b) ∧ b = b
(H3) a→ (b ∧ c) = (a→ c) ∧ (a→ b)
(H4) a ∧ (a→ b) = a ∧ b
(H5) (a ∨ b)→ c = (a→ c) ∧ (b→ c)
(H6) 0 ∧ a = 0

A non–equational but more compact way to introduce Heyting algebras (pseudo–Boolean lat-
tices) is given by the following result.

Proposition 4.3. Let 〈A,∧,∨, 0〉 be a lattice with least element 0. Then, A is a Heyting algebra iff
for any pair of elements a, b ∈ A there exists an element a→ b ∈ A, called the pseudo–complement
of a relative to b, such that,

(I) a ∧ x ≤ b if and only if x ≤ a→ b

i.e., it satisfies the pseudo–Boolean lattice condition that for every a ∈ A the set of all x ∈ A such
that a ∧ x ≤ b contains the greatest element, denoted by a→ b = max {x ∈ A : a ∧ x ≤ b}.

Let us note that condition (I) is equivalent to the two conditions:

(I1) a ∧ x ≤ b implies x ≤ (a→ b)

(C2) a ∧ (a→ b) ≤ b

Moreover, once introduced the lattice greatest element 1 = 0 → 0, the (I) applied to the case
x = 1 leads to the minimal implicative condition (7):

(10) a ≤ b if and only if a→ b = 1

Note that in definition 4.1 and proposition 4.3 there is no mention to the distributivity of the
involved lattice. This omission is a consequence of the following result, whose proof in the context
of pseudo–Boolean lattices can be found for instance in [10, p. 45], [53, p. 59].

Proposition 4.4. Every Heyting algebra (pseudo–Boolean lattice) is necessarily distributive.

The main result about Heyting algebras with respect to the Brouwer–complementation is the
following one.

Proposition 4.5. Let 〈A,∧,∨,→, 0〉 be a Heyting algebra according to definition 4.2 and let the
negation of any a ∈ A be defined as ∼ a := a→ 0 with the further definition 1 :=∼ 0 = 0→ 0.

Then the algebraic structure 〈A,∧,∨,∼, 0, 1〉 is a Brouwer–complemented lattice with 0 as the
least and 1 as the greatest elements of the lattice, i.e., the above conditions (B-1), (B-2), (B-3a)
and (B-4) are verified (for the proof of this part see [10]).

Moreover, since any pseudo–Boolean lattice is in particular a pseudo–complemented distributive
lattice (i.e., for any a ∈ A there exists an element ∼ a such that a ∧ x = 0 if and only if x ≤∼ a,
which is nothing else than the (I) under the choice b = 0), from a result proved in [55] (and see
also [38]) it follows that also the further property of negation is satisfied:

(B-5) ∀a, b ∈ A: ∼∼ (a ∧ b) =∼∼ a∧ ∼∼ b

Let us note that in the above quoted papers it is proved that pseudo–complemented lattices are indeed
characterized as those Brouwer–complemented lattices which just satisfy this condition (B–5).

In order to stress again the deep difference between classical and intuitionistic negations, let us
quote the Rasiowa and Sikorski book:

“Also negation and disjunction are understood differently from intuitionists. The
sentence ∼ a is considered true if the acceptance of a leads to an absurdity. With
this conception of negation and implication, the tautology

a→∼∼ a

is accepted as true by intuitionists but the tautology

∼∼ a→ a

is not intuitionistically true.
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The intuitionists regards a disjunction a ∨ b as true if one of the sentences a, b
is true and there is a method by which it is possible to find out which of them is
true. With this conception of the truth of disjunction, the tautology

a∨ ∼ a

is not accepted by the intuitionist as true since there is no general method of
finding out, for any given sentence a, whether a or ∼ a is true. Intuitionists thus
reject the tautology tertium non datur.” [53, p. 378].

As a final result (without entering in formal details for which we refer to [53]), let us recall that
the idea of treating the set of all formulas of a formalized language as an abstract algebra with
operations corresponding to logical connectives was first used by A. Lindenbaum and A. Tarski.
Then it is possible to prove the following.

Theorem 4.6. Let T be a formalized intuitionistic theory, then the Lindembaum–Tarski algebra
U(T ) associated to T is a pseudo–Boolean algebra.

Thus, “the metatheory of the intuitionistic logic coincides with the theory of pseudo–Boolean
[Heyting] algebras in the same sense as the metatheory of classical logic coincides with the theory
of Boolean algebras” [53]. Moreover, “It follows from the representation theorems [...] that the
theory of pseudo–Boolean [Heyting] algebras is the theory of lattices of open subsets of a topological
space. Consequently the investigation of intuitionistic logic consists in an examination of lattices of
open subsets of topological spaces.” [53, p.380]. Of course, if one accepts the claim that “Heyting
algebras play for the intuitionistic propositional calculus the same role played by the Boolean
algebras for the classical propositional calculus” [44], then the induced negation connective is not
only a Brouwer complementation but it satisfies the further condition (B–5) which is not mentioned
in the Heyting book quoted in section 2.

4.1. Heyting algebras with Stone condition. As to the dual de Morgan law ∀a, b, ∼ (a∧b) ≤∼
a∨ ∼ b there are examples of the topological model of intuitionistic logic in which it is not valid.
For instance, in the real line R equipped with the standard topology, where we denote by Ao

the interior of any subset A and by Ac its set theoretic complement, on the distributive lattice
〈P(R),∩,∪〉 (the power set of R equipped with the standard set theoretic intersection and union
operations) the Brouwer complement ∼ A = (Ac)o is such that ∼ ((−∞, 0) ∩ (0, +∞)) = R and
∼ (−∞, 0)∪ ∼ (0, +∞) = R \ {0}.

A characterization of the dual de Morgan law (dM2) for Heyting algebras is given by the
following Stone condition whose proof, proved in a more general context, can be found in [28].

Lemma 4.7. [10, p.130]. In a Heyting algebra the dual de Morgan property

(dM2) ∼ (a ∧ b) =∼ a∨ ∼ b

is equivalent to the Stone condition

(S) ∼ a ∨∼∼a = 1

In this case the Heyting algebra is called Stone algebra or (S) Heyting algebra.

Let us note that in the context of Brouwer–complemented lattices it is possible to prove that
condition (dM2) implies that Stone condition (S) is true, but in the Brouwer–complemented lattice
of example 3.5 condition (S) is true, whereas (dM2) is not verified.

5. Some Algebraic Structures in I(mproved)FS and (standard) FS Theories

So far we discussed some algebraic semantics of intuitionistic logic from the abstract point of
view. Let us now compare this discussion with the algebraic structures which can be induced from
Atanassov’s theory.

First of all, let us consider a nonempty set of objects X , called the universe of the discourse. A
fuzzy set or generalized characteristic function on X is any mapping f : X → [0, 1]. Let us denote
by F(X) = [0, 1]X the collection of all such fuzzy sets. F(X) is a distributive lattice with respect
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to the meet f ∧ g and joint f ∨ g defined for any pair of fuzzy sets f, g ∈ F(X) respectively by the
pointwise laws:

(f1 ∧ f2)(x) = min{f1(x), f2(x)}(11a)

(f1 ∨ f2)(x) = max{f1(x), f2(x)}(11b)

The partial order relation ≤ induced by the lattice structure is the pointwise one:

f ≤ g iff ∀x ∈ X : f(x) ≤ g(x)

With respect to this partial order, F(x) turns out to be bounded by the least fuzzy set 0 defined
by ∀x ∈ X : 0(x) = 0 and the greatest fuzzy set 1 defined by ∀x ∈ X : 1(x) = 1. In general, for
any fixed number k ∈ [0, 1] in the sequel we denote by k ∈ F(X) the constant fuzzy set defined
for every x ∈ X by k(x) = k.

On F(X) it is possible to introduce the binary relation ⊥⊆ F(X)×F(X) defined as:

(12) f ⊥ g iff ∀x ∈ X : f(x) + g(x) ≤ 1

which turns out to be an orthogonality relation according to [18]. Indeed, one has that:

(O-1) f ⊥ g implies g ⊥ f (symmetry property).
(O-2) f0 ≤ f and f ⊥ g imply f0 ⊥ g (absorption property).
(O-3) The orthogonality is degenerate in the sense that there exist fuzzy sets which are self–

orthogonal, i.e., such that f ⊥ f ; to be precise, they are all the fuzzy sets f ∈ F(X) such
that ∀x ∈ X : f(x) ≤ 1

2 .

An ortho–pair of fuzzy sets (also IFS according to a standard term) on the universe X is any pair
of fuzzy sets 〈fA, gA〉 ∈ F(X)×F(X), under the orthogonality condition fA ⊥ gA. The collection
of all IFSs will be denoted by IF(X); this set is nonempty since it contains the particular elements
O := 〈0,1〉, I := 〈1,0〉, and H :=

〈

1

2
, 1

2

〉

.
Then on IFS it is possible to introduce the two binary operations ∩,∪ : IF(X) × IF(X) →

IF(X) and the unary operation − : IF(X)→ IF(X), defined for arbitrary IFS 〈fA, gA〉 , 〈fB, gB〉
as follows:

〈fA, gA〉 ∩ 〈fB, gB〉 := 〈fA ∧ fB, gA ∨ gB〉(13a)

〈fA, gA〉 ∪ 〈fB, gB〉 := 〈fA ∨ fB, gA ∧ gB〉(13b)

−〈fA, gA〉 := 〈gA, fA〉(13c)

These operations (among a lot of other ones) are considered in Atanassov’s papers [1, 2, 3] and
book [4]. The obtained algebraic structure 〈IF(X),∩,∪,−, O, I〉 is a distributive lattice with
respect to the above meet ∩ and join ∪ operations, bounded by the least element O and the
greatest element I, whose induced partial order relation is:

〈fA, gA〉 ⊆ 〈fB, gB〉 iff ∀x ∈ X, fA(x) ≤ fB(x) and gB(x) ≤ gA(x).

The unary operation − is a de Morgan complementation on the distributive lattice. That is for
any pair of IFSs A = 〈fA, gA〉 and B = 〈fB, gB〉 the following hold:

A = −(−A)
−(A ∪B) = −A ∩ −B

In this way, IFS is a particular model of an abstract structure introduced by the following
definition.

Definition 5.1. A de Morgan lattice is a structure 〈Σ,∧,∨, −〉 where

• 〈Σ,∧,∨〉 is a distributive lattice;
• − is a unary operation on Σ, called de Morgan complementation, that satisfies the following

conditions for arbitrary a, b ∈ Σ:
(D-1) a = −(−a)
(D-2) −(a ∨ b) = −a ∧−b

A de Morgan algebra is a de Morgan lattice with greatest element 1 (and so least element 0 = −1).
A Kleene distributive lattice (resp., algebra) is a de Morgan lattice (resp., algebra) which satisfies

the further condition:
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(K) a ∧ −a ≤ b ∨ −b (Kleene condition)

Quoting [20]:“This notion [of de Morgan lattice] has been introduced by Gr. Moisil [40, p.91] and
studied by J. Kalman [34] under the name of distributive i–lattice. [...] If Σ has the last element 1,
we shall say that Σ is a de Morgan Algebra. This notion has been studied by A. Bialynicki–Birula
and H. Rasiowa [8, 9] under the name of quasi–Boolean algebras. In this case, 0 = −1 is the first
element of Σ. [...]

If the operation − also verifies the condition (K) we shall say that Σ is a Kleene lattice (al-
gebra). A three–element algebra of this kind was studied by S.C. Kleene ([35], [36, p.334]) as a
characteristic matrix of propositional calculus [...]. These lattices were studied by J.Kalman [34]
with the name of normal distributive i–lattices. An important example of Kleene algebras are the
N–lattices of H. Rasiowa [52].”

Let us stress that under condition (D-1) the following are equivalent:

(D-2a) a ≤ b implies − b ≤ −a (antimorphism)
(D-2b) −a ≤ −b implies b ≤ a (dual antimorphism)
(D-2c) −a ∨ −b = −(a ∧ b) (∨ de Morgan)
(D-2) −a ∧ −b = −(a ∨ b) (∧ de Morgan)

Also in this case, any Boolean lattice is a de Morgan algebra and the possibility of singling
out de Morgan lattices (and so also algebras) which are genuine resides in the sufficient condition
of the existence of at least a nontrivial element h (i.e., h 6= 0 and h 6= 1), called half element,
such that h = −h. Indeed, in this case the negation satisfies neither the excluded middle law
(h ∧ −h = h 6= 0) nor the contradiction law (h ∨ −h = h 6= 1). A similar discussion can be made
in the case of Kleene structures where condition (K) assures that if a half element exists, then it
is unique.

Coming back to IFS,

• the Kleene condition (K) is not valid and so IFSs are examples of de Morgan algebras
which are not Kleene.
Let us consider for instance the two IFSs A = 〈0.4,0.5〉 and B = 〈0,0.2〉. Then A∩−A =
〈0.4,0.5〉 6⊆ 〈0.2,0〉 = B ∪ −B.

Furthermore, in [24] it has been proved that any de Morgan negation on IFS, whatever
be its concrete definition, cannot satisfy the Kleene condition (K).
• Further, the negation − neither satisfies the excluded middle nor the contradiction laws

since IFS de Morgan algebra admits the half element
〈

1

2
, 1

2

〉

for which −
〈

1

2
, 1

2

〉

=
〈

1

2
, 1

2

〉

.
Of course, the half element is not unique since for any k ∈ [0, 1/2] the ortho-pair of fuzzy
sets 〈k,k〉 is such that −〈k,k〉 = 〈k,k〉.

As a summary of this discussion, the IFS algebra characterized by the negation − of (13c),

(P1) does not satisfy the excluded middle law, and this fits one of the intuitionistic requirements
(point (N-1) of section 2);

but, and this is a real withdraw, this negation

(W1) does not satisfy the contradiction law, which on the contrary has been assumed by intu-
itionistic logic (point (I-6) of section 2);

(W2) asserts the strong double negation law which is rejected from intuitionistic logic (point (N-2)
of section 2);

(W3) asserts the principle of dual antimorphism (dM2b), which is not accepted by intuitionistic
logic (point (N-3) of section 2);

(W4) asserts the de Morgan law (dM2c), in the form −(a ∨ b) ≤ −a ∧ −b, which is refused by
intuitionistic logic (point (N-4) of section 2).

It is very hard to claim that this kind of “square” is a “circle” on the fact that only a part of the
intuitionistic principles about negation is verified [(P1)], contrary to the rejection of a relevant
intuitionistic idea [(W1)] and the assertion of a lot of principles refused by intuitionism [(W2)–
(W4)]. So, with respect to the structure 〈IF(X),∩,∪,−,0,1〉 IFS is not “intuitionistic” in the
sense that it is not an algebraic model of intuitionistic logic or any of its extensions.
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A situation similar to the one just investigated about IFS happens also in the case of standard FS
theory. Indeed, if in the distributive lattice 〈F(X),∧,∨,0,1〉 with respect to the lattice operations
(11a) and (11b) one adds the further unary operator

∀x ∈ X : ¬f(x) := 1− f(x)

than one obtains that the structure 〈F(X),∧,∨,¬,0,1〉 satisfies the two conditions (D-1) and
(D-2) of de Morgan algebra, but furthermore

• the Kleene condition (K) is verified and so FSs are examples of Kleene algebras.
Indeed, for every pair of fuzzy sets f, g ∈ F(X) and any x ∈ X trivially f(x) ∧ ¬f(x) ≤
1/2 ≤ g(x) ∨ ¬g(x).
• Further, the negation ¬ neither satisfies the excluded middle nor the contradiction laws

since FS Kleene algebra admits the half element 1

2
for which ¬1

2
= 1

2
. Let us recall

that the existence of the half element is a sufficient condition for the genuineness of the
structure, but this does not prevent to have other elements which do not satisfy both the
excluded middle and the contradiction laws. Indeed, for instance for all k ∈ (0, 1) we have
k ∨ ¬k = max(k,¬k) 6= 1 and k ∧ ¬k = min(k,¬k) 6= 0.

As a consequence, all the above points (P1) and (W1)–(W4) can be applied not only to the IFS
case but also to the present FS case, with the important difference that FS are models of Kleene
(i.e., de Morgan plus (K)) algebras whereas IFS are models of de Morgan algebras only.

From one point of view, the more correct one, points (W1)–(W4) forbid to state that ¬ is
an algebraic version of the intuitionistic negation, similarly to the case of IFS with respect to
the complementation (13c). But from another point of view, if according to Atanassov’s meta–
principle one defines as “Intuitionistic Fuzzy Set” any structure involving fuzzy sets and equipped
with a complementation in which only “the logical law of excluded middle is not valid, similarly
to the case in intuitionistic mathematics” [1], then owing to point (P1) there is no reason to deny
also to standard fuzzy set theory the term of Intuitionistic Fuzzy Set.

5.1. The Heyting algebra of IFS. As proposed in [23, p. 64] (relatively to the unit interval
[0, 1] and extended by us to F(X) on [13]) it is possible to define an intuitionistic implication also
on IF(X) as follows. Let A = 〈fA, gA〉 and B = 〈fB, gB〉 be two IFSs, then for x ranging on X :

(14) (〈fA, gA〉 ⇒ 〈fB, gB〉)(x) :=



























































(1, 0) if fA(x) ≤ fB(x)

and gA(x) ≥ gB(x)

(1− gB(x), gB(x)) if fA(x) ≤ fB(x)

and gA(x) < gB(x)

(fB(x), 0) if fA(x) > fB(x)

and gA(x) ≥ gB(x)

(fB(x), gB(x)) if fA(x) > fB(x)

and gA(x) < gB(x)

The structure 〈IF(X),∩,∪,⇒, 〈0,1〉〉 is a Heyting algebra. The Brouwer negation induced by the
implication connective ⇒ in the usual manner
∼ 〈fA, gA〉 = 〈fA, gA〉 ⇒ 〈0,1〉 is the following one defined whatever be x ∈ X by the law:

(15a) ∼ 〈fA, gA〉 (x) =

{

(1, 0) if gA(x) = 1

(0, 1) if gA(x) 6= 1

Indeed, if in (14) one set fB(x) = 0 and gB(x) = 1, then the first case produces the result
(1, 0) for fA(x) = 0 and gA(x) = 1, but condition gA(x) = 1 implies that necessarily fA(x) = 0
by the orthogonality condition (12) on IFS. The second and forth cases lead to the pair (0, 1)
corresponding to the conditions gA(x) 6= 1 with fA(x) = 0 and fA(x) 6= 0 respectively, i.e., it
happens when gA(x) 6= 1. The third case is impossible since it should happen for gA(x) = 1 and
fA(x) 6= 0, contrary to the orthogonality condition on IFS.
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To be more explicit, this is a “compact” form of the real formula:

(15b) ∼ 〈fA, gA〉 = 〈hA, kA〉 with

hA(x) =

{

1 if gA(x) = 1

0 if gA(x) 6= 1

kA(x) =

{

0 if gA(x) = 1

1 if gA(x) 6= 1

In this way, if one introduces the subset of the universe A1(gA) := {x ∈ X : gA(x) = 1} and
denotes by χB : X 7→ {0, 1} the characteristic (crisp) functional of the subset B of X defined as
χB(x) = 1 if x ∈ B and = 0 otherwise, then (15b) can be rewritten as

(15c) ∼ 〈fA, gA〉 =
〈

χA1(gA), χA1(gA)c

〉

from which it follows that ∼∼ 〈fA, gA〉 =
〈

χA1(gA)c , χA1(gA)

〉

with fA(x) ≤ χA1(gA)c(x) and
χA1(gA) ≤ gA(x), i.e., 〈fA, gA〉 ≤∼∼ 〈fA, gA〉.

If we adopt the Atanassov’s meta–attitude discussed in the introduction which consists in
appending the term “Intuitionistic” to any algebraic structure containing a complementation which
satisfies all the principles required by intuitionistic negation, then

• we would conclude that IF(X) is simultaneously an intuitionistic fuzzy set environment
(with respect to negation ∼) and a non–intuitionistic fuzzy set environment (with respect
to negation −).

5.2. The Heyting algebra of standard FS. On the other hand, let us consider the collection
F(X) of all standard fuzzy sets, then the lattice structure with respect to the meet and join
operations (13) can be equipped with the implication connective defined for every x ∈ X by the
following law, extension to FS of the many–valued Gödel implication defined for instance on [0, 1]
(see [54, p.44]):

(16) (f1 → f2)(x) :=

{

1 f1(x) ≤ f2(x)

f2(x) otherwise

The structure 〈F(X),∧,∨,→,0〉 is a Heyting algebra whose Brouwer–complement, defined as
usual as ∼ f = f → 0, is explicitly given whatever be x ∈ X by the formula (compare with the
example 3.8):

(17a) ∼ f(x) =

{

1 if f(x) = 0

0 otherwise

Making use of the characteristic-function notion and introducing the subset of the universe A0(f) :=
{x ∈ X : f(x) = 0}, this formula assumes the following compact form (and compare with (15c)):

(17b) ∼ f = χA0(f)

If in the FS case we adopt a modified version of the Atanassov’s meta–attitude of considering
as “Intuitionistic” any algebraic structure satisfying all the principles of intuitionistic logic (i.e.,
Heyting algebras), another kind of chaos rises since

• both standard FSs and Atanassov’s IFSs might rightfully be simultaneously called Intu-
itionistic Fuzzy Sets.

5.3. Heyting algebraic embedding of FS into IFS. It is worth noting that if one introduces
the subset of IFS

IF(X)∗ := {〈f,¬f〉 : f ∈ F(X)}

then the implication connective (14) assumes the form

(〈f1,¬f1〉 ⇒ 〈f2,¬f2〉)(x) =

{

(1, 0) if f1(x) ≤ f2(x)

(f2(x), 1 − f2(x)) otherwise

which corresponds to the compact form

〈f1,¬f1〉 ⇒ 〈f2,¬f2〉 = 〈f1 → f2,¬(f1 → f2)〉
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From this one obtains the Brouwer–complement

∼ 〈f,¬f〉 = 〈f,¬f〉 ⇒ 〈0,1〉 = 〈∼ f,¬(∼ f)〉 = (17b) =

=
〈

χA0(f), χA0(f)c

〉

=
〈

χA1(¬f), χA1(¬f)c

〉

In this way 〈IF(X)∗,∧,∨,⇒, 〈0,1〉〉 turns out to be a sub–Heyting algebra of the IFS Heyting
algebra. Moreover, the Heyting algebras 〈F(X),∧,∨,→,0〉 and 〈IF(X)∗,∧,∨,⇒, 〈0,1〉〉 are iso-
morphic by the one to one and onto correspondence f → 〈f,¬f〉 and so FS can be considered as
a sub–Heyting algebra of IFS according to the following diagram:

〈f, g〉 ∈ IF(X)

f ∈ F(X) //

88rrrrrrrrrrrrrrrrrrrrrr

〈f,¬f〉 ∈ IF(X)∗

OO

5.4. The Stone extra condition characterizing IFS and FS. Let us stress that the intuition-
istic fuzzy logic presented by Takeuti and Titani in [56] consists of the axioms and inference rules
of intuitionistic logic together with extra axioms and inference rules characterizing the structure
of [0, 1]. So it is of a certain interest to investigate whether some extra property of the alge-
braic semantic based on Heyting algebras holds in the concrete structures of FS (F(X)) and IFS
(IF(X)). This extra property exists and can be formulated in terms of the underlying Brouwer–
complemented lattice structure. As we have seen in proposition 3.3, whereas the de Morgan
principles (4a) and (4b) of (I-4) are realized in such a structure, only one of the dual de Morgan
principle, precisely (9) of proposition 3.4, holds. Now, it is easy to prove that in the particular
cases of both Heyting algebra structures F(X) and IF(X) the dual de Morgan principle (dM2)
of lemma 4.7 holds, which is equivalent to the Stone condition (S).

Thus, both IF and IFS are Heyting algebras satisfying the extra condition (dM2), or equivalently
(S), i.e., they are (S) Heyting algebras. Making use of (10) in proposition 4.3, condition (dM2)
can be formulated also as ∼ (a ∧ b) → ∼ a∨ ∼ b = 1, algebraic version of (NI-4) of section 2.
Summarizing:

• The IFS structure 〈IF(X),∩,∪,⇒, O〉 and FS structure 〈F(X),∧,∨,→,0〉 generate the
two negations (15a) and (17a) which both satisfy all the intuitionistic principles of negation
(I-1)–(I-6), moreover they satisfy the further principle (NI-4), which cannot be asserted
in the Heyting approach to intuitionistic negation outlined in [33] (see section 2) and the
principle (B–5) which is hidden in the same Heyting negation.

Note that if one considers L–fuzzy sets, i.e., mappings from the universe X with values on a
bounded lattice 〈L,∧,∨, 0, 1〉, with L not totally ordered, then both the implication connectives
(14) and (16) are not well defined, contrary to the fact that the Brouwer complementations (15a)
and (17a) can be applied to this more general case.

6. ICS Algebra and Shadowed Sets

In this subsection we investigate a particular subclass of the class IF(X) of all IFSs on the
universe X . To this aim, let us consider the collection, denoted by IC(X), of all ortho–pairs
〈χA1

, χA0
〉 of characteristic functions of subsets A1, A0 of X . Trivially IC(X) ⊆ IF(X) and

χA1
⊥ χA0

iff A1 ∩A0 = ∅

Therefore, IC(X) consists of pairs of crisp sets, denoted by (ICS), sharp realizations of two subsets
A1 and A0 under the orthogonality condition of their disjointness. So we can identify ICSs with
pairs of mutually disjoint subsets of X :

(18) 〈χA1
, χA0

〉 ←→ 〈A1, A0〉
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and we denote their collection also by

IC(X) := {〈A1, A0〉 ∈ P(X)× P(X) : A1 ∩A0 = ∅}

The subset A1 (resp., A0) is the certainty (resp., impossibility) domain of the involved ICS 〈A1, A0〉.
The operations (13) in this particular case assume the form

〈A1, A0〉 ∩ 〈B1, B0〉 = 〈A1 ∩B1, A0 ∪B0〉

〈A1, A0〉 ∪ 〈B1, B0〉 = 〈A1 ∪B1, A0 ∩B0〉

− 〈A1, A0〉 = 〈A0, A1〉

〈IC(X),∩,∪〉 is a distributive lattice whose induced partial order relation is

〈A1, A0〉 ⊆ 〈B1, B0〉 iff A1 ⊆ B1 and B0 ⊆ A0

This lattice is bounded by the least element O = 〈∅, X〉 and the greatest element I = 〈X, ∅〉,
moreover there exists the half element I

2 = 〈∅, ∅〉.

• The complementation − is a Kleene complementation since 〈A1, A0〉∩− 〈A1, A0〉 = 〈∅, A1 ∪A0〉
and 〈B1, B0〉 ∪ − 〈B1, B0〉 = 〈B1 ∪B0, ∅〉, and so

〈A1, A0〉 ∩ − 〈A1, A0〉 ⊆ 〈∅, ∅〉 ⊆ 〈B1, B0〉 ∪ − 〈B1, B0〉

The restriction to the present case (i.e., to ortho–pairs of subsets and their crisp representations
according to the identification (18)) of the implication (14) produces the ICS implication:

(19) 〈A1, A0〉 ⇒ 〈B1, B0〉 = 〈(Ac
1 ∩Bc

0) ∪A0 ∪B1, Ac
0 ∩B0〉

Let us note that this ICS implication connective has been introduced in the context of rough set
theory by Pagliani in [47, proposition 3.8] several years before the contribution [23] in the context
of the unit interval [0, 1], and surprisingly it results to be just the restriction of this latter to
the case of crisp ortho–pairs. A review of all the results concerning the Pagliani’s approach to
implication connectives in rough set algebras can be found in [48], and a contribution of ours is in
[15].

The complementation ∼ induced by (15c) in the present case assumes the form (equivalently
obtained from (19) by ∼ 〈A1, A0〉 := 〈A1, A0〉 ⇒ 〈∅, X〉):

∼ 〈A1, A0〉 = 〈A0, (A0)c〉

Making use of this Brouwer complementation as primitive connective together with the above
Kleene negation −, the ICS implication connective (19) assumes the equational form:

〈A1, A0〉 ⇒ 〈B1, B0〉 =
(

¬ ∼ ¬ 〈A1, A0〉 ∩ ¬ ∼ 〈B1, B0〉
)

∪ ∼ 〈A1, A0〉 ∪ 〈B1, B0〉

We can summarize all that saying:

• The ICS structure 〈IC(X),∩,∪,⇒, 〈∅, X〉〉 is a (S) Heyting algebra with the (unique) half
element 〈∅, ∅〉 (genuineness of the structure).

From this discussion it follows that we do agree with the following comment of [25]:

“It is worth pointing out that [the Atanassov’s IFS approach] may be seen as
a fuzzification of the ideas of sub–definite set, introduced some year before by
Narin’yani [45] who separately handles the (ordinary) set A1 of elements known
as belonging to the sub–definite set and the (ordinary) set A0 of elements known as
not belonging to it, with the condition A1∩A0 = ∅ (together with some constraints
about the cardinalities of A1 and A0).
Such a condition is extended to the two membership functions fA and gA, which
for IFS are supposed to satisfy the constraint (12).”

To the best of our knowledge, the concept of ICS has been introduced for the first time by M.
Yves Gentilhomme in [29] (see also [42]) in an equivalent way with respect to the one described
here. Indeed, in these papers pairs of ordinary subsets of the universe X of the kind 〈A1, Ap〉,
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under the condition A1 ⊆ Ap are considered. Of course, once introduced the following operations
on the Gentilhomme version of ICS:

〈A1, Ap〉 ∩ 〈B1, Bp〉 = 〈A1 ∩B1, Ap ∩Bp〉

〈A1, Ap〉 ∪ 〈B1, Bp〉 = 〈A1 ∪B1, Ap ∪Bp〉

− 〈A1, Ap〉 = 〈(Ap)c, (A1)c〉

∼ 〈A1, Ap〉 = 〈(Ap)c, (Ap)c〉

the mapping 〈A1, A0〉 → 〈A1, (A0)c〉 institute a one-to-one and onto correspondence which allows
one to identify the two approaches.

The pairs 〈A1, A0〉 where also considered in [19]. In this context they are called classical
preclusive propositions and analyzed from the point of view of algebraic rough approximations.
Indeed, to any ICS pair 〈A1, A0〉, it is possible to assign a fuzzy set f := 1

2 (χA1
+ χAc

0
) such that

its rough approximation r(f) := 〈fi(x), fe(x)〉 where

fi(x) :=

{

1 f(x) = 1

0 otherwise
fe(x) :=

{

1 f(x) = 0

0 otherwise

coincides with the starting pair, i.e., r(f) = 〈fi, fe〉 = 〈A1, A0〉.
Later on, Çoker [22] introduced in an independent way the so called “intuitionistic set” as a

weakening of IFS to classical sets, whose definition exactly coincides with ICS.

6.1. ICSs and shadowed sets. Let us consider the three-valued lattice of numbers from the real
unit interval {0, u, 1} totally ordered with respect to the order chain 0 ≤ u ≤ 1. If one interprets
the real value u as the interval (0, 1), this choice corresponds to a different approach to vagueness
proposed by Pedrycz in [49, 50, 51]. His intention was “to introduce a model which does not lend
itself to precise numerical membership values but relies on basic concepts of truth values (yes -
no) and on entire unit interval perceived as a zone of “uncertainty.” [49]. This idea of modelling
vagueness through vague (i.e., not purely numeric) information, lead him to the following definition
of shadowed sets.

Definition 6.1. Let X be a set of objects, called the universe. A shadowed set on X is any
mapping s : X → {0, u, 1}. We denote the collection of all shadowed sets on X as {0, u, 1}X, or
sometimes simply by S(X).

Let us introduce for any ICS 〈A1, A0〉 its uncertainty domain Au = X \ (A1 ∪ A0). Then the
mapping IC(X) 7→ S(X) defined by the law

〈A1, A0〉 → χA1
+ u · χAu

=











1 if x ∈ A1

u if x ∈ Au

0 if x ∈ A0

is a one-to-one and onto correspondence which allows one to identify ICS and shadowed sets.
In this way all the algebraic structures of ICSs are automatically inherited by shadowed sets, in
particular the one of Kleene algebra and the one of (S) Heyting algebra.

If for any fuzzy set f ∈ F(X) one introduces its necessity domain A1(f) := {x ∈ X : f(x) = 1}
and uncertainty domain Au(f) := {x ∈ X : f(x) 6= 0, 1}, then the mapping F(X) 7→ S(X) defined
by the law

f → χA1(f) + u · χAu(f) =











1 if f(x) = 1

u if f(x) 6= 0, 1

0 if f(x) = 0

is an onto correspondence which institutes a surjective morphism from the logical–algebraic struc-
tures (for instance (S) Heyting algebra) of fuzzy sets F(X) onto the corresponding logical-algebraic
structures of shadowed sets S(X). For a more detailed investigation about these algebraic argu-
ments, see our contribution [14].
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6.2. The three–valued extra condition characterizing ICS, and not FS and IFS. As
the Kleene condition (K) of the negation − distinguishes both FS and ICS as different algebraic
structures with respect to IFS, in this subsection we want to investigate another condition which
allows one to distinguish ICS as different from FS and IFS, the so called three–value condition:

(3) a∨ ∼ a = a ∨−a.

Indeed, it is easy to prove that inside IC(X) whatever be the pair a = 〈A1, A0〉 it is a∨ ∼ a =
〈A1, A0〉 ∨ 〈A0, (A0)c〉 = 〈A1 ∪A0, ∅〉 and a ∨ −a = 〈A1, A0〉 ∨ 〈A0, A1〉 = 〈A1 ∪A0, ∅〉, i.e., the
condition (3) is satisfied.

On the other hand, inside F([0, 5]), with [0, 5] the closed interval in R, if one considers the fuzzy
set f = (1/2) · χ(1,2) + χ[2,3] + (1/3) · χ(3,4), then f∨ ∼ f = χ[0,1] + (1/2) · χ(1,2) + χ[2,3] + (1/3) ·
χ(3,4) + χ[4,5] and f ∨−f = χ[0,1] + (1/2) · χ(1,2) + χ[2,3] + (2/3) · χ(3,4) + χ[4,5], i.e. the condition
(3) is not satisfied.

Finally, inside IF(X) the IFS a = 〈0.3,0.6〉 defined for any element x ∈ X as the pair of
constant fuzzy sets a(x) = 〈0.3, 0.6〉 is such that a∨ ∼ a = 〈0.3,0.6〉 and a ∨ −a = 〈0.6,0.3〉 and
so also in this case condition (3) is not satisfied.

7. Conclusions and final comments

We can summarize the different behavior of FS, IFS and ICS with respect to some relevant
algebraic conditions in the following table, where (D) stays for a de Morgan lattice which is not
Kleene (see definition 5.1):

FS IFS ICS

(K) for − yes no, but (D) yes
(S) for ∼ yes yes yes
(3) for ∼ no no yes

So, FS differs from IFS for condition (K), FS differs from ICS for condition (3), IFS differs from ICS
for both conditions (K) and (3). Let us recall that in [16, 17] a BK lattice (i.e., a distributive lattice
equipped with a Brouwer ∼ and a Kleene − complementations linked by the interconnection rule
− ∼ a =∼∼ a) which satisfies the further conditions (S) and (3) has been called a three–valued
BZ lattice. In the same paper it is shown that these structures are categorically equivalent to
three–valued  Lukasiewicz algebras introduced in [20] (see also [21]), based on the modal possibility
operator defined for every element a by µ(a) := − ∼ a. Thus, ICS are particular models of three–
valued BZ lattices (or, equivalently, three–valued  Lukasiewicz algebras). Recalling that from the
algebraic point of view ICS cannot be distinguished from shadowed sets, also these latter are
particular models of three–valued BZ lattices. A contribution of ours about suitable algebras for
shadowed sets, with the relation between fuzzy sets and shadowed sets can be found in [14]. A
deeper discussion involving algebraic arguments about ICS (and so also shadowed sets) will be
treated in a forthcoming paper of ours.

As to the terminological debate about intuitionism we have proved that

(i) Atanassov’s IFS structure based on the “negation” − of (13c) is not an algebraic model of
intuitionistic negation owing to the following drawbacks:

(a) the contradiction law accepted by intuitionistic logic is not satisfied by −;
(b) the negation − asserts the principle of double negation which is refused by intu-

itionistic logic;
(c) the negation − asserts the de Morgan law denoted in section 5 by (D-2c), also this

refused by intuitionistic logic.
(ii) All the FS, IFS and ICS (= shadowed sets) algebraic structures based on the “negation”
∼ induced by the corresponding Heyting algebra are genuine (non Boolean) models of the
intuitionistic negation.

(iii) Furthermore in all these cases principle (dM2), equivalently (S), is satisfied, which is not
asserted by Heyting intuitionistic negation discussed in [33].
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Let us remark that there exists a possible terminological chaos if one persists in the (Atanassov’s)
meta–attitude to append the term “intuitionistic” (resp., “non–intuitionistic”) to algebraic struc-
tures which are (resp., are not) models of this logic: indeed, IFS are simultaneously “intuitionistic
fuzzy sets” and “non–intuitionistic fuzzy sets” depending if one considers Atanassov’s original
approach with Kleene negation − of (13c) or the Brouwer negation connective ∼ of (15a). A kind
of contradiction.

From another point of view, in agreement with this meta–attitude, not only Atanassov’s “Ortho-
pairs of Fuzzy Sets” can be called intuitionistic fuzzy sets with respect to the Brouwer negation
(15a), but there is no reason to refuse that also standard “Fuzzy Sets” equipped with the Brouwer
negation (17a) can be called intuitionistic fuzzy sets. In this case we have that the same term
should denote two quite different algebraic structures. A real confusion.

In this case the problem resides exactly on the fact that “if we decide that the name ‘IFS’ must
be reserved for T–IFS [or other “intuitionistic” algebraic structure], as it was offered in [25], then
for each construction of this kind that satisfies intuitionistic logic axiomatic we have to invent new
name” [5]. As underlined before, in the present paper we denote FS for standard “Fuzzy Sets”
with behavior (K) and (S), IFS for “Ortho-pairs of Fuzzy Sets” with behavior (S), and ICS for
“Ortho-pairs of Crisp Sets” with the three-valued behavior (K), (S) and (3).

Let us conclude making some remarks to the following Atanassov’s answer given in [5]:

“In their paper Takeuti and Titani consider propositions (variables) valuated into
the range [0, 1], i.e., using fuzzy values, for which we can define such a degree of
membership function that satisfies the axiom of intuitionistic logic.”

In this statement there is a kind of confusion between syntax and semantic. It is not correct to
assert that one can define such a degree of membership function on [0, 1] in such a way that it
satisfies the axiom of intuitionistic logic (our interpretation of the above Atanassov’s statement).
On the contrary, it is correct to say that the semantic of Takeuti and Titani intuitionistic fuzzy
logic is based on [0, 1] equipped with suitable algebraic operations introduced in [56, p.851]. Indeed,
in [56] “Intuitionistic Fuzzy Logic” is constructed as a real “logical system”, with a clear syntax,
i.e., formalized language plus “axioms and inference rules [which] are those of intuitionistic logic
(Gentzen’s LJ) together with the extra axioms and inference rules which characterize the structure
of [0, 1].” The semantical aspect is based on the fact that “propositional variables are interpreted
as variables ranging over the closed interval [0, 1] of real numbers, and propositional constants
are interpreted as real numbers in [0, 1].” For this reason T–Intuitionistic Fuzzy Logic is defined
as [0, 1]–valued logic, and not with a spurious terminology attributed to an algebraic [0, 1] model
of this system (see section 5 of [56] for a semantic based on fuzzy sets [0, 1]X instead of on the
interval [0, 1]).

Summarizing, Intuitionistic Fuzzy Logic of [56] is a real logical system with something more
than an intuitionistic logic axiomatic since it assumes Gentzen’s LJ axioms of intuitionistic logic
plus 6 extra axioms and some extra inference rules. Its semantic is based on the real unit interval
[0, 1] equipped with suitable operations. So in the case of TT it is correct to say that it deals with
a real formalized logic of intuitionistic type, whose semantic is based on the fuzzy interval [0, 1],
i.e., we have to do with an intuitionistic fuzzy logic.

For completeness, in [5] it is announced that “in [7], [...] T. Trifonov and I defined the operations
‘implication’ and ‘negation’ on these propositions in such a way that they would as well satisfy
the axioms discussed in [56]”. But, at the moment we have not been able to obtain this Notes
IFS.
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occa degli Arcimboldi 8, I–20126 Milano (Italy)

E-mail address: {cattang,ciucci}@disco.unimib.it


