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Abstract

In this paper we study generic expansions of logics of continuous t-norms with
truth-constants, taking advantage of previous results for  Lukasiewicz logic and more
recent results for Gödel and Product logics. Indeed, we consider algebraic semantics for
expansions of logics of continuous t-norms with a set of truth-constants {r | r ∈ C}, for a
suitable countable C ⊆ [0, 1], and provide a full description of completeness results when
(i) the t-norm is a finite ordinal sum of  Lukasiewicz, Gödel and Product components, (ii)
the set of truth-constants covers all the unit interval in the sense that each component
of the t-norm contains at least one value of C different from the bounds of the compo-
nent, and (iii) the truth-constants in  Lukasiewicz components behave as rational numbers.

Keywords: Basic Fuzzy logic BL, Gödel,  Lukasiewicz and Product Logics, t-norm-based
logic, expansions with truth-constants, standard completeness.

1 Introduction

T-norm based fuzzy logics are basically logics of comparative truth. In fact, the residuum ⇒
of a (left-continuous) t-norm ∗ satisfies the condition x⇒ y = 1 if, and only if , x ≤ y for all
x, y ∈ [0, 1]. This means that a formula ϕ→ ψ is a logical consequence of a theory if the truth
degree of ψ is at least as high as the truth degree of ϕ in any interpretation which is a model
of the theory. This is fine, but in some situations one might be also interested to explicitly
represent and reason with partial degrees of truth. To do so, one convenient and elegant way
is introducing truth-constants into the language. This approach actually goes back to Pavelka
[29] who built a propositional many-valued logical system which turned out to be equivalent
to the expansion of  Lukasiewicz Logic by adding into the language a truth-constant r for each
real r ∈ [0, 1], together with a number of additional axioms. Although the resulting logic
is not strongly complete with respect to the intended semantics defined by the  Lukasiewicz
t-norm, (like the original  Lukasiewicz logic), Pavelka proved that his logic, denoted here PL,
is complete in a different sense. Namely, he defined the truth degree of a formula ϕ in a theory
T as || ϕ ||T= inf{e(ϕ) | e is a PL-evaluation model of T}, and the provability degree of ϕ in
T as | ϕ |T= sup{r | T `PL r → ϕ} and proved that these two degrees coincide. This kind
of completeness is usually known as Pavelka-style completeness, and strongly relies on the
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continuity of  Lukasiewicz truth functions. Novák extended Pavelka’s approach to  Lukasiewicz
first order logic [25, 26].

Later, Hájek [18] showed that Pavelka’s logic PL could be significantly simplified while
keeping the completeness results. Indeed he showed that it is enough to extend the language
only by a countable number of truth-constants, one for each rational in [0, 1], and by adding
to the logic the two following additional axiom schemata, called book-keeping axioms:

r&s↔ r ∗ s
r → s↔ r ⇒ s

where ∗ and ⇒ are the  Lukasiewicz t-norm and its residuum respectively. He called this new
system Rational Pavelka Logic, RPL for short. Moreover, he proved that RPL is strongly
complete for finite theories.

Similar rational expansions for other continuous t-norm based fuzzy logics can be analo-
gously defined, but Pavelka-style completeness cannot be obtained since  Lukasiewicz Logic is
the only fuzzy logic whose truth-functions are a continuous t-norm and a continuous residuum.

However, several expansions with truth-constants of fuzzy logics different from  Lukasiewicz
have been studied, mainly related to the other two outstanding continuous t-norm based logics,
namely Gödel and Product logic. We may cite [18] where an expansion of G∆ (the expansion
of Gödel Logic G with Baaz’s projection connective ∆) with a finite number of rational
truth-constants, [12] where the authors define logical systems obtained by adding (rational)
truth-constants to G∼ (Gödel Logic with an involutive negation) and to Π (Product Logic)
and Π∼ (Product Logic with an involutive negation). In the case of the rational expansions
of Π and Π∼ an infinitary inference rule (from {ϕ → r : r ∈ Q ∩ (0, 1]} infer ϕ → 0) is
introduced in order to get Pavelka’s style completeness. Rational truth-constants have been
also considered in some stronger logics like in the logic  LΠ1

2 [13], a logic that combines the
connectives from both  Lukasiewicz and Product logics plus the truth-constant 1/2, and in the
logic P L [21], a logic which combines  Lukasiewicz Logic connectives plus the Product Logic
conjunction (but not implication), as well as in some closely related logics.

More recently, the expansion of Gödel (and of some t-norm based logic related to the
Nilpotent Minimum t-norm) with rational truth-constants on the one hand and the expansion
of Product logic with countable sets of truth-constants have been respectively studied in [14]
and in [28]. In these papers, canonical standard completeness (that is, completeness with
respect to the corresponding algebra defined over the real unit interval where the truth-
constants are interpreted as their own values) for these logics has been proved for theorems as
well as for finite theories when restricted to formulae of the kind r → ϕ, where r is the truth-
constant associated to r and ϕ is a formula without additional truth-constants. Actually,
this kind of formulas have been extensively considered in other frameworks for reasoning with
partial degrees of truth, like in Novák’s evaluated syntax formalism based on  Lukasiewicz
Logic (see e.g. [27]) or in fuzzy logic programming (see e.g. [30]). In particular, these
formulas can be seen as a special kind of Novák’s evaluated formulas, which are expressions
a/A where a is a truth value (from a given algebra) and A is a formula that may contain
truth-constants again, and whose interpretation is that the truth-value of A is at least a.
Hence our formulas r → ϕ would be expressed as r/ϕ in Novák’s evaluated syntax. On
the other hand, formulas r → ϕ when ϕ is a Horn-like rule of the form b1&...&bn → h also
correspond to typical fuzzy logic programming rules (b1&...&bn → h, r), where r specifies a
lower bound for the validity of the rule.
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In this paper we study expansions with truth-constants of logics of continuous t-norms
in a general setting. Actually, we provide a full description of completeness results for the
expansions of logics of continuous t-norms with a set of truth-constants {r | r ∈ C}, for a
suitable countable C ⊆ [0, 1], when (i) the t-norm is a finite ordinal sum of  Lukasiewicz,
Gödel and Product components, (ii) the set of truth-constants covers all the unit interval in
the sense that each component of the t-norm contains at least one value of C different from
the bounds of the component, and (iii) the truth-constants in  Lukasiewicz components behave
as rational numbers.

The paper is structured as follows. After this introduction, we provide the necessary
background in the next section. In Section 3, we establish general results for axiomatic
extensions of BL regarding the equivalence between different kinds of standard completeness
and properties of the corresponding algebraic varieties, the partial embeddability property
playing an important role. In Section 4 we introduce the expanded logics and their algebraic
counterpart. In Sections 5 and 6 we study the structure and relevant algebraic properties of
the expanded linearly ordered algebras, which are needed to obtain the different completeness
results described in Section 7. Finally, in Section 8, we study the further expansions of the
logics with the ∆ projection connective. We finish with some concluding remarks.

2 Preliminaries

The weakest logic that we consider in this paper is the system BL. It was defined by
Hájek in [18] by means of a Hilbert-style calculus in the language L = {&,→, 0} of type
〈2, 2, 0〉, built from a denumerable set of variables, where the only inference rule is Modus
Ponens and the axiom schemata are the following1 (taking→ as the least binding connective):

(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ&ψ → ϕ
(A3) ϕ&ψ → ψ&ϕ
(A4) ϕ&(ϕ→ ψ)→ ψ&(ψ → ϕ)
(A5a) (ϕ→ (ψ → χ))→ (ϕ&ψ → χ)
(A5b) (ϕ&ψ → χ)→ (ϕ→ (ψ → χ))
(A6) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A7) 0→ ϕ

Some other connectives are defined as follows:

ϕ ∧ ψ := ϕ&(ϕ→ ψ);
ϕ ∨ ψ := ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ);
ϕ↔ ψ := (ϕ→ ψ)&(ψ → ϕ);
¬ϕ := ϕ→ 0;
1 := ¬0.

The set of well-formed formulae in this language is denoted as FmL. The (finitary)
notion of proof is defined as usual from the above axioms and inference rule. If Γ ⊆ FmL is
an arbitray theory we shall write Γ `BL ϕ to denote that there exists a proof of ϕ from Γ.

1Cintula has recently proved [8] that axiom (A3) is actually redundant.
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The algebraic counterpart of this logic, the class of BL-algebras, is also given in [18]. A
BL-algebra is an algebra A =

〈
A,&A,→A,∧A,∨A, 0A, 1A

〉
of type 〈2, 2, 2, 2, 0, 0〉 which is a

bounded integral commutative residuated lattice satisfying the prelinearity equation:

(x→ y) ∨ (y → x) ≈ 1

and the divisibility equation:
x ∧ y ≈ x&(x→ y).

The negation operation is defined as ¬Aa = a→A 0A. If the lattice order is total we will say
that A is a BL-chain. The BL-chains defined over the real unit interval [0, 1] (with the usual
order) are those where the interpretation of & is a continuous t-norm and they are called
standard BL-chains. The class of all BL-algebras is a variety and it will be denoted as BL.

The semantical consequence relation is defined in the following way: given Γ∪{ϕ} ⊆ FmL
and some class of BL-algebras K ⊆ BL, we will write Γ |=K ϕ if, and only if, for every A ∈ K
and every evaluation e of the formulae in A such that e[Γ] ⊆ {1A}, we have e(ϕ) = 1A.

With this notation we can write now the algebraic completeness theorem for BL:

Theorem 2.1 ([18]). For every Γ ∪ {ϕ} ⊆ FmL, Γ `BL ϕ if, and only if, Γ |=BL ϕ.

The finitely subdirectly irreducible members2 of BL are the BL-chains. This implies the
following theorem and its corollary:

Theorem 2.2 ([18]). All BL-algebras are representable as a subdirect product of BL-chains.

Corollary 2.3 ([18]). For every Γ ∪ {ϕ} ⊆ FmL, Γ `BL ϕ if, and only if, Γ |={BL-chains} ϕ.

Moreover, it is not difficult to prove that BL is an algebraizable logic in the sense of
Blok and Pigozzi (see [2]) and BL is its equivalent algebraic semantics. This implies much
more than the algebraic completeness. In particular, there is an order-reversing isomorphism
between axiomatic extensions of BL and subvarieties of BL:

• If Σ ⊆ FmL and L is the extension of BL obtained by adding the formulae of Σ as
schemata, then the equivalent algebraic semantics of L is the subvariety of BL axiom-
atized by the equations {ϕ ≈ 1 : ϕ ∈ Σ}. We denote this variety by L and we call its
members L-algebras.

• Let L ⊆ BL be the subvariety axiomatized by a set of equations Λ. Then the logic
associated to L is the axiomatic extension L of BL given by the axiom schemata {ϕ↔
ψ : ϕ ≈ ψ ∈ Λ}.

A lot of expansions of BL are also algebraizable. Indeed, let L be an axiomatic extension
of BL, let L′ be a language extending L, consider a set Σ ⊆ FmL′ and let L′ be the expansion
of L obtained by adding the formulae of Σ as axiom schemata. Assume that for every new
n-ary connective λ in the language L′,

{p1 ↔ q1, . . . , pn ↔ qn} `L′ λ(p1, . . . , pn)↔ λ(q1, . . . , qn)
2For the definition of this and any other notion of Universal Algebra used in this paper, the reader is

referred to [3].
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Logic Axiom schema
 Lukasiewicz logic  L ¬¬ϕ→ ϕ

Product logic Π ¬ϕ ∨ ((ϕ→ ϕ&ψ)→ ψ)
Gödel logic G ϕ→ ϕ&ϕ

Table 1: Main axiomatic extensions of BL.

Then, L′ is algebraizable and its equivalent algebraic semantics is the variety of algebras in
the language L′ axiomatized by the equational base of L plus the equations {ϕ ≈ 1 : ϕ ∈ Σ}.
We call the members of this variety L′-algebras. In general L′ needs not to be a conservative
expansion of L; in fact, we can extract from [2] the following criterion.

Proposition 2.4. Under the previous hypothesis, L′ is a conservative expansion of L if, and
only if, every L-algebra is a subreduct of some L′-algebra.

The three main axiomatic extensions of BL are gathered in Table 1 together with their
defining axiom schemata.3

These logics are complete with respect to the semantics given by the  Lukasiewicz, the
product and the minimum t-norm respectively and their residua. We will denote the standard
algebras defined by them as [0, 1] L, [0, 1]Π and [0, 1]G, respectively. It is well-known (see [22]
and [24]) that every standard BL-algebra is decomposable as an ordinal sum of isomorphic
copies of these three basic components.

In general, we will denote by [0, 1]∗ the standard BL-chain given by a continuous t-norm ∗
and its residuum⇒, i.e. [0, 1]∗ = 〈[0, 1], ∗,⇒,min,max, 0, 1〉, and L∗ will denote the axiomatic
extension of BL whose equivalent algebraic semantics is V([0, 1]∗), the variety generated by
[0, 1]∗. In [13] an algorithm for finding an axiomatization for such a logic is given. Moreover,
it also shown that different finite ordinal sums of the basic components yield different logics.

Theorem 2.5 ([13]). Let 〈A1, . . . ,An〉 and 〈B1, . . . ,Bm〉 be different sequences of the basic
components, not containing two consecutive Gödel components. Let [0, 1]∗ =

⊕n
i=1Ai and

[0, 1]◦ =
⊕m

i=1 Bi be their respective ordinal sums. Then, V([0, 1]∗) 6= V([0, 1]◦), and hence
L∗ 6= L◦.

Applying Jónsson’s Lemma (see for instance [3]), the structure of all finitely subdirectly
irreducible elements (that is all chains) of these varieties is described by the following result,
which was originally given in terms of ordinal sums of Wajsberg hoops (slightly more general
structures than BL-algebras) in [1], but it can be reformulated in our setting as follows.

Theorem 2.6. Let 〈A1, . . . ,An〉 be a sequence of the basic components and let [0, 1]∗ =⊕n
i=1Ai be their ordinal sum. Then, the class of finitely subdirectly irreducible members of

V([0, 1]∗) is HSPU ([0, 1]∗) = HSPU (A1) ∪ (ISPU (A1) ⊕ HSPU (A2)) ∪ . . . ∪ (ISPU (A1) ⊕⊕n−1
i=2 ISPU (Ai) ⊕HSPU (An)), where H, I, S, PU denote the operators homomorphic im-

ages, isomorphic images, subalgebras and ultraproducts in the language of BL-algebras while
H, I, S, PU denote the same operators in the language of Basic hoops (that is, in the 0-free
language).

3These axiomatizations are introduced in [18] and in [23].
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Moreover, since for the three basic cases we have that ISPU ([0, 1] L), ISPU ([0, 1]Π) and
ISPU ([0, 1]G) are respectively all MV-chains, all product chains and all Gödel chains [10, 15,
11], it follows that ISPU ([0, 1] L), ISPU ([0, 1]Π) and ISPU ([0, 1]G) are all 0̄-free subreducts
of MV-chains, product chains and Gödel chains. Therefore, from the above Theorem 2.6 and
the results in [13] on canonical standard BL-chains it follows that we can generalize those
results to any standard BL-algebra.

Corollary 2.7. Let [0, 1]∗ be a standard BL-algebra. Then the class of all finitely subdirectly
irreducible algebras in V([0, 1]∗) is ISPU ([0, 1]∗).

A filter in a BL-algebra A is any subset F ⊆ A such that:

• 1A ∈ F

• If a ∈ F and a ≤ b, then b ∈ F

• If a, b ∈ F , then a&b ∈ F .

F (a) will denote the principal filter generated by the element a. It can be described as
follows: F (a) = {b : an ≤ b for some n ≥ 1}. There is the usual correspondence between
filters and congruences in BL-algebras:

Proposition 2.8. Let A be a BL-algebra. For every filter F ⊆ A we define Θ(F ) := {〈a, b〉 ∈
A2 : a ↔ b ∈ F}, and for every congruence θ of A we define Fi(θ) := {a ∈ A : 〈a, 1〉 ∈ θ}.
Then, Θ is an order isomorphism from the set of filters onto the set of congruences and Fi
is its inverse.

Given a filter F of a BL-algebra A and an element a ∈ A, [a]F will denote its equivalence
class with respect to the congruence Θ(F ).

3 Standard completeness properties for BL extensions revis-
ited

We recall the definitions of three different kinds of completeness with respect to the standard
algebras. If a logic L is an axiomatic expansion of BL in a language L′, we say that L has the
(finitely) strong standard completeness property, (F)SSC for short4, when for every (finite)
set of formulae T ⊆ FmL′ and every formula ϕ it holds that T `L ϕ iff T |=A ϕ for every
standard L-algebra A. We say that L has the of standard completeness property, SC for short,
when the equivalence is true for T = ∅. Of course, the SSC implies the FSSC, and the FSSC
implies the SC.

On the scope of algebraizable logics [2], these properties have their equivalent algebraic
property.

Theorem 3.1. Let L be an axiomatic extension (or algebraizable axiomatic expansion) of BL
and let L be its equivalent variety semantics. Then:

1. L has the SC if, and only if, L = V(StandL)

2. L has the FSSC if, and only if, L = Q(StandL)
4We drop the P (for “property”) from the acronym for the sake of a simpler notation.
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3. L has the SSC if, and only if, every countable (finite or numerable) chain of L belongs
to ISP(StandL)

where StandL is the class of all standard algebras in L and Q(StandL) denotes the quasivariety
generated by StandL.

The three main fuzzy logics as well as Basic Logic enjoy the FSSC; it is proved in [20,
Lemma B, p. 84] for  L, in [19] for Product logic, in [11] for Gödel logic and in [4] for BL,
but only G enjoys the SSC. In some cases (see for instance [19, 4]), rather than using the
equivalences stated above, some of these standard completeness results have been obtained
by proving first that every chain of the equivalent variety semantics is partially embeddable
into a standard algebra. As we shall see this property is also equivalent to the FSSC, when
the language is finite.

We recall that given two algebras A and B of the same language we say that A is partially
embeddable into B when every finite partial subalgebra of A is embeddable into B. Generaliz-
ing this notion to classes of algebras, we say that a class K of algebras is partially embeddable
into a class M if every finite partial subalgebra of a member of K is embeddable into a mem-
ber of M. If the language is finite, this turns out to be equivalent to say that K belongs to
the universal class generated by M (see for instance [17]). That is, by recalling  Los’ theorem
(see [3]) of characterization of universal classes, we have the following equivalence.

Proposition 3.2 ([17]). Let K and M be classes of algebras of the same finite language. Then
the following conditions are equivalent:

• K is partially embeddable into M

• K ⊆ ISPU (M)

The following result states the equivalence of the FSSC and partial embeddability prop-
erties in the frame of BL-algebras.5

Proposition 3.3. Let L be an axiomatic extension (or algebraizable axiomatic expansion in
a finite language) of BL. Then L has the FSSC if, and only if, the class of all L-chains is
partially embeddable into the class of all standard L-algebras.

Proof. If L satisfies the FSSC then, by Theorem 3.1, its equivalent variety semantics L is such
that L = Q(StandL). It follows from [9, Lemma 1.5] that every relatively finitely subdirectly
irreducible member of Q(StandL) belongs to ISPU (StandL). We recall that given a class K
of algebras we say that A ∈ K is relatively finitely subdirectly irreducible if it satisfies that
whenever A is representable as finite subdirect product of {A0, . . . An−1} ⊆ K then A ∼= Ai for
some i < n. Since Q(StandL) is a variety, relatively finitely subdirectly irreducible members
coincide with finitely subdirectly irreducible algebras in the absolute sense, hence with L-
chains. Therefore, if L satisfies the FSSC then every L-chain belongs to ISPU (StandL),
which is equivalent to partial embeddability by Proposition 3.2.

If the class of all L-chains is partially embeddable into the class of all standard L-algebras,
then by Proposition 3.2 every L-chain belongs to ISPU (StandL). Now, since every L-algebra
is representable as subdirect product of L-chains we have that

L ⊆ IPSD(ISPU (StandL)) ⊆ Q(StandL) ⊆ L,
5In fact the same result is valid and the proof is similar in the scope of MTL-algebras
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where PSD stands for the operator of subdirect products. Therefore by Theorem 3.1, L has
the FSSC.

Given any continuous t-norm ∗, it follows from Corollary 2.7 that all chains in V([0, 1]∗)
are partially embeddable into [0, 1]∗. Therefore, after the above result we get the following
direct corollary.

Corollary 3.4. For every continuous t-norm ∗, the logic L∗ has the FSSC.

Among all the continuous t-norm logics, only G enjoys the SSC. Actually, for every con-
tinuous t-norm ∗ 6= min, hence containing at least one  Lukasiewicz or product component in
its decomposition, the logic L∗ does not enjoy the SSC.6

To end up this section we show that if an axiomatic extension of BL does not enjoy the
SC, the FSSC or the SSC, then any of its conservative expansions neither does.

Proposition 3.5. Suppose that L′ is a conservative expansion of L (in the hypothesis of
Proposition 2.4). Then:

• If L′ enjoys the SC, then L enjoys the SC.

• If L′ enjoys the FSSC, then L enjoys the FSSC.

• If L′ enjoys the SSC, then L enjoys the SSC.

Proof. All the implications are proved in a similar way. Let us prove as an example the first
one. Suppose that L does not enjoy the SC. Then, there is a formula ϕ ∈ FmL such that 6`L ϕ
and |=C ϕ for every standard L-chain C. Let A be a standard L′-chain. Then, its L-reduct is
a model of ϕ, thus |=A ϕ and, since L′ is a conservative expansion of L, we also have 6`L′ ϕ.
Therefore, L′ does not enjoy the SC.

4 Adding truth-constants

Now we define expansions with truth-constants for those extensions of BL that are the logic
of a concrete continuous t-norm.

Definition 4.1. Let [0, 1]∗ = 〈[0, 1], ∗,⇒,min,max, 0, 1〉 be a standard BL-chain and let L∗
be its corresponding axiomatic extension of BL. Take now a countable subalgebra C ⊆ [0, 1]∗
and consider an expanded language LC = L ∪ {r : r ∈ C \ {0, 1}} with a new constant for
every element in C \ {0, 1}. By L∗(C) we will denote the expansion of L∗ in the language LC
obtained by adding the so-called ’book-keeping axioms’:

r&s↔ r ∗ s
(r → s)↔ r ⇒ s

for every r, s ∈ C.

The algebraic counterpart of the L∗(C) logics is defined in the natural way.
6As a matter of example, let Γ = {q → pn | n ∈ N} and ϕ = (q → q2)∨ (p→ p2)∨ (q → p&q), and consider

the following semantical deduction: Γ |=[0,1]∗ ϕ. One can check that this deduction holds for every continuous
t-norm ∗, but Γ 6`L∗ ϕ, since Γ0 6|=[0,1]∗ ϕ, for every finite Γ0 ⊆ Γ when ∗ 6= min. In fact, this proves that the
only axiomatic extension of BL that enjoys the SSC is G.
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Definition 4.2. Let ∗ be a continuous t-norm and let C be be a countable subalgebra of [0, 1]∗.
A structure A = 〈A,&A,→A,∧A,∨A, {rA : r ∈ C}〉 is a L∗(C)-algebra if:

1. 〈A,&A,→A,∧A,∨A, 0A, 1A〉 is an L∗-algebra, and
2. for every r, s ∈ C the following identities hold:

rA&AsA = r ∗ sA
rA →A sA = r ⇒ sA.

Given Γ ∪ {ϕ} ⊆ FmLC
, we define Γ �A ϕ iff for all evaluations e in A (i.e. such that

e(r) = rA), we have e(ϕ) = 1A whenever e(ψ) = 1A for all ψ ∈ Γ.
The canonical standard L∗(C)-chain is the algebra [0, 1]L∗(C) = 〈[0, 1], ∗,⇒,min,max, {r :

r ∈ C}〉, i. e. the LC-expansion of [0, 1]∗ where the truth-constants are interpreted by them-
selves.

It is easy to prove that L∗(C) is also an algebraizable logic (in the sense of [2]) and its
equivalent algebraic semantics is the variety of L∗(C)-algebras. Furthermore, reasoning as in
the BL case, we can prove that all L∗(C)-algebras are representable as a subdirect product of
L∗(C)-chains, hence we also have completeness of L∗(C) with respect to L∗(C)-chains.

Theorem 4.3. For any Γ ∪ {ϕ} ⊆ FmLC
, Γ `L∗(C) ϕ if, and only if, Γ |=A ϕ for every

L∗(C)-chain A.

Since these logics are expansions of BL, sharing Modus Ponens as the only inference rule,
they have the same local deduction-detachment theorem as BL has. In fact, the proof for BL
(in [18]) also applies here.

Theorem 4.4. For every Γ∪{ϕ,ψ} ⊆ FmLC
, Γ, ϕ `L∗(C) ψ if, and only if, there is a natural

k ≥ 1 such that Γ `L∗(C) ϕ
k → ψ.

Proposition 4.5. L∗(C) is a conservative expansion of L∗.

Proof. Let Γ ∪ {ϕ} ⊆ FmL be arbitrary formulae and suppose that Γ `L∗(C) ϕ. Then, there
is a finite Γ0 ⊆ Γ such that Γ0 `L∗(C) ϕ, and this implies that Γ0 |=[0,1]L∗(C)

ϕ. Since the
new truth-constants do not occur in Γ0 ∪ {ϕ}, we have Γ0 |=[0,1]∗ ϕ, and by the FSSC of L∗,
Γ0 `L∗ ϕ, and hence Γ `L∗ ϕ.

In the rest of the paper we will study the SC, FSSC and SSC properties for these logics
with truth-constants but we will also consider another special kind of standard completeness.
Namely, we say that L∗(C) enjoys the canonical (finite) strong standard completeness if, and
only if, for every (finite) set of formulae T ⊆ FmLC

and every formula ϕ, T `L∗(C) ϕ iff
T |=[0,1]L∗(C)

ϕ. We say that L∗(C) enjoys the canonical standard completeness if, and only if,
the equivalence is true for T = ∅.

We have seen (Theorem 4.4) that the logics L∗(C) are complete with respect to the L∗(C)-
chains. Thus to study standard completeness results we need to get a deeper insight into
L∗(C)-chains. This is done in the next two sections. Actually, for technical reasons (that will
be justified later on) we will restrict ourselves to logics L∗(C) satisfying the following three
conditions unless stated otherwise:

(C1) the continuous t-norm ∗ is a finite ordinal sum of the basic components

(C2) each component of the t-norm contains at least one value of C different from the bounds
of the component

(C3) every r ∈ C belonging to a  Lukasiewicz component of [0, 1]∗ generates a finite MV-chain
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5 About the structure of standard L∗(C)-chains

Suppose that ∗ is a continuous t-norm whose decomposition as ordinal sum of isomorphic
copies of the three basic components is

⊕
i∈I [ai, bi]∗i .

Definition 5.1. Let A be an L∗(C)-chain. CA will denote the subalgebra of A defined over
{rA : r ∈ C} and FC(A) will denote the set of the truth-constants interpreted as 1 in A, i. e.
FC(A) = {r ∈ C | rA = 1A}.

Lemma 5.2. Let A and B be non-trivial L∗(C)-chains with the same L-reduct. Then:

(i) FC(A) is a proper filter of C.

(ii) C/FC(A) ∼= CA.

(iii) If A ∼= B, then FC(A) = FC(B).

(iv) If r, s ∈ C \ FC(A) and r < s, then rA < sA.

Proof. (i) Clearly 1 ∈ FC(A). If r ∈ FC(A) and s ∈ C, s > r, then s ∈ FC(A) because by the
book-keeping axioms and the definability of min and max we have sA = max{rA, sA} =
1A. Moreover if r, s ∈ FC(A) then r ∗ s ∈ FC(A) since r ∗ sA = rA&sA = 1A.

(ii) Consider the function f : C → CA defined by f(r) = rA. It is clear that f is a surjective
homomorphism and Kerf = FC(A), so C/FC(A) ∼= CA.

(iii) If A ∼= B, then it is clear that CA ∼= CB, so FC(A) = FC(B).

(iv) If r < s /∈ FC(A), then rA ≤ sA since the book-keeping axioms imply that the order
must be preserved. On the other hand, if rA = sA, then [r]FC(A) = [s]FC(A) which
implies s→ r ∈ FC(A), and this leads to a contradiction. Indeed, consider the following
subcases:
- If r, s ∈ (ai, bi) and [ai, bi] is a  Lukasiewicz component, then s→ r ∈ FC(A) implies that
the minimum of the component also belongs to FC(A) and therefore [ai, bi] ⊆ FC(A), a
contradiction.
- If r, s ∈ (ai, bi) and [ai, bi] is a Product component, then the assumption s→ r ∈ FC(A)
implies that there exists n such that r > (s→ r)n and thus r, s ∈ FC(A), a contradiction.
- finally, if r ∗ s = min{r, s} then r = s→ r ∈ FC(A), a contradiction.

Notice that the first three properties in the previous lemma would also hold for the more
general case of ∗ being left-continuous t-norm. However, we do make use of the continuity of
∗ in the proof of the last one. Actually this lemma describes all the possible interpretacions of
the truth-constants over L∗(C)-chains. All these interpretations are quotients of the algebra
C such that a filter of truth-constants is identified to 1 and all the remaining truth-constants
are interpreted in pairwise different elements of the chain. For instance, for every filter F
we can define an L∗(C)-algebra over [0, 1]∗ interpreting r by 1 if r ∈ F and by r otherwise.
We will denote this algebra by [0, 1]FL∗(C). An easy computation shows that it is indeed an
L∗(C)-chain. Remark that the canonical standard algebra corresponds to the case F = {1}.
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Proposition 5.3. Let [0, 1]∗ be a finite ordinal sum of  Lukasiewicz and product components
and C ⊆ [0, 1]∗ a countable subalgebra satisfying condition (C2). Let X = {[A] : A standard
L∗(C)-algebra over [0, 1]∗} be the set of isomorphism classes of L∗(C)-algebras over [0, 1]∗ and
let Fi(C) be the set of proper filters of C. Then, the function Φ : X → Fi(C) such that for
every [A] ∈ X, Φ([A]) = FC(A), is a bijection.

Proof. Φ is well-defined because of Lemma 5.2 (iii), and for an easier notation we will simply
write Φ(A) instead of Φ([A]). It is clearly onto because Φ([0, 1]FL∗(C)) = F . We must prove
that Φ is also injective. Suppose that Φ(A) = Φ(B), i. e. FC(A) = FC(B). Then, we have
CA ∼= C/FC(A) = C/FC(B) ∼= CB. In the following, denoting by h the isomorphism between CA
and CB, we show how to extend it as a function h : [0, 1]→ [0, 1] making A and B isomorphic
as well.

1. If ∗ is the  Lukasiewicz t-norm, the only proper filter of C is {1}, and thus CA ∼= CB ∼= C. If
h 6= Id, then there is a 6= h(a). Let b = h(a). Taking the restriction of h, it is clear that
the generated subalgebras are also isomorphic, i. e. 〈a〉 ∼= 〈b〉, so a and b are either both
rational or either both irrational (otherwise, the rational one would generate a finite
subalgebra, and the irrational one would generate an infinite subalgebra). If a and b are
irrational, then by [16, proofs of Proposition 2 and Theorem 3] a = 1 − b. Therefore
one of them must be positive; suppose that it is a. Then 2a = 1, so 2(1− b) = 1. But,
due to the isomorphism, we also have 2b = 1, a contradiction. If a and b are rational
we reason analogously.

2. If ∗ is the product t-norm there are only two proper filters, {1} and C \ {0} and thus
we have two types of Π(C)-chains over [0, 1]Π corresponding to the cases that F = {1}
(the corresponding type of Π(C)-chains are the ones such that for each pair r < s in C,
then rA < sA) and the case C \ {0} (the corresponding type of Π(C)-chains are such
that rA = 1A for all r 6= 0).7 If FC(A) = FC(B) = {1}, then CA ∼= CB ∼= C, and by [28,
Theorem 2] we obtain A ∼= B. If FC(A) = FC(B) = C \ {0}, the result is trivial.

3. If ∗ has more than one component, then all possible proper filters are either of the form
[a, 1] where a is an idempotent element, or of the form (a, 1] where a is the minimum
of a product component. The result is proved by applying the previous cases to each
component of its decomposition not included in the filter.

However, this result is not valid for continuous t-norms containing a Gödel component
as the following example shows: let ∗ = min, C = Q ∩ [0, 1] and F = {1}. The standard
G(C)-algebra A where:

rA =
{
r, if r ≥ 1/2
r/2, otherwise

is such that FC(A) = F but clearly it is not isomorphic to the canonical G(C)-algebra.
From now on we will refer to L∗(C)- chains A such that FC(A) = F as L∗(C)-algebras

of type F , either over [0, 1]∗ (called standard chains of type F ) or over any other L∗-chain.
The quasi-canonical examples of standard chains of type F are the above introduced chains
[0, 1]FL∗(C).

7In [28] these two types of chains are denoted as of type I (when F = {1}) and type II (when F = (0, 1]).
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6 Partial embeddability property

In this section we prove that logics L∗(C) satisfying the conditions (C1), (C2) and (C3) enjoy
the partial embeddability property, which, by Proposition 3.3, implies the FSSC.

Definition 6.1. The logic L∗(C) has the partial embeddability property if, and only if, for
every filter F of C and every subdirectly irreducible L∗(C)-chain A of type F , A is partially
embeddable into [0, 1]FL∗(C).

Proposition 6.2. Suppose that ∗ is the minimum t-norm or the product t-norm, and C ⊆
[0, 1]∗ is a countable subalgebra. Then, L∗(C) has the partial embeddability property.

Proof. The case of the minimum follows from the proof of [14, Theorem 7] and the case of
the product follows from the proof of [28, Theorem 5].

Proposition 6.3. Suppose that C ⊆ [0, 1] L is a countable subalgebra of the standard MV-
algebra such that C ⊆ Q∩ [0, 1]. Then, every  L(C)-chain is partially embeddable into [0, 1] L(C).

Proof. Let A be an  L(C)-chain and take a finite partial subalgebra X ⊆ A. Let C ′ = {ri =
mi
ni
| riA ∈ X} and let n = lcm{ni | ri = mi

ni
∈ C ′}. Then C ′ ⊆  Ln+1, where  Ln+1 denotes the

subalgebra of [0, 1] L whose universe is {0, 1
n , . . . ,

n−1
n , 1}. Therefore, K = {( in)

A
| 0 ≤ i ≤ n}

forms a subalgebra of A isomorphic to  Ln+1. Moreover the set X ∪K is a finite set of A and
by the partial embedding theorem for MV-algebras (see [5]), there exists a partial embedding
h : X ∪K → [0, 1] L such that the elements of K are isomorphically mapped into elements of
 Ln+1. Thus h is also a partial embedding of X ∪K into [0, 1] L(C), as desired.

Open problem: In the previous proposition, is the condition C ⊆ Q ∩ [0, 1] necessary?

Theorem 6.4. Let ∗ be a continuous t-norm and let C ⊆ [0, 1]∗ be a countable subalgebra
satisfying conditions (C1), (C2) and (C3). Then every subdirectly irreducible L∗(C)-chain of
type F is partially embeddable into [0, 1]FL∗(C). Therefore L∗(C) has the partial embeddability
property.

Proof. Suppose that [0, 1]∗ =
⊕n

i=1Ai. By Theorem 2.6 we know that the subdirectly irre-
ducible chains of V([0, 1]∗) are members of HSPU (A1) ∪ (ISPU (A1) ⊕HSPU (A2)) ∪ . . . ∪
(
⊕n−1

i=1 ISPU (Ai)⊕HSPU (An)). Knowing this structure of [0, 1]∗ as ordinal sum of the three
basic components, we can use the two previous results concerning expansions of  L and Π to
prove the theorem:

(i) If there is no  Lukasiewicz component in [0, 1]∗ we just apply Proposition 6.2.

(ii) Otherwise, for every  Lukasiewicz component Ai, condition (C3) (i.e. every r ∈ C ∩ Ai
generates a finite MV-chain) amounts that, in the isomorphic copy of this component
over [0, 1] L, every r ∈ C ∩Ai is mapped to a rational number. Therefore, using Propo-
sitions 6.2 and 6.3 the theorem is proved.
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7 Completeness results

In this section we study the different kinds of standard completeness properties we have
considered for the family of logics L∗(C) when ∗ and C satisfy the conditions (C1), (C2) and
(C3) as defined in Section 4. Observe that condition (C3) has been crucial for our proof of
Theorem 6.4 above. In the first subsection we focus on (finite) strong completeness results
and in the second we refine the results by determining which logics are canonical standard
complete. Finally, in the third, we study the completeness properties when we restrict to
evaluated formulas.

7.1 About strong standard completeness

The partial embeddability property allows us to prove some standard completeness results.
As for the FSSC, it easily follows from Proposition 3.3 that all the logics L∗(C) enjoying

the partial embeddability property in the sense of Definition 6.1, i.e. with respect to the
family {[0, 1]FL∗(C) | F proper filter of C}, have the FSSC (in particular those falling under the
conditions of Theorem 6.4).

Theorem 7.1. If L∗(C) satisfies the partial embeddability property, then L∗(C) has the FSSC.
In such a case, for every finite set of formulae Γ ∪ {ϕ} ⊆ FmLC

,

Γ `L∗(C) ϕ iff Γ |={[0,1]F
L∗(C)

|F proper filter of C} ϕ.

From this, it follows that  L(C) also enjoys the canonical FSSC, because the algebra C is
simple and hence there is only one standard algebra: the canonical one.

As for the SSC, the following result will be useful.

Theorem 7.2. For any continuous t-norm ∗, L∗(C) has the SSC if, and only if, L∗ has the
SSC. Hence L∗(C) has the SSC iff ∗ = min.

Proof. From left to right it is a straightforward generalization of [7, Lemma 3.4.4.], while
the converse is a consequence of L∗(C) being a conservative expansion of L∗ and Proposition
3.5.

As a consequence, while G(C) has the SSC, Π(C) and  L(C) do not, but they still enjoy the
FSSC. Actually,  L(C) is the only logic L∗(C) enjoying the canonical FSSC.

Theorem 7.3. Let ∗ any continuous t-norm ∗. Then L∗(C) has the canonical FSSC if, and
only if, ∗ is the  Lukasiewicz t-norm.

Proof. It is already known that  L(C) has the canonical FSSC. Conversely, assume L∗(C) is
not  L(C). Then C is not simple and thus it has a non-trivial proper filter F and there exists
r ∈ F , r /∈ {0, 1}. Then the following semantical deduction8 is valid over the canonical
standard L∗(C)-chain but not over [0, 1]FL∗(C):

(p→ q)→ r |= q → p.

To prove it, take into account that for every evaluation e over the canonical standard chain,
e((p → q) → r) = 1 iff e(p → q) ≤ r < 1, and this implies e(q) < e(p), so the deduction

8Actually there are simpler examples that could have been used in this proof, like r |= 0, but the one chosen
here will be useful later in Section 7.3.
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G(C) Π(C)  L(C) L∗(C)
SC Yes Yes Yes Yes

FSSC Yes Yes Yes Yes
SSC Yes No No No

Canonical FSSC No No Yes No
Canonical SSC No No No No

Table 2: Standard completeness results for logics with truth-constants enjoying the partial
embeddability property.

is valid. But over the chain A = [0, 1]FL∗(C) the formula (p → q) → r is always satisfied
(remember that rA = 1) and thus the deduction is not valid. Therefore, due to the algebraic
completeness of L∗(C) , q → p is not provable from (p→ q)→ r in L∗(C), and thus this logic
has not the canonical FSSC.

Notice that no logic L∗(C) (for any continuous t-norm ∗) has the canonical SSC. Indeed,
if L∗(C) woud have the canonical SSC, then it would also enjoy the SSC and hence it should
be ∗ = min, but G(C) does not enjoy the canonical FSSC.

All these results are collected in Table 2 (where ∗ denotes a continuous t-norm which is
the ordinal sum of at least two basic components):

7.2 About canonical standard completeness

Except for  L∗(C), the logics considered in the last section do not have the canonical FSSC,
although some of them enjoy the canonical SC, i. e. their theorems are exactly the tautologies
of their corresponding canonical standard algebra, as we will see in this subsection. Actually,
this is the case for G(C) and Π(C), already proved in [14] and in [28].

Theorem 7.4 ([14]). G(C) has the canonical SC.

Theorem 7.5 ([28]). Π(C) has the canonical SC.

But the canonical SC does not hold in general for other expansions of a logic of a continuous
t-norm and its residuum. Namely, we will show that it fails for a large family of logics by
providing counterexamples, i. e. by exhibiting a formula ϕ that is a tautology of the canonical
standard algebra but not of the algebra [0, 1]FL∗(C) for some proper filter F of C. In the following
we assume that the first component of [0, 1]∗ is defined on the interval [0, a].

1. If the first component of the t-norm ∗ is a copy of  Lukasiewicz t-norm (and a ∈ C),
then an easy computation shows that the formula

a→ (¬¬p→ p)

is valid in the canonical standard algebra but it is not valid in the standard chain defined
by the filter F = [a, 1] ∩ C (where a is interpreted as 1).

2. If the first component of the t-norm ∗ is a copy of product t-norm, take b as any element
of C ∩ (0, a). Then an easy computation shows that the formula

b→ ¬p ∨ ((p→ p&p)→ p)
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is valid in the canonical standard algebra but it is not valid in the standard chain defined
by the filter F = (0, 1] ∩ F (where b is interpreted as 1).

3. If the first component is minimum t-norm, take b as any element of C ∩ (0, a). Then
the formula

b→ (p→ p&p)

is valid in the canonical standard algebra but it is not valid in the standard chain where
b is interpreted as 1.

Observe that for a t-norm whose decomposition begins with two copies of  Lukasiewicz
t-norm, the idempotent element a separating them has to belong to the truth-constants sub-
algebra C. Indeed, take into account that, by assumption, C must contain a non idempotent
element c of the second component and for this element there exists a natural number n such
that cn = a and thus a ∈ C. Hence this case is subsumed in the above first item.

The remaining cases (when the first component is  Lukasiewicz but its upper bound a does
not belong to C) will be divided in two different groups:

(1) If [0, 1]∗ = [0, a] L ⊕ [a, 1]G or [0, 1]∗ = [0, a] L ⊕ [a, 1]Π, then the logic L∗(C) has the
canonical SC. Actually, in that case the filters of C are the same as the filters of
C ∩ [a, 1]G or C ∩ [a, 1]Π respectively, and thus a modified version (given in the next
two theorems) of the proof of the canonical SC for G(C) and Π(C) applies.

(2) If [0, 1]∗ is an ordinal sum of three or more components, then L∗(C) has not the canonical
SC as the following examples show:

2.1.- If [0, 1]∗ = [0, a] L⊕ [a, b]G⊕A, take d ∈ (a, b) and F = (a, 1]∩C. Then the formula,

d→ (¬¬p→ p) ∨ (p→ p&p)

is a tautology of the canonical standard algebra but not of [0, 1]FL∗(C).

2.2.- If [0, 1]∗ = [0, a] L⊕ [a, b]Π⊕A, take d ∈ (a, b) and F = (a, 1]∩C. Then the formula,

d→ (¬¬p&¬¬q&((p→ p&q)→ q)&(q → p)&(p→ p&p)→ p)

is a tautology of the canonical standard algebra and not of [0, 1]FL∗(C).

The rest of the section is devoted to provide proofs for the canonical SC in the cases
[0, 1]∗ = [0, a] L ⊕ [a, 1]Π and [0, 1]∗ = [0, a] L ⊕ [a, 1]G.

Theorem 7.6. If [0, 1]∗ = [0, a] L ⊕ [a, 1]Π, the logic L∗(C) has the canonical SC if, and only
if, a 6∈ C.

Proof. The proof is rather analogous (with adequate changes) to the proof of the canonical
standard completeness for the expansion of Product logic with truth-constants given in [28].
Nevertheless we give the proof for the reader’s convenience.
If a ∈ C we have proved (by a counterexample) that L∗(C) has not the canonical SC. We will
prove that if a /∈ C, then L∗(C) has the canonical SC. It is obvious that there are only two
proper filters of C, which define two L∗(C)-chains over [0, 1]: the canonical one (defined by
the trivial filter) where each element of C is interpreted as itself, and the chain defined by
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the filter F = (a, 1] ∩ C where each element of C is interpreted as itself if it belongs to the
first component and as 1 if it belongs to F .

Take an arbitrary formula ϕ ∈ FmLC
and suppose that 6`L∗(C) ϕ. We want to show that

6|=[0,1]L∗(C)
ϕ. By the FSSC, the fact 6`L∗(C) ϕ implies that 6|={[0,1]L∗(C),[0,1]F

L∗(C)
} ϕ, hence what

we need to prove is the following statement:

if 6|=[0,1]F
L∗(C)

ϕ, then 6|=[0,1]L∗(C)
ϕ.

We will prove it in four steps.
Let the restriction of the t-norm ∗ on the interval [a, 1] be defined by

u ∗ v = h−1(h(u) · h(v))

for some increasing bijection h : [a, 1]→ [0, 1]. Let t > 0 and define kt : [0, 1]→ [0, 1] by

kt(z) =
{
z if z ∈ [0, a],
h−1((h(z))t) otherwise.

Furthermore, for any evaluation e into [0, 1]FL∗(C) we consider:
(i) e′t as the evaluation over the canonical standard chain [0, 1]L∗(C) defined for any propo-

sitional variable x by,
e′t(x) = kt(e(x))

(ii) e∗t as the mapping defined by e∗t (ϕ) = kt(e(ϕ)).

Claim 7.7. For any formulae ϕ,ψ,
(i) e∗t (ϕ&ψ) = e∗t (ϕ) ∗ e∗t (ψ)
(ii) e∗t (ϕ→ ψ) = e∗t (ϕ)⇒ e∗t (ψ)

Proof.
(i.1) If e∗t (ϕ&ψ) > a then e∗t (ϕ), e∗t (ψ) > a, and hence e(ϕ), e(ψ) > a as well. In this case,
e∗t (ϕ&ψ) = h−1((h(e(ϕ&ψ)))t) = h−1((h(e(ϕ)∗e(ψ)))t) = h−1((h(h−1(h(e(ϕ)) ·h(e(ψ))))t) =
h−1((h(e(ϕ)) · h(e(ψ)))t) = h−1(h(e(ϕ))t · h(e(ψ))t) = e∗t (ϕ) ∗ e∗t (ψ).
(i.2) If e∗t (ϕ&ψ) ≤ a, then e∗t (ϕ&ψ) = e(ϕ&ψ) = e(ϕ)∗e(ψ), and hence e(ϕ) ≤ a or e(ψ) ≤ a.
W.l.o.g., assume e(ϕ) = min(e(ϕ), e(ψ)) ≤ a, and hence e∗t (ϕ) = e(ϕ). Then, if e(ψ) > a then
e∗t (ψ) > a and e(ϕ) ∗ e(ψ) = e(ϕ) = e∗(ϕ) ∗ e∗t (ψ). Otherwise, if e(ψ) ≤ a, then e∗t (ψ) = e(ψ).

(ii) It follows from (i).

Claim 7.8. For any formula ψ,
(i) if e(ψ) ∈ (a, 1], then e′t(ψ) ∈ (a, 1],
(ii) if e(ψ) ∈ [0, a], then e′t(ψ) = e(ψ).

Proof. The proof is by induction:

• If ψ is a propositional variable, the statement is obviously true by definition of e′t.

• If ψ is a truth-constant r, either r > a and then e(r) = 1 and e′t(r) = r > a, or r < a
and then e(r) = r = e′t(r).
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• If ψ = δ&γ, then we have two cases:

1.- If e(ψ) ∈ (a, 1] then it is so for e(δ), e(γ). and thus for e′t(δ), e
′
t(γ) and, as a conse-

quence, for e′t(ψ).

2.- If e(ψ) ∈ [0, a], then at least one of e(δ), e(γ) must belong to [0, a]. Suppose that
e(δ) ∈ [0, a], hence by hypothesis e′t(δ) ∈ [0, a] as well, hence e′t(ψ) = e′t(δ) ∗ e′t(γ) ≤ a.

• If ψ = δ → γ, then we have several cases:
1.- If e(ψ) = 1, then e(δ) ≤ e(γ) and we have two cases:

1.1.- If e(δ), e(γ) belong to the same subinterval the statement is obvious.

1.2.- If e(δ), e(γ) belong to different subintervals, the statement also holds true by the
induction hypothesis.

2.- If e(ψ) < 1 then e(δ) > e(γ) and we have also two cases:

2.1.- If e(ψ) > a, then e(δ) > e(γ) > a and thus e′t(ψ) ∈ (a, 1].

2.2.- If e(ψ) ≤ a, then e(δ) > e(γ) ∈ [0, a] and we have two possibilities depending on
which component e(γ) belongs. But, in any case, the induction hypothesis proves easily
that e′t(ψ) = e(ψ).

The set [0, 1]R
+

of all functions from R+ into [0, 1] becomes an L∗-algebra with the op-
erations ∗ and ⇒∗ defined pointwise and with the constant function 0 as bottom and the
constant function 1 as top.

Let F ⊆ [0, 1]R
+

be the set of all functions f : R+ → [0, 1] satisfying the following
condition:

(E) There exists c such that a < c ≤ 1 and t0 > 0 such that c ≤ f(t) for all t ≥ t0.

It is immediate to verify that F is an implicative filter (as defined in [6, Lemma 1.5]) on the
L∗-algebra [0, 1]R

+
. The congruence relation defined by F on [0, 1]R

+
, f ∼ g iff f ⇒ g ∈ F

and g ⇒ f ∈ F , is defined by

f ∼ g iff there exist c, d ∈ (a, 1] and t0 > 0 such that
c ∗ g(t) ≤ f(t) ≤ d⇒ g(t) for all t > t0.

Then, one can check that ∼ satisfies the following properties, where fa stands for the constant
function with value a.

Claim 7.9. The congruence relation ∼ satisfies:
(i) f ∼ fa if, and only if, there exists t0 such that f(t) = a for all t ≥ t0.
(ii) Suppose f ∼ g. Then limt→∞ g(t) = a if, and only if, limt→∞ f(t) = a.

Proof. Just recall that, if c, d ∈ (a, 1], then c ∗ a = d⇒ a = a.

Claim 7.10. Let e and e′t as above be given. For every formula φ such that a < e(φ) < 1, let
gφ(t) = e∗t (φ) and fφ(t) = e′t(φ). Then we have fφ ∼ gφ. In particular, limt→∞ e

′
t(φ) = a.

Proof. Let us proceed by induction on the complexity of φ.

1. φ is a constant r. Then it must be r > a, hence e(r) = 1, and then gr(t) = kt(e(r)) =
kt(1) = 1 and fr(t) = e′t(r) = r, and obviously r ∼ 1.
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2. φ is a propositional variable. Then it is a direct consequence of the definition (fx(t) =
gx(t)).

3. φ = (ψ1&ψ2). If e(ψ1&ψ2) > a then e(ψ1), e(ψ2) > a, hence gψ1 , gψ2 , fψ1 , fψ2 ∈ F .
Then:

gψ1&ψ2(t) = e∗t (ψ1&ψ2) = e∗t (ψ1) ∗ e∗t (ψ2) = gψ1(t) ∗ gψ2(t).

fψ1&ψ2(t) = e′t(ψ1&ψ2) = e′t(ψ1) ∗ e′t(ψ2) = fψ1(t) ∗ fψ2(t).

Since ∼ is a congruence, if we suppose that fψ1 ∼ gψ1 and fψ2 ∼ gψ2 , we can conclude
that fψ1&ψ2 ∼ gψ1&ψ2 .

4. φ = (ψ1 → ψ2). If a < e(ψ1 → ψ2) < 1 then e(ψ1), e(ψ2) > a, hence gψ1 , gψ2 , fψ1 , fψ2 ∈
F . Then:

gψ1→ψ2(t) = e∗t (ψ1 → ψ2)) = e∗t (ψ1)⇒ e∗t (ψ2) = gψ1(t)⇒ gψ2(t).

fψ1→ψ2(t) = e′t(ψ1 → ψ2) = e′t(ψ1)⇒ e′t(ψ2) = fψ1(t)⇒ fψ2(t).

Using again the fact that ∼ is a congruence, from the hypothesis fψ1 ∼ gψ1 and fψ2 ∼
gψ2 , we obtain fψ1→ψ2 ∼ gψ1→ψ2 .

The first statement of the claim is proved. The second statement follows from the first
statement and (ii) of Claim 7.9.

Finally, we can obtain the result we are looking for:
Let ϕ be not valid in [0, 1]FL∗(C). There exists an evaluation e such that e(ϕ) < 1. By Claim
7.10, limt→∞ e

′
t(ϕ) = a as well, hence for some large enough t, e′t(ϕ) < 1. Thus ϕ is not valid

in the canonical standard chain.

Theorem 7.11. If [0, 1]∗ = [0, a] L⊕ [a, 1]G, the logic L∗(C) has the canonical SC if, and only
if, a 6∈ C.

Proof. If a ∈ C we have proved that the logic L∗(C) has not the canonical SC. Now we will
prove the canonical standard completeness of L∗(C) in the case that a /∈ C.
The proof is analogous (with adequate changes) to the one given in [14] for proving canonical
standard completeness for the expansion of Gödel logic with truth-constants. We will sketch
it. We know L∗(C) enjoys the FSSC and thus we have to prove that the tautologies of the
canonical standard chain are contained in the tautologies of any other standard chain. The
proof is by contraposition. Suppose that there is a formula ϕ and an evaluation e over a
standard chain defined by a proper filter F such that e(ϕ) < 1 and we have to prove that
there is an evaluation e′ over the canonical standard chain such that e′(ϕ) < 1.

Take X = {e(ψ) | ψ subformula of ϕ} ∪ {0, 1} and let α = min{r ∈ F | r appears in
ϕ}. Now, define f : X −→ [0, α] by stipulating that its restriction over X ∩ [0, a] is the
identity function and its restriction over X ∩ [a, 1] is an increasing function with f(a) = a and
f(1) = α. Then define e′ as the evaluation over the canonical standard algebra such that

e′(x) =


f(e(x)), if x propositional variable in ϕ
1, if x propositional variable not in ϕ
r, if x = r

By induction we can prove that for each subformula ψ of ϕ we have:
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[0, 1]∗ Canonical SC for L∗(C)
[0, 1] L Yes
[0, 1]G Yes
[0, 1]Π Yes

[0, a]G ⊕A No
[0, a]Π ⊕A No
[0, a] L ⊕A, a ∈ C No

[0, a] L ⊕ [a, 1]G, a 6∈ C Yes
[0, a] L ⊕ [a, 1]Π, a 6∈ C Yes

[0, a] L ⊕ [a, b]G ⊕A, a 6∈ C No
[0, a] L ⊕ [a, b]Π ⊕A, a 6∈ C No

Table 3: Canonical standard completeness results for logics L∗(C) when ∗ is a finite ordinal
sum of the three basic components.

- e′(ψ) ≥ α, if e(ψ) = 1

- a < e′(ψ) < α, if a < e(ψ) < 1

- e′(ψ) = e(ψ), if either e(ψ) ∈ [0, a] or e(ψ) = e(x) for some x which is a propositional
variable or truth-constant appearing in ϕ.

In particular, from these properties, we see that the evaluation e′ over the canonical standard
chain is such that e′(ϕ) < 1, which ends the proof.

Summarizing (see Table 3) the canonical SC holds for the expansion of the logic of a
continuous t-norm ∗ by a set of truth constants satisfying the three conditions (C1), (C2) and
(C3) if, and only if, [0, 1]∗ is either one of the three basic algebras ([0, 1] L, [0, 1]G or [0, 1]Π)
or [0, 1]∗ = [0, a] L ⊕ [a, 1]Π or [0, 1]∗ = [0, a] L ⊕ [a, 1]G with a 6∈ C.

7.3 Completeness results for evaluated formulae

This section deals with completeness results when we restrict to what we call evaluated for-
mulae, formulae of type r → ϕ, where ϕ is a formula without new truth-constants. From
the previous sections we know that FSSC is true for the expansion of L∗ with a subalgebra
of truth-constants (not only for evaluated formulae), but the canonical FSSC is only true
for expansions of  Lukasiewicz logic. Next theorem9 states the canonical FSSC restricted to
evaluated formulae for the expansions of Gödel and Product logics with truth-constants.

Theorem 7.12. G(C) and Π(C) have the canonical FSSC if we restrict the language to
evaluated formulae, i. e. given a natural number n ≥ 1, formulae ϕ1, . . . , ϕn, ψ ∈ FmL, and
r1, . . . , rn, s ∈ C, we have:

• {ri → ϕi : 1 ≤ i ≤ n} `G(C) s→ ψ if, and only if,
{ri → ϕi : 1 ≤ i ≤ n} |=[0,1]G(C) s→ ψ.

9The proof can be found in [14] for the case of G(C) and in [28] for Π(C).
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• {ri → ϕi : 1 ≤ i ≤ n} `Π(C) s→ ψ if, and only if,
{ri → ϕi : 1 ≤ i ≤ n} |=[0,1]Π(C) s→ ψ.

One could wonder whether these restricted completeness results hold for formulae of type
ϕ → r such that ϕ does not contain a truth-constant different from 0 and 1. Actually the
situation is different for G(C) and Π(C):

• As for G(C), the result does not hold. For instance, it is easy to check that

¬¬p→ 0.7 |=[0,1]G(C) p→ 0.2

since the premise is only true if e(p) = 0 while

¬¬p→ 0.7 6`G(C) p→ 0.2.

In fact, by the deduction-detachment theorem and the canonical SC of G(C) this is
equivalent to show that

6|=[0,1]G(C) (¬¬p→ 0.7)→ (p→ 0.2),

and this is true since, if e(p) = c for c > 0.2, an easy computation shows that e((¬¬p→
0.7)→ (p→ 0.2)) = 0.2.

• As for Π(C), the result holds true when the formulae ϕ→ r are such that r > 0 (see [28]),
since in such a case these formulae are trivially satisfied in the (unique) non-canonical
standard Π(C)-algebra [0, 1]FΠ(C) for F = (0, 1].

In any case, the result is not true if we allow formulae of both types together. Indeed, given
r 6= 1, it is obvious that the semantical deduction (already used in the proof of Theorem 7.3)

(p→ q)→ r |= 1→ (q → p)

is valid over the canonical standard chain but not over a standard chain where r is interpreted
as 1.

Now we will study the canonical SC and the canonical FSSC restricted to evaluated
formulae for other logics. Suppose that ∗ is a t-norm which is a non-trivial finite ordinal sum
of the basic components and suppose that the first component is defined on the interval [0, a].
For the following cases we can refute the canonical SC (and hence the canonical FSSC as
well):

1. The first component of the t-norm ∗ is a copy of  Lukasiewicz t-norm and a ∈ C.

2. The first component of the t-norm ∗ is a copy of product t-norm.

3. The first component of the t-norm ∗ is a copy of minimum t-norm.

4. There are more than two components and the second component is a copy of minimum
t-norm.

5. There are more than two components and the second component is a copy of product
t-norm.
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Indeed, for all these cases we can use the same counterexample that was given in the
previous section to show that the corresponding logics do not enjoy the canonical SC, because
the counterexamples were actually evaluated formulae.

The following theorem deals with the remaining case of ordinal sums of two basic com-
ponents. The case [0, 1]∗ = [0, a] L ⊕ [a, 1] L is not considered here since in such a situation,
under the working hypothesis that there exists b ∈ (a, 1] such that b ∈ C, necessarily a ∈ C
as well.

Theorem 7.13. The restriction to evaluated formulae of the logic L∗(C) when either [0, 1]∗ =
[0, a] L ⊕ [a, 1]G or [0, 1]∗ = [0, a] L ⊕ [a, 1]Π and a /∈ C has the canonical FSSC.

Proof. The proof is an easy modification of the proofs given in [14] for G(C) and in [28] for
Π(C). Here we only sketch the proof for [0, 1]∗ = [0, a] L ⊕ [a, 1]Π.
What we want to prove is:

{ri → ϕi | i = 1, . . . , n} `L∗(C) s→ ψ
if, and only if,

{ri → ϕi | i = 1, . . . , n} �[0,1]L∗(C)
s→ ψ

where ϕi and ψ are L∗(C)-formulae, i.e., formulae not containing truth-constants different from
0 and 1. Actually, as always, one direction (soundness) is obvious. To prove the converse
direction, i.e.

If {ri → ϕi | i = 1, .., n} |=[0,1]L∗(C)
s→ ψ, then {ri → ϕi | i = 1, .., n} `L∗(C) s→ ψ,

it is enough to combine the FSSC of L∗(C) with the following result:

Claim 7.14. If {ri → ϕi | i = 1, .., n} |=[0,1]L∗(C)
s → ψ then {r1 → ϕ1, . . . , rn →

ϕn} |=[0,1]F
L∗(C)

s→ ψ, where F = (a, 1] ∩ C.

To prove it we may assume without loss of generality that ri > 0 for all i and s > 0.
Suppose {r1 → ϕ1, . . . , rn → ϕn} 6|=[0,1]F

L∗(C)
s → ψ. Then there exists a [0, 1]FL∗(C)-evaluation

e such that e(r1 → ϕ1) = . . . = e(rn → ϕn) = 1 and e(s→ ψ) < 1.
(i) If s ∈ (0, a], and hence e(s) = s and e(ψ) < s, then take the evaluation e′ over the

canonical standard chain defined by e′(p) = e(p) for any propositional variable p. Notice that,
since e(r) ≥ e′(r) and e(ϕ) = e′(ϕ), it is easy to compute that e′(r1 → ϕ1) = . . . = e′(rn →
ϕn) = 1 and e′(s→ ψ) = e(s→ ψ) < 1.

(ii) If s ∈ (a, 1], and hence e(s) = 1 and e(ψ) < 1, we can assume e(ψ) ≥ s, otherwise the
above evaluation e′ does the job. Then take the family of evaluations e′t over the canonical
standard chain defined by e′t(p) = kt(e(p)) for any propositional variable p, where kt : [0, 1]→
[0, 1] is the mapping defined in the proof of Theorem 7.6, i.e.

kt(z) =
{
z if z ∈ [0, a],
h−1((h(z))t) otherwise.

By definition of kt it is easy to find a large enough t such that a < e′t(ψ) < s, and hence e′t(s→
ψ) < 1. Moreover, it is easy to check that we still have e′t(r1 → ϕ1) = . . . = e′t(rn → ϕn) = 1.
Indeed, if ri ∈ (a, 1], then e(ri) = 1 and e(ϕ) = 1, hence e′t(ϕ) = 1 as well. If ri ∈ (0, a],
then e′t(ri) = e(ri) = ri and e(ϕi) ≥ ri. Now, if e(ϕi) ≤ a then e′t(ϕi) = e(ϕi), otherwise, if
e(ϕi) > a then e′t(ϕi) > a as well. In any case, e′t(ϕi) ≥ ri, hence e′t(ri → ϕi) = 1.
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Restricted to evaluated formulae of L∗(C)
[0, 1]∗ Canonical SC Canonical FSSC
[0, 1] L Yes Yes
[0, 1]G Yes Yes
[0, 1]Π Yes Yes

[0, a]G ⊕A No No
[0, a]Π ⊕A No No
[0, a] L ⊕A, a ∈ C No No

[0, a] L ⊕ [a, 1]G, a 6∈ C Yes Yes
[0, a] L ⊕ [a, 1]Π, a 6∈ C Yes Yes

[0, a] L ⊕ [a, b]G ⊕A, a 6∈ C No No
[0, a] L ⊕ [a, b]Π ⊕A, a 6∈ C No No

Table 4: Canonical SC and FSSC results restricted to evaluated formulae for logics L∗(C)
when ∗ is a finite ordinal sum of the three basic components.

All these results are summarized in Table 4 where, interestingly, it turns out that
both standard completeness properties (SC and FSSC) restricted to evaluated formulae
are equivalent. Furthermore, comparing Table 4 with Table 3 we realise that for a logic
L∗(C) where ∗ is a finite ordinal sum of basic components, the canonical SC turns out to be
equivalent to the canonical SC (and to the canonical FSSC) restricted to evaluated formulae.

Open problem: Are these equivalences valid for wider classes of L∗(C) logics?

Finally, it is easy to see that none of the considered logics enjoy the canonical SSC when
restricted to evaluated formulae. Indeed, for every continuous t-norm ∗, we have {( n

n+1) →
p | n ∈ N} |=[0,1]L∗(C)

p. But if {( n
n+1) → p | n ∈ N} `L∗(C) p, then, since L∗(C) is a finitary

logic, there would exist n0 ∈ N such that ( n0
n0+1)→ p `L∗(C) p, hence, by soundness we would

have ( n0
n0+1)→ p |=[0,1]L∗(C)

p; a contradiction.

8 Adding truth-constants to expansions with ∆ connective

For every continuous t-norm ∗, one can define an expansion of the logic L∗ by adding to the
language a unary connective ∆, and adding to the Hilbert-style system of L∗ the following
axiom schemata:

(∆1) ∆ϕ ∨ ¬∆ϕ

(∆2) ∆(ϕ ∨ ψ)→ (∆ϕ ∨∆ψ)

(∆3) ∆ϕ→ ϕ

(∆4) ∆ϕ→ ∆∆ϕ

(∆5) ∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ)
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and the rule of necessitation:
ϕ

∆ϕ

This logic is denoted by L∗∆. It is algebraizable and its equivalent algebraic semantics is
the variety of L∗∆-algebras, i.e. expansions with ∆ of L∗-algebras satisfying the translation
of the axioms (∆1), . . . , (∆5) and the equation ∆1 ≈ 1. It is easy to prove that all L∗∆-
algebras are representable as subdirect products of L∗∆-chains. The interpretation of the ∆
connective in these chains is very simple, namely if A is an L∗∆-chain, then ∆A(1A) = 1A

and ∆A(a) = 0A for every a ∈ A \ {0A}. We will denote by [0, 1]L∗∆ the expansion of [0, 1]∗
with the Delta operation.

Proposition 8.1. For every continuous t-norm ∗, L∗∆ is a conservative expansion of L∗.

Proof. It is obvious that every L∗-chain is the reduct of an L∗∆-chain (just take the same chain
and define ∆ in the only possible way for chains), thus we can apply Proposition 2.4.

All the results about L∗∆ logics so far mentioned can be found in the literature (see for
instance [18, 7]).

Proposition 8.2. For every continuous t-norm ∗, the logic L∗∆ enjoys the FSSC.

Proof. 10 Let ∗ be a continuous t-norm. We know that every L∗-chain is partially embeddable
into [0, 1]∗. Let A be an L∗∆-chain and take any finite set X ⊆ A. Since the L-reduct of A
is an L∗-chain, then there is a partial embedding f (in the language L) of X into [0, 1]∗. It
is straightforward that f is also a partial embedding (in the language L ∪ {∆}) of X into
[0, 1]L∗∆ .

Proposition 8.3. Let ∗ be a continuous t-norm. L∗∆ enjoys the SSC if, and only if, ∗ = min.

Proof. Suppose that ∗ = min and take a countable L∗∆-chain A. Then its L-reduct is a G-
chain and it is well-known that it can be embedded into the standard G-chain [0, 1]∗. Clearly,
the same embedding works for A and [0, 1]L∗∆ . Conversely, if ∗ 6= min, then L∗ has not the
SSC, and since L∗∆ is a conservative expansion of L∗, then by Proposition 3.5 also L∗∆ has
not the SSC.

Now we will consider expansions with truth-constants for these logics with ∆. Given a
continuous t-norm ∗ and a countable subalgebra C ⊆ [0, 1]∗, we define the logic L∗∆(C) as the
expansion of L∗∆ in the language LC obtained by adding the following book-keeping axioms:

r&s↔ r ∗ s
(r → s)↔ r ⇒ s

∆r ↔ ∆r

for every r, s ∈ C.
Again, using the general facts mentioned in the preliminaries we know that L∗∆(C) is an

algebraizable logic and we can axiomatize its equivalent algebraic semantics, the variety of
L∗∆(C)-algebras. Moreover, it can be easily checked that L∗∆(C)-algebras are representable
as subdirect product of chains.

10An alternative proof of this can be found in [7].
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Proposition 8.4. For every continuous t-norm ∗ and every countable subalgebra C ⊆ [0, 1]∗,
the logic L∗∆(C) is a conservative expansion of L∗∆.

Proof. It is analogous to the proof of Proposition 4.5.

Lemma 8.5. Let A be a non-trivial L∗∆(C)-chain, ∗ be a continuous t-norm and C ⊆ [0, 1]∗
be a countable subalgebra. Then, for every r, s ∈ C such that r < s, we have rA < sA.

Proof. Suppose rA = sA. Then, 1A = ∆1A = ∆s→ rA = ∆(s→ t)
A

= 0A; a contradiction.

Therefore, in the variety of L∗∆(C)-algebras all standard chains over [0, 1]∗ are of type
F = {1}, among them the canonical chain that we denote by [0, 1]L∗∆(C).

Theorem 8.6. Let ∗ be a continuous t-norm and let C ⊆ [0, 1]∗ be a countable subalgebra. If
L∗(C) has the partial embeddability property11, then L∗∆(C) has the canonical FSSC.

Proof. Take an arbitrary L∗∆(C)-chain A. Then, the LC-reduct of A is partially embeddable
into [0, 1]L∗(C), so it is clear that also A is partially embeddable into [0, 1]L∗∆(C).

Proposition 8.7. Let ∗ be a continuous t-norm and C a countable subalgebra C ⊆ [0, 1]∗
such that L∗(C) satisfies the partial embeddability property. Then, L∗∆(C) is a conservative
expansion of L∗(C) if, and only if, L∗(C) enjoys the canonical FSSC.

Proof. One direction is again analogous to the proof of Proposition 4.5. For the converse,
suppose that L∗(C) does not enjoy the canonical FSSC. Then there is a finite set of formulae
Γ ∪ {ϕ} ⊆ FmLC

such that Γ |=[0,1]L∗(C)
ϕ and Γ 6`L∗(C) ϕ. But then, Γ |=[0,1]L∗∆(C) ϕ and

hence Γ `L∗∆(C) ϕ, by the canonical FSSC of L∗∆(C). Therefore, L∗∆(C) is not a conservative
expansion of L∗(C).

Theorem 8.8. Let ∗ be a continuous t-norm and let C ⊆ [0, 1]∗ be a countable subalgebra.
Then, L∗∆ has the SSC if, and only if, L∗∆(C) has the canonical SSC.

Proof. From left to right it is again proved by generalizing [7, Lemma 3.4.4.]), while the
converse is a consequence of Proposition 3.5.

Corollary 8.9. Let ∗ be a continuous t-norm and let C ⊆ [0, 1]∗ be a countable subalgebra.
L∗∆(C) enjoys the SSC if, and only if, ∗ = min.

9 Concluding remarks

In this paper we have provided a complete description of completeness results for the expan-
sions of logics of continuous t-norms with a set of truth-constants {r | r ∈ C}, for a suitable
countable C ⊆ [0, 1], when (i) the t-norm is a finite ordinal sum of basic components, (ii)
the set of truth-constants covers all the unit interval in the sense that each component of the
t-norm contains at least one value of C different from the bounds of the component, and (iii)
the truth-constants in  Lukasiewicz components behave as rational numbers. From a practical
point of view, it seems these cases are the most interesting for fuzzy logic-based systems, since

11In particular for any ∗ satisfying conditions (C1), (C2) and (C3).
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L*Δ(C)

L*ΔL*(C)

L*
: conservative expansion

Figure 1: Diagram of expansions showing which are always conservative.

they usually consider a set of truth values spread all over the real unit interval, and hence it is
natural to assume there are elements of C in each component of the t-norm. In all these cases
completeness results have been settled, with one important exception. Actually, it remains
as open problem the case of a logic of a t-norm with a  Lukasiewicz component containing
some r ∈ C which generates an infinite MV-chain (in other words, when r corresponds to an
irrational value in the isomorphic copy of the component over [0, 1]). The case of expanding
 Lukasiewicz logic when C contains irrational values is therefore an important particular case.

Of course, all those cases where at least one of the two conditions (i) and (ii) above is not
satisfied also remain to be studied. It seems that for these remaining cases (i.e. when either
the t-norm has infinitely many components or the set C does not cover [0,1]), a methodology
similar to the one used in this paper could be applied. But in fact there is an explosion of
cases to be considered and the need of new definitions and tools seems unavoidable. Let us
show a couple of illustrative examples, the first when the set C does not cover [0, 1] and the
second when the t-norm has infinitely many components.

Example 1. Let [0, 1]∗ = [0, a]Π ⊕ [a, 1]Π and let C = {0, 1} ∪ {bn | n ∈ N} for some b < a.
Obviously, there are only two proper filters of C, F1 = {1} and F2 = C \ {0} but there are
(up to isomorphism) three standard L∗(C)-chains. One, of type F2 in the sense used in this
paper, is the L∗(C)-chain over [0, 1]∗ where the constants different from 0 are interpreted as
1 and 0 is interpreted as 0. The other two are of type F1. They are both L∗(C)-chains over
[0, 1]∗ where all constants are interpreted as different elements, either as powers of an element
of the first product component or as powers of an element of the second product component.
Of course, these two algebras are not isomorphic. This example shows that in general there
is not a bijection between proper filters and standard algebras (hence Proposition 5.3 fails
in this case) and, even though it seems possible to have the partial embeddability property,
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the notion and treatment of standard chains should be modified in the case that C does not
cover all components.

Example 2. Let [0, 1]∗ =
⊕

n∈N[an, an+1] L, where an = n/(n + 1), be an infinite ordinal
sum of  Lukasiewicz components where the idempotent elements form an increasing sequence
with limit 1. For a given k > 2, let Ci the carrier of the k-element MV-subalgebra of
[ai, ai+1] L and denote its elements as r1i = ai, r2i, . . . , rki = ai+1. Take C = ∪i∈NCi ∪ {1}.
It is clear that C covers all the components but there are standard algebras where the
interpretations of the truth-constants do not cover all the components. Indeed, let f be
any strictly increasing mapping f : N → N different from the identity such that f(1) = 1.
One standard L∗(C)-algebra is the chain over [0, 1]∗ where rij is interpreted as rf(i)j . An
easy computation shows that this interpretation defines a standard L∗(C)-chain where the
interpretations of truth-constants do not cover the real unit interval. In fact, there exists i
such that f(i+ 1) is not the successor of f(i) (there are some natural numbers in between),
and thus the components between the f(i)-th and the f(i + 1)-th components contain no
interpretations of truth-constants.

We conjecture that the study of completeness results for the expansions of the remaining logics
of continuous t-norms, like the ones in the above examples, will be more in a case-by-case
basis rather than by means of a new general theory.
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