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Abstract

In this paper, a logical theory of the, so called, trichotomous evalua-
tive linguistic expressions (TEv-expressions) is presented. These are fre-
quent expressions of natural language, such as “small, very small, roughly
medium, extremely big”, etc. The theory is developed using the formal
system of higher-order fuzzy logic, namely the fuzzy type theory (gener-
alization of classical type theory). First, we discuss informally what are
properties of the meaning of TEv-expressions. Then we construct step by
step axioms of a formal logical theory TEv of TEv-expressions and prove
various properties of TEv. All the proofs are syntactical and so, our the-
ory is very general. We also outline construction of a canonical model of
TEv. The main elegancy of our theory consists in the fact that semantics
of all kinds of evaluative expressions is modeled in a unified way. We also
prove theorems demonstrating that essential properties of the vagueness
phenomenon can be captured within our theory.

Keywords: Evaluative linguistic expression, intension, extension, fuzzy
type theory, context, linguistic hedge, trichotomy.

1 Introduction

In many applications of fuzzy logic, namely in fuzzy control, but also in decision-
making, classification and other ones based on fuzzy IF-THEN rules, the expres-
sions such as “small, very small, medium, more or less big” etc. are considered.
These expressions belong to the class of the, so called, evaluative linguistic ex-
pressions (in the sequel, we will usually omit the adjective “linguistic”) which is
a very important class encompassing also expressions such as “extremely deep,
very intelligent, rather narrow, medium important, about one thousand, very

∗The research was partially supported by grant 201/04/1033 of the GA ČR and partially
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tall, not very nice, not too expensive, rather low or medium high, weak but not
very much” and many other ones. A subclass of evaluative linguistic expres-
sions are trichotomous evaluative expressions (TEv-expressions for short) that
are evaluative expressions containing evaluative trichotomy of the type small
— medium — big. Let us stress that evaluative expressions are omnipresent
in our language and we use them whenever we need some form of evaluation,
judgement, estimation, and in many other situations. Hence, we are convinced
that a working logical theory of their semantics can be very useful not only in
applications of fuzzy logic and soft computing, but also in artificial intelligence,
theory of commonsense reasoning, as well as in linguistics and philosophy.

Remark 1
In several older papers, the author has used the term “evaluating linguistic
expressions” in the same meaning as presented in this paper. Since the latter
term sometimes led to misunderstanding, it has been replaced by the term
“evaluative linguistic expressions” introduced above and, henceforth, the older
term will not be used anymore.

There are not many linguistic works dealing with our concept. The closest
linguistic works are [2, 32] and partially also [10, 18]. However, these works deal
mainly with evaluative adjectives rather than with expressions in our sense (see
below). According to [18], evaluative adjectives “typically characterize a per-
son’s behavior or attitude in terms of the speakers subjective judgment”. Their
class is quite large and includes, for example, adjectives such as “rude, mean,
clever, smart, nice, kind, silly, imprudent, generous, courteous, cruel, mad,
mischievous, considerate, humane, pretentious, modest, charming, masochis-
tic, intelligent, stupid, dumb, noble, cunning, farsighted, skillful, selfish, crazy,
foolish”. Not all these adjectives, however, can be taken as TEv-expressions.
For example, the adjectives such as “mischievous, pretentious, masochistic” and
other ones certainly do not belong among them. A more specific characteriza-
tion of TEv-expressions is that they contain especially gradable adjectives and
adjectives of manner (cf. [2]). But still we are not sure that all possibilities
are covered. A crucial in this respect seems to be the necessity to form the
basic evaluative trichotomy, i.e., nominal adjective, its antonym, and a middle
member.

Linguistic studies of evaluative adjectives are done in relation with the ob-
jects whose characteristics are denoted by them. Thus, for example, the ad-
jectives “good, superb, important” belong to the class of adjectives that are
“attitude-based”, while “big, heavy, forte, pricey, opulent, ripe, young”, etc.
are related to some numerical scale, such as size, weight, price, age, and other
ones. Fleisher in [10] studies special “attributive-with-infinitive” constructions,
e.g., “Middlemarch is an easy book to read in one sitting” and “Middlemarch
is a long book to read in one sitting” in which “easy” relates to the whole con-
struction while “long” relates only to “book”. Of course, we cannot interchange
in our speech the adjectives freely. For example, the adjectives such as good,
heavy, opulent, cold, etc. are semantically related to some kind of a scale formed
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by values of a certain feature of the given object and so, the main difference
between them is in their relation to the character of the scale together with
the given object. Thus, we cannot say, e.g., “heavy performance” or “opulent
temperature”.

Still, we are convinced that this difference is semantically less significant.
Nouns or more complex constructions considered above are bearers of certain
features whose values fill some scale. For example, there is a certain (abstract)
feature of quality of performance, feature of temperature (its values are degrees),
etc. There is even an abstract feature of “complexity to read a book in one
sitting”. When emptying the nature of these features, an abstract scale remains
on which the meaning of the corresponding adjective can be defined. We argue
that this definition is more or less the same for all evaluative expressions, i.e.,
they behave semantically in a more or less the same way.

Consequently, we may state the following (somewhat vague) definition: eval-
uative expressions are specific expressions of natural language, which character-
ize position on some bounded ordered scale. Such a scale may consist of real
measuring units such as meters, degrees, etc. but quite often, it is only an
abstract scale consisting of some fictitious units.

In most applications of fuzzy logic, evaluative expressions are usually inter-
preted by simple fuzzy sets in the universe of real numbers having membership
with triangular shape. This apparently does not suffice to capture their real
meaning (although in engineering applications, in which a certain (imprecise)
description of some function is at play, triangular shapes may be enough). Since
evaluative linguistic expressions play an important role in all kinds of human
thinking, a deeper working theory of them should be very useful so that ad-
vanced applications can be developed, for example in decision-making, classifi-
cation, but also in control either of robots or various other technical devices (cf.
[8]), in artificial intelligence which requires understanding natural language, and
in many other fields. Another motivation for such a theory comes from the fact
that evaluative expressions and especially the trichotomous ones can be taken
as a principal bearer of the vagueness phenomenon. This means study of the
meaning of TEv-expressions can help in deeper understanding to the latter.

Our goal in this paper is to analyze structure of evaluative expressions with
the focus to TEv-expressions and especially, to provide a formal theory of their
meaning. We will demonstrate that TEv-expressions are inherently vague and
that their vagueness is always a manifestation of the, more or less hidden, phe-
nomenon described as sorites paradox. It is thinkable to develop this theory
using the standard means of fuzzy set theory. However, we want our theory to
be logical, as general as possible, and also to have potential for further develop-
ment in correspondence with the general theory of linguistic meaning. Hence,
formal fuzzy logic seems to be appropriate means.

A question is raised, which kind of logical system should be used. A lot has
been done using predicate first-order fuzzy logic. However, though the syntactic
structure of evaluative expressions is not too complicated, the model of their
semantics using first-order logic is not satisfactory. The reason is that any model
of the meaning of words of natural language must be able to distinguish between
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intension and extension (cf. [5, 19]). When speaking about TEv-expressions, the
latter concepts can be in a certain way included in the predicate first-order fuzzy
logic with evaluated syntax (see [30]). However, we want our theory to have
potential for inclusion in a theory of a wider part of natural language semantics.
Therefore, we prefer the means of fuzzy type theory. Besides other advantages, it
enables us to formulate explicitly their behavior in various contexts (in predicate
logic, contexts are only implicit).

A concept of great significance, which makes the theory of semantics of
evaluative expressions transparent and elegant, is that of fuzzy equality (fuzzy
equivalence; fuzzy similarity). This is an imprecise equality using which we may
characterize various degrees of similarity between objects. This idea spreads
through the literature on fuzzy sets and fuzzy logic and is elaborated in a lot
of works, e.g. [3, 14, 31, 34] and many others. The role of these relations in
modeling of linguistic semantics has been raised already in [22] (recently also in
[6]) where a related concept of the, so called, indiscernibility relation (see [35])
has been employed. The mathematical theory of the natural language semantics
presented there relies on the following hypothesis.

Hypothesis 1
Vagueness of the meaning of natural language expressions is a consequence of
the indiscernibility phenomenon. Therefore, any extension of a natural-language
expression can always be characterized by the some specific indiscernibility re-
lation.

This hypothesis can be supported by many demonstrations but it is impossible
to prove it. However, it justifies both our constructions below as well as the
idea to tie all formulas of FTT characterizing semantics of evaluative expressions
with some fuzzy equality.

In this paper, we will elaborate a logical theory of the meaning of TEv-
expressions. We will define a special language of FTT, identify TEv-expressions
with special formulas of FTT, and form axioms based on pondering of the main
characteristics of the meaning of TEv-expressions. Because we are developing
a logical theory, the proofs of most of the theorems are syntactic rather than
semantic. At the end of this paper, however, we also outline semantics of our
theory.

Let us remark that the constituent of our theory is also a semantic theory
of linguistic hedges that are special adverbs allowed to modify the meaning of
evaluative adjectives. The idea to model hedges as special operators modifying
membership functions of fuzzy sets comes from L. A. Zadeh [38]. His proposal,
however, had a problem that his operators did not modify kernel of the corre-
sponding fuzzy set. This insufficiency has been first pointed out in a linguistic
analysis of G. Lakoff in [17]. Therefore, a modification of Zadeh’s approach
which solves this problem has been proposed by the author in [20] and elab-
orated more extensively in the book [21]. The same problem has also been
touched by B. Bouchon in [4]. The idea that linguistic modifiers, in fact, real-
ize a shift of a certain horizon has been first introduced in [23] and elaborated
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within formal fuzzy logic in [30]. In this paper, we will elaborate the theory of
linguistic hedges as an integral part of the semantics of TEv-expressions using
the advanced formalism of fuzzy type theory.

Let us stress that our paper can be seen as a contribution to the development
of the concept of Precisiated Natural Language (PNL), as proposed by L. A.
Zadeh in [39] (cf. also [7]). At the same time it can be seen as a logical theory
related to the concept of linguistic variable introduced by L. A. Zadeh in [38].

The paper is structured as follows. Section 2 contains a brief overview of
fuzzy type theory and includes also some other main properties used further.
Section 3 is the main part of the paper. We start with syntactic characterization
of the evaluative expressions. Then we present informal discussion of their
semantic properties. On the basis of them, we develop step by step a formal
theory TEv and demonstrate that it fits the informal requirements. The section
ends by explicit assignment of specific formulas that express meaning of the
expressions in concern. Section 4 briefly describes construction of a canonical
model of the theory TEv. This gives rules how the precise semantics of evaluative
linguistic expressions can be constructed.

2 Preliminaries

2.1 Syntax of fuzzy type theory

The main tool for the logical analysis of evaluative linguistic expressions is
fuzzy type theory (FTT) which is a higher order fuzzy logic. For the detailed
presentation of general fuzzy logic see [9, 12, 30] and the citations therein.

In this section, we will very briefly overview some of the main points of FTT.
The detailed explanation can be found in [25, 27]. The classical type theory is
in details described in [1].

Let ε, o be distinct objects. The set of types is the smallest set Types satis-
fying:

(i) ε, o ∈ Types,

(ii) If α, β ∈ Types then (αβ) ∈ Types.

The type ε represents elements and o truth values.
The language J of FTT consists of variables xα, . . ., special constants cα, . . .

where α ∈ Types, auxiliary symbol λ, and brackets.
Let a language J be given. A set of formulas of types α ∈ Types over the

language J , denoted by Formα, is a smallest set satisfying:

(i) If a variable xα ∈ J , α ∈ Types, then xα ∈ Formα.

(ii) If a constant cα ∈ J , α ∈ Types, then cα ∈ Formα.

(iii) If B ∈ Formβα and A ∈ Formα then (BA) ∈ Formβ .

(iv) If A ∈ Formβ and xα ∈ J , α ∈ Types, is a variable then λxα A ∈ Formβα.
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If A ∈ Formα is a formula of the type α ∈ Types then we will often write Aα.
A specific constant that is always present in the language of FTT is E(oα)α

for every α ∈ Types. Then for each type we define the fuzzy equality by

≡ := λxαλyα(E(oα)α yα)xα.

This is a formula of type (oα)α. If Aα, Bα are formulas then (Aα ≡ Bα) is a
formula of type o. Note if α = o then ≡ is the logical equivalence.

The formulas of type o (truth value) can be further joined by the following
connectives (which are derived formulas): ∨∨∨ (disjunction), ∧∧∧ (conjunction), &&&
(strong conjunction), ∇∇∇ (strong disjunction), ⇒⇒⇒ (implication). n-times strong
conjunction of Ao will be denoted by An

o and similarly, n-times strong disjunc-
tion by nAo.

There are also general (∀) and existential (∃) quantifiers defined again as
special formulas. For the details about their definition and semantics — see
[25]. Special derived formulas are also truth > and falsity ⊥. If Aα is a formula
substitutable into B for a free variable xα then a formula resulting from B after
replacing each free occurrence of xα by Aα will be denoted by Bxα [Aα].

To simplify the notation as much as possible, which means especially to
minimize the number of brackets, we will apply the following priority of the
logical connectives:

1. ¬¬¬,∆∆∆.

2. &&&,∇∇∇, ∧∧∧,∨∨∨.

3. ≡.

4. ⇒⇒⇒.

Furthermore, we will also use the dot convention as follows: the formula
A · B is equivalent to A(B). For example, the formula λx · Ax ∧∧∧ ·Bx ⇒⇒⇒ C is
equivalent to λx (Ax∧∧∧ (Bx⇒⇒⇒ C)).

Some common shorts will also be used, e.g., A 6≡ B is a short for ¬¬¬(A ≡ B),
and the like. If type of the formula in concern is clear from the context then we
may omit it.

The symbol := should be read as “is” and it simply means a denotation of
the expression on the right hand side by a symbol on the left hand side.

Finally, we will freely write or omit the type when no misunderstanding may
occur. This means that we will write either of xα, x ∈ Formα, or xα ∈ Formα

to stress that x is a formula (a variable) of type α.
If A ∈ Formoα then A represents a property of elements of the type α. By

abuse of language, we will often say “A is a property” (of elements of type α)
and similarly, A(oα)α is a relation (between elements of type α).

2.2 Structure of truth values

The structure of truth values is supposed to form a complete IMTL∆-algebra
(see [9]) or a standard ÃLukasiewicz algebra extended by the delta operation.
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Recall that IMTL-algebra is a complete residuated lattice

L = 〈L,∨,∧,⊗,→,0,1〉 (1)

fulfilling the prelinearity condition

(a → b) ∨ (b → a) = 1, a, b ∈ L,

and, moreover, its negation function ¬a = a → 0 is involutive, i.e. ¬¬a = a
holds for all a ∈ L.

It is known that MTL-algebras are algebras (the negation needs not be
involutive) of left-continuous t-norms (cf. [9, 16]). An example of left-continuous
t-norm with involutive negation is nilpotent minimum defined by

a⊗ b =

{
a ∧ b, if a + b > 1,

0 otherwise.
(2)

where the negation is standard strong negation ¬a = 1− a, a ∈ [0, 1].
We need to extend the IMTL algebra by the (Baaz) delta operation ∆ :

L −→ L which, in the case of linearly ordered algebra of truth values, is defined
by

∆(a) =

{
1 if a = 1,

0 otherwise
(3)

(for the details about this operation, see [9, 25]).
A special case of IMTL∆-algebra is also the standard ÃLukasiewicz∆ algebra

L = 〈[0, 1],∨,∧,⊗,⊕, ∆,→, 0, 1〉 (4)

where

∧ = minimum, ∨ = maximum,

a⊗ b = 0 ∨ (a + b− 1), a → b = 1 ∧ (1− a + b),
¬a = a → 0 = 1− a, a⊕ b = 1 ∧ (a + b),

∆(a) =

{
1 if a = 1,

0 otherwise.

Another special case is a finite ÃLukasiewicz∆ algebra (cf. [30]).
It can be demonstrated on many examples that ÃLukasiewicz∆ algebra is a

very reasonable choice for applications when semantics of natural language is
involved. In [26], a modified axiom systems for the ÃLukasiewicz style fuzzy type
theory has been proposed.

2.3 Axiomatic system of FTT

The syntax of FTT consists of definitions of fundamental formulas, axioms and
inference rules. A more detailed presentation would be too extensive and so, we
will repeat only some of the main points.
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The FTT has 17 axioms that may be divided into the following subsets:
fundamental equality axioms, truth structure axioms, quantifier axioms and
axioms of descriptions.

Fundamental equality axioms are the following:

(FTI1) ∆∆∆(xα ≡ yα)⇒⇒⇒ (fβα xα ≡ fβα yα)

(FTI21) (∀xα)(fβα xα ≡ gβα xα)⇒⇒⇒ (fβα ≡ gβα)

(FTI22) (fβα ≡ gβα)⇒⇒⇒ (fβα xα ≡ gβα xα)

(FTI3) (λxαBβ)Aα ≡ Cβ where Cβ is obtained from Bβ by replacing all free
occurrences of xα in it by Aα, provided that Aα is substitutable to
Bβ for xα (lambda conversion).

(FTI4) (xε ≡ yε)⇒⇒⇒ ((yε ≡ zε)⇒⇒⇒ (xε ≡ zε))

Further axioms characterize structure of truth values and are different for IMTL
and ÃLukasiewicz FTT. Besides others, they assure that the corresponding pred-
icate fuzzy logic with the ∆∆∆ connective is included in FTT (i.e., all theorems of
the former are provable also in FTT).

Specific axiom important for proving in FTT is

(FTI6) (Ao ≡ >) ≡ Ao

The quantifier axiom is

(FTI16) (∀xα)(Ao ⇒⇒⇒ Bo)⇒⇒⇒ (Ao ⇒⇒⇒ (∀xα)Bo) where xα is not free in Ao.

The substitution axiom is provable in FTT.
Finally, the axioms of descriptions are the following:

(FTI17) ια(oα)(E(oα)α yα) ≡ yα, α = o, ε.

Recall that the description operator ια(oα) is interpreted by an operation as-
signing to each normal fuzzy set an element from its kernel (cf. [27]). In fuzzy
set theory, such an operation is called defuzzification. We also define a special
operator

ιzαAo := ια(oα)(λzαAo)

that picks up an element of type α such that the formula Ao is true in the degree
1 for it.

There are two inference rules in FTT, namely

(R) Let Aα ≡ A′α and B ∈ Formo. Then, infer B′ where B′ comes from B
by replacing one occurrence of Aα, which is not preceded by λ, by A′α.

(N) Let Ao ∈ Formo. Then, from Ao infer ∆∆∆Ao.

A theory T is a set of formulas of type o (determined by a subset of special
axioms, as usual). Provability is defined as usual. If T is a theory and Ao a
formula then T ` Ao means that Ao is provable in T . The inference rules of
modus ponens and generalization are derived rules of FTT.

Important role in FTT is played by the deduction theorem.
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Theorem 1 (Deduction theorem)
Let T be a theory, Ao ∈ Formo a formula. Then

T ∪ {Ao} ` Bo iff T `∆∆∆Ao ⇒⇒⇒ Bo

holds for every formula Bo ∈ Formo.

In the sequel, we will often refer to axioms and various proved facts from
the fuzzy type theory. Since it is not possible to list all of them here, we will
simply write “by properties of FTT” and refer the reader to [25].

2.4 Semantics of FTT

Let J be a language of FTT. A frame for J is a tuple

M = 〈(Mα, =α)α∈Types ,L∆〉 (5)

so that the following holds:

(i) The L∆ is a structure of truth values (i.e., ÃLukasiewiczδ algebra or IMTL∆-
algebra).

(ii) =α is a fuzzy equality on Mα and =α∈ M(oα)α for every α ∈ Types.

Recall that a fuzzy relation =α is a fuzzy equality if it is reflexive ([m =α m′] =
1, m ∈ Mα, where [·] denotes a truth value), symmetric ([m =α m′] = [m′ =α

m], m,m′ ∈ Mα) and transitive ([m =α m′] ⊗ [m′ =α m′′] ≤ [m =α m′′],
m,m′,m′′ ∈ Mα). It is separating (or 1-faithful) if the following holds true:
[m =α m′] = 1 iff m = m′.

Let us remark that, because of the prelinearity property, any IMTL∆-algebra
can be taken as a subdirect product of linearly ordered IMTL∆-algebras. There-
fore, we will suppose that the algebra of truth values L∆ is linearly ordered.

It is important to know that if βα is a type then the corresponding set
Mβα contains functions f : Mα −→ Mβ but in general, Mβα 6= MMα

β . We put
Mo = L and assume that each set Moo∪M(oo)o contains all the operations from
L∆.

Let p be an assignment of elements from M to variables. An interpretation
IM is a function that assigns every formula Aα, α ∈ Types and every assignment
p a corresponding element, that is, a function of the type α. As a special case,
note that interpretation of a formula Aoα is a fuzzy set IM(Aoα) ⊂∼ Mα.

A general model is a frame M such that

IMp (Aα) ∈ Mα (6)

holds true. This means that each set Mα from the frameM has enough elements
so that the interpretation of each formula Aα ∈ Formα is always defined in M.

A frame M is a model of a theory T if all its axioms are true in the degree
1 in M. If Ao is true in the degree 1 in all models of T then we write T |= Ao.

The following completeness theorem can be proved in FTT (for its proof and
many other details — see [25]).
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Theorem 2 (completeness)
(a) A theory T is consistent iff it has a general model M.

(b) For every theory T and a formula Ao

T ` Ao iff T |= Ao.

2.5 Special properties of FTT

We say that a formula Ao is crisp if ` Ao ∨∨∨¬¬¬Ao. This means that its interpre-
tation is either 0 or 1. As a special case, each formula of the form ∆∆∆Ao is crisp.
We may use this fact also in the following characterization:

` Ao ∨∨∨¬¬¬Ao iff ` Ao ≡∆∆∆Ao. (7)

for every formula Ao ∈ Formo.
We will often use the equality theorem of FTT in the following form.

Lemma 1
Let Aβα, Bβα be formulas of type βα. Then

` (∀xα)(Aβαxα ≡ Bβαxα) ≡ (λyα Aβαyα ≡ λyα Bβαyα).

proof: Indeed, this follows from the lambda conversion axiom ` Cβαxα ≡
λyα Cβαyα · xα. 2

It also follows from the properties of fuzzy equality that

` (∀xα)(∃yβ)∆∆∆(fβαxα ≡ yβ). (8)

This means that each x ∈ Formα is surely mapped via f ∈ Formβα to some
y ∈ Formβ (namely, this y is just the fx).

Some further properties of FTT that will be used in the sequel are summa-
rized in the following lemma.

Lemma 2
(a) T ` (∃xα)∆∆∆B iff T ∪ Bxα [uα] is a conservative extension of T where uα 6∈

J(T ) (Rule C).

(b) Let T ` (∃xα)∆∆∆Boαxα. Then T ` Boα · ια(oα)Boα.

(c) Let T ` (∃xα)Ao. Then T ` (∃xα)An
o for all n ≥ 1.

(d) ` (∃x)∆∆∆Ao ⇒⇒⇒∆∆∆(∃x)Ao and ` (∃x)∆∆∆Ao ⇒⇒⇒ (∃x)Ao.

(e) ` (∃x)(∃y)∆∆∆A ≡ (∃x)∆∆∆(∃y)∆∆∆A.

(f) `∆∆∆(xo &&& yo) ≡∆∆∆xo &&&∆∆∆yo, `∆∆∆(xo ∨∨∨ yo) ≡∆∆∆xo ∨∨∨∆∆∆yo.

(g) ` (xα ≡ zα) ≡ (∃yα)((xα ≡ yα)&&&(yα ≡ zα)) for all α ∈ Types.
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(h) (∀xα)(Aoαxα ≡ Boαxα)⇒⇒⇒ ·(∀xα)Aoαxα ≡ (∀xα)Boαxα.

(i) (∀xα)(Aoαxα ≡ Boαxα)⇒⇒⇒ ·(∃xα)Aoαxα ≡ (∃xα)Boαxα.

(j) ` (A⇒⇒⇒ B)&&&(C ⇒⇒⇒ D)· ⇒⇒⇒ (A∨∨∨ C ⇒⇒⇒ ·B ∨∨∨D).

(k) ` (∀x)(A⇒⇒⇒ B)⇒⇒⇒ ((∃x)A⇒⇒⇒ (∃x)B).

(l) ` (∃x)(A&&&B) ≡ A&&&(∃x)B (x is not free in A).

(m) `∆∆∆(poα ≡ qoα)⇒⇒⇒ (ια(oα)poα ≡ ια(oα)qoα)

proof: (a) Let T∪{Bxα
[uα]} ` A where A does not contain uα. Analogously

as in the classical proof of the similar property, we replace all occurrences of
uα in the proof of A by a variable yα not occurring in it. This means that T ∪
{Bx[yα]} ` A. From this, using deduction theorem, we obtain T `∆∆∆Bx[yα]⇒⇒⇒ A
and from it, using generalization and the properties of quantifiers to obtain T `
(∃xα)∆∆∆B ⇒⇒⇒ A. From this we obtain T ` A using the assumption and modus
ponens which proves conservativeness. The opposite implication is obvious.

The properties (b)–(e), (g)–(i), (k)–(m) have been proved in [25, 27]. The
proof of the property (f) is the same as that of Lemma 2.4.11(4) from [12].

(j) We start with the provable tautologies ` (A ⇒⇒⇒ B) ⇒⇒⇒ (A ⇒⇒⇒ ·B ∨∨∨ D),
` (C ⇒⇒⇒ D)⇒⇒⇒ (C ⇒⇒⇒ ·B∨∨∨D). Then use the fact that ` (E ⇒⇒⇒ F ) and ` (G⇒⇒⇒ H)
imply ` E &&& G⇒⇒⇒ ·F &&&H. From this we obtain ` (A⇒⇒⇒ B)&&&(C ⇒⇒⇒ D)· ⇒⇒⇒ (A⇒⇒⇒
·B ∨∨∨D)&&&(C ⇒⇒⇒ ·B ∨∨∨D) so that

` (A⇒⇒⇒ B)&&&(C ⇒⇒⇒ D)· ⇒⇒⇒ (A∨∨∨ C ⇒⇒⇒ ·B ∨∨∨D).

2

FTT provides also means for specification that the given formula of type o
represents a nonzero truth value and a general (nontrivial) truth value different
both from 0 as well as from 1. Namely, we will introduce the following higher-
order formulas:

Υoo ≡ λzo · ¬¬¬∆∆∆(¬¬¬zo), (nonzero truth value)

Υ̂oo ≡ λzo · ¬¬¬∆∆∆(zo ∨∨∨¬¬¬zo). (general truth value)

Both formulas Υoo as well as Υ̂oo are crisp.

Lemma 3
(a) Let IM be an interpretation and p an assignment. Then

IMp (Υzo) = 1 iff p(z0) > 0,

IMp (Υ̂zo) = 1 iff 1 > p(z0) > 0.

(b) Let T ` Υzo &&&(zo ⇒⇒⇒ yo). Then T ` Υyo.

(c) ` Υ̂zo ≡ Υ̂¬¬¬zo.
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(d) `∆∆∆zo ⇒⇒⇒¬¬¬Υ̂zo, `∆∆∆¬¬¬zo ⇒⇒⇒¬¬¬Υ̂zo.

(e) ` Υ̂zo ⇒⇒⇒ Υzo

(f) Let T ` Υ̂zo &&& Υ̂uo &&&(zo ⇒⇒⇒ to)&&&(to ⇒⇒⇒ uo). Then T ` Υ̂to.

proof: (a) Put p(z0) = a and let IMp (Υzo) = ¬(∆(¬a)) = 1. Then ∆(¬a) =
0 which means that ¬a 6= 1 and so, a cannot be equal to 0. Conversely, let
a > 0. If a = 1 then ¬(∆(¬a)) = ¬0 = 1. Otherwise ¬a < 1 and so, ∆(¬a) = 0
so that ¬(∆(¬a)) = ¬0 = 1.

For the second equation, if IMp (Υ̂zo) = 1 then ∆(a ∨ ¬a) = 0 which means
that a ∨ ¬a 6= 1 and so, a 6= 1 as well as a 6= 0. The converse is obvious.

(b) From T ` zo ⇒⇒⇒ yo we obtain T ` ∆∆∆(¬¬¬yo ⇒⇒⇒ ¬¬¬zo) using the properties
of FTT, and further, T ` (∆∆∆¬¬¬yo ⇒⇒⇒ ∆∆∆¬¬¬zo). Finally, using contraposition and
modus ponens, we obtain T ` ¬¬¬∆∆∆¬¬¬yo which implies T ` Υyo.

(c) This follows immediately from ` zo ≡ ¬¬¬¬¬¬zo when realizing that ` Υ̂zo ≡
¬¬¬∆∆∆(¬¬¬zo ∨∨∨¬¬¬¬¬¬zo).

(d) From ` zo ⇒⇒⇒ zo∨∨∨¬¬¬zo we prove `∆∆∆zo ⇒⇒⇒∆∆∆(zo∨∨∨¬¬¬zo). Then use definition
of Υ̂ and the double negation. The second part is proved analogously.

(e) immediately follows from ` ¬¬¬zo ⇒⇒⇒ zo ∨∨∨¬¬¬zo and the properties of FTT.
(f) Using (b) and (e) we prove T ` Υto which is equivalent to T ` ¬¬¬∆∆∆¬¬¬to.

Furthermore, from T ` to ⇒⇒⇒ uo we prove T ` ¬¬¬∆∆∆uo ⇒⇒⇒ ¬¬¬∆∆∆to. From T ` Υ̂uo

we obtain T ` ¬¬¬∆∆∆uo ∧∧∧¬¬¬∆∆∆¬¬¬uo using Lemma 2(f). From the last two formulas
we derive T ` ¬¬¬∆∆∆to and so, we conclude that T ` ¬¬¬∆∆∆to ∧∧∧ ¬¬¬∆∆∆¬¬¬to which is
equivalent to T ` Υ̂to. 2

2.6 Extensionality

In FTT, we assume that all formulas are weakly extensional which means that
they fulfil axiom (FTI1). Recall that this means that if IMp (xα ≡ yα) = 1 (i.e.,
p(x) and p(y) are equal in the degree 1) then also the corresponding functional
values of IMp (fβα) are equal in the degree 1, i.e., IMp (fβα xα ≡ fβα yα) = 1.
Otherwise, the degree of equality of the latter can be arbitrary.

Quite often, however, we need a stronger property. We say that a formula
Aoα is strongly extensional in a theory T , if

T ` xα ≡ yα ⇒⇒⇒ Aoαxα ≡ Aoαyα. (9)

Strong extensionality requires “good behavior” already of all degrees, not only
of 1.

Lemma 4
A formula Aoα is strongly extensional in T iff

T ` Aoαyα ≡ (∃xα)(xα ≡ yα &&&Aoαxα). (10)
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proof: By properties of FTT, we have ` Aoαyα ≡ ·yα ≡ yα &&& Aoαyα, i.e.
` Aoαyα ⇒⇒⇒ ·yα ≡ yα &&&Aoαyα and, consequently,

` Aoαyα ⇒⇒⇒ (∃xα)(xα ≡ yα &&& Aoαxα). (11)

Let Aoα be strongly extensional. Then

T ` (xα ≡ yα &&& Aoαxα)⇒⇒⇒ Aoαyα.

Using rule of generalization and properties of quantifiers, we obtain

T ` (∃xα)(xα ≡ yα &&&Aoαxα)⇒⇒⇒ Aoαyα

which together with (11) implies (10).
Conversely, let (10) hold. Then T ` (∃xα)(xα ≡ yα &&& Aoαxα) ⇒⇒⇒ Aoαyα,

and by properties of quantifiers, substitution and properties of FTT we obtain
T ` (xα ≡ yα) ⇒⇒⇒ (Aoαxα ⇒⇒⇒ Aoαyα). Similarly, we proceed with the variables
xα and yα exchanged and so, obtain (9) by properties of FTT.

2

2.7 Transfer of properties

We will often need to transfer properties from one type to another one by means
of a function. Let a function fβα be given and let A(oα)α be a relation between
elements of type α. Then it can be transferred to a relation Af

(oβ)β between
elements of type β that fall into the range of the function f . This will be
explicitly stated by the following lemma.

First, we will introduce a special property rng(oβ)(βα) stating that y ∈ Formβ

belongs to the range of f ∈ Formβα:

rng ≡ λf λyβ (∃xα)∆∆∆(yβ ≡ fxα). (12)

Note that it is a crisp property so that, by Rule C (Lemma 2(a)), if ` rng fy
then there is an element xα that can be denoted by some constant and that
assures yβ to be a functional value of f at xα. We will write y ∈ rng f instead of
rng fy. To find such an element x explicitly, we will use the description operator
ι.

Let us denote
−1 ≡ λf λy · ιx · y ≡ fx (13)

(recall that ιx(y ≡ fx) ≡ ια(oα)(λx · y ≡ fx)). We will write f−1y instead of
(−1f)y. By the definition, f−1y is the xα for which y ≡ fx is true (provable)
in the degree 1, and which is chosen using the description operator ια(oα).

Lemma 5
(a) Let f ∈ Formβα, x ∈ Formα, y ∈ Formβ . Then

` (y ∈ rng f) ≡∆∆∆(y ≡ f (f−1y)).

14



(b) ` (y ∈ rng f)&&&(y′ ∈ rng f)⇒⇒⇒ (∆∆∆(y ≡ y′) ≡∆∆∆(f (f−1y) ≡ f (f−1y′))).

proof: (a)

(L.1) y ≡ fx ` y ≡ fx (assumption)

(L.2) ` (∀x)(y ≡ fx)⇒⇒⇒ ·y ≡ f (f−1y) (substitution axiom)

(L.3) y ≡ fx ` y ≡ f (f−1y) (L.1, L.2, generalization, modus ponens)

(L.4) y ≡ fx `∆∆∆(y ≡ f (f−1y)) (L.3, rule (N))

(L.5) ` (∃x)∆∆∆(y ≡ fx)⇒⇒⇒∆∆∆(y ≡ f (f−1y))
(L.4, deduction theorem, properties of FTT)

(L.6) ` y ∈ rng f ⇒⇒⇒∆∆∆(y ≡ f (f−1y)) (L.5, (12), rule (R))

(L.7) `∆∆∆(y ≡ f (f−1y))⇒⇒⇒ (∃x)∆∆∆(y ≡ fx) (substitution)

The rest follows from L.6, L.7 by (12) and the properties of FTT.
(b)

(L.1) y ≡ y′ ` y ≡ y′ (assumption)

(L.2) ` (λx · y ≡ fx) ≡ (λx · y ≡ fx) (properties of FTT)

(L.3) y ≡ y′ ` (λx · y ≡ fx) ≡ (λx · y′ ≡ fx) (L.1, L.2, rule (R))

(L.4) y ≡ y′ `∆∆∆((λx · y ≡ fx) ≡ (λx · y′ ≡ fx)) (L.3, rule (N))

(L.5) `∆∆∆((λx ·y ≡ fx) ≡ (λx ·y′ ≡ fx))⇒⇒⇒ ((f−1y) ≡ (f−1y′)) (Lemma 2(m))

(L.6) `∆∆∆(y ≡ y′)⇒⇒⇒ (f−1y) ≡ (f−1y′)
(L.4, L.5, properties of FTT, deduction theorem)

(L.7) `∆∆∆((f−1y) ≡ (f−1y′))⇒⇒⇒ (f(f−1y) ≡ f(f−1y′)) (equality theorem)

(L.8) y ≡ fx, y′ ≡ fx′ ` y ≡ f (f−1y)&&& y′ ≡ f (f−1y′)
(analogously to line L.3 of the proof of (a))

(L.9) y ≡ fx, y′ ≡ fx′ `∆∆∆((f−1y) ≡ (f−1y′))⇒⇒⇒ (y ≡ y′)
(L.7, L.8, properties of FTT)

(L.10) ` (y ∈ rng f)&&&(y′ ∈ rng f) ⇒⇒⇒ (∆∆∆(y ≡ y′) ≡ ∆∆∆(f (f−1y) ≡ f (f−1y′))).
(L.6, L.9, deduction theorem, properties of FTT)

2

By this lemma, if y (surely) belongs to the range of the function f then the
element f−1y (of type α) is mapped to y via f . Moreover, if y and y′ belong to
the range of f then their boolean equality is equivalent with the boolean equality
of (f−1y) and (f−1y′) by the properties of the description operator ι. We may
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take (f−1y), in a certain sense, as “typical” element of type α corresponding to
y via f .

Let A ∈ Form(oα)α be a relation between elements of type α and f ∈ Formβα

be a function. Then we put

Af ≡ λz λz′ ·A (f−1z) (f−1z′). (14)

We obtain
Af yy′ ≡ A (f−1y) (f−1y′) (15)

by lambda conversion.

Lemma 6
Let f ∈ Formβα, x, x′ ∈ Formα, y, y′ ∈ Formβ .

(a) ` y ∈ rng f &&& y′ ∈ rng f ⇒⇒⇒
(Axx′&&&∆∆∆(x ≡ (f−1y))&&&∆∆∆(x′ ≡ (f−1y′))⇒⇒⇒ Af yy′).

(b) Let f ∈ Formβα and ` B ≡ B′
z1,...,zm

[A1 xj1xk1 , . . . , Am xjmxkm ] ∈ Formo

be a formula containing Ai xjixki ∈ Formo, i = 1, . . . ,m as subformulas so
that the variables {xji , xki | i = 1, . . . , m} = {x1, . . . , xn} ⊂ Formα are free
in B. Then

` y1 ∈ rng f &&& · · ·&&& yn ∈ rng f &&&(∀x1, . . . , xn)B
⇒⇒⇒ B′

z1,...,zm
[Af,1 yj1yk1 , . . . , Af,m yjmykm ]

proof: (a) From the equality theorem, we get

y ≡ fx, y′ ≡ fx′ ` Axx′&&&∆∆∆(x ≡ (f−1y))&&&∆∆∆(x′ ≡ (f−1y′))⇒⇒⇒ A (f−1y) (f−1y′)
(16)

Then (a) follows from (16), (15) and (12) using the deduction theorem and rule
(R).

(b) By the definition, f−1yj , j = 1, . . . , n are formulas of type α. By the
substitution axiom and (15), we obtain

y1 ≡ fu1, . . . , yn ≡ fun `
(∀x1, . . . , xn)B ⇒⇒⇒ B′

z1,...,zm
[Af,1 yj1yk1 , . . . , Af,m yjmykm ].

Then (b) follows from the deduction theorem by the properties of FTT. 2

By this lemma, we may extend a relation A among elements of type α to
those elements of type β that belong to the range of f when using the “typical”
elements of the form (f−1y). By the part (b), the general properties of A on
elements of type α are inherited also to elements y from the range of f .
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3 The Theory of Trichotomous Evaluative
Linguistic Expressions

In this section, we will first describe briefly the grammatical structure of eval-
uative expressions. Then we focus on characterization the meaning of TEv-
expressions. This will be done by means of a special formal language of FTT.
Certain formulas of it will represent evaluative linguistic expressions which en-
ables us to characterize their properties using logical means.

3.1 Grammatical structure of evaluative linguistic
expressions

As already stated, evaluative expressions are special expressions that are used
in natural language for characterization of a position on an ordered scale. Their
base is formed by a specific evaluative adjective (cf. our discussion in the Intro-
duction), or a numeral. The systematics presented below is needed to be able
to introduce a clear definition of their semantics.

Definition 1
Evaluative linguistic expression is either of the following:

(i) Simple evaluative expression, which is one of the linguistic expressions:

(a) 〈trichotomous evaluative expression〉 :=
〈linguistic hedge〉〈TE-adjective〉

(b) 〈fuzzy quantity〉 := 〈linguistic hedge〉〈numeral〉
(ii) Negative evaluative expression, which is an expression

not 〈trichotomous evaluative expression〉

(iii) Compound evaluative expression, which is either of the following:

(a) 〈trichotomous evaluative expression〉 or 〈trichotomous evaluative expression〉
(b) 〈trichotomous evaluative expression〉 and 〈negative evaluative expression〉

The connective “and” in the compound expression (iii)(b) can be replaced by
the connective “but”.

Further components of evaluative expressions are:

(iv) 〈numeral〉 is a name of some element from the considered scale∗)

(v) 〈linguistic hedge〉 is an intensifying adverb making the meaning of the
trichotomous evaluative expression either more, or less specific:

〈linguistic hedge〉 := empty | 〈narrowing adverb〉 | 〈widening adverb〉 |
〈specifying adverb〉

∗)Fuzzy quantities require a concrete semantics, i.e. a concrete scale. From the point of
logic, it is a constant in a language expanded by names of all elements of the given model.
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A precise definition of TE-adjectives is difficult. As mentioned, they include
gradable adjectives, adjectives of manner, and possibly some other ones. The
most important distinctive feature is that they must form pairs of antonyms,
i.e., the pairs

〈nominal adjective〉 — 〈antonym〉
which can be, furthermore, completed by a middle term so that the triple of
expressions

〈linguistic hedge〉〈nominal adjective〉 —
〈linguistic hedge〉〈middle member〉 —

〈linguistic hedge〉〈antonym〉 (17)

forms the evaluative linguistic trichotomy. If all the linguistic hedges are empty
then (17) is called the fundamental evaluative trichotomy.

Example 1
Typical trichotomous evaluative linguistic expressions are small, medium, big,
and also very small, more or less medium, very big, etc. The pairs of antonyms
are, e.g., “young — old”, “ugly — nice”, “stupid — clever”, etc. The funda-
mental evaluative trichotomies, in these cases, are “young — medium age —
old”, “ugly — normal — nice”, “stupid — medium intelligent — clever”, etc.

Narrowing linguistic hedges are very, extremely, significantly, etc. Widening
linguistic hedges are more or less, roughly, very roughly, etc. Specifying adverbs
are approximately, about, rather, precisely, etc.

Fuzzy quantities are, e.g., twenty five, about 150 thousand, roughly 100, etc.
Simple evaluative linguistic expressions are very small, more or less medium,
roughly big, about twenty five, approximately x0, etc. Negative evaluative ex-
pressions are not small, not very big, etc. Compound evaluative linguistic ex-
pressions are roughly small or medium, quite roughly medium and/but not big ,
etc.

Let us remark that the concept of empty hedge introduced in (v) enables us
develop a uniform explication of all trichotomous evaluative expressions. The
theory of their semantics thus becomes relatively simple and transparent.

The “fuzzy quantity” is a linguistic characterization of some element from
a certain set. In a special case, this is a number from R. This means that
every linguistic characterization of a number is understood imprecisely. We
will take the form “about x0” (x0 is a specific numeral) as canonical. Note,
that e.g., colors can also be ranked among evaluative expressions because their
interpretation leads to fuzzy sets in an ordered scale of wave lengths and thus,
they can be understood as special names of fuzzy numbers.

The negative evaluative expressions are, in general, ambiguous since we must
take the topic-focus articulation phenomenon into account (see [13, 33]). This
means that each linguistic expression is divided into two parts: the topic – what
is spoken about, which may be empty, and the focus – the new information. In
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sentential negation, the negated part is focus. For example “not very small”
may have two readings: “not VERY small” and “not VERY SMALL”. In the
first case, only the hedge “very” is negated and so, we can take “not very” as a
specific hedge. In the second case the whole expression “very small” is negated.
In our theory, we will consider the second case only, i.e. the particle not acts
on the whole linguistic expression following it.

Agreement: In the sequel, we will use the TE-adjectives small, medium, and
big as canonical. Clearly, they can be replaced by arbitrary other ones — cf.
the examples above.

3.2 Evaluative linguistic predications

Evaluative expressions usually occur in predicative position. The resulting ex-
pressions are called evaluative (linguistic) predications. These are special ex-
pressions of natural language that characterize features, such as sizes, volumes,
magnitudes, intensities, etc. of specific objects characterized by nouns or more
complex constructions.

Definition 2
(a) Let A be an evaluative linguistic expression. Then the linguistic expression

〈noun〉 is A (18)

is an evaluative predication. If A is a simple evaluative linguistic expression
then (18) is a a simple evaluative predication.

(b) The abstracted evaluative predication is an expression of the form

X is A

where X is a variable whose values can be arbitrary elements.

(c) IfA and B are evaluative predications then expressions of the form ‘A and B’
and ‘A or B’ are compound predications.

(d) A fuzzy IF-THEN rule is an abstracted conditional linguistic clause con-
sisting of abstracted evaluative linguistic predications, i.e. it is a linguistic
expression of the form

R := IF X is A THEN Y is B. (19)

Let us stress that in this definition, the verb “is” takes a specific role of a
copula (copular verb), i.e., it simply assigns the property of A to the elements
named by 〈noun〉 and so, it is not treated as a verb. From this point of view,
the evaluative predication has the same meaning as a general relationship in the
expression

A 〈noun〉,
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for example “small house”, “very tall man”, “more or less deep sea”, etc. Note,
that objects named by 〈noun〉 may be quite complicated entities and so, the
property of A may, in fact, concern only certain feature (or few features) of
them that attain values from some ordered scale, and only the latter are eval-
uated by the evaluative expression A. In the sequel we will disregard concrete
elements that are normally denoted by the noun and so, we will mostly work
with abstracted evaluative predications only.

3.3 Intuition about the meaning of TEv-expressions

In any model of the semantics of linguistic expressions, we must distinguish
between the concepts of intension and extension in a possible world (see [5, 19]).
A possible world is a state of the world at a given time moment and place
(particular context in which the linguistic expression is used), or it can also be
understood as a maximal set of consistent facts. Because of this very wide and
ambiguous understanding, we will use a narrower term context, instead.

Intension of a linguistic expression, of a sentence, or of a concept, is identi-
fied with the property denoted by it. It leads to different truth values in various
contexts but is invariant with respect to them. Expressions A of natural lan-
guage are, in general, names of intensions.

Extension is a class of elements determined by an intension, which fall into
the meaning of a linguistic expression in the given context. Thus, it depends on
the particular context of use and changes whenever is the context changed. For
example, the expression “high” is a name of an intension being a property of
some feature of objects, i.e., of their height. In concrete case, its extension may
cover values of about 30 cm when a beetle needs to climb a straw, of about 30
m for electrical pylon, but values of about 3 km or more for a mountain.

Evaluative expressions can be understood as linguistic characterization of
the abstract concept of quantity. Quantities are in each context classes of ele-
ments taken from an ordered scale. According to empirical observation, scales
considered in the linguistic meaning of evaluative expressions are linearly or-
dered and bounded. Since they can be very extensive, the number of necessary
linguistic expressions would have to be very large; in limit case even infinite.
Luckily, we have the concept of number at disposal and so, any value from an
arbitrary scale may get its name. However, this is inconvenient or unnecessary
in practical life. The power of natural language enables people to use only small
(finite) number of expressions which, surprisingly, may characterize any element
of any ordered set. The price we must pay is vagueness of the meaning of the
used expressions. Natural language thus becomes an extremely powerful tool
which makes it possible to characterize and ponder on various values (sizes,
volumes, etc.) and, for example, to make relevant decisions on the basis of
them.

A question arises, what is the source of vagueness of extensions of the eval-
uative expressions. The justification is based on ideas of P. Vopěnka (see [36])
concerning the concept of horizon. From now on, we will focus on trichotomous
evaluative expressions (TEv-expressions for short) only.
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Each context is represented by an ordered scale bounded by two limit points:
a left bound and a right bound. These points are the “most typical” small value
and the “most typical” big value, respectively. The properties of being “small”
and “big” are the, so called, primary recordable properties. They are naturally
vague since, though we can always point out some small (big) value (for example,
the left or right limit), there does not exist the last small (big) value. The only
fact we know is that small values run somewhere towards a certain point which
is the horizon of our seeing of all small values. Everything beyond this point
is surely not small. Note that this reasoning embraces the sorites paradox†).
The way how the sorites paradox is resolved in fuzzy logic (cf. [11]) consists in
introduction of degrees of truth expressing that “we find ourselves still before
the horizon”.

Quite similarly, starting from the right bound and going in the opposite
direction, we find a horizon of big values such that everything beyond it is surely
not big. As a consequence, there exists a certain point which lays somewhere
between the left and right bound, and such that both horizons vanish at it. This
point will be called the central limit point ∗).

Human mind (and, consequently, natural language) enables us to distinguish
parts of the horizon more subtly by modifying it. In other words, we may say
that our mind shifts horizon along the world. We obtain new, either more,
or less specific horizons that determine extensions of the evaluative expressions.
Consequently, if an element of the scale falls in the extension of the more specific
(i.e. “narrower”) evaluative expression then it falls in the extensions of all less
specific (i.e. “wider”) ones (provided that they exist). For example, very small
values cease to be “very small” sooner than to be “small”. This means that each
“very small” value is at the same time “small” but there exist small values,
that are not “very small”. Analogous reasoning can be made for the pair of
evaluative expressions “small” and “roughly small”, and also for all the other
TEv-expressions with the same TE-adjective inside.

3.4 Informal characterization of the meaning
of TEv-expressions

With respect to the above discussion, we will formulate the following global
characteristics of the meaning of TEv-expressions:

(i) Linguistic context of TEv-expression is a nonempty, linearly ordered and
bounded scale. In each context, three distinguished limit points can be
determined: left bound, right bound, and a central point (laying somewhere
in-between the former).

†)One grain does not form a heap. Adding one grain to what is not yet a heap does not
make a heap. Consequently, there are no heaps.
∗)This is a distinguished inner element of the scale, which, provided that some metric is

defined on the scale, needs not necessarily lay in its center.
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(ii) Intension of TEv-expression is a function from the set of contexts into a
set of fuzzy sets. This means that each context is assigned a fuzzy set
inside it which forms an extension of TEv-expression in the given context.

(iii) Each of the limit points in (i) is a starting point of some horizon running
from it in the sense of the ordering of the scale towards the next limit point.
The latter is the point beyond which the horizon is vanished. Consequently,
we may distinguish three horizons in each context:

(a) a horizon from the left bound towards central point,

(b) a horizon from the right bound back towards central point,

(c) a horizon from the central point towards both left and right bounds
(i.e., it is symmetrically spread around the central point).

(iv) Each horizon in (iii) is represented by a special fuzzy set determined by a
reasoning analogous to that leading to the sorites paradox.

(v) Extension of each TEv-expression is delineated by a specific horizon ob-
tained by modification of the horizon considered in items (iii) and (iv).
The modification corresponds to a linguistic hedge and consists in shifting
the horizon, i.e., moving it closer to, or farther from the limit point. This
effect is accomplished by decreasing the truth values. Moreover, the de-
crease will be rather small for big truth values and, at the same time, big
for small ones because big truth values express stronger certainty that the
given element still lays inside the horizon than small ones.

As a consequence, each element of the given context is contained in exten-
sions of several simple evaluative expressions which differ from each other
only in their hedges. Each limit point due to (i) which lays inside extension
of an evaluative expression is typical for the latter.

(vi) Each scale is vaguely partitioned by the fundamental evaluative trichotomy
consisting of a pair of antonyms, and a middle member. The antonyms
characterize opposite sides of the context. There is no element of the
context falling into extensions of both antonyms. However, there exist
elements of the scale falling into extension of the middle member only.
Consequently, any element of the scale is contained in the extension of
at most two neighboring expressions from the fundamental evaluative tri-
chotomy.

We will also suppose that extension of TEv-expression conforms with Hy-
pothesis 1 (this is general requirement and so, we do not include it among the
above items).

The aim of this paper is to formalize these characteristics explicitly using
a formal means of of FTT. Actually, we will formulate special axioms on the
basis of the items (i)–(vi) and thus develop a formal theory of the meaning of
TEv-expressions. This theory denoted by TEv is explained below.
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Note that the meaning of TEv-expressions does not depend on the elements
forming the considered linguistic contexts. The only information contained in
them is the information about limit points. Let us remark that fuzzy numbers,
on the other hand, contain information about concrete elements of the context.

3.5 Formalization of meaning of TEv-expressions

3.5.1 Language and the formal theory TEv

In this paper, we develop a formal theory TEv as a special formal theory of fuzzy
type theory. The main ideas for its construction are contained in [24, 28, 30].

First, we define a formal language JEv of the theory TEv. Its special symbols
are:

(i) A constant (formula) F ∈ Form(oo)o for additional fuzzy equality on truth
values.

(ii) A special constant ν̄ννoo for the standard (i.e. empty) hedge.

Recall that interpretation of any formula Aαβ is a function Mβ −→ Mα

where Mα,Mβ are sets assigned to the types α, β, respectively. The letters
x, y (possibly with subscripts) will be usually considered as variables of some
arbitrary type α, i.e. their interpretation are arbitrary objects (functions) from
Mα. Similarly, the letters t, z (possibly with subscripts) will denote variables of
type o; their interpretation are truth values.

Specific types introduced in intensional logic are also a type of possible world
and a type of time. In the case of evaluative expressions, however, time plays a
minor role and so, we will not consider a special type for it.

Furthermore, we have already noted that we prefer to speak about the con-
text instead of possible world because this better corresponds to our idea. In
our theory, we do not need to introduce a special elementary type for the con-
text. Instead, we will assign it a formula wαo of type αo, i.e., for arbitrary type
α ∈ Types its interpretation is a function from the set of truth values to the
set of objects of type α. This definition is motivated by the idea that people
keep in mind a certain image of a bounded scale which they modify in accord
with the concrete situation. Let us stress that the reasons for using the scale of
truth values for this purpose are mostly technical since this trick frees us from
the necessity to define explicitly special ordering in other contexts.

We will usually write w instead of the precise wαo but we must always keep
in mind that some concrete type α is at play when dealing with the context
w. We will write x ∈ w instead of x ∈ rng w to stress the interpretation “an
element x belongs to the context w”, i.e. (cf. (12))

x ∈ w := (∃t)∆∆∆(x ≡ wt).

We will also work with elements of the form w−1x. By definition (13) we
get ` w−1x ≡ ιo(oo)λt · x ≡ wt. In words, this is a truth value t assigned to x
for which the equality x ≡ wt is true in the degree 1. This trivially holds for all
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truth values t just assigned to x via w. Note, however, that if there exist more
elements x′ surely equal to x (i.e. ` x′ ≡ x) then ιo(oo) must choose from all
truth values t for which it surely holds that ` x ≡ wt as well as ` x′ ≡ wt.

Our definition of the context enables us to define important concepts of
horizon and intension of evaluative expressions in a simple way and to minimize
the number of special formulas and axioms. It also enables us to consider the
context very generally so that the evaluative expressions may concern arbitrary
objects — functions of arbitrary complexity. Thus, we may clearly distinguish
the naked evaluative linguistic expressions from the evaluative linguistic predi-
cations (note that in the early models, this distinction has not been clear).

In the rest of this section, we will form step by step special axioms (EV1)–
(EV11) of the theory TEv. Occasionally, we will introduce further special con-
stants, if necessary.

3.5.2 Context and its properties

The first axiom of TEv is axiom assuring existence of a middle truth value:

(EV1) (∃z)∆∆∆(¬¬¬z ≡ z)

On the basis (EV1) and Lemma 2(a), we will add a special constant † into JEv

as the formula
† := ιo(oo) λz · ¬¬¬z ≡ z.

Note that in the standard semantics, interpretation of † is the truth value 0.5.

Lemma 7
(a) ` ¬¬¬(> ≡ ⊥),

(b) TEv ` ¬¬¬∆∆∆†,
(c) TEv ` ¬¬¬∆∆∆(† ≡ ⊥),

(d) TEv ` ¬¬¬∆∆∆(† ≡ >),

(e) TEv ` Υ̂†.

proof: (a) is equivalent to the double negation ` ¬¬¬¬¬¬> which is provable.
(b)

(L.1) TEv ` † ⇒⇒⇒ († ⇒⇒⇒ ⊥) (consequence of (EV1))

(L.2) TEv `∆∆∆(† ⇒⇒⇒ ⊥)⇒⇒⇒ (∆∆∆† ⇒⇒⇒ ⊥) (properties of ∆∆∆)

(L.3) TEv `∆∆∆† ⇒⇒⇒ (∆∆∆† ⇒⇒⇒ ⊥) (L.1, rule (N), L.2, properties of FTT)

(L.4) TEv `∆∆∆† ⇒⇒⇒ (∆∆∆† ⇒⇒⇒ ⊥)⇒⇒⇒ ·(∆∆∆† ⇒⇒⇒∆∆∆†)⇒⇒⇒ (∆∆∆† ⇒⇒⇒ ⊥) (properties of ∆∆∆)

(L.5) TEv `∆∆∆† ⇒⇒⇒ ⊥ (L.3, L.4, properties of FTT)

(L.6) TEv ` ¬¬¬∆∆∆† (L.5, properties of FTT)
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(c) From (EV1) and (b) we get TEv ` ¬¬¬∆∆∆¬¬¬† which is just (c).
(d) follows from (b), (EV1) and contraposition.
(e) This follows from (b), ` †∨∨∨ † ≡ † and TEv ` † ≡ ¬¬¬† by rule (R). 2

We must accomplish requirements of (i) from Subsection 3.4 which means,
especially, existence of the leftmost, middle and rightmost elements in each con-
text. Using Lemma 2(a) and (8) we will introduce special constants ⊥w, †w,>w

(for each type α) for every context w ∈ Formαo so that the following should
hold:

TEv ` (⊥w ≡ w⊥)∧∧∧ (†w ≡ w†)∧∧∧ (>w ≡ w>)

At the same time, we introduce the axiom

(EV2) (⊥ ≡ w−1⊥w)∧∧∧ († ≡ w−1†w)∧∧∧ (> ≡ w−1>w).

Since interpretation of ≡ in (EV2) is a biresiduation which is separating fuzzy
equality, this axiom assures that the assignment ⊥ to ⊥w, † to †w and > to >w is
one-to-one. Note that (EV2) is not a unique axiom but a scheme of axioms since
we suppose it to hold for for arbitrary type α ∈ Types and arbitrary context
w ∈ Formαo. The same holds also for all lemmas and theorems below that deal
with the variable w.

The following is obvious.

Lemma 8
(a) TEv ` (⊥w ≡ w⊥)∧∧∧ (†w ≡ w†)∧∧∧ (>w ≡ w>),

(b) TEv ` ⊥w ∈ w ∧∧∧ †w ∈ w ∧∧∧ >w ∈ w.

We may see that ⊥w, †w,>w ∈ Formα are elements, for which ⊥, † and >
are “typical” truth values with respect to the context w. We must further show
that they indeed take the role of left bound, middle point and the right bound,
respectively.

On the basis of (14), we can introduce formulas ≤w, =w and <w for arbitrary
context w by

≤ ≡ λw λy λy′ · w−1y ⇒⇒⇒ w−1y′, (20)

= ≡ λw λy λy′ · w−1y ≡ w−1y′. (21)

< ≡ λw λy λy′ · (w−1y ⇒⇒⇒ w−1y′)&&&¬¬¬(w−1y ≡ w−1y′), (22)

We will write ≤w, =w and <w instead of (≤ w), (= w) and (< w) in the sequel.
Because both ⇒⇒⇒ and ≡ (recall that on truth values, ≡ is a logical equiv-

alence) are reflexive (i.e. ` (∀t)(t ⇒⇒⇒ t); the same for ≡) and transitive (`
(∀t)(∀t′)(∀t′′)((t ⇒⇒⇒ t′&&& t′ ⇒⇒⇒ t′′) ⇒⇒⇒ t ⇒⇒⇒ t′′); the same for ≡), these properties
transform also to elements from the range of w by Lemma 6(b). Furthermore,
≡ is also symmetric, i.e., ` (∀t)(∀t′)(t ≡ t′⇒⇒⇒ t′ ≡ t), which means that =w is a
fuzzy equality on objects (of type α) with respect to the context w.

Since we know that

` (∀t)(∀t′)((t⇒⇒⇒ t′ ∧∧∧ t′⇒⇒⇒ t) ≡ (t ≡ t′)),
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we obtain
TEv ` (x ≤w y ∧∧∧ y ≤w x) ≡ (x =w y) (23)

for all x, y ∈ w and so, ≤w can be treated as ordering of w. Clearly, (22) is a
sharp ordering.

The truth values have also the prelinearity property ` (∀t)(∀t′)(t⇒⇒⇒ t′∨∨∨ t′⇒⇒⇒
t) that transfers also to ≤w. From the construction of the canonical model,
however, we know that the set of truth values is linearly ordered. This property
is then transferred also to the range of w. Finally, we know that

` (∀t)(⊥⇒⇒⇒ t∧∧∧ t⇒⇒⇒ >)

which means that ⊥ is the left bound and > the right bound of the truth
values. Lemma 7 then shows us that ⊥, †,> are distinguished points. Using
Lemma 6(b), we may transfer all these properties also to ≤w and conclude that
for each context w, ≤w fulfils the requirements of (i) of Subsection 3.4.

At the end of this subsection let us remark that we may consider also a
special context wo ∈ Formoo defined by

wo ≡ λt t

(i.e., it is the identity). It is easy to verify that it fulfils all the requirements on
the context. Further requirements on the context are formulated in correspon-
dence with other notions in the subsequent sections.

3.5.3 Horizon and its properties

Our further task is to define the horizon according to the requirements of items
(iii) and (iv) of Subsection 3.4. As mentioned, a crucial role in its definition
will be played by the sorites paradox. A model of the latter in fuzzy logic has
been discussed in [11] and [30] and the model of horizon in predicate fuzzy
logic with evaluated syntax EvÃL has been established in [24]. In this paper, we
will introduce a special fuzzy equality and demonstrate that it can be used for
modeling of the sorites paradox and, especially, for modeling of the horizon.

We will start with definition of a new formula for a specific fuzzy equality
on truth values:

∼(oo)o := λz λt F(oo)o tz. (24)

Its properties are characterized by the following axioms:

(EV3) t ∼ t,

(EV4) t ∼ u ≡ u ∼ t,

(EV5) t ∼ u&&& u ∼ z· ⇒⇒⇒ t ∼ z,

(EV6) ¬¬¬(⊥ ∼ †),
(EV7) ∆∆∆((t⇒⇒⇒ u)&&&(u⇒⇒⇒ z))⇒⇒⇒ ·t ∼ z ⇒⇒⇒ t ∼ u,

26



(EV8) t ≡ t′&&& z ≡ z′⇒⇒⇒ ·t ∼ z ⇒⇒⇒ t′ ∼ z′,

(EV9) (∃u)Υ̂(⊥ ∼ u)∧∧∧ (∃u)Υ̂(† ∼ u)∧∧∧ (∃u)Υ̂(> ∼ u)

Axioms (EV3)–(EV5) state that ∼ is a fuzzy equality. Axiom (EV6) expresses
that falsity and medium truth are not equal in the sense of ∼. Axiom (EV7)
expresses compatibility of ∼ with classical ordering of truth values. Axiom
(EV8) expresses that ∼ is strongly extensional. Axiom (EV9) assures that ∼ is
not crisp, i.e. we can find a truth value u that is not fully ∼-equal to either of
⊥, † and >.

Example 2
Let us consider the standard ÃLukasiewicz MV-algebra of truth values with the
fuzzy equality interpreted by the biresiduation a ↔ b = 1− |a− b|, a, b ∈ [0, 1].
Then we may interpret ∼ by

[a ∼ b] =
0 ∨ (0.5− |a− b|)

0.5
. (25)

Note that [a ∼ b] = (a ↔ b)2 (the square is taken with respect to ⊗). It is easy
to verify that axioms (EV3)–(EV9) are fulfilled; there is an infinite number of
elements b such that 0 < [0 ∼ b] < 1, 0 < [0.5 ∼ b] < 1, 0 < [1 ∼ b] < 1.

It is clear that we could simplify our theory when putting ∼ := (≡ &&& ≡).
Introducing ∼, however, enables us to develop our theory in a more general way.

We will also introduce a fuzzy equality (≈w) in a context w that is induced
by ∼ as follows:

≈:= λw λy λy′ · (w−1y ∼ w−1y′). (26)

Using Lemma 6(b) we may show that axioms (EV3)–(EV9) transfer also to
(≈w) (for elements belonging to the context w). For better readability we will
write ≈w instead of (≈w).

We are now ready to define all three considered horizons using the above
introduced fuzzy equality ∼ from (24) as follows:

LH oo := λz · ⊥ ∼ z, (27)
MH oo := λz · † ∼ z, (28)
RH oo := λz · > ∼ z. (29)

The following properties are provable.

Lemma 9
(a) TEv ` LH ⊥, TEv ` RH >, TEv ` MH †,
(b) TEv ` ¬¬¬LH †, TEv ` ¬¬¬RH †, TEv ` ¬¬¬MH ⊥∧∧∧¬¬¬MH >,

(c) TEv ` (∀z)(∆∆∆(z ⇒⇒⇒ z′)⇒⇒⇒ (LH z′⇒⇒⇒ LH z)),

(d) TEv ` (∀z)(∆∆∆(z ⇒⇒⇒ z′)⇒⇒⇒ (RH z ⇒⇒⇒ RH z′)),

27



(e) TEv ` (∀z)(∆∆∆(† ⇒⇒⇒ z &&& z ⇒⇒⇒ z′)⇒⇒⇒ (MH z′⇒⇒⇒ MH z)),

(f) TEv ` (∀z)(∆∆∆(z ⇒⇒⇒ z′&&& z′⇒⇒⇒ †)⇒⇒⇒ (MH z ⇒⇒⇒ MH z′)),

(g) TEv ` (∀z)(∆∆∆(† ⇒⇒⇒ z)⇒⇒⇒¬¬¬LH z),

(h) TEv ` (∀z)(∆∆∆(z ⇒⇒⇒ †)⇒⇒⇒¬¬¬RH z),

(i) TEv ` ¬¬¬(∃z)((LH z&&&MH z)∨∨∨ (RH z &&&MH z)),

(j) TEv ` ¬¬¬(∃z)(LH z ∧∧∧ RH z),

(k) TEv ` (∀z)(LH z ⇒⇒⇒∆∆∆(z ⇒⇒⇒ †)).
(l) TEv ` (∀z)(RH z ⇒⇒⇒∆∆∆(† ⇒⇒⇒ z)).

proof: (a) and (b) follow immediately from the definition and axioms (re-
flexivity) of ∼.

(c)–(h) follow from (EV7).
(i) From the definition and transitivity of ∼, we obtain TEv ` ⊥ ∼ z &&& z ∼

† ⇒⇒⇒ ⊥ ∼ † which is equivalent to TEv ` ¬¬¬(LH z &&&MH z) by (EV6) and the
definitions of LH and MH . Similarly the second conjunction and so, we get (i)
by the properties of FTT.

(j) Using the properties (g), (h) and the properties of FTT, we prove that

TEv `∆∆∆(† ⇒⇒⇒ z)∨∨∨∆∆∆(z ⇒⇒⇒ †)⇒⇒⇒ (¬¬¬LH z ∨∨∨¬¬¬RH z).

Then, (j) follows from the prelinearity property of the truth values and proper-
ties of quantifiers.

(k) From ` ∆∆∆(† ⇒⇒⇒ z)∨∨∨∆∆∆(z ⇒⇒⇒ †) (prelinearity) we obtain ` ¬¬¬∆∆∆(† ⇒⇒⇒ z) ⇒⇒⇒
∆∆∆(z ⇒⇒⇒ †). From (g) we have TEv ` LH z ⇒⇒⇒¬¬¬∆∆∆(† ⇒⇒⇒ z) which implies (k). 2

Lemma 10
(a) TEv ` (∃u)Υ̂(LH u)∧∧∧ (∃u)Υ̂(MH u)∧∧∧ (∃u)Υ̂(RH u).

(b) Let TEv ` (∀w)(∃x)Υ̂LH (w−1x) (or TEv ` (∀w)(∃x)Υ̂RH (w−1x)). Let
us fix some context w and choose a new constant rw 6∈ JEv so that T is
a corresponding conservative extension of TEv (cf. Lemma 2(a)). Then
T `∆∆∆(⊥w <w rw) (or T ′ `∆∆∆(rw <w >w)).

proof: (a) follows immediately from Axiom (EV9).
(b) Using Lemma 9(c) we can prove T ` ∆∆∆(rw ≤w ⊥w) ⇒⇒⇒ (LH (w−1⊥w ⇒⇒⇒

LH (w−1rw). From this, Lemma 3(d) and properties of LH we obtain T `
¬¬¬∆∆∆(rw =w ⊥w) which gives T ` ∆∆∆(⊥w <w rw). The second part is proved
analogously.

2

One may see from the above lemmas, that our definition of horizon conforms
with the intuition. Let us now demonstrate that our concept of horizon can be
used for solution of the sorites paradox.
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We will first construct a theory TH obtained from TEv as follows. All the
Peano axioms are crisp and provable in TH . Furthermore, we introduce in TH

numerals (formulas) n ∈ Formε representing natural numbers and a formula Noε

representing set of natural numbers; 0 represents zero. Then TH ` Nn means
that n is a natural number. We will write TH ` n ∈ N instead of the former.
The N is a crisp formula, i.e. TH ` (∀n)(n ∈ N ∨∨∨ n 6∈ N). The (crisp) linear
ordering of natural numbers will be denoted by ≤ and the successor of n by
n + 1, as usual.

Furthermore, we will add the numerals p,q as special constants into JEv(TN )
and consider a special context wN (this is again a new constant of J(TEv)) with
the following properties:

TH ` (n ∈ wN ⇒⇒⇒ n ∈ N)∧∧∧ (⊥ ≡ w−1
N 0)∧∧∧ († ≡ w−1

N p)∧∧∧ (> ≡ w−1
N q).

The ordering ∆∆∆(m ≤wN n) coincides with the classical ordering of natural num-
bers (in interpretation) and we will denote it by the ordinary symbol ≤ (and
similarly also <).

Let ≈wN
be a formula given for the context wN by (26) and define a formula

FN ∈ Form(oε)(εo) by
FN := λn · 0 ≈wN n. (30)

The intuitive meaning of this formula is “a fuzzy set of finite natural numbers”.
In other words, this formula is a many-valued model of the property “not being
a heap”.

Lemma 11
(a) TH ` FN0, TH ` 0 6≡ p,

(b) TH ` (∀n)(n ∈ wN &&&∆∆∆(p ≤ n)⇒⇒⇒¬¬¬FNn),

(c) TH ` (∀m)(∀n)(m ∈ wN &&& n ∈ wN &&&∆∆∆(m ≤ n)⇒⇒⇒ (FNn⇒⇒⇒ FNm)),

(d) TH ` (∃m)(m ∈ wN &&&Υ̂(FNm)&&&0 < m).

proof: This lemma follows from Lemmas 6, 9 and 10. 2

We will introduce a special constant r for the number m from (d) of the previous
lemma (i.e., r represents a number for which FNr has a general truth value).

Theorem 3

TH ` ¬¬¬(∃n)(n ∈ wN &&&∆∆∆FNn&&&∆∆∆¬¬¬FN(n + 1)).

proof: Put T = TH ∪ {n ≡ wNz&&&FNn&&&¬¬¬FN(n + 1)}.

(L.1) T ` FNn (axioms of T )

(L.2) T ` ¬¬¬FN(n + 1) (axioms of T )
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(L.3) T ` (∀m)(m ∈ wN &&&∆∆∆(m ≤ n)⇒⇒⇒ FNm)
(L.1, Lemma 11(c), properties of FTT)

(L.4) T ` (∀m)(m ∈ wN &&&∆∆∆(n + 1 ≤ m)⇒⇒⇒¬¬¬FNm)
(L.2, Lemma 11(c), properties of FTT)

(L.5) T ∪ {m ≡ wN t} `∆∆∆(m ≤ n)⇒⇒⇒ FNm
(L.3, deduction theorem, properties of FTT)

(L.6) T ∪ {m ≡ wN t} `∆∆∆(n + 1 ≤ m)⇒⇒⇒¬¬¬FNm
(L.4, deduction theorem, properties of FTT)

(L.7) T ` (∀m)(m ∈ wN ⇒⇒⇒¬¬¬Υ̂(FNm))
(L.5, L.6, Lemma 3(d), properties of TH and FTT)

(L.8) T ` r ∈ wN ⇒⇒⇒¬¬¬Υ̂(FNr) (L.7, substitution)

(L.9) TH , n ≡ wNz `∆∆∆(FNn&&&¬¬¬FN(n + 1))⇒⇒⇒ (r ∈ wN ⇒⇒⇒¬¬¬Υ̂(FNr))
(L.8, deduction theorem)

(L.10) TH , n ≡ wNz ` (r ∈ wN &&& Υ̂(FNr))⇒⇒⇒¬¬¬(∆∆∆FNn&&&∆∆∆¬¬¬FN(n + 1))
(L.9, properties of FTT)

(L.11) TH , n ≡ wNz ` ¬¬¬(∆∆∆FNn&&&∆∆∆¬¬¬FN(n + 1)) (L.10, Lemma 11(d))

(L.12) TH ` n ∈ wN ⇒⇒⇒¬¬¬(∆∆∆FNn&&&∆∆∆¬¬¬FN(n + 1))
(L.11, deduction theorem, properties of FTT)

(L.13) TH ` ¬¬¬(∃n)(n ∈ wN &&&∆∆∆FNn&&&∆∆∆¬¬¬FN(n + 1))
(L.12, generalization, properties of FTT)

2

This theorem formally expresses essential property of the sorites paradox:
there is no number n that would surely be inside the horizon and n + 1 surely
outside it. In other words, no n “starts the heap”, i.e., in our terms, no number
strictly terminates the horizon of finite natural numbers. The same holds also
for all modifications of the horizon corresponding to evaluative expressions such
as “small”, etc. — cf. Theorem 11. We see that the above characterization of
the horizon using fuzzy equality well complies with the intuition.

We may also ask, where is the “mistake” of classical logic; recall that the
paradox raises when assuming that ` FN(n)⇒⇒⇒ FN(n+1), i.e., taking as true the
statement “if n does not form the heap then n+1 is also does not form it”. The
problem consists in the observation that the grouping of n stones very slightly
changes when adding one stone to it and so, the new grouping is “nearer” to the
state of being a heap, or, saying in degrees, that the new grouping is in greater
degree a “heap” than the previous one. Classical logic has no means to express
this. In FTT, however, we can easily prove the following.
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Theorem 4

TH ` (∀n)(n ∈ wN ⇒⇒⇒ (FNn⇒⇒⇒ ·(n ≈wN
n + 1)⇒⇒⇒ FN(n + 1))).

proof: This immediately follows from (EV5) and the construction of ≈wN

by the properties of FTT. 2

In accordance with [11], we can interpret the formula (n ≈wN
n + 1) ⇒⇒⇒

FN(n + 1) in this theorem as “it is almost true that FN(n + 1)”. The formula
n ≈wN

n+1 thus characterizes the change of the grouping of stones after adding
one stone to it. Hence, we can also read the formula FNn⇒⇒⇒ ·(n ≈wN

n + 1)⇒⇒⇒
FN(n + 1) as “if n does not form a heap (in the given degree of truth) then it
is almost true that n + 1 also does not form it (in the same degree of truth)”.

3.5.4 Horizon shift and hedges

In this subsection, we will formalize the requirements of items (v) and (vi) of
Subsection 3.4. The symbols z, t, u, v ∈ Formo are variables of type o.

The horizon shift will be realized using special formulas of type oo that we
will denote by ννν and call abstract hedges (or simply hedges). To characterize
their properties, we will define the following auxiliary formulas of type o(oo):

H1 ≡λννν ·ννν z ∧∧∧¬¬¬ννν t, (31)

H2 ≡λννν ·((t⇒⇒⇒ z)⇒⇒⇒ (ννν t⇒⇒⇒ t))&&&((z ⇒⇒⇒ t)⇒⇒⇒ (t⇒⇒⇒ ννν t)), (32)

H3 ≡λννν ·∆∆∆(z ⇒⇒⇒ t)⇒⇒⇒ (ννν z ⇒⇒⇒ ννν t). (33)

Then we introduce a formula Hedge ∈ Formo(oo) saying that ννν ∈ Formoo is a
hedge:

Hedge ≡ λννν ·(∃t)(∃z)(∆∆∆((t⇒⇒⇒ z)∧∧∧ (t 6≡ z)∧∧∧ (H1 ννν)))

∧∧∧ (∃z)∆∆∆(∀t)(H2 ννν)∧∧∧ (∀z)(∀t)(H3 ννν). (34)

The meaning of (34) is the following: formula H1 expresses that the hedge
ννν sends some truth value z to top and some truth value t to bottom. Using
H3 which expresses monotonicity it follows that also all bigger (smaller) truth
values are mapped to top (bottom). Finally, formula H2 requires existence
of an “inner truth value” splitting behavior of the hedge ννν into two cases so
that modification of truth values is “small” if they are “big”, and “big” if they
are “small”. Hence, all three formulas assure that requirements of item (v) in
Subsection 3.4 are fulfilled.

We say that a formula ννν ∈ Formoo is a hedge if TEv ` Hedge ννν.

Lemma 12
Let ννν ∈ Formoo so that TEv ` Hedge ννν. Then

(a) TEv ` ννν(z ∧∧∧ t)⇒⇒⇒ (ννν z ∧∧∧ ννν t), TEv ` (ννν z ∨∨∨ ννν t)⇒⇒⇒ ννν(z ∨∨∨ t),

31



(b) TEv `∆∆∆(z ⇒⇒⇒ t)⇒⇒⇒ (ννν z ⇒⇒⇒ ννν t),

(c) TEv `∆∆∆¬¬¬z ⇒⇒⇒¬¬¬ννν z, TEv `∆∆∆¬¬¬z ⇒⇒⇒∆∆∆¬¬¬ννν z,

(d) TEv ` ννν> ≡ >, TEv ` ννν⊥ ≡ ⊥.

(e) TEv `∆∆∆z ⇒⇒⇒∆∆∆ννν z.

(f) TEv ` ννν ∆∆∆z ≡∆∆∆z

(g) Put id ≡ λt t. Then TEv ` Hedge id (id is a trivial hedge).

proof: (a)–(d) are easy consequence of formula H3 (monotonicity of ννν with
respect to implication), formula H1 and the basic properties of FTT.

(e) is obtained from formula H3 (setting z := >, t := z) and (d) using rule
(N) and the deduction theorem.

(f) follows from (d) by Theorem 14 from [25] (rule of two cases).
(g) is obvious since ` id zo ≡ zo.

2

Lemma 13
Let ννν ∈ Formoo so that TEv ` Hedge ννν, and let a,b, c 6∈ JEv be new constants
of type o. Furthermore, let

T ∗ = TEv ∪ {(a⇒⇒⇒ c∧∧∧ a 6≡ c)∧∧∧H1
t,z[a, c],H2

z [b]}

be the conservative extension of TEv (by adding constants). Then:

(a) T ∗ ` (∀z)(∆∆∆(z ⇒⇒⇒ a)⇒⇒⇒¬¬¬ννν z),

(b) T ∗ ` (∀z)(∆∆∆(c⇒⇒⇒ z)⇒⇒⇒ (ννν z ≡ >)),

(c) T ∗ ` b ≡ ννν b,

(d) T ∗ ` (∀t)((ννν t⇒⇒⇒ t)∨∨∨ (t⇒⇒⇒ ννν t)).

proof: (a)–(c) are easy consequence of the definition of hedge in (34).
(d) Use Lemma 2(j) where we put A := b ⇒⇒⇒ t, C := t ⇒⇒⇒ b, B := ννν t ⇒⇒⇒ t

and D := t⇒⇒⇒ ννν t. Then (d) follows from the prelinearity property of the truth
values. 2

Lemma 14
Let TEv ` Hedge ννν. Then

(a) TEv ` ννν(t ∼ t),

(b) TEv ` ννν(t ∼ z)⇒⇒⇒ ννν(z ∼ t),

(c) Let TEv ` t⇒⇒⇒ u as well as TEv ` u⇒⇒⇒ z. Then

TEv ` ννν(t ∼ z)&&&ννν(z ∼ u)⇒⇒⇒ ννν(t ∼ u).
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proof: (a) and (b) are immediate.
(c)

(L.1) TEv `∆∆∆((t⇒⇒⇒ u)&&&(u⇒⇒⇒ z))⇒⇒⇒ ·t ∼ z ⇒⇒⇒ t ∼ u (EV7)

(L.2) TEv `∆∆∆((t⇒⇒⇒ u)&&&(u⇒⇒⇒ z)) (assumption, properties of FTT)

(L.3) TEv ` t ∼ z ⇒⇒⇒ t ∼ u (L.1, L.2, modus ponens)

(L.4) TEv `∆∆∆(t ∼ z ⇒⇒⇒ t ∼ u) (L.3, rule (N))

(L.5) TEv `∆∆∆(t ∼ z ⇒⇒⇒ t ∼ u)⇒⇒⇒ ·ννν(t ∼ z)⇒⇒⇒ ννν(t ∼ u) (Lemma 12(b))

(L.6) TEv ` ννν(t ∼ z)⇒⇒⇒ ννν(t ∼ u) (L.4, L.5, modus ponens)

(L.7) TEv ` ννν(t ∼ z)&&&ννν(z ∼ u)⇒⇒⇒ ννν(t ∼ u) (L.6, properties of FTT)

2

It follows from this lemma that the formula λt λz · ννν(t ∼ z) defines a sort
of fuzzy equality which is reflexive and symmetric. The transitivity holds in a
weaker sense.

Interpretation of hedges are functions ν : L −→ L on truth values having
the following properties:

(i) There are a, c ∈ L such that a < c, ν(a) = 0 and ν(c) = 1.

(ii) For all x, y ∈ L, x ≤ y implies ν(x) ≤ ν(y).

(iii) There is b, a ≤ b ≤ c such that

0

1

1a a' a'' b b' b''

c c' c''

x ≤ b implies ν(x) ≤ x,

b ≤ x implies x ≤ ν(x)

for all x ∈ L.

It is easy to see that if interpretation of ννν has these
properties then the formulas H1,H2 and H3 are
true in the degree 1. A typical form of hedges ν
is depicted on figure on the right hand side. The
diagonal represents the trivial hedge.

Let us consider two hedges TEv ` Hedge ννν1∧∧∧Hedge ννν2. We define a relation
of partial ordering of hedges by

¹:= λpoo λqoo · (∀z)(pooz ⇒⇒⇒ qooz). (35)

We will write ννν1 ¹ ννν2 instead of ¹ ννν1 ννν2. If TEv ` ννν1 ¹ ννν2 then we say that
the hedge ννν1 has a narrowing effect with respect to ννν2, and ννν2 has a widening
effect with respect to ννν1.

The following lemma will later be used to prove that there are no elements
that would be at the same time small as well as big.
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Lemma 15
Let TEv ` Hedge ννν. Then

(a) TEv ` ¬¬¬(∃z)(ννν LH z ∧∧∧ ννν RH z),

(b) TEv ` (∀z)(ννν LH z ⇒⇒⇒¬¬¬ννν RH z).

proof: (a) Use Lemmas 2(j) and 12(c) to prove that

TEv ` (∆∆∆¬¬¬LH z ∨∨∨∆∆∆¬¬¬RH z)⇒⇒⇒ (¬¬¬ννν LH z ∨∨∨¬¬¬ννν RH z).

Then use Lemma 9(j) (cf. its proof) and the properties of negation and quan-
tifiers.

(b) By properties of quantifiers and FTT, it follows from (a) that

TEv ` ννν LH z ∧∧∧ ννν RH z ⇒⇒⇒ ⊥.

Then (b) is obtained from this by the properties of strong conjunction and the
properties of implication. 2

With respect to Lemma 10(a) we should also expect that

TEv ` (∃u)Υ̂ννν(LH u)∧∧∧ (∃u)Υ̂ννν(MH u)∧∧∧ (∃u)Υ̂ννν(RH u). (36)

Our definition of hedge, however, is wider and covers hedges that are practically
crisp. Therefore, (36) cannot be proved in general. A wider definition of hedge
is useful for certain considerations and so, we will not restrict it too much.
For example, the connective ∆∆∆ can also be considered as a hedge. On surface
(linguistic) level it will be assigned the word “utmost”.

We will, in addition, define a special class of hedges as follows. Let ννν ∈
Formoo be a formula such that TEv ` Hedge ννν. We say that ννν is a natural hedge
if (36) is provable and introduce a special formula

NatHedge ≡ λννν ·Hedge ννν∧∧∧((∃u)Υ̂ννν(LH u)∧∧∧(∃u)Υ̂ννν(MH u)∧∧∧(∃u)Υ̂ννν(RH u)).
(37)

One of the hedges plays a central role in the theory of evaluative expressions.
This hedge is on surface level empty (cf. Subsection 3.1) and its introduction
makes possible to develop a uniform formal theory of evaluative expressions.
We will denote it by a special constant ν̄νν ∈ Formoo and call it a standard hedge.
The following axioms characterize basic properties of it:

(EV10) NatHedge ν̄νν &&&(∃ννν)(∃ννν′)(Hedge ννν &&&Hedge ννν′&&&(ννν1 ¹ ν̄νν ∧∧∧ ν̄νν ¹ ννν2)).

(EV11) (∀z)((Υν̄νν(LH z))∨∨∨ (Υν̄νν(MH z))∨∨∨ (Υν̄νν(RH z))).

Axiom (EV10) expresses that ν̄νν is a natural hedge laying “among” other hedges
so that some hedges have narrowing and some other ones have widening effect
with respect to ν̄νν. Axiom (EV11) will later be used to prove that the scale is
covered by the fundamental evaluative trichotomy.
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3.5.5 Formulas representing intension and extension
of TEv-expressions

We will now introduce a special class of formulas that will be called TEv-
formulas and that will represent intensions of evaluative linguistic expressions.
We will also demonstrate that the requirements (ii), (iv)–(vi) of Subsection 3.4
are fulfilled by them.

However, the situation is a bit complicated. Recall that according to Sub-
sections 3.1 and 3.2, we distinguish between evaluative linguistic expressions
and predications. The former are rather abstract expressions characterizing po-
sition on some abstract scale while the latter characterize sizes (volumes, etc.)
of concrete objects. This leads us to introduction of two classes of formulas.
The first class is formed by formulas of type oo that represent the meaning of
abstract evaluative expressions (recall that we have identified the mentioned
abstract scale by the scale of truth values). These formulas will be referred to
as T̃Ev-formulas.

The second class is formed by formulas that represent the meaning of eval-
uative predications. These require considering contexts that are formulas w ∈
Formαo of type αo for some type α ∈ Types. Hence, evaluative predications will
be represented by formulas of type (oα)(αo). These formulas will be referred to
as TEv-formulas.

T̃Ev-formulas and TEv-formulas will further be divided into three subclasses
whose members will correspond to evaluative expressions characterizing small,
medium and big values.

Definition 3
Let ννν ∈ Formoo so that TEv ` Hedge ννν. The three subclasses of T̃Ev-formulas
and TEv-formulas are the following:

(i) S̃-formula: S̃m := λννν λz · ννν(LH z),
S-formula: Sm := λννν λw λx · ννν(LH (w−1x)).

(ii) M̃-formula: M̃e := λννν λz · ννν(MH z),
M-formula: Me := λννν λw λx · ννν(MH (w−1x)).

(iii) B̃-formula: B̃i := λννν λz · ννν(RH z),
B-formula: Bi := λννν λw λx · ννν(RH (w−1x)).

Note that by λ-conversion, we also have TEv ` Sm ≡ λννν λw λx ·(S̃m ννν)(w−1x)
and similarly for Me and Bi .

To simplify the notation, we will use a general variable (Ẽv ννν) ∈ Formoo

or (Ev ννν) ∈ Form(oα)(αo) for an T̃Ev-formula or TEv-formula with a specific
linguistic hedge, respectively.

Theorem 5
Let TEv ` Hedge ννν and w ∈ Formαo be a formula representing a context in the
set of elements of type α. Then
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(a) TEv ` (∀w)(Sm ννν)w⊥w,

(b) TEv ` (∀w)(Me ννν)w †w,

(c) TEv ` (∀w)(Bi ννν)w>w.

proof: We will prove only (a), the other proofs are similar.

(L.1) TEv ` ⊥ ≡ w−1⊥w (EV2)

(L.2) TEv ` ννν(LH ⊥) (Lemmas 12(d) and 9(a))

(L.3) TEv ` ννν(LH (w−1⊥w)) (L.1, L.2, rule (R))

(L.4) TEv ` (∀w)(Sm ννν)w⊥w (L.3, definition of Sm, λ-conversion)

2

Theorem 6

(a) TEv ` (∀z)((S̃m ννν)z ⇒⇒⇒¬¬¬RH z),

(b) TEv ` (∀z)((B̃i ννν)z ⇒⇒⇒¬¬¬LH z),

(c) TEv ` (∀z)((S̃m ννν)z ⇒⇒⇒¬¬¬(B̃i ννν)z).

proof: (a) By Lemma 9(k), rule (N), monotonicity of ννν (formula H3) and
Lemma 12(f), we obtain

TEv ` ννν(LH z)⇒⇒⇒∆∆∆(z ⇒⇒⇒ †).

Then use Lemma 9(h). The proof of (b) is analogous.
(c) is reformulation of Lemma 15(b). 2

By this theorem, no small value falls behind the right horizon and similarly, no
big value falls before the left horizon. This property can be, of course, extended
to all contexts and is very useful in the applications of vague reasoning.

Theorem 7
Let w ∈ Formαo be a formula representing a context in the set of elements of
type α.

(a) Let TEv ` Hedge ννν1∧∧∧Hedge ννν2 and (Ev ννν1), (Ev ννν2) differ only in the hedge.
Then

TEv ` (∀w)(∀x)(ννν1 ¹ ννν2 ⇒⇒⇒ ·(Ev ννν1)wx⇒⇒⇒ (Ev ννν2)wx).

(b) For all S-formulas

TEv ` (∀w)(∀x)(∀y)(∆∆∆(x ≤w y)⇒⇒⇒ ·(Sm ννν)wy ⇒⇒⇒ (Sm ννν)wx).
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(c) For all M-formulas

TEv ` (∀w)(∀x)(∀y)(∆∆∆(x ≤w y&&& y ≤w †w)⇒⇒⇒ ·(Me ννν)wx⇒⇒⇒ (Me ννν)wy),

TEv ` (∀w)(∀x)(∀y)(∆∆∆(†w ≤w x&&& x ≤w y)⇒⇒⇒ ·(Me ννν)wy ⇒⇒⇒ (Me ννν)wx).

(d) For all B-formulas,

TEv ` (∀w)(∀x)(∀y)(∆∆∆(x ≤w y)⇒⇒⇒ ·(Bi ννν)wx⇒⇒⇒ (Bi ννν)wy).

proof: (a)

(L.1) TEv ` (ννν1 ¹ ννν2)⇒⇒⇒ ·ννν1(LH (w−1x))⇒⇒⇒ ννν2(LH (w−1x))
(substitution, monotonicity of hedges)

(L.2) (∀w)(∀x)(ννν1 ¹ ννν2 ⇒⇒⇒ ·(Ev ννν1)wx⇒⇒⇒ (Ev ννν2)wx)
(L.1, generalization, def. of TEv-formula)

(b)–(d) follow immediately from definition (20), Lemma 9(c)–(f) and mono-
tonicity of hedges. 2

On the basis of Theorem 7(a), we may extend the partial ordering ¹ of
hedges to TEv-formulas that differ only in the hedge.

Definition 4
Let Ev1,Ev2 be TEv-formulas. We say that Ev1 is sharper than Ev2 if Ev1 ¹
Ev2 or, if Ev1 is S-formula and Ev2 is not, or Ev1 is M-formula and Ev2 is
B-formula.

The ordering of sharpness plays an important role in perception-based logical
deduction (see [29]).

Lemma 16
Let TEv ` NatHedge ννν. Then

(a) TEv ` (∃u)(Υ̂ννν(LH u)&&&⊥ < u),

(b) TEv ` (∃u)(Υ̂ννν(RH u)&&& u < >).

proof: This is proved using Lemma 2(a) and (37) analogously as in the proof
of Lemma 10(b). 2

3.5.6 Global characterization of TEv-formulas

To accept the formulas (Sm ννν), (Me ννν) and (Bi ννν) as intensions of natural lan-
guage expressions, we require them to meet Hypothesis 1. This explicitly means
that each extension (Ev ννν)w should be extensional with respect to some fuzzy
equality.
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Theorem 8
Let TEv ` z ⇒⇒⇒ t. Then

TEv ` (Ẽv ννν) t&&& z ∼ t⇒⇒⇒ (Ẽv ννν)z

holds for any T̃Ev-formula(Ẽv ννν).

proof: We prove only the case when (Ẽv ννν) := (S̃m ννν).

(L.1) TEv `∆∆∆(z ⇒⇒⇒ t) (rule (N))

(L.2) `∆∆∆(⊥⇒⇒⇒ z) (property of FTT)

(L.3) TEv ` ⊥ ∼ t⇒⇒⇒ ⊥ ∼ z (L.1, L.2, (EV7))

(L.4) TEv ` ννν(LH t)⇒⇒⇒ ννν(LH z) (L.3, definition of LH )

(L.5) TEv ` ννν(LH t)&&&(t ∼ z)⇒⇒⇒ ννν(LH z) (properties of FTT)

(L.6) TEv ` (S̃m ννν)z &&&(t ∼ z)⇒⇒⇒ (S̃m ννν)t
(L.5, definition of (S̃m ννν), λ-conversion)

The proof of the other cases is similar. 2

Theorem 9
Let w ∈ Formαo be a formula representing a context in the set of elements of

type α and TEv ` y ≤w x. Then

TEv ` x ∈ w&&& y ∈ w ⇒⇒⇒ ·(Ev ννν)wx&&&x ≈w y ⇒⇒⇒ (Ev ννν)wy.

proof: This follows from Lemma 6 and Theorem 8 by the properties of FTT.
2

By this theorem, extensions of evaluative expressions can be characterized using
a fuzzy equality and so, they meet the requirement of Hypothesis 1.

The following theorem characterizes all T̃Ev-formulas.

Theorem 10
Let ννν be a natural hedge. Then

TEv ` (∃u)(Υ̂(Ẽv ννν)u) (38)

proof: This is an immediate consequence of (37). 2

Unfortunately, we cannot prove (38) for general TEv-formulas since the non-
triviality depends also on the definition of the context w. Hence, if not stated
otherwise, given a natural hedge ννν, we will at the same time consider only
non-trivial contexts w, i.e. those for which

TEv ` (∃x)(Υ̂(Ev ννν)wx). (39)
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Theorem 11
Let TH be a theory from Theorem 3 and ννν ∈ Formoo be a natural hedge, i.e.

TEv ` NatHedge ννν and, moreover, TEv ` (∃m)Υ̂ννν(LH (w−1
N m)). Then

TH ` ¬¬¬(∃n)(n ∈ wN &&&∆∆∆(Sm ννν)wNn&&&∆∆∆¬¬¬(Sm ννν)wN (n + 1)).

proof: This follows from Lemma 12(c) and (e) and Theorem 3 using the
definition of Sm, assumptions and the properties of FTT. 2

It follows from this theorem, that if the context wN assures also non-triviality
then there is no natural number n that would surely be ‘〈linguistic hedge〉 small’
and n+1 surely not ‘〈linguistic hedge〉 small’. Note that this property is in [15]
taken as a crucial property of the vagueness phenomenon.

We can prove even a more general result stating that for all nontrivial S- and
B-formulas and each non-trivial context there is no last small (first big) value.
We say that x ∈ w is the last small element if it is surely small and all y greater
than x are surely not small, i.e. the following is provable:

TEv `∆∆∆(Sm ννν)wx&&&(∀y)(x <w y ⇒⇒⇒∆∆∆¬¬¬(Sm ννν)wy). (40)

Analogously, we define the first big element by

TEv `∆∆∆(Bi ννν)wx&&&(∀y)(y <w x⇒⇒⇒∆∆∆¬¬¬(Bi ννν)wy). (41)

The announced result is formulated in the following theorem.

Theorem 12
Let ννν ∈ Formoo be a natural hedge and w ∈ Formαo be a non-trivial context
(i.e., (39) is provable) in the set of elements of type α. Then

TEv ` ¬¬¬(∃x)(∀y)(∆∆∆(Sm ννν)wx&&&(x <w y ⇒⇒⇒∆∆∆¬¬¬(Sm ννν)wy)), (42)

TEv ` ¬¬¬(∃x)(∀y)(∆∆∆(Bi ννν)wx&&&(y <w x⇒⇒⇒∆∆∆¬¬¬(Bi ννν)wy)). (43)

proof: We will prove only the first formula, the proof of the second is anal-
ogous. Note that (42) is equivalent to

TEv ` (∀x)(∃y)(∆∆∆(Sm ννν)wx⇒⇒⇒ (x <w y&&&¬¬¬∆∆∆¬¬¬(Sm ννν)wy)). (44)

Put T = TEv ∪ {(Sm ννν)wx}. By Lemma 16(a) and the assumption on non-
triviality of w we get T ` (∃x)(Υ̂ννν(LH w−1x)&&&⊥w < w−1x). Let T ′ be a
conservative extension of T by a special constant u. From this and the definition
of Sm, we obtain T ′ ` Υ̂(Sm ννν)wu&&&(⊥w <w w−1u). Then, using Lemma 3(d)
we get T ′ ` ¬¬¬∆∆∆¬¬¬(Sm ννν)wu and from this T ′ ` ¬¬¬∆∆∆¬¬¬(Sm ννν)wu&&&(⊥w <w w−1u).
Finally, we obtain (44) using the deduction theorem, substitution axiom, rule
of generalization and conservativeness of T ′. 2

The analogue of Theorem 4 is not direct since ννν ≈wN is not a fully-fledged
fuzzy equality (cf. Lemma 14). Hence, we will formulate it as follows.
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Theorem 13
Let TH be a theory from Theorem 3. Then

TH ` (∀n)(n ∈ wN ⇒⇒⇒ ·
(Sm ννν)wN n⇒⇒⇒ ·((Sm ννν)wN n⇒⇒⇒ (Sm ννν)wN (n + 1))⇒⇒⇒ (Sm ννν)wN (n + 1)).

proof: This follows the provable formula

TEv ` (Sm ννν)wN n&&&((Sm ννν)wN n⇒⇒⇒ (Sm ννν)wN (n + 1))⇒⇒⇒ (Sm ννν)wN (n + 1)

by the properties of FTT. 2

Thus, by this theorem, if the number of n stones is small then it is “almost
true” that n + 1 is also small. To be almost true means that the grouping of
stones imperceptibly changes after adding one stone to it. On the other hand,
the change is “measurable” and the measure is characterized by the formula
(Sm ννν)wNn⇒⇒⇒ (Sm ννν)wN (n + 1). Clearly, after adding a sufficiently large num-
ber of stones, the obtained grouping will no more be small.

An important conclusion follows from Theorems 3, 11, 12 and 13: notice that
they are proved syntactically. Therefore, they demonstrate that the properties in
concern do hold in the formal system of FTT and so, our system indeed models
essential features of the vagueness phenomenon. On the other hand, the theory
is fuzzy, i.e., models of TEv are many-valued and so, when dealing with specific
interpretation of predicates, we cannot avoid assigning concrete truth values.
But concrete truth values occur only in models! This fact explicitly demonstrates
the often repeated (and not always understood) argument that concrete truth
values are not important and we use them only as specific precisiation in the
sense discussed by L. A. Zadeh (cf. [39]).

3.5.7 Fundamental evaluative trichotomy

Basic TEv-formulas are (Sm ν̄νν), (Me ν̄νν) and (Bi ν̄νν) where ν̄νν is the standard
hedge. These formulas are intensions of the fundamental evaluative trichotomy.
Its properties are characterized by the following theorem.

Theorem 14
Let TEv ` Hedge ννν and w ∈ Formαo be a formula representing a context in the
set of elements of type α. Then

(a) TEv ` ¬¬¬(∃w)¬¬¬(∃x)((Sm ννν)wx∧∧∧ (Bi ννν)wx),

(b) TEv ` (∀w)(∀x)((Sm ννν)wx⇒⇒⇒¬¬¬(Bi ννν)wx),

(c) TEv ` (∀w)(∀x)(Υ((Sm ν̄νν)wx)∨∨∨Υ((Me ν̄νν)wx)∨∨∨Υ((Bi ν̄νν)wx)).

proof: (a) and (b) are immediate consequence of Lemma 15(a), (b) and the
definition of Sm and Bi .
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(c) is a consequence of the definition of TEv-formulas, Axiom (EV11) and
Lemma 3(b). 2

This theorem precisely states that the formulas (Sm ννν)wx, (Bi ννν)wx for all
hedges ννν have the basic property of antonyms and further, that (Sm ν̄νν)wx,
(Me ν̄νν)wx and (Bi ν̄νν)wx form the fundamental evaluative trichotomy. Indeed,
by (c), every x in every context w belongs to at least one of the evaluative
expressions from the fundamental evaluative trichotomy with a non-zero truth
degree. The property (b), similarly as stronger Theorem 6 is useful in the
applications of vague reasoning.

3.5.8 Intension and extension of evaluative expressions and predica-
tions

Using the above developed theory we are now able to define intension of the
trichotomous evaluative linguistic expressions and predications. Intensions are
formulas (Ẽv ννν) and the latter are the formulas (Ev ννν) (for various hedges ννν).
Note that interpretation of (Ẽv ννν) is a fuzzy set in the set of truth values L and
so, intension turns out here to be identical with extension. This is not the case
of evaluative predications because interpretation of (Ev ννν) is a function which
assigns to each context w ∈ Formαo a fuzzy set of elements of type α having the
property of the given evaluative expression. One can see that this well conforms
with understanding to intension in the classical semantic theory. Recall that
contexts take in our theory the role of possible worlds. The difference of our
approach from the general understanding is only superficial since we have given
concrete content to the notion of possible world.

Definition 5
Let us consider trichotomous evaluative expressions from Definition 1(i) and
predications from Definition 2. Let 〈linguistic hedge〉 be assigned an abstract
hedge ννν ∈ Formoo and X be a variable representing objects of type α. Finally,
let t ∈ Formo, x ∈ Formα and w ∈ Formαo. Then

(i)

Int(〈linguistic hedge〉 small) := λt · (S̃m ννν) t,

Int(X is 〈linguistic hedge〉 small) := λw λx · (Sm ννν)wx. (45)

(ii)

Int(〈linguistic hedge〉 medium) := λt · (M̃e ννν) t,

Int(X is 〈linguistic hedge〉 medium) := λw λx · (Me ννν)wx. (46)

(iii)

Int(〈linguistic hedge〉 big) := λt · (B̃i ννν) t,

Int(X is 〈linguistic hedge〉 big) := λw λx · (Bi ννν)wx. (47)

41



The above definition uses TEv-formulas introduced in Definition 3.
As a special case, the empty hedge is interpreted by the standard hedge ν̄νν

and so, we put

Int(X is small) := λw λx · (Sm ν̄νν)wx,

Int(X is medium) := λw λx · (Me ν̄νν) wx,

Int(X is big) := λw λx · (Bi ν̄νν)wx.

It is easy to see that by λ-conversion, the following holds.

Lemma 17
Let TEv ` Hedge ννν and w ∈ Formαo be a formula representing a context in the
set of elements of type α.

TEv ` Int(X is 〈linguistic hedge〉 small) ≡ λw λx · ννν(LH (w−1x)), (48)

TEv ` Int(X is 〈linguistic hedge〉 medium) ≡ λw λx · ννν(MH (w−1x)), (49)

TEv ` Int(X is 〈linguistic hedge〉 big) ≡ λw λx · ννν(RH (w−1x)). (50)

where TEv ` w−1x ≡ ιt · x ≡ wt †).

Extension of an evaluative expression or predication in a context w ∈ Formαo

is a fuzzy set of elements in the range of w. Since the meaning of trichotomous
evaluative expressions is constructed in the abstract scale — the set of truth
values — we conclude that its intension is equal to its extension. On the other
hand, extension of evaluative predication depends on the context. Hence, we
can distinguish extension of evaluative expression from that of evaluative pred-
ication, as can be seen from the following definition.

Definition 6
Let A be an evaluative expression and 〈linguistic hedge〉 occurring in A be
assigned an abstract hedge ννν ∈ Formoo. Let X be a variable representing
objects of type α and w ∈ Formαo a context. Then extension in w is defined as
follows:

(i) Ext(A) ≡ Int(A).

(ii) Extw(X is A) ≡ Int(X is A)w ≡ λx · (Ev ννν)wx.

On the basis of this definition, we obtain

Extw(X is 〈linguistic hedge〉 small) ≡ λx · (Sm ννν)wx,

Extw(X is 〈linguistic hedge〉 medium) ≡ λx · (Me ννν)wx,

Extw(X is 〈linguistic hedge〉 big) ≡ λx · (Bi ννν)wx.

†)The way how this lemma is written has been chosen for the better readability. Since
Int(. . .) does not belong to the language JEv, the correct way would be to use the right-hand
side of (45)–(47) on the place of the corresponding Int(. . .) in (48)–(50), respectively.
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vL
vRDEE(Small)

DEE(Very small)
DEE(Medium)

DEE(Big)

Very small

Small Big

vC

Medium

Figure 1: Scheme of the Defuzzification of Evaluative Expressions (DEE)
method.

4 Canonical model of TEv

In this section we will briefly outline construction of a canonical model of the
theory TEv. A detailed presentation will be a topic of a subsequent paper. For
the details concerning interpretation of formulas of FTT — see [1, 25].

The canonical model of TEv is specified as follows. We construct a frame

M0 = 〈(Mα, =α)α∈Types ,L∆〉.

The algebra L∆ is ÃLukasiewicz algebra with ∆ (i.e. the set Mo = [0, 1]). The
special constant F ∈ JEv is interpreted by the fuzzy equality “∼” from Exam-
ple 2. The constant † is interpreted by 1/2.

The abstract hedges ννν can be interpreted by the functions

νa,h,c(y) =





1, c ≤ y,

1− (c−y)2

(c−h)(c−a) , h ≤ y < c,

(y−a)2

(h−a)(c−a) , a ≤ y < h,

0, y < a

(51)

where a, c ∈ [0, 1] are parameters described in Subsection 3.5.4. The third
parameter b is not equal to h from (51) but it can be easily computed. It can be
verified that the functions (51) fulfil the requirements set for the natural hedges.

The set Mα of elements which may fall into the meaning of the TEv-
expressions is assumed to be Mα = R. The fuzzy equality .= is supposed to
be separating, i.e., [x .= y] = 1 iff x = y.

The description operator is interpreted by a special defuzzification operation
DEE (Defuzzification of Evaluative Expressions; see also [28]) whose action is
clear from Figure 1. In general, the description operator ια(oα) can be under-
stood as choosing a prototype (a typical element) of type α representing the
given formula of type oα. Then, DEE assigns the Last of Maxima to the fuzzy
set of type “small”, First of Maxima to the fuzzy set of type “big” and Mean
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of Maxima otherwise†). Note, that this works also for triangular fuzzy sets that
are often used in the applications of fuzzy set theory.

The definition of the description operator influences definition of the context.
For example, the context wN discussed in Subsection 3.5.3 can be defined, for
the case q = 2p, by

IM0
(wN )(x) =

{
m if x = m

q , m = 0, 2, 4, . . . , q

n if x ∈ (n−1
q , n+1

q ), n = 1, 3, 5, . . . , q − 1.

Then IM0
(w−1

N )(m) = m
q , m = 0, . . . , q.

We may now formulate the following theorem.

Theorem 15
The frame M0 constructed above is a model of TEv.

proof: It can be verified that all axioms (EV1)–(EV11) of TEv are true in
the degree 1 in M0. 2

5 Conclusion

In this paper, we have developed a comprehensive logical theory of evaluative
linguistic expressions. Our theory is very general and its formalism uses the
formalism of fuzzy type theory. All the proofs of theorems are syntactical and
so, they have wider validity with respect to arbitrary semantics. We have also
successfully characterized the difference between evaluative linguistic expres-
sions themselves, i.e., we can distinguish the meaning of simple expressions
like medium, very small, extremely big, etc., from the meaning of evaluative
predications such as temperature is very high, pressure is rather small, curve is
extremely steep, etc. This difference has not been clearly understood yet and
so, their meanings were quite often mixed.

We have focused mainly on the logical theory of trichotomous evaluative
expressions, i.e., expressions consisting of the adjective small, medium or big,
possibly preceded by the linguistic modifier. However, the class of evaluative
expressions includes also fuzzy quantities and negation. But even more: our
theory can be further extended to cover also various kinds of generalized (fuzzy)
quantifiers (most, a lot of, at least, at most, few and many others). We will
continue this theory in the subsequent papers.
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