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Abstract

The approximation operators provided by classical Approximation Theory use ex-
clusively as underlying algebraic structure the linear structure of the reals. Also they
are all linear operators. We address in the present paper the following problems:
Need all the approximation operators be linear? Is the linear structure the only one
which allows us to construct particular approximation operators? As an answer to
this problem we propose new, particular, pseudo-linear approximation operators,
which are de�ned in some ordered semirings. We study these approximations from
a theoretical point of view and we obtain that these operators have very similar
properties to those provided by classical Approximation Theory. In this sense we
obtain Uniform Approximation Theorems of Weierstrass type, and Jackson-type
error estimates in approximation by these operators.
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Introduction

In classical Functional Analysis, the underlying algebraic structure is the linear
space structure and the same is true for the classical Approximation Theory.
In several research �elds including Decision Analysis, Fuzzy Set Theory, Op-
erations Research, Automatic Control and Mathematical Physics, idempotent
analysis and the pseudo-linear structure have already shown their power in
problems where the linear structure is not helpful (see e.g. [11], [20], [8]). The
pseudo-linear structure is that of an ordered semiring or a dioïd (if the canon-
ical preorder is an order relation), usually on a subset of the real numbers, [8].
The mathematical analysis over this structure is called idempotent analysis,
[11] or pseudo-analysis [19], [17].

We address in the present paper the same problem for Approximation Theory
i.e., is the linear structure the only one that can be used in classical Approxi-
mation Theory? Need all the approximation operators be linear?

In the literature there are several attempts to concerned with approximation
on algebraic structures di¤erent from the �eld of reals. Let us mention here the
work [14], where M. Minoux addressed the problem of optimal segmentation
(see also [7]), for �nding best possible piecewise representation of a function
in a single variable. Also, in [15], an integral-form nonlinear approximation
operator is considered in some modular spaces.

Here we continue this line of research in the setting of classical Approximation
Theory and Pseudo-Analysis, by de�ning particular, Shepard-type, pseudo-
linear approximation operators in three types of ordered semirings, namely the
max-product semiring, the max-min semiring and semirings with generated
pseudo-operations.

First we would like to formulate the above proposed problem in a more clear
way, but in this case we need a short discussion about classical Approximation
Theory.

The main problem solved by classical approximation theory is to approxi-
mate a continuous function f : [a; b] ! R, where [a; b] is a real interval, by
some simpler function. Classical approximation theory provides many di¤er-
ent approximation operators: Bernstein polynomials, Shepard-Balázs opera-
tors, Jackson-type trigonometric polynomials, wavelets (see e.g. [5], [3]), to
mention only a few. These approximations are using exclusively the linear
structure over R as underlying algebraic structure. Usually, the form of such
an operator is

Ln(f; x) =
nX
i=0

Kn(x; xi) � f(xi);
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where xi 2 [a; b], i = 0; :::; n are �xed knots and Kn(x; xi) are functions with a
relatively simple expression (polynomials, trigonometric polynomials, rational
functions, wavelets).

Let us observe that all these operators are linear i.e., Ln(f+g; x) = Ln(f; x)+
Ln(g; x);8f; g : [a; b]! R continuous.

The main theorems in classical approximation theory are the Weierstrass-type
approximation theorems, which state that some function can be uniformly ap-
proximated by some approximations, and Jackson-type error estimates which
are given in terms of the modulus of continuity and usually these show us that
the approximation error is at most of the order O(!(f; 1

n
)):

It is now natural to formulate and study the problem: whether we can change
the underlying algebraic structure from the �eld of reals to some more general
structures? Also, which important properties will still hold true in the new
setting?

In this sense we presented in the recent paper [4], max-product Shepard ap-
proximations. For these approximations we have obtained Weierstrass-type
uniform approximation theorem and for the approximation error we obtained
Jackson-type estimates.

The idea and the problem came from both the theory and applications of
Fuzzy Sets. In several papers, (see e.g. [21], [22], [2], [10], [28]) the approxima-
tion capability of fuzzy systems is studied. Also, in several image processing
applications, di¤erent operations are used (see e.g. [16], [9]). These lead us
to the idea of de�ning and studying pseudo-linear approximation operators.
Also, the algebraic structure of an ordered semiring that we are using is closely
connected to the Fuzzy Set Theory, as it is shown in the very recent paper [8].

In the present paper we discuss in detail the problem of how approximations
can be de�ned based on di¤erent types of ordered semirings. The possibility
to change the algebraic structure from the classical linear structure to other,
more general structures, allows us to generalize several important results of
classical Approximation Theory in a new direction.

So, the purpose of the present paper is to approximate a continuous function
f : X ! [0;1); where (X; d) is a compact metric space, by approximations
de�ned on algebraic structures di¤erent from the �eld of real numbers. We will
use three types of ordered semirings: the max-product semiring of positive real
numbers, max-min semiring on the [0; 1] interval and semirings with generated
pseudo-operations over the set of positive real numbers. The later class is an
isomorphic image of the semiring of positive reals, and moreover, it contains
as a particular case the linear structure, so we have a generalization of the
classical Shepard-Balázs operator. The purpose of this paper is an analysis of

3



the theoretical aspects of the problem and future work will contain practical
results and we will show that in several applications, the new pseudo-linear
approximations outperform their classical counterparts. Let us also mention
that the present paper opens new research direction, the topic of pseudo-linear
approximation.

Let us remark that in classical approximation theory the term �nonlinear
approximation" is used in a quite di¤erent sense (it is approximation by using
a dictionary of functions, see e.g. [6]).

Let us also remark here that in the proofs we use not only the ordered semiring
structure (recall that we deal with subsets of the real line so whenever needed,
we can use the classical operations as well). The metric structure considered
here is the Euclidean distance between the reals, but also, in Section 4, we
will use a generalized metric space structure (see [23], [29], [30]).

After a preliminary section where we discuss the three types of ordered semi-
rings used in this paper and some analytic properties, we recall in Section 3
the max-product approximations. Max-min approximations are introduced in
Section 4. Section 5 concerns pseudo-linear approximation operators based on
an ordered semiring structure with generated pseudo-operations.

1 Preliminaries

1.1 Ordered semirings

Let I be a closed or semiclosed subinterval of [0;1]: The operation� : I�I !
I is called a pseudo-addition if it is commutative, nondecreasing, associative
and has a zero element denoted by 0.

The operation � : I � I ! I is a pseudo-multiplication if it is commutative,
nondecreasing, associative and for which there exists a unit element 1 2 I.
Let us further suppose that � is distributive with respect to � i.e.,

x� (y � z) = x� y � x� z:
for any x; y; z 2 I.

We will consider in the examples presented in this paper the following 3 cases:

Case 1. I = [0;1); � = _ and � = �; that is the max-product semiring of
positive reals.
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Case 2. I = [0; 1]; � = _ and � = ^; that is the max-min semiring over
the [0; 1] interval, i.e., the max-min fuzzy algebra. We observe that _ and ^
operations can be extended over [0;1] interval but in this case the unit is1:
Later, in the proofs of some theorems we will use the extended operations (in
these parts we will not use the properties related to the unit).

Case 3. Semirings with pseudo-operations de�ned by a monotone and con-
tinuous generator g : [0;1) ! [0;1) (see [1], [13], [19], [18], [8]). Moreover,
from this class we consider only strict pseudo-additions, that is � is strictly
increasing on (0;1)� (0;1). In this case by Aczél�s representation theorem
there exists a monotone function g : [0;1)! [0;1) such that g(0) = 0 and

x� y = g�1(g(x) + g(y)):

In this case the unique pseudo-multiplication associated to � is given by

x� y = g�1(g(x) � g(y)):

It is easy to check that 1 = g�1(1) is neutral element with respect to � in
the sense that x� 1 = x for any x 2 (0;1): By convention, the operation �
will have in the present paper always higher priority than the operation �:
In this last case we have an isomorphic copy of the semiring of positive real
numbers with the usual operations. The algebraic structure obtained here is
not a general fuzzy algebra. This can be seen easily from the fact that in our
case the distributivity law holds, and this is not generally the case in fuzzy
algebras.

However this later case is isomorphic to the semiring of positive reals with the
usual addition and multiplication, the approximations presented later in this
paper are not obtained as a copy by the isomorphism of their classical coun-
terpart. Instead we de�ne and study these approximations inside the ordered
semiring structure obtained in this case.

The algebraic structure induced by the above described pseudo-operations,
in all the presented cases is that of an ordered semiring and moreover the
order relation is compatible with the operations considered. Such algebraic
structures, despite the apparent di¤erences from fuzzy algebra are strongly
connected to Fuzzy Sets Theory, as it is shown in e.g., [8].

1.2 Some analytic properties

Usually, the error estimates in classical approximation theory are provided in
terms of the modulus of continuity. So, let us recall its de�nition and main
properties adapted to our case (for the general de�nition see [3]).
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De�nition 1 Let (X; d) be a compact metric space and ([0;1); j�j) the metric
space of positive reals endowed with the usual Euclidean distance. Let f : X !
[0;1) be bounded. Then the function ! (f; �) : [0;1)! [0;1); de�ned by

! (f; �) =
_
fjf (x)� f (y) j;x; y 2 X; d(x; y) � �g

is called the modulus of continuity of f:

Theorem 2 The following properties hold true

i) jf (x)� f (y) j � ! (f; d(x; y)) for any x; y 2 X;

ii) ! (f; �) is nondecreasing in �;

iii) ! (f; 0) = 0;

iv) ! (f; �1 + �2) � ! (f; �1) + ! (f; �2) for any �1; �2;2 [0;1);

v) ! (f; n�) � n! (f; �) for any � 2 [0;1) and n 2 N;

vi) ! (f; ��) � (�+ 1) � ! (f; �) for any �; � 2 [0;1);

vii) f is continuous if and only if lim�!0 ! (f; �) = 0:

Since the approximation operators de�ned later in this paper are often said to
be of Shepard-type, let us recall the de�nition and approximation properties
of the so-called Shepard-Balázs (sometimes called only Shepard) operators
(see [24], [26], [25], [32], [12], [28]). We have chosen the Shepard kernel in the
investigations presented here for its simplicity. For future research one can use
as well other kernels.

Let f : [0; 1] ! R be a continuous function and xi 2 [0; 1]; i 2 f0; :::; ng;
n � 1 be equally spaced points and � > 2. Let also B�n(x; xi) =

1

jx�xij�Pn

i=0
1

jx�xij�
;

if x 2 [0; 1] n fx0; x1; :::; xng and B�n(xj; xi) = �ij; i; j 2 f0; :::; ng (�ij is the
Kronecker symbol) denote the classical Shepard kernel. Then

S�n(f; x) =
nX
i=0

B�n(x; xi)f(xi); (1)

is the classical Shepard-Balázs (interpolatory) operator.

Theorem 3 ([26], [27])Let f : [0; 1]! R be a continuous function. Then, the
Shepard-Balázs operator de�ned as in (1) satis�es the following Jackson-type
error estimate:

jS�n(f; x)� f(x)j � C!
�
f;
1

n

�
;

where C is a constant which does not depend on n:
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In order to study approximation properties of the max-product and max-min
approximations de�ned later in this paper we need the following two lemmas.

Lemma 4 For any ai; bi 2 [0;1); i 2 f0; :::; ng we have�����
n_
i=0

ai �
n_
i=0

bi

����� �
n_
i=0

jai � bij :

PROOF. Since max operation is nondecreasing in its arguments, we have

n_
i=0

ai =
n_
i=0

jbi + ai � bij �
n_
i=0

bi + jai � bij

and it follows
n_
i=0

ai �
n_
i=0

bi +
n_
i=0

jai � bij:

This inequality together with the symmetric case implies the statement of the
lemma. 2

In the proof of the next Lemma we "go out" from the structure of the max-
min ordered semiring on [0; 1] interval and we use the extended operations over
[0;1] together with the classical addition. This does not lead to incorrect proof
since we do not use here the properties of the unit.

Lemma 5 For any x; y; z 2 [0; 1] we have

jx ^ y � x ^ zj � x ^ jy � zj:

PROOF. It is easy to see that if we suppose y > z; we have

x ^ y = x ^ (z + y � z) � x ^ z + x ^ (y � z);

inequality which together with the symmetric case implies

jx ^ y � x ^ zj � x ^ jy � zj:

2

2 Max-product approximation

Let us consider a continuous function f : X ! [0;1), (X; d) being a compact
metric space and on [0;1) we consider the usual Euclidean distance. Let also,
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xi 2 X; i 2 f0; :::; ng; n � 1 be �xed sampled data (i.e. we suppose that
the values f(xi) are known). The idea of de�ning max-product approximation
operators is very simple: we change the algebraic streucture from the �eld of
reals to the ordered, max-product semiring of positive reals.

The general discrete form of a max-product approximation is given by

Pn(f; x) =
n_
i=0

Kn(x; xi) � f(xi); (2)

where Kn(�; xi) : X ! [0;1); i = 0; :::; n are some given continuous functions.
It is easy to check that Pn(f; �) : X ! [0;1) is a continuous function.

Let us denote by C(X; [0;1)) the space of continuous functions f : X !
[0;1) endowed with the uniform distance kf � gk =

_
x2X

jf(x)� g(x)j.

Proposition 6 The operator Pn : C(X; [0;1)) ! C(X; [0;1)); Pn(f; x) =
n_
i=0

Kn(x; xi) � f(xi); is continuous in the uniform distance and it is pseudo

linear in the sense that

Pn(� � f _ � � g; x) = � � Pn(f; x) _ � � Pn(g; x):

PROOF. We have

jPn(f; x)� Pn(g; x)j =
�����
n_
i=0

Kn(x; xi) � f(xi)�
n_
i=0

Kn(x; xi) � g(xi)
����� :

By Lemma 4 we have successively

jPn(f; x)� Pn(g; x)j �
n_
i=0

jKn(x; xi) � f(xi)�Kn(x; xi) � g(xi)j

�
n_
i=0

Kn(x; xi)jf(xi)� g(xi)j

�
n_
i=0

Kn(x; xi) kf � gk :

Since Kn(�; xi) are continuous on the compact X; they are bounded and we
get

kPn(f)� Pn(g)k �M kf � gk

where M =
n_
i=0

_
x2X

Kn(x; xi): The pseudo-linearity of Pn is obvious. 2
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An example of such an operator can be found in [4], where max-product Shep-
ard operator is de�ned and studied. We de�ne the maxitive Shepard kernel as
follows:

Kn;�(x; xi) =

1
d(x;xi)�

n_
j=0

1
d(x;xj)�

; if x =2 fx0; :::xng (3)

and Kn;�(xj; xi) = �ij; i; j = 0; :::; n; n � 1; and � � 1 is a constant. It is easy
to check that Kn;�(�; xi); i = 0; :::; n are continuous. Then the max-product
Shepard operator can be written

Sh�n (f; x) =
n_
i=0

Kn;�(x; xi) � f(xi) =

n_
i=0

f(xi)
d(x;xi)�

n_
j=0

1
d(x;xj)�

; if x =2 fxi : i = 0; :::; ng (4)

and Sh�n (f; xi) = f(xi) for i = 0; :::; n. It is easy to check that Sh�n (f; �) is
continuous since Kn;�(�; xi) are continuous.

The following approximation properties were obtained in [4].

Theorem 7 Let f : X ! [0;1), be continuous, xi 2 X; i 2 f0; :::; ng be
�xed sampled data and Sh�n (f; x) as in (4), � � 1. Then the following error
estimate holds true

���Sh�n (f; x)� f (x)��� �
 
m

n̂

i=0

d(x; xi) + 1

!
� !
�
f;
1

m

�
; (5)

for any x 2 X and any m 2 N.

Moreover, for any " > 0 there exists n 2 N and a sequence of points xi;
i 2 f0; :::; ng such that for Sh�n(f; x) de�ned by using these points we have
jSh�n(f; x)� f (x) j < "; for all x 2 X.

Particularly simple error estimate can be obtained in the case of equally spaced
data in the unit interval.

Theorem 8 Let f : [0; 1]! [0;1) be continuous, xi = i
n
; i = 0; :::; n; n � 1;

� � 1: Then for the error of approximation of f by Sh�n (f; x) given as in (4)
we have ���Sh�n (f; x)� f (x)��� � 3

2
!
�
f;
1

n

�
;8x 2 [0; 1]:

Here let us remark that in the theory of classical Shepard-Balázs operators,
it is proved that for � > 2 we have the Jackson-type estimate, however, for
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1 � � � 2, we have weaker error estimates (see [33], [28]). So, at this point
max-product approximation "outperforms" classical approximation theory.

3 Max-min approximation

In this section we consider the max-min fuzzy algebra over the [0; 1] inter-
val. The general form of a max-min approximation operator is similar to the
previous max-product case.

Let (X; d) be a compact metric space and f : X ! [0; 1] be a continuous
function. Let xi 2 X; f(xi) 2 [0; 1] be sampled data, i = 0; 1; :::; n; n � 1. The
general discrete form of a max-min approximation operator is

Pn(f; x) =
n_
i=0

Kn(x; xi) ^ f(xi); (6)

where Kn(�; xi) : X ! [0; 1]; i = 0; :::; n are some given continuous functions.
It is easy to check that Pn(f; �) : X ! [0; 1] is a continuous function.

Let us denote by C(X; [0; 1]) the space of continuous functions f : X ! [0; 1]
endowed with the uniform distance.

Proposition 9 The operator Pn : C(X; [0; 1]) ! C(X; [0; 1]); Pn(f; x) =
n_
i=0

Kn(x; xi) ^ f(xi); is continuous and pseudo-linear, in the sense that

Pn((� ^ f) _ (� ^ g); x) = (� ^ Pn(f; x)) _ (� ^ Pn(g; x)):

PROOF. We have

jPn(f; x)� Pn(g; x)j =
�����
n_
i=0

Kn(x; xi) ^ f(xi)�
n_
i=0

Kn(x; xi) ^ g(xi)
����� :

By Lemma 4 and Lemma 5 we have

jPn(f; x)� Pn(g; x)j �
n_
i=0

Kn(x; xi) ^ kf � gk :

Since Kn(�; xi) are continuous on the compact X; they are bounded and we
get

kPn(f)� Pn(g)k �M kf � gk ;

where M =
n_
i=0

_
x2X

Kn(x; xi): The pseudo-linearity of Pn is obvious. 2
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We de�ne in what follows the max-min Shepard operators. Let (X; d) be a
compact metric space and f : X ! [0; 1] be a continuous function. Let xi 2 X;
f(xi) 2 [0; 1] be �xed sampled data, i = 0; 1; :::; n; n � 1 and � � 1 a constant.
We consider the maxitive Shepard kernel de�ned in (3). Then the function

Sh�n(f; x) =
n_
i=0

Kn;�(x; xi)^f(xi) =
n_
i=0

0BBBBB@
1

d(x;xi)�

n_
j=0

1
d(x;xj)�

^ f(xi)

1CCCCCA ; for x =2 fx0; :::; xng
(7)

and Sh�n(f; xi) = f(xi); i = 0; :::; n is called the max-min Shepard operator.
It is easy to check that Sh�n(f; �) is a continuous function (since the maxitive
Shepard kernel is continuous).

The following theorem gives an approximation property of max-min Shepard
operator.

Theorem 10 Any continuous function f : X ! [0; 1] can be arbitrarily
closely approximated by max-min Shepard-type operators, i.e. for any " > 0;
there exist n 2 N; a sequence of points xi 2 X; i 2 f0; :::; ng and � � 1; such
that jSh�n(f; x)� f(x)j < ", for all x 2 X; where Sh�n(f; x) is given by (7).

PROOF. It is well known that every compact metric space is totally bounded,
i.e. for every " > 0 there exists a �nite covering of X by open balls having
the radius " i.e., [nk=0Bk = X; Bk is an open ball of radius " and center xk:

Let " = 1
m
; m 2 N. Then it is easy to see that

n̂

i=0

d(x; xi) <
1
m
for any x 2 X;

which gives 1
n̂

i=0

d(x;xi)

> m: Let x be an arbitrary �xed element from X and Ik

be index sets de�ned by

Ik = fi 2 f0; :::; ng : d(x; xi) <
1

k
g; k 2 f1; 2; :::g: (8)

By using Lemma 4 and 5 we have

���Sh�n(f; x)� f(x)��� � n_
i=0

0BBBBB@
1

d(x;xi)�

n_
j=0

1
d(x;xj)�

^ jf(x)� f(xi)j

1CCCCCA (9)
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and by Theorem 2, (i) we obtain

���Sh�n(f; x)� f(x)��� � n_
i=0

0BBBBB@
1

d(x;xi)�

n_
j=0

1
d(x;xj)�

^ !(f; d(x; xi))

1CCCCCA :

Now, it is easy to check that for any ai; bi 2 [0; 1]; i = 0; :::; n the inequality

n_
i=0

ai ^ bi �
_
i2J
ai _

_
i=2J
bi

holds true for any index set J � f0; :::; ng: Then we have

���Sh�n(f; x)� f(x)��� � _
i2Ik

! (f; d(x; xi)) _
_
i=2Ik

1
d(x;xi)�

1
n̂

j=0

d(x;xj)�

;

where Ik is given by (8) and it follows

���Sh�n(f; x)� f(x)��� � ! �f; 1k
�
_
_
i=2Ik

1
d(x;xi)�

m�

= !
�
f;
1

k

�
_

1^
i=2Ik

d(x;xi)�

m�
:

Since for i =2 Ik we have d(x; xi) > 1
k
; we obtain

���Sh�n(f; x)� f(x)��� � ! �f; 1k
�
_ k�

m�
:

Now let k = m
2
then we get

���Sh�n(f; x)� f(x)��� � ! �f; 2m
�
_ 1

2�
:

Since for any " > 0 we can take m such that !
�
f; 2

m

�
< " and � such that

1
2�
< "; the statement of the theorem is proved. 2

Particularly simple error estimate can be obtained if we consider equidistant
data in the unit interval. Let us remark that here we do not obtain a classical
Jackson-type estimate, but a very similar one.
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Theorem 11 Let f : [0; 1] ! [0; 1] be continuous and xi = i
n
; i = 0; :::; n;

equally spaced data. For the max-min Shepard-type approximation operator
given by (7) we have the following error estimate

���Sh�n (f; x)� f (x)��� � ! �f; 1n
�
_ 1

3�
;8x 2 [0; 1]:

PROOF. For the unit interval the maxitive Shepard kernel is

K�
n (x; xi) =

1

jx� i
n j

�

n_
k=0

1

jx� k
n j

�

:

Let x 2
h
j
n
; j+1
n

i
: Then

n_
k=0

1���x� k
n

���� =
1���x� j
n

���� _
1���x� j+1
n

���� :

Let us suppose that x 2
h
j
n
; 2j+1
2n

i
: Then we obtain

n_
k=0

1���x� k
n

���� =
1���x� j
n

���� :

In (9) we have

jSh (x)� f (x)j �
n_
i=0

1

jx� i
n j

�

1

jx� j
n j

�

^
����f (x)� f � in

�����
�

j+1_
i=j

����f (x)� f � in
����� _ _

i6=j;j+1

1

jx� i
n j

�

1

jx� j
n j

�

Then, by the properties of the modulus of continuity we have

���Sh�n (f; x)� f (x)��� � ! �f; ����x� j

n

����� _ ! �f; ����x� j + 1n
����� _ _

i6=j;j+1

1

jx� i
n j

�

1

jx� j
n j

�

:

13



By direct computation it follows

���Sh�n (f; x)� f (x)��� � ! �f; 1n
�
_

1

jx� j�1
n j

�

1

jx� j
n j

�

_
1

jx� j+2
n j

�

1

jx� j
n j

�

= !
�
f;
1

n

�
_

���x� j
n

�������x� j�1
n

���� _
���x� j

n

�������x� j+2
n

����
Let ' :

h
j
n
; 2j+1
2n

i
! R; ' (x) = (x� j

n)
�

(x� j�1
n )

� : Since ' is increasing and since we

have supposed that x 2
h
j
n
; 2j+1
2n

i
; we obtain

1

jx� j�1
n j

�

1

jx� j
n j

�

<

�
2j+1
2n

� j
n

��
�
2j+1
2n

� j�1
n

�� = 1

3�
:

Let � :
h
j
n
; 2j+1
2n

i
! R, and

�(x) =

�
x� j

n

��
�
j+2
n
� x

�� :
Then � (x) � �

�
2j+1
2n

�
= 1

3�
: Finally we obtain

���Sh�n (f; x)� f (x)��� � ! �f; 1n
�
_ 1

3�
:

The symmetrical case, (i.e. the case when x 2
h
2j+1
2n
; j+1
n

i
is similar and the

proof is complete. 2

4 Approximation based on pseudo-operations given by a monotone
and continuous generator

4.1 Some properties in generalized metric spaces

In this section we consider the ordered semiring of positive reals with gen-
erated pseudo-operations, de�ned by a nondecreasing continuous generator
g : [0;1)! [0;1) such that g(0) = 0; as follows:

x� y = g�1(g(x) + g(y))

14



and
x� y = g�1(g(x) � g(y)):

We denote by 1 = g�1(1) the neutral element of the pseudo-multiplication.
Also, for simplicity, if f : X ! [0;1) is a function, sometimes we will denote
g � f by gf:

In order to obtain error estimates for the approximation operators de�ned
later in this paper, we need some kind of a "metric structure" over [0;1)
which is compatible with the above described operations. So, we consider the
mapping dg : [0;1)2 ! [0;1);

dg(x; y) = g
�1(jg(x)� g(y)j): (10)

Then dg has the following properties (see [23], [29], [30]):

(i) dg(a; b) � 0;8a; b 2 [0;1) and dg(a; b) = 0 if and only if a = b;

(ii) dg(a; b) = dg(b; a);8a; b 2 [0;1);

(iii) dg(a; c) � dg(a; b)� dg(b; c); 8a; b; c 2 [0;1):

These show us that dg has properties similar to the usual Euclidean distance
over the reals, except the fact that the triangle inequality is written now in
terms of the pseudo-addition. The mapping dg will be called g-distance and let
us remark here that ([0;1); dg) is a generalized metric space as it is introduced
in [23], see also [29].

As in the classical case, one can de�ne the uniform g-distance as Dg(f1; f2) =_
x2X

dg(f1(x); f2(x)); for any continuous functions f1; f2 : X ! [0;1): Let

C(X; [0;1)) be the space of continuous functions f : X ! [0;1) endowed
with the uniform g-distance (continuity of f is understood in the Euclidean
distance). An operator P : C(X; [0;1))! C(X; [0;1)) is said to be continu-
ous in the uniform g-distance if 8" > 0; 9� > 0 such thatDg(P (f1); P (f2)) < ";
if Dg(f1; f2) < �: Also, if a sequence converges in the uniform g-distance we
say that it converges g-uniformly.

Analogously to the classical case in De�nition 1, we de�ne the g-modulus of
continuity.

De�nition 12 Let (X; d) be a compact metric space and ([0;1); dg) the space
of positive reals endowed with the g-distance given in (10). Let f : X ! [0;1)
be bounded in the Euclidean distance. Then the function !g (f; �) : [0;1) !
[0;1); de�ned by

!g (f; �) =
_
fdg(f (x) ; f (y));x; y 2 X; d(x; y) � �g

15



is called the g-modulus of continuity of f:

Similar to the classical case in Theorem 2, we can obtain several properties
for the g-modulus of continuity.

Theorem 13 The following properties hold true

i) dg(f (x) ; f (y)) � !g (f; d(x; y)) for any x; y 2 X;

ii) !g (f; �) is nondecreasing in �;

iii) !g (f; 0) = 0;

iv) !g (f; �1 + �2) � !g (f; �1)� !g (f; �2) for any �1; �2;2 [0;1);

v) !g (f; n�) � g�1(n)� !g (f; �) for any � 2 [0;1) and n 2 N;

vi) !g (f; ��) � g�1 (�+ 1)� !g (f; �) for any �; � 2 [0;1);

vii) !g(f; �) = g�1(!(gf; �)); for any �, where ! is the classical modulus of
continuity given by De�nition 1.

viii) f is continuous in the Euclidean distance if and only if lim�!0 !g (f; �) =
0:

PROOF. It is easy to check that properties (i)-(iii) hold true.

(iv) We start from

dg(f(x); f(z)) � dg(f(x); f(y))� dg(f(y); f(z)); x; y; z 2 X:

Let us suppose that d(x; y) � �1 and d(y; z) � �2: Then d(x; z) � �1+�2: Now,
if we take into account that � is nondecreasing, in the previous inequality we
obtain

!g(f; �1 + �2) � !g(f; �1)� !g(f; �2):

(v) We use the inequality in (iv) n times and we get

!g(f; n�) �
nM
i=1

!g(f; �):

By direct computation we obtain

!g(f; n�) � g�1
 

nX
i=1

g(!g(f; �))

!
= g�1 (n � g(!g(f; �)))

= g�1
�
gg�1(n) � g(!g(f; �))

�
= g�1(n)� !g(f; �):
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(vi) By using (ii) we have

!g(f; ��) � !g(f; ([�] + 1)�);

where [�] is the integer part of �: Then by (v) we get

!g(f; ��) � g�1([�] + 1)� !g(f ; �):

Since both g�1 and � are nondecreasing, �nally we obtain

!g(f; ��) � g�1(�+ 1)� !g(f ; �):

(vii) Let x; y 2 X be such that d(x; y) � �: Then, by the properties of the
usual modulus of continuity, by taking into account that g�1 is nondecreasing
we have

dg(f(x); f(y)) = g
�1jgf(x)� gf(y)j � g�1(!(gf; �))

and the inequality
!g(f; �) � g�1(!(gf; �))

follows. For the converse inequality let us start with

jgf(x)� gf(y)j = gg�1jgf(x)� gf(y)j = g(dg(f(x); f(y)):

By taking into account that g is nondecreasing and the property in (i) of this
Theorem we get

jgf(x)� gf(y)j � g(!g(f; �)):
Taking supremum in this inequality we get

!(gf; �) � g(!g(f; �))

and since g�1 is nondecreasing we obtain the required conclusion.

(viii) Let us suppose �rst that f is continuous in the Euclidean distance. Then
since gf is also continuous and g�1 is continuous at 0 and g�1(0) = 0; we
obtain lim�!0 !g (f; �) = lim�!0 g

�1(!(gf; �)) = 0: Conversely, let us suppose
that lim�!0 !g (f; �) = lim�!0 g

�1(!(gf; �)) = 0: Since g�1 is continuous at
0 we get lim�!0 !(gf; �) = 0, which implies gf is continuous. Since g�1 is
continuous, we obtain that f is continuous and the proof is complete. 2

Further we obtain two properties for dg which will be used later.

Lemma 14 For any ai; bi 2 [0;1); i 2 f0; :::; ng we have

dg

 
nM
i=0

ai;
nM
i=0

bi

!
�

nM
i=0

dg(ai; bi):
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PROOF. By direct computation we have

dg

 
nM
i=0

ai;
nM
i=0

bi

!
= g�1

�����g
 

nM
i=0

ai

!
� g

 
nM
i=0

bi

!�����
= g�1

�����
nX
i=0

g(ai)�
nX
i=0

g(bi)

�����
� g�1

nX
i=0

gg�1jg(ai)� g(bi)j

= g�1
nX
i=0

gdg(ai; bi) =
nM
i=0

dg(ai; bi):

2

Lemma 15 For any x; y; z 2 [0;1) we have

dg(x� y; x� z) = x� dg(y; z):

PROOF. Indeed

dg(x� y; x� z) = g�1jg(x) � g(y)� g(x) � g(z)j
= g�1(g(x) � gg�1(jg(y)� g(z)j))
= x� dg(y; z)

which completes the proof. 2

4.2 Pseudo-linear approximation based on generated pseudo-operations

Let (X; d) be a compact metric space and let us consider a function f : X !
[0;1), continuous in the Euclidean distance, and n � 1 an arbitrary �xed
natural number. Let xi 2 X; i 2 f0; :::; ng be �xed sampled data (i.e. we
suppose that the values f(xi) are known). The idea of de�ning pseudo-linear
approximation operators is very simple: we change the algebraic structure
from the classical �eld of reals to that of an ordered semiring with generated
pseudo-operations over the positive real numbers. The general discrete form
of a pseudo-linear approximation is

Pn(f; x) =
nM
i=0

Kn(x; xi)� f(xi); (11)

where Kn(�; xi) : X ! [0;1); i = 0; :::; n are some given functions, which are
continuous in the usual sense.
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Proposition 16 Let C(X; [0;1)) be the space of continuous functions f :
X ! [0;1) endowed with the uniform g-distance (continuity of f is under-
stood in the Euclidean distance).

The operator Pn : C(X; [0;1)) ! C(X; [0;1)); Pn(f; x) =
nM
i=0

Kn(x; xi) �

f(xi); is continuous and pseudo-linear, that is

Pn(�� f1 � � � f2; x) = �� Pn(f1; x)� � � Pn(f2; x):

PROOF. By using Lemmas 14 and 15 we have by direct computation

dg(Pn(f1; x); Pn(f2; x)) �
nM
i=0

Kn(x; xi)� dg(f1(xi); f2(xi))

and the continuity of Pn in the uniform g-distance follows by the boudedness of
Kn(x; xi) and the monotonicity of the pseudo-operations. The pseudo-linearity
property is obvious. 2

The following Theorem provides a preliminary error estimate which will be
helpful in obtaining the error estimates in the case of particular approximation
operators.

Theorem 17 Let f be as above, n � 1 and Kn(�; xi) : X ! [0; 1] such that
nM
i=0

Kn(x; xi) = 1; for any x 2 X: Then for the approximation by Pn(f; x) =
nM
i=0

Kn(x; xi)� f(xi) we have the following error estimate

dg(Pn(f; x); f(x)) �
nM
i=0

Kn(x; xi)� g�1(m � d(x; xi) + 1)� !g
�
f;
1

m

�
;

for any x 2 X and m � 1:

PROOF. Since
nM
i=0

Kn(x; xi) = 1 we have

dg(Pn(f; x); f(x)) = dg

 
nM
i=0

Kn(x; xi)� f(xi);
nM
i=0

Kn(x; xi)� f(x)
!
:

By Lemma 14 we obtain

dg(Pn(f; x); f(x)) �
nM
i=0

dg(Kn(x; xi)� f(xi); Kn(x; xi)� f(x))
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and by Lemma 15 we get

dg(Pn(f; x); f(x)) �
nM
i=0

Kn(x; xi)� dg(f(xi); f(x)):

By the properties of the g-modulus of continuity and by taking into account
that � is nondecreasing, it follows that

dg(Pn(f; x); f(x)) �
nM
i=0

Kn(x; xi)� !g(f; d(xi; x))

=
nM
i=0

Kn(x; xi)� !g
 
f;
m � d(xi; x)

m

!
:

Finally by Theorem 13, (vi) and the associativity of �; for any m 2 N we
obtain

dg(Pn(f; x); f(x)) �
nM
i=0

Kn(x; xi)� g�1(m � d(x; xi) + 1)� !g
�
f;
1

m

�
:

2

The next corollary gives su¢ cient conditions for the kernel functions in order
to obtain Jackson-type estimate and approximation property of Weierstrass
type in the g-distance dg:

Corollary 18 Let (X; d) and f be as above and n � 1 be arbitrary. If � and
� are pseudo-operations given by a continuous nondecreasing generator and
if the functions Kn(�; xi); i = 0; :::; n satisfy the conditions:

(i)
nM
i=0

Kn(x; xi) = 1; for any x 2 X;

(ii) There exists a constant C and a set of points xi 2 X, i 2 f0; :::; ng

satisfying
nM
i=0

Kn(x; xi)� g�1(n � d(x; xi) + 1) � C.

Then for the approximation

Pn(f; x) =
nM
i=0

Kn(x; xi)� f(xi);

we have the Jackson-type error estimate

dg(Pn(f; x); f(x)) � C � !g
�
f;
1

n

�
; (12)

and Pn(f; x) converges g-uniformly to f(x) on X:
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The condition (i) is natural. If we consider condition (ii), however it is not easy
to see which approximation operators ful�ll it, we will give in the followings
an example of such approximation operator. The algebraic structure in this
example will be a special case of ordered semiring with generated pseudo-
operations, obtained via a particular family of generators.

In this sense we let g : [0;1)! [0;1); g(x) = xa; where a > 0:

Firstly we observe that in this case

x� y = (xa + ya)
1
a (13)

and that
x� y = x � y

i.e., the� operation is the classical multiplication. For simplicity we will de�ne
and study the Shepard-type pseudo-linear approximation operator only in this
simple case, however it can be de�ned similarly for other pseudo-operations
as well. Surely the study of those cases is subject of further research.

Next we de�ne Shepard-type approximation operators based on the pseudo-
operations given above. We consider f : [0; 1] ! [0;1) continuous in the
Euclidean sense and equally spaced knots xi = i

n
; i = 0; :::; n: Also, let a > 0

denote the parameter of the pseudo-addition and � > 0 be such that a �� > 2:

The �-product Shepard kernel is

K�
n(x; xi) =

1
jx�xij�
nM
j=0

1
jx�xj j�

; if x =2 fx0; ::; xng

and K�
n(xj; xi) = �ij; i; j = 0; :::; n: It is easy to check that the functions

K�
n(�; xi); i = 0; :::; n are continuous in the Euclidean distance. The �-product

Shepard-Balázs operator is given by

Sh�n (f; x) =
nM
i=0

0BBBBB@
1

jx�xij�
nM
j=0

1
jx�xj j�

f (xi)

1CCCCCA ; if x =2 fx0; ::; xng (14)

and Sh�n (f; xi) = f(xi), i = 0; :::; n. It is easy to check that Sh�n (f; �) is
continuous in the usual sense.

In the next theorem we obtain the error bound for the approximation by this
operator on the unit interval in terms of the g-distance. Here we will use some
properties related to the classical Shepard-Balázs operator.
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Theorem 19 Let f : [0; 1] ! [0;1) be continuous in the Euclidean sense
n � 1 and xi = i

n
; :i 2 f0; :::; ng Also, let a > 0 denote the parameter of

the pseudo-addition in (13) and � > 0 be such that a � � > 2. For the error
estimate in approximation by the �-product Shepard operator in (14) we have
the following Jackson-type estimate

dg(Sh
�
n (f; x) ; f(x)) � C � !g

�
f;
1

n

�
;8x 2 [0; 1];

where C is some constant which does not depend on n.

PROOF. We observe that

K�
n(x; xi) =

1
jx�xij�
nM
j=0

1
jx�xj j�

=

1
jx�xij�0@ nX

j=0

1
jx�xj j�a

1A 1
a

:

By Corollary 18, it is enough to estimate the quantity

E�n(x) =
nM
i=0

K�
n(x; xi)� g�1(n � jx� xij+ 1):

By taking into account the de�nitions of the operation � and the de�nition
of g and g�1 we get

E�n(x) =

 
nX
i=0

K�
n(x; xi)

a � (n � jx� xij+ 1)
! 1

a

:

By direct computation we obtain

E�n(x) =

0BBBBB@
nX
i=0

1
jx�xij�a
nX
j=0

1
jx�xj j�a

� (n � jx� xij+ 1)

1CCCCCA

1
a

and �nally

E�n(x) =

0@nPn
i=0

1
jx�xija��1Pn

j=0
1

jx�xj ja�
+ 1

1A 1
a

:

Now, let us recall that  
nX
i=0

1

jx� xij


!�1
= O(n�
);
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for any 
 > 1 (see [27], [31], [32], [28]).

Then since a�� 1 > 1 we have

E�n(x) =

 
n �O(n�a�)
O(n1�a�)

+ 1

! 1
a

= O(1);

i.e., there exists a constant C such that

dg(Sh
�
n (f; x) ; f(x)) � C � !g

�
f;
1

n

�
and the proof is complete. 2

The following Corollary shows that the error estimate in terms of the g-
distance obtained in the previous Theorem implies the g-uniform convergence
of Sh�n (f; x) to f(x). Let us mention that the g-uniform convergence implies
the pointwise convergence in the Euclidean distance.

Corollary 20 Let f : [0; 1] ! [0;1) be continuous in the Euclidean sense,
a; � as above and the pseudo-linear Shepard operator given by (14). Then
Sh�n (f; x) converges g-uniformly to f(x):

PROOF. It is obvious by the preceding Theorem 19 and by Theorem 13,
(viii). 2

5 Concluding remarks

We have introduced new particular approximation operators de�ned based
on three types of ordered semiring structures. We have obtained general error
bounds, Weierstrass-type approximation theorems and particular error bounds
in some particular cases for all these operators. Let us remark that the error
estimates for the approximation operators de�ned in this paper are of Jackson
type i.e., O(!

�
f; 1

n

�
) and O(!g

�
f; 1

n

�
) respectively, so these have approxima-

tion properties which are similar to the classical Jackson, Shepard or spline
approximation operators (see e.g. [5]), and in some cases they are more general
or "outperform" them from the theoretical point of view.

It is easy to see that the results proposed in the present paper extend clas-
sical approximation theory into a new direction. As far as the computational
complexity is concerned, if we regard max-product and max-min operations
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they are less expensive. If we consider generated pseudo-operations the com-
putational complexity depends on the expression of the generator. This issue
would certainly be worth investigating.

Approximation Theory is one of the basic tools of Image Processing. So if
we provide an approximation method then it is immediately interpreted as
an image compression method. So we propose as a further research topic the
application of pseudo-linear approximation operators in image compression.
Another promising research topic is the use of the proposed approximations
for noise reduction in images.

Acknowledgement. The authors would like to express their thanks to the
Editors in Chief, the Area Editor and two anonymous referees for their com-
ments and suggestions which improved the paper.

Moreover, the third author would like to acknowledge support of the project
MSM6198898701 of the M�MT µCR.

References

[1] J. Aczél, Lectures on Functional Equations and their Applications, Academic
Press, New York, 1966.

[2] G. A. Anastassiou, Rate of convergence of fuzzy neural network operators,
univariate case, J. Fuzzy Math. 10, No. 3(2002), 755-780.

[3] G. A. Anastassiou, S.G. Gal, Approximation Theory: Moduli of Continuity and
Global Smoothness Preservation, Birkhäuser, Boston-Basel-Berlin, 2000.

[4] B. Bede, H. Nobuhara, J. Fodor, K. Hirota, Max-Product Shepard
Approximation Operators, Journal of Advanced Computational Intelligence and
Intelligent Informatics, 10 (2006), 494-497.

[5] R.A. DeVore, G.G. Lorentz, Constructive Approximation, Polynomials and
Splines Approximation, Springer-Verlag, Berlin, Heidelberg, 1993.

[6] R.A. DeVore, V.N. Temlyakov, Nonlinear approximation in �nite-dimensional
spaces, J. Complexity, 13 (1997), 489-508.

[7] W.D. Fisher, On grouping for maximum homogeneity, J. Amer. Statist. Assoc.
53 (1958) 789�798.

[8] M. Gondran, M. Minoux, Dioïds and semirings: Links to fuzzy sets and other
applications, Fuzzy Sets and Systems 158 (2007) 1273 �1294.

[9] K. Hirota, W. Pedrycz, Data compression with fuzzy relational equations, Fuzzy
Sets and Systems, 126(2002), 325-335.

24



[10] L.T. Kóczy, K. Hirota, Approximate reasoning by linear rule interpolation
and general approximation, International Journal of Approximate Reasoning
9(1993), 197-225.

[11] V.P. Maslov, S.N.Samborskii, Idempotent Analysis, Adv. Soc. Math. 13, Amer.
Math. Soc. Providence, RI, 1992.

[12] G. Mastroianni and J. Szabados, Bala zs Shepard Operators on In�nite
Intervals, II, Journal of Approximation Theory 90(1997) 1-8.

[13] R. Mesiar, J. Rybárik, Pan-operations structure, Fuzzy Sets and Systems,
74(1995), 365-369.

[14] M. Minoux, Polynomial approximation schemes and exact algorithms for
optimum curve segmentation problems, Discrete Applied Mathematics 144
(2004) 158-172.

[15] J. Musielak, Nonlinear Approximation in some modular function spaces I, Math.
Japonica, 38(1993), 83-90.

[16] H. Nobuhara, W. Pedrycz, K. Hirota, Fast solving method of fuzzy relational
equations and its applications to lossy image compression/reconstruction, IEEE
Transactions on Fuzzy systems, 3(2000), 325-334.

[17] E. Pap, K. Jegdíc, Pseudo-analysis and its application in railway routing, Fuzzy
Sets and Systems, 116(2000), 103-118.

[18] E. Pap, I. �tajner-Papuga, A limit theorem for triangle functions, Fuzzy Sets
and Systems, 157(2006), 292-307.

[19] E. Pap, Pseudo-additive measures and their applications, in Handbook of
Measure Theory (E. Pap, ed.), Elsevier Science B.V., 2002.

[20] E. Pap, Applications of the generated pseudo-analysis to nonlinear partial
di¤erential equations, Contemporary Mathematics, 377(2005), 239-259.

[21] I. Per�lieva, Fuzzy function as an approximate solution to a system of fuzzy
relation equations, Fuzzy Sets and Systems, 147(2004), 363�383.

[22] I. Per�lieva, Fuzzy Transforms, in Transactions on Rough Sets II (J.F. Peters
et al. Eds.) LNCS 3135 (2004), 63-81.

[23] B. Schweizer, A. Sklar, Probabilistic Metric Spaces. North-Holland, Amsterdam
1983.

[24] D. Shepard, A two-dimensional interpolation function for irregularly spaced
data, Proc. 1968 ACM National Conference, 517-524.

[25] G. Somorjai, On a saturation problem, Acta Math. Acad. Sci. Hungar. 32(1978)
377-381.

[26] J. Szabados, On a problem of R. DeVore, Acta Math. Hungar. 27 (1-2)(1976)
219-223.

25



[27] J. Szabados, Direct and converse approximation theorems for the Shepard
operator, Approximation Theory and Applications 7(1991), 63-76.

[28] D. Tikk, Notes on the approximation rate of fuzzy KH interpolators, Fuzzy Sets
and Systems 138(2003), 441-453.

[29] E. Trillas, C. Alsina, Introduccion a los Espacios Metricos Generalizados.Fund.
J. March. Serie Universitaria 49(1978), Madrid.

[30] L. Valverde, On the structure of F-indistinguishability operators, Fuzzy Sets
and Systems 17(1985) 313-328.

[31] P. Vértesi, Saturation of the Shepard operator, Acta Math. Hungar. 72(1996)
307-317.

[32] W. Xiao, S.P. Zhou, A Jackson-type estimate for Shepard operators in Lp

spaces, for p � 1; Acta Mathematica Hungarica, 95(2002), 217-224.

[33] X. Zhou, The saturation class of Shepard operators, Acta Mathematica
Hungarica, 80(1998), 293-310.

26


