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Abstract

In this paper we present the logic FP(Łn,Ł) which allows to reason about the probability of fuzzy events formalized by means
of the notion of state in a MV-algebra. This logic is defined starting from a basic idea exposed by Hájek [Metamathematics of Fuzzy
Logic, Kluwer, Dordrecht, 1998]. Two kinds of semantics have been introduced, namely the class of weak and strong probabilistic
models. The main result of this paper is a completeness theorem for the logic FP(Łn,Ł) w.r.t. both weak and strong models. We
also present two extensions of FP(Łn,Ł): the first one is the logic FP(Łn, RPL), obtained by expanding the FP(Łn,Ł)-language
with truth-constants for the rationals in [0, 1], while the second extension is the logic FCP(Łn,Ł� 1

2 ) allowing to reason about
conditional states.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A fuzzy-logical treatment for the probability of classical (crisp) events has been widely studied in the last years. In
particular, starting from the basic ideas exposed by Hájek, Godo and Esteva in [14] and then later refined by Hájek
in [13], simple (i.e. unconditional) and conditional probability can be studied by using various kind of modal-fuzzy
logics (see [6,8–10,18]). The very basic idea allowing a treatment of simple probability inside a fuzzy-logical setting
consists of interpreting the probability of an (classical) proposition � as the truth value of a modal proposition P(�)

which reads � is probable.
Taking Łukasiewicz logic Ł as base logic, this is done by first enlarging the language of Ł by means of a unary

(fuzzy) modality P for probably, and defining two kinds of formulas: classical Boolean formulas �, �, . . . (which are
definable in Ł) and modal formulas: for each Boolean formula �, P(�) is an atomic modal formula and, moreover,
such a class of modal formulas, MF, is taken closed under the connectives of Łukasiewicz logic. And then by defining
a set of axioms and an inference rule reflecting those of a probability measure, namely:

(FP1) P(¬� ∨ �) → (P (�) → P(�)),
(FP2) P(¬�) ≡ ¬P(�),
(FP3) P(� ∨ �) ≡ ((P (�) → P(� ∧ �)) → P(�)),

and the necessitation Rule: from � deduce P(�) for any Boolean formula �.
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The resulting logic, FP(Ł), is sound and (finite) strong complete [13] with respect to the intended probabilistic
semantics given by the class of probabilistic Kripke models. These are structures M = 〈W, �, e〉 where W is a non-
empty set, e : W × BF → {0, 1} (where BF denotes the set of Boolean formulas) is such that, for all w ∈ W ,
e(w, ·) is a Boolean evaluation of non-modal formulas, and � is a finitely additive probability measure on a Boolean
subalgebra � ⊆ 2W such that, for every Boolean formula �, the set [�]W = {w ∈ W : e(w, �) = 1} is �-measurable,
i.e. [�]W ∈ � and hence �([�]W) is defined. Then, the truth-evaluation of a formula P� in a model M is given by
‖ P(�) ‖M= �([�]W) and it is extended to compound (modal) formulas using Łukasiewicz logic connectives. The
completeness result for FP(Ł) states that a (modal) formula � follows from a finite set of (modal) formulas � (using
the axioms and rules of FP(Ł)) iff ‖ � ‖M= 1 in any probabilistic Kripke model M that evaluates all formulas in �
with value 1. The same results holds FP(RPL), that is, if instead of Ł we use as base logic RPL, the expansion of Ł
with rational truth-constants. Thus both FP(Ł) and FP(RPL) are adequate for a treatment of simple probability.

An extension of the notion of probability to the framework of fuzzy sets was earlier defined by Zadeh in order to
represent and reasoning about sentences like the probability that the traffic in Rome will be chaotic tomorrow is 0.7.
Clearly, the modeling of this kind of knowledge cannot be done using the classical approach to probability since, given
the un-sharp nature of events like chaotic traffic, the structure of such fuzzy events cannot be considered to be a Boolean
algebra any longer. The study of finitely additive measures in the context of MV-algebras, structures more general than
Boolean algebras, was started by Mundici in [20] and further developed by Mundici and Riečan in [21], as well as by
Kroupa [17].

Therefore, a fuzzy logical approach to reason about the probability of fuzzy events is, in our opinion, a natural
generalization of the previous works which can bring an important improvement to their expressive power and, moreover,
it can be also useful from the point of view of applications. In logical terms, this can be approached by assuming that
the logic of events is a (suitable) many-valued logic and by defining and axiomatizing appropriate probability-like
measures on top of the many-valued propositions.

In [13] Hájek already proposed a logic built up over the Łukasiewicz predicate calculus Ł∀ allowing a treatment of
(simple) probability of fuzzy events. To model this kind of probability, Hájek introduced in Ł∀ a generalized fuzzy
quantifier standing for most together with a set of characteristic axioms and denoted his logic by Ł∀ ∫ . In his monograph
Hájek also proposed two (Kripke-style) probabilistic semantics for this logic, called weak and strong. A variant of these
two kinds of models will be introduced in detail later on, but roughly speaking they can be described as follows:

• A weak probabilistic model for Ł∀ ∫ evaluates a modal formula P(�) by means of a finitely additive measure (or
state) defined over the MV-algebra of provably equivalent Łukasiewicz formulas (see [16–21] for a detailed definition
of state over an MV-algebra).

• A strong probabilistic model for Ł∀ ∫ consists of a probability distribution 	 over the set of all the evaluations of
the events (remember that an event is now a formula of the Łukasiewicz calculus). Then the truth value of a modal
formula P(�) is defined as the integral of the fuzzy-set of all the evaluations of � under the measure 	.

Hájek shows this logic is Pavelka-style complete w.r.t. weak probabilistic models, but the issue of completeness w.r.t.
the strong semantics still remains as an open problem.

In this paper, instead of considering a predicate calculus, we want to remain at a propositional level and investigate
probabilistic completeness in the usual sense by using the same approach as in the above FP(Ł) logic, but considering
fuzzy events instead of Boolean events. In particular we will use the finite-valued Łukasiewicz logics Łn (for any n > 2)
in order to treat fuzzy events and we will consider for them weak and strong models adapted to our case. We will use
FP(Łn, Ł) to denote such a logic. This notation, although it differs from Hájek’s original notation, allows us to point
out both, the logic of events (the first argument) and the logic which is used in order to reason about modal formulas
P(�) (the second argument).

The reasons why we have decided to start with modeling fuzzy events as formulas of a finitely valued Łukasiewicz
logic Łn and not of the infinitely valued Łukasiewicz logic (such a logic would be denoted by FP(Ł, Ł)) are essentially
the following:

(a) Finitely valued Łukasiewicz logics Łn are natural generalizations of classical Boolean logic and extensions of the
infinitely valued Łukasiewicz logic Ł, with good logical and algebraic properties, hence a good compromise.

(b) Studying FP(Łn, Ł) could make the study of FP(Ł, Ł) easier which, indeed, seems quite problematic. The idea
is, in fact, to treat the logic FP(Ł, Ł) as a limit case of FP(Łn, Ł) when n tends to infinity. Just remember that
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this is what happens in Ł: a formula is a theorem of Ł iff it is a theorem of Łn for all n ∈ N (see [2] for more
details).

In this paper we will prove that, for each n ∈ N, FP(Łn, Ł) is (finite) strong complete w.r.t. both classes of weak
and strong models.

This paper is organized as follows. In Section 2 we recall some known logical and algebraic notions and results which
will be used throughout this paper. In Section 3 we define the logic FP(Łn, Ł) and we also introduce the classes of
weak and strong probabilistic models, while in Section 4 we prove that FP(Łn, Ł) is complete (in the usual sense) w.r.t.
these both classes of models. In Section 5 we present two extensions of FP(Łn, Ł): the logic FP(Łn, RPL) obtained
by expanding the FP(Łn, Ł)-language with rational truth-constants, and the logic FCP(Łn, Ł� 1

2 ) allowing to reason
about conditional probabilities (states). Finally, Section 6 contains some concluding remarks and the outline of our
future work.

2. Preliminaries

2.1. Łukasiewicz logics

In this first part we introduce some (well) known notions about finitely valued and infinitely valued Łukasiewicz
logics which will be used throughout the rest of this paper.

For both logics we will consider a language consisting of a countable set of propositional variables V = {p1, p2, . . .},
two binary connectives & and → and the truth-constant 0. Further connectives are defined as follows:

¬� stands for � → 0,
� ⊕ � stands for ¬(¬�&¬�),
� ≡ � stands for (� → �)&(� → �),
� ∧ � stands for �&(� → �),
� ∨ � stands for ((� → �) → �) ∧ ((� → �) → �).

The set of formulas built from with this language will be denoted Fm(V ).

Definition 2.1 (cf. Cignoli et al. [2], Grigolia [12], Hájek [13]). The infinitely valued Łukasiewicz logic Ł is defined
by the following axioms:

(Ł1) � → (� → �),
(Ł2) (� → �) → ((� → 
) → (� → 
)),
(Ł3) ((� → 0) → (� → 0)) → (� → �),
(Ł4) ((� → �) → �) → ((� → �) → �).

and the only deduction rule is modus ponens: from � and � → � deduce �.
For each n ∈ N, the (n + 1)-valued Łukasiewicz logic Łn is the schematic extension of Ł with the following two

axiom schemata:

(Ł5) (n − 1)� ≡ n�,
(Ł6) (k�k−1)n ≡ n�k for each integer k = 2, . . . , n − 2 that does not divide n − 1,

where n� is an abbreviation for � ⊕ · · · ⊕ � (n-times) and �k is an abbreviation for �& . . . &� (k-times).

The notions of theorem and proof are defined as usual. As for notation, given a theory (i.e. a set of formulas) � and
a formula �, we will write ��Ł� (resp., ��Łn�) to say that � is derivable from � in Ł (resp., in Łn).

The algebraic counterpart for the logic Ł is the variety of MV-algebras while the algebraic counterpart for the logics
Łn are the MV-subvarieties MVn defined next, where we use the same notation for the algebraic operation as for the
corresponding logical connectives. We note that MV-algebras are traditionally defined taking ⊕ and ¬ as primitive
operations instead of & and →. In that case the corresponding algebras are called Wajsberg-algebras, and they are
definitionally equivalent to MV-algebras.
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Definition 2.2. An MV-algebra is an algebra A = 〈A, ⊕, ¬, 0〉 of type 〈2, 1, 0〉 such that 〈A, ⊕, 0〉 is a commutative
monoid satisfying the following equations:

x ⊕ ¬0 = ¬0,
¬¬x = x,
¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

An MVn algebra is an MV-algebra further satisfying the equations:

nx = (n − 1)x,
(kxk−1)n = nxk , for every natural k = 2, . . . , n − 2 not dividing n − 1,

where again nx is an abbreviation for x ⊕ · · · ⊕ x (n-times) and xk is an abbreviation for x& . . . &x (k-times), with
x&y standing for ¬(¬x ⊕ ¬y).

If ∼Ł and ∼Łn denote the relations of provable equivalence over Ł and Łn, respectively, the Lindenbaum algebras
Fm(L)/∼Ł and Fm(L)/∼Łn are examples of (non-linearly ordered) MV and MVn-algebras, respectively.

A prototypical example of a linearly ordered MV-algebra is the algebra over the real unit interval, so-called standard,
[0, 1]MV = 〈[0, 1], ⊕, ¬, 0〉, where for each x, y ∈ [0, 1], x ⊕ y = min{1, x + y} and ¬x = 1 − x. Replacing the real
unit interval [0, 1] by the set Sn = {0, 1/n, . . . , (n − 1)/n, 1}, and defining the operations ⊕ and ¬ as the restriction
of those of [0, 1]MV to {0, 1/n, . . . , (n − 1)/n, 1}, the obtained structure is the standard MVn-algebra Sn.

An evaluation of formulas into [0, 1]MV (or [0, 1]MV-evaluation) is a map e from the set V of propositional variables
into [0, 1] which is extended to all formulas by induction as follows: e(0) = 0, e(� ⊕ �) = max(1, e(�) + e(�)) and
e(¬�) = 1−e(�). A formula � is a tautology over [0, 1]MV if e(�) = 1 for any [0, 1]MV-evaluation e. Moreover, � is a
logical consequence of a set of formulas � over [0, 1]MV, written ��[0,1]MV�, if e(�) = 1 for every [0, 1]MV-evaluation
e such that e(�) = 1 for all � ∈ �. The notions of Sn-evaluation, and tautology and logical consequence over Sn are
defined analogously.

Infinitely valued Łukasiewicz logic Ł is known to be finite strongly complete w.r.t. the standard MV-algebra [0, 1]MV
(cf. [13]). This means that, given a finite theory � and a formula �, ��Ł� iff ��[0,1]MV�. On the other hand, (n + 1)-
valued Łukasiewicz logic Łn is known to be strong complete, i.e. it holds that ��Łn� iff ��Sn� for arbitrary theories
� (cf. [2]).

Remark 2.3. Notice that strong completeness for Ł does not hold, there are infinite theories � and formulas � such
that � is a logical consequence of � but � � �Ł�. A nice example is available in [13].

2.2. Probability on MV-algebras

The classical notion of (finitely additive) probability measure on Boolean algebras was generalized in [20] by the
notion of state on MV-algebras.

Definition 2.4 (Mundici [20]). By a state of an MV-algebra A = 〈A, ⊕, ¬, 0〉 we mean a function s : A → [0, 1]
satisfying:

(i) s(0) = 0,
(ii) s(¬x) = 1 − s(x),

(iii) if x&y = 0, then s(x ⊕ y) = s(x) + s(y).

In [20] it is shown that a state s on an MV-algebra A further satisfies the two following properties for all x, y ∈ A:

(iv) s(x ⊕ y) = s(x) + s(y) − s(x&y),
(v) if x�y then s(x)�s(y).

Interesting examples of MV-algebras are the so-called Łukasiewicz clans of functions. Given a non-empty set X,
consider the set of functions [0, 1]X. A (Łukasiewicz) clan over X is a subset C ⊆ [0, 1]X such that

1. if f, g ∈ C then f ⊕ g ∈ C,
2. if f ∈ C then ¬f ∈ C,
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where the operations ⊕ and ¬ are the point-wise extensions of the operations in the standard MV-algebra [0, 1]MV. A
clan T over X is called a (Łukasiewicz) tribe when it is closed with respect to a countable (pointwise) application of
the ⊕ operation, i.e. if the following condition:

if {fn | n ∈ N} ⊆ T then
⊕

n∈N fn ∈ T

holds. In particular [0, 1]X and (Sn)
X with the above operations are examples of Lukasiewicz tribes.

In [23], Zadeh introduced the following notion of probability on fuzzy sets. A fuzzy subset of X can be considered
just as a function � ∈ [0, 1]X. Then, given a probability measure p : 2X → [0, 1] on X, the probability of � is defined
as

p∗(�) =
∑
x∈X

�(x) · p(x),

where we have written p(x) for p({x}). Indeed, p∗ is an example of state over the tribe [0, 1]X. The restriction of p∗
over the Sn-valued fuzzy sets is also an example of state over (Sn)

X.

3. The logic FP(Łn, Ł) and its semantics

In this section we will define the modal-fuzzy logic FP(Łn, Ł). Moreover, the classes of weak and strong probabilistic
Kripke models will be introduced.

Definition 3.1. The language of the logic FP(Łn, Ł) is built over a countable set of propositional variables V =
{p1, p2, . . .}, the truth-constant 0, the connectives of Łukasiewicz logic, namely &, →, and a symbol P for the modality
probably. Formulas of FP(Łn, Ł) split into two classes:

• The set Fm(V ) of non-modal formulas: these will be formulas of Łn. Non-modal formulas will be denoted by lower
case greek letters �, � . . . .

• The set MFm(V ) of modal formulas, built from atomic modal formulas P(�), with � ∈ Fm(V ), using connectives
&, → and the truth-constant 0. We shall denote them by upper case greek letters �, � . . . .

Axioms and rules of FP(Łn, Ł) are as follows:

• Axioms of Ł for modal and non-modal formulas.
• Axioms (Ł5) and (Ł6) restricted to non-modal formulas.
• The following axiom schemata for the modality P:

(FP1) P (¬�) ≡ ¬P(�),
(FP2) P (� → �) → (P (�) → P(�)),
(FP3) P (� ⊕ �) ≡ [(P (�) → P(�&�)) → P(�)].

• The rule of modus ponens (for modal and non-modal formulas).
• The rule of necessitation: from � derive P�.

The notion of proof in FP(Łn, Ł), denoted �FP, is defined as usual. For instance, given a modal theory � we will
write ��FP� to denote that � is provable from � in FP(Łn, Ł).

As anticipated in the introduction, for FP(Łn, Ł) we consider two kinds of probabilistic Kripke models. The first
kind of models is the class of weak probabilistic Kripke models which are defined as follows:

Definition 3.2. A weak probabilistic Kripke model (or weak model) for FP(Łn, Ł) is a system M = 〈W, e, I 〉
where:

• W is a non-empty set whose elements are called nodes.
• e : W × V → {0, 1/n, . . . , (n − 1)/n, 1} is such that, for each w ∈ W , e(w, ·) : V → {0, 1/n, . . . , (n − 1)/n, 1}

is an evaluation of propositional variables which extends to a Sn-evaluation of (non-modal) formulas of Fm(V ) in
the usual way.
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• For each � ∈ Fm(V ), define the course of values of � as the function �#
W : W → [0, 1] by putting �#

W(w) = e(w, �).
The set of courses of values FmW = {�#

W | � ∈ Fm(V )} is a clan over W.
• I is a state over the clan FmW , i.e. I : FmW → [0, 1] satisfies:

(i) I (1
#
W) = 1,

(ii) I (¬�#
W) = 1 − I (�#

W),
(iii) I (�#

W ⊕ �#
W) = I (�#

W) + I (�#
W) − I (�#

W &�#
W),

where ¬, ⊕ and & here are taken as the point-wise extensions of the Lukasiewicz operations in [0, 1]MV.

Given a weak probabilistic Kripke model M for FP(Łn, Ł), a formula � and a w ∈ W , the truth value of � in M
at the node w (‖�‖M,w) is inductively defined as follows:

• if � is a non-modal formula �, then ‖�‖M,w = e(w, �),
• if � is an atomic modal formula P(�), then ‖P(�)‖M,w = I (�#

W),
• if � is a non-atomic modal formula, then its truth value is computed by evaluating its atomic modal sub-formulas,

and then by using the truth functions associated to the Ł-connectives occurring in �.

Note that if � is a modal formula, then its truth value in a weak probabilistic Kripke model is independent from w, thus
we will omit the subscript w. The notions of model and validity of a formula in a theory are defined as usual.

The second kind of models for FP(Łn, Ł) is the class of strong probabilistic Kripke models which are defined as
follows.

Definition 3.3. A strong probabilistic Kripke model (or strong model) for FP(Łn, Ł) is a system N = 〈W, e, 	〉,
where W and e are defined as in the case of a weak probabilistic Kripke model (Definition 3.2) and 	 is a probability
distribution on W, i.e. 	 : W → [0, 1] satisfies∑

w∈W

	(w) = 1.

Evaluations of formulas of FP(Łn, Ł) in a strong probabilistic Kripke model N are defined as in the case of weak
model except for the case of atomic modal formulas:

• If � is an atomic modal formula P(�), then

‖P(�)‖N =
∑
w∈W

e(w, �) · 	(w).

Notice that the name strong is indeed justified by the fact that each strong probabilistic model M = 〈W, e, 	〉 induces
a weak probabilistic model M′ = 〈W, e, I	〉, where I	 : FmW → [0, 1] is defined as

I	(�#
W) =

∑
w∈W

e(w, �) · 	(w),

which is equivalent in the sense that ‖�‖M = ‖�‖M′ for any modal �.
It is easy to show that FP(Łn, Ł) is sound with respect to the classes of both weak and strong probabilistic models.

4. Weak and strong probabilistic completeness for FP(Łn, Ł)

This section will be devoted to the proof of the main theorems of this paper. Namely, we are going to prove that
FP(Łn, Ł) is complete w.r.t. the classes of both weak and strong probabilistic models.

To do this we will follow the technique used in [13]: for each modal formula �, let �� be obtained from � by
replacing every occurrence of an atomic sub-formula of the form P(�) by a new propositional variable p�. We write
(P (�))� = p� and, for each modal formulas � and 
, we inductively define (� ◦ 
)� = �� ◦ 
� (with ◦ ∈ {&, →})
and 0

� = 0.



T. Flaminio, L. Godo / Fuzzy Sets and Systems 158 (2007) 625–638 631

Let now � be a modal theory of FP(Łn, Ł). Analogously we can define �� and FP� as

�� = {�� | � ∈ �}
and

FP� = {Υ � | Υ is an instance of (FPi), i = 1, 2, 3} ∪ {p� | Łn��},
respectively.

Using the same technique used in [13] it is not difficult to prove that, if � is any modal formula of FP(Łn, Ł)

� � �FP� iff �� ∪ FP� � �Ł��. (1)

Since the set V 0 ⊂ V of propositional variables appearing in �∪{�} is finite, without loss of generality we can assume
to work with a finitely generated (over V 0) non-modal language Fm(V 0).

Notice then that the Lindenbaum algebra

Fm(V 0)/∼n,

where ∼n denotes the relation of provable equivalence in Łn, is finite (see [2] for more details). This means that there
are only finitely many different classes

[�]∼n = {� ∈ Fm(V 0) | Łn�� ≡ �},
For each [�]∼n we can choose a representative of the class, we will denote it by ��. Again notice that there are only
finitely many ��’s. Let us now adopt the following further translation:

• For each modal formula �, let �� be the formula resulting from the substitution of each propositional variable p�
occurring in �� by p�� .

• If � = � ◦ 
 then �� = �� ◦ 
� (with ◦ ∈ {&, →}) and 0
� = 0.

In accordance with such translation, we define �� and FP� as:

�� = {�� | �� ∈ ��}
and

FP� = {Υ � | Υ is an instance of (FPi), i = 1, 2, 3} ∪ {p�� | Łn��}.
Now we can prove the following:

Lemma 4.1. �� ∪ FP��Ł�� iff �� ∪ FP��Ł��.

Proof. (⇐): Let �� ∪ FP��Ł��. Then, in order to get the claim we have to show that �� ∪ FP��Ł�� for each � such
that its “boxed” translation is ��. For instance, if � = P� then �� = p�� = p�� for each � ∈ [�]∼n , therefore, if

�� ∪ FP��Łp�� we have to show that �� ∪ FP��Łp� for each � ∈ [�]∼n .

First of all let us prove the following:

Claim A. Let �, � be Łn-formulas. Then, if Łn�� ≡ �, then FP(Łn, Ł)�P(�) ≡ P(�) (and in particular FP��Łp�
≡ p�).

Proof of Claim A. Łn�� ≡ � means that Łn�(� → �)&(� → �) and thus Łn�(� → �) ∧ (� → �). In par-
ticular, we have that Łn�� → � and Łn�� → �. If Łn�� → �, then FP(Łn, Ł)�P(� → �) and therefore (it
follows from the monotonic property of P) FP(Łn, Ł)�P(�) → P(�). Analogously we can show that, if Łn�� → �,
then FP(Łn, Ł)�P(�) → P(�). Therefore, FP(Łn, Ł)�P(�) → P(�) and FP(Łn, Ł)�P(�) → P(�) and thus
FP(Łn, Ł)�P(�) ≡ P(�). �
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Let us now turn back to the proof of Lemma 4.1. Let � be a modal formula of FP(Łn, Ł) and let P(�1), . . . , P (�k)

be all the atomic modal formulas occurring in �. If �� ∪ FP��Ł��, then, it easily follows from the above claim that
�� ∪ FP��Ł�� where �� is any Ł-formula obtained by replacing each occurrence of a propositional variable p�i

with
another one p�i

such that �i ∈ [�i]∼n . In fact, if �i ∈ [�i]∼n , then Łn��i ≡ �i and therefore, from the above claim,
FP��Łp�i

≡ p�i
. Thus p�i

can be substituted with p�i
without loss of generality in the proof. Thus, in particular

�� ∪ FP��Ł�� and this direction is complete.
(⇒): In order to prove the other direction let us assume �� ∪ FP��Ł�� and let ��

1, . . . ,�
�
k be an Ł-proof of ��

in �� ∪ FP�. For each 1�j �k replace ��
j with ��

j , the representative of its equivalence class modulo ∼n. Clearly

��
1 , . . . ,��

k is an Ł-proof of (a formula logically equivalent to) ��. In fact, if ��
k = ��, then ��

k ≡ ��. Moreover,
for each 1� i < k one of the following holds:

(i) ��
i is (logically equivalent to) an axiom of Ł,

(ii) ��
i ∈ �� ∪ FP�,

(iii) if ��
t is obtained by modus ponens from ��

s → ��
t and ��

s , then we claim that ��
t is obtained by modus ponens

from ��
s → ��

t and ��
s . In fact we have just to note that (�s → �t )

� = ��
s → ��

t and thus the claim easily
follows.

Moreover, since modus ponens is the only inference rule of Ł we have nothing to add. This concludes the proof of
Lemma 4.1. �

Theorem 4.2. The logic FP(Łn, Ł) is sound and (finite) strongly complete with respect to the class of weak probabilistic
Kripke models.

Proof. As usual soundness is easy. In order to prove is completeness, let us assume that � ∪ {�} a finite modal theory
of FP(Łn, Ł) such that � � �FP�.

By using (1) and Lemma 4.1 we have the following:

� � �FP� iff �� ∪ FP� � �Ł��. (2)

The task is now to find a weak probabilistic Kripke model M of � such that ‖�‖M < 1. Notice that now �� ∪ FP� is
a finite Ł-theory, therefore (2) and the finite strong standard completeness of Łukasiewicz logic ensure that, if � � �FP�,
then there exists an Ł-evaluation v which is a model for �� ∪ FP�, and such that v(��) < 1.

Let now M be the system M = 〈�n, e, I 〉, where �n is a shorthand for �Łn , the class of all the Łn-evaluations over
the formulas Fm(V ), e : �n ×V → {0, 1/n, . . . , n−1/n, 1} is defined as e(w, q) = w(q) if q ∈ V 0 and e(w, q) = 0
otherwise, and I : Fm�n

→ [0, 1] is defined as �(�#
�n

) = v(p��). For the sake of a lighter notation, we will write �#

instead of �#
�n

. In order to prove that M is a weak probabilistic Kripke model for FP(Łn, Ł) we have just to show that
the following properties for I hold:

(1) If Łn�� ≡ �, then I (�#) = I (�#): if Łn�� ≡ �, then �� = �� and thus the claim follows.
(2) If Łn��, then I (�#) = 1: if Łn��, then � ∈ [1] and thus the claim follows by the above property (1).
(3) I (¬�#) = 1 − I (�#). This instance of axiom FP1, p(¬�)� ≡ ¬p�� , is in FP�, hence we have I (¬�#) =

I ((¬�)#) = v(p(¬�)�) = v(¬p��) = 1 − v(p��) = 1 − I (�#).

(4) I (�# ⊕ �#) = I (�#) + I (�#) − I (�#&�#). This instance of axiom FP2, p(�⊕�)� ≡ (p�� → p��) → p(�&�)� ,

is in FP�, hence I (�# ⊕�#) = I ((�⊕�)#) = v(p(�⊕�)�) = v(p��)+v(p��)−v(p(�&�)�) = I (�#)+I (�#)−
I (�#&�#).

Then M is a weak probabilistic Kripke model for FP(Łn, Ł). Moreover, it is trivial to observe that M is clearly a
model for �, but ‖�‖M < 1. This ends the proof of the theorem. �

Theorem 4.3. The logic FP(Łn, Ł) is sound and (finite) strongly complete with respect to the class of strong proba-
bilistic Kripke models.
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Proof. Let � ∪ {�} be a finite subset of modal formulas of FP(Łn, Ł) and let us assume � � �FP�. From the above
theorem, there is a weak probabilistic Kripke model M for FP(Łn, Ł) such that ‖�‖M = 1 for each � ∈ �, but
‖�‖M < 1. Moreover, without loss of generality we can assume M = 〈�n, e, I 〉 to be the weak model defined as in
the previous proof. In particular recall that �n is the set of all the Łn-evaluations over the propositional variables V,
e : W × V → {0, 1/n, . . . , n − 1/n, 1}, for each w ∈ �n and for each q ∈ V , is defined as e(w, q) = w(q) if q is
a propositional variable occurring in � ∪ {�} and e(w, q) = 0 otherwise, and I : Fm�n

(V ) → [0, 1] is defined as
I (�#) = v(p��) (�� being defined as above). The state I defines a probability on formulas � by putting �(�) = I (�#).

Now let us recall what Paris has shown in [22]. For each i = 0, . . . , n, the McNaughton theorem ensures the existence
of a formula �i (q), defined using just the propositional variable q, such that, for each Łn-evaluation w,

w(�i (q)) =
{

1 if w(q) = i/n,

0 otherwise.

Now remember that we are working with the finite set V 0 = {q1, . . . , qm} of propositional variables, then for each
w ∈ W , let 
w be the following formula:


w = �i1
(q1) ∧ �i2

(q2) ∧ · · · ∧ �im
(qm),

where w(qr) = ir/n. It is easy to see that w(
w) = 1 and w(
w′) = 0 for each w′ �= w. Then, under such conditions,
Paris shows that the probability � is defined as

�(�) =
∑

w∈�n

�(
w) · w(�)

(see [22] for more details).

Now we define N = 〈�n, e, 	〉, where �n and e are defined as in M, and 	 : W → [0, 1] is defined as 	(w) = �(
w).
Then the following holds:

Claim B. (1)
∑

w∈W 	(w) = 1, i.e. N is a strong probabilistic Kripke model for FP(Łn, Ł)

(2) For each modal formula �, ‖�‖N = v(��).

Proof of Claim B. (1) It is easy to check (see e.g. [22]) that Łn�
∨

w∈W 
w, and since the 
w’s are Boolean, i.e.
Łn�
w∨¬
w, the weak and strong disjunction coincide over the 
w’s, hence we also have

Łn�
⊕
w∈W


w.

Moreover, since the 
w’s are also mutually contradictory, i.e. Łn�
w&
w′ ≡ 0 for w �= w′, we also have

Łn�¬
w ≡
⊕
w′ �=w


w′ .

Thus we get FP(Łn, Ł)�P(
⊕

w∈W 
w), and FP(Łn, Ł)�¬P
w ≡ P(
⊕

w′ �=w 
w′). Now, by (FP3) and taking into

account that 
w&
w′ ≡ 0 for w �= w′, we get FP(Łn, Ł)�
⊕

w∈W P
w and FP(Łn, Ł)�¬P
w ≡ ⊕
w′ �=w P
w′ ,

hence

FP��Ł

⊕
w∈W

p
�
w

and

FP��Ł¬p
w
≡
⊕
w′ �=w

p
�
w′ .



634 T. Flaminio, L. Godo / Fuzzy Sets and Systems 158 (2007) 625–638

Then, since v is a model of FP�, it follows:

1 = v

(⊕
w∈W

p
�
w

)
=
∑
w∈W

v(p(
�
w)) =

∑
w∈W

�(
w) =
∑
w∈W

	(w).

(2) By induction:

• � = P�,
‖�‖M = ∑

w 	(w) · e(w, �) = ∑
w �(
w) · w(�) = �(�) = v(p��) = v(��),

� = � ◦ �, for ◦ ∈ {&, →},
‖�‖M = ‖� ◦ �‖M = ‖�‖M � ‖�‖M = v(��) � v(��) = v((� ◦ �)�) = v(��),

where � is the truth-function corresponding to ◦. �

Finally, it follows from the above claim that ‖�‖M = 1 for each � ∈ �, but ‖�‖M < 1 as desired. This completes
the proof. �

5. Extensions

In this section we comment on two extensions of the logics FP(Łn, Ł) regarding the logic used to reason with
probability formulas. One is obtained replacing Ł by the so-called Rational Pavelka logic, RPL, the expansion of Ł
with rational truth-constants. The resulting logic FP(Łn, RPL) will allow us to reason with explicit (rational) probability
values. The other is obtained replacing Ł by the stronger logic Ł� 1

2 in order to allow also reasoning with conditional
probabilities of fuzzy events.

5.1. Extending the logic FP(Łn, Ł) with rational truth values

In this section we are going to extend the logic FP(Łn, Ł) with truth-constants for the rational values in [0, 1]. The
idea underlying this extension is the same as used by Hájek in [13] in order to add the rational values to FP(Ł). In order
to define such an extension we will replace the Łukasiewicz logic Ł in FP(Łn, Ł) by the so-called Rational Pavelka
logic, RPL for short.

RPL is obtained by adding to the language of Ł a countable class of truth-constants, one constant r for every rational
r ∈ [0, 1]. The axioms and rules of RPL are those of Ł plus the following schema for rational constants (the so called
bookkeeping axioms), namely:

(r → s) ≡ min(1, 1 − r + s),

(r&s) ≡ max(0, r + s − 1),

for all r, s ∈ [0, 1] ∩ Q. Using RPL as base many-valued logic, we can define the following fuzzy-modal logic.

Definition 5.1. The language of the logic FP(Łn, RPL) over a countable set of propositional variables V is obtained by
adding to the language of FP(Łn, Ł) a truth-constant r for every rational r ∈ [0, 1]. Formulas of FP(Łn, RPL) consist
of

(i) The set Fm(V ) of non-modal formulas as in the case of FP(Łn, Ł) (see Definition 3.1).
(ii) The class of modal formulas RMFm(V ) is defined as the smallest set of formulas such that, P(�) ∈ RMFm(V )

for each � ∈ Fm(V ), r ∈ RMFm(V ) for each r ∈ [0, 1] ∩ Q, and closed under the connectives of Łukasiewicz
logic.

The axioms and rules of FP(Łn, RPL) are those of FP(Łn, Ł) plus the previously defined book-keeping axioms for the
truth-constants r .

The notion of proof, still denoted �FP, is defined as usual.
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Weak and Strong models for FP(Łn, RPL) are defined as in the case of FP(Łn, Ł) (see Definitions 3.2 and 3.3). The
evaluation of FP(Łn, RPL)-formulas into a weak (strong) models is defined by adding to Definition 3.2 (Definition 3.3
resp.) a further condition for the truth-constants:

‖r‖M = r.

for each r ∈ [0, 1] ∩ Q in each weak (strong) probabilistic model M.
Notice that the logic FP(Łn, RPL) is quite more expressive that FP(Łn, Ł). In fact it is now possible to deal with

formulas like, for instance, P(�) ↔ 1
2 and P(�) → 1

3 whose intended interpretation is that the probability of � is 1
2

and the probability of � is at most 1
3 , respectively, and so forth.

From Theorems 4.2 and 4.3, it is not difficult to prove that FP(Łn, RPL) is also sound and (finite) strongly complete
w.r.t. both the classes of weak and strong probabilistic models. In fact RPL is also finitely strong standard complete
(see [13]). This means that, if � ∪ {�} is a finite RPL-theory, then ��RPL� iff e(�) = 1 for each RPL-evaluation e
model of �.

Let now � ∪ {�} be a modal theory over FP(Łn, RPL) and let us assume � � �FP� (where �FP is now in the sense of
FP(Łn, RPL)). Let � be the translation mapping defined as in the proof of Theorem 4.2. Following the same line used
in such a proof it is easy to prove that the following hold:

(1) � � �FP� iff �� ∪ FP� � �RPL��,
(2) �� ∪ FP� is a finite RPL-theory.

Therefore, also in this case it is easy to define (modulo the finite strong standard completeness of RPL) a weak
FP(Łn, RPL)-model M such that ‖�‖M = 1 for each � ∈ �, but ‖�‖M < 1.

It is straightforward to adapt the proof of Theorem 4.3 also to FP(Łn, RPL), therefore, FP(Łn, RPL) is also finite
strong complete w.r.t. the class of strong probabilistic models.

As usual, when we extend a logic by means of rational truth values it is possible to define the notions of provability
degree and truth degree of a formula � over an arbitrary theory �. For FP(Łn, RPL) they are defined as follows:

Definition 5.2. Let � be an FP(Łn, RPL) modal theory and let � be a modal formula. Then, the provability degree of
� over � is defined as

|�|� = sup{r ∈ [0, 1] ∩ Q | ��FPr → �},
and the truth degree of � over � is defined as

‖�‖� = inf{‖�‖M | M is a weak probabilistic model of �}.

Now we are going to show that FP(Łn, RPL) is Pavelka-style complete. Just as a remark notice that, with respect
to this kind of completeness, we are allowed to relax the hypothesis about the cardinality of the modal theory we are
working with. In fact � is assumed to be an arbitrary (countable) theory, not necessarily finite. This is due to the fact that
RPL is indeed strong Pavelka-style complete. Now the Pavelka-style completeness for FP(Łn, RPL) reads as follows.

Theorem 5.3. For each modal theory � over FP(Łn, RPL) and each modal formula �,

|�|� = ‖�‖�.

The proof of this theorem is routine (see for instance [13, Theorem 8.4.9]).
We end this section with the following remark.

Remark 5.4. Note in the above proof that we have not required the modal theory � to be finite. This would allow us
to also prove a Pavelka-syle completeness also for the logic FP(Ł, RPL) using the same working methodology. This
result can be seen as another step forward in the direction of proving the logic FP(Ł, Ł) to be finite strong complete
w.r.t. the classes of weak and/or strong probabilistic Kripke models.
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5.2. Towards a logic of conditional probability for fuzzy events

While there seems to be an agreement on the notion of state as the proper generalization of probability on MV-algebras,
the generalization of the notion of conditional probability on MV-algebras is a matter of discussion. Indeed, in the last
years, different answers have been provided to the question “what is a conditional state?" (see [5,11,15]). Roughly
speaking there have been two main approaches: in the first one, exploited in [5,11], and similarly to what happens e.g.
in classical probability theory under de Finetti’s interpretation, a conditional state is introduced as a primitive notion,
that is, as a two-place function s(· | ·) satisfying some basic properties. For instance, Gerla generalizes in [11] a notion
of conditional state previously proposed by Di Nola et al. in [5]. The definition is as follows, where B(A) denotes the
Boolean skeleton of the MV-algebra A, that is, B(A) = {x ∈ A | x ⊕x = x}, which is the largest sub-Boolean algebra
of A.

Definition 5.5 (Gerla [11]). A conditional state of an MV-algebra A is a function s : A × B → [0, 1], where B ⊆ A

is an MV-bunch, 1 satisfying the following conditions:

(i) s(· | y) is a state on A for every y ∈ B,
(ii) s(y | y) = 1 for each y ∈ B ∩ B(A),

(iii) s(x&y | z) = s(y | z) · s(x | y&z) for any x ∈ A, y ∈ B(A), z ∈ B ∩ B(A) such that y&z ∈ B,
(iv) s(x | y) · s(y | 1) = s(y | x) · s(x | 1) for any x, y ∈ B.

The other approach has been essentially developed by Kroupa in [15] where the notion of conditional state has
been introduced as definable from the notion of state on a MV-algebra enriched with a product operation. A structure
A′ = (A, ⊕, �, ¬, 0) is an MV-algebra with product (those algebras are also called PMV-algebras in [19]) if A =
(A, ⊕, ¬, 0) is an MV-algebra and � is a commutative and associative binary operation on A such that for all a, b, c ∈ A:

(1) 1 � a = a,
(2) a � (b ⊕ c) = (a � b) ⊕ (a � c).

Definition 5.6 (Kroupa [15]). Let A′ = (A, ⊕, �, ¬, 0) be an MV-algebra with product and let s be a state on A.
Then, a non-negative real number s(x | y) is a conditional state of x given y if s(x | y) is any solution of the equation

s(y) · s(x | y) = s(x � y).

It is clear that when s(y) > 0, a conditional state is simply defined as

s(x | y) = s(x � y)

s(y)
,

for all x ∈ A. In such a case, s(· | y) is a state on A. It is worth noticing here that if we replace in the above definition
� by the MV-algebra conjunction &, then s(· | y) might not be a state any longer.

In this section our aim is to provide some ideas about how to extend the approach developed in Sections 4 and 5
to come up with a (fuzzy) logical formalization of conditional probability over MV-events. Since Kroupa’s approach
needs to extend the algebra of events with a new product connective, and this brings technical difficulties from the
logical point of view, we will:

• keep the modeling of fuzzy events as Łn propositions,
• adopt Gerla and Di Nola et al.’s definition of conditional state as a primitive notion,
• adopt the logic Ł� 1

2 as base fuzzy logic to reason about conditional probabilities of Łn events.

Recall that the Ł� 1
2 logic combines in a single framework both the connectives of Łukasiewicz logic (&, →) and the

connectives of Product logic � (&�, →�), as well as an additional truth-constant 1
2 , see [3,4,7] for details. We will

1 For any MV-algebra A = 〈A, ⊕, ¬, 0, 1〉, B ⊆ A is an MV-bunch if 1 ∈ B, 0 �∈ B, and B is closed under ⊕. In [11], the following example has
been presented: Let A be an MV-algebra and let s be a state on A, then the set B = {x ∈ A | s(x) �= 0} is an MV-bunch. In this case B is also said
to be the MV-bunch of s.
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define below a logic FCP(Łn, Ł� 1
2 ) introducing a binary modality P to deal with conditional states which can be

considered as an extension of the logic FCP(Ł�) developed in [18] for reasoning about conditional probability on
classical (Boolean) events.

Indeed, formulas of FCP(Łn, Ł� 1
2 ) again split into two classes: (i) the set of non-modal formulas Fm(V ), which

are formulas of Łn like in FP(Łn, Ł); and (ii) letting Sat (V ) = {� ∈ Fm(V ) | Łn � �¬�}, the set of modal formulas
built from atomic modal formulas P(� | �), with � ∈ Fm(V ) and � ∈ Sat (V ), using the connectives and constants

of Ł� 1
2 (&, →, &�, →�, 0, 1

2 ). Axioms and rules of FP(Łn, Ł) are as follows, where B(V ) = {� | Łn��∨¬�}:
• Axioms and rules of Łn for non-modal formulas, and axioms and rules of Ł� 1

2 for modal formulas.
• The following axioms for the modality P:

(CP1) P(� → 
 | �) → (P (� | �) → P(
 | �)),
(CP2) P(¬� | �) ≡ ¬P(� | �),
(CP3) P(� ⊕ 
 | �) ≡ [(P (� | �) → P(�&
 | �)) → P(
 | �)],
(CP4) P(� | �), for each � ∈ B(V ),
(CP5) P(�&
 | �) ≡ P(
 | �)&�P(� | 
&�), for each 
, � ∈ B(V ),
(CP6) P(� | �)&�P(� | 1) ≡ P(� | �)&�P(� | 1).

• The rule of necessitation: from � derive P(� | �).
• The rule of substitution of equivalents: from � ≡ � derive P(
 | �) ≡ P(
 | �), for �, � ∈ B(V ).

The intended semantics for FCP(Łn, Ł� 1
2 ) is given by the class of conditional probabilistic Kripke models M =

〈W, e, �〉, where:

(1) W is a set of worlds and e : W × Fm(V ) → Sn is such that e(w, ·) is a Sn-evaluation for each w ∈ W .
(2) Let FmW = {�#

W | � ∈ Fm(V )} be the clan over W as defined in Definition 3.2. Then � is a conditional state on

FmW × (FmW \ {0#
W }).

(3) e(w, P (� | �)) = �(�#
W, �#

W), if �#
W �= 0

#
W ; otherwise let it be undefined.

(4) e is extended to modal formulas using Ł� 1
2 truth-functions when defined.

A formal proof of completeness of FCP(Łn, Ł� 1
2 ) with respect to this class of models is out of the scope of this

paper, but it can be devised combining the techniques used in [18] and in Section 5.

6. Final remarks

In this paper we have presented a fuzzy modal approach to reasoning about the probability of fuzzy events. The
very basic idea has been to treat a fuzzy event as a formula of the finitely valued Łukasiewicz logic Łn instead of
classical Boolean logic, and using the notion of state to capture the generalization of finitely additive probability
measures on MV-algebras. In this setting we have introduced, for each n ∈ N, the logic FP(Łn, Ł) which has been
proved to be complete with respect two classes of (Kripke-style) probabilistic models, namely the classes of weak
and strong probabilistic models. Two further extensions of FP(Łn, Ł) have been also sketched, namely the logic
FP(Łn, RPL) obtained by enlarging the language of FP(Łn, Ł) by means of truth-constants for the rationals in [0, 1]
and FCP(Łn, Ł� 1

2 ) allowing to reason about conditional probability.
Our logical approach to the probability of fuzzy events hides indeed the more general one to generalize the results

we have shown holding here (in particular the completeness results), also to a logic allowing to treat the probability of
those events which can be modeled by formulas of the whole Łukasiewicz logic and not only every finite valued one.
Such a logic (which we have named in the introduction FP(Ł, Ł)) is easily defined by replacing, in Definition 3.1, the
schema (Łn) with the axioms of the whole Łukasiewicz logic. Also the notions of weak and strong models for FP(Ł, Ł)

can be easily generalized, but, unfortunately, we have not succeeded so far to prove completeness of FP(Ł, Ł) with
respect to either weak or strong probabilistic models. In such a direction however we have shown some partial results.
In particular if the following equality

T h(FP(Ł, Ł)) =
⋂
n∈N

T h(FP(Łn, Ł))

holds, where Th stands for theorems, then it would be easy to show completeness for FP(Ł, Ł). This is an open problem.
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Clearly our future work will be devoted either to solve this open problem or to find a new complete axiomatization
for the logic FP(Ł, Ł). Another important feature that remains to be investigated deals more directly with the notion
of fuzzy event. Indeed we have based our investigation interpreting a probability over fuzzy events as a state on a MV-
algebra. A more general study could be done by using well-known alternative fuzzy logics, different from Łukasiewicz
logic, as logics for the events.
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