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Abstract: 

Since transitivity is quite often violated even by decisión makers that 
accept transitivity in their preferences as a condition for consistency, a 
standard approach to deal with intransitive preference elicitations is the 
search for a cióse enough transitive preference relation, assuming that 
such a violation is mainly due to decisión maker estimation errors. In 
some way, the more number of elicitations, the more probable 
inconsistency is. This is mostly the case within a fuzzy framework, even 
when the number of alternatives or object to be classified is relatively 
small. In this paper we propose a fast method to compute a T-
indistinguishability from a reflexive and symmetric fuzzy relation, being 
T any left-continuous t-norm. The computed approximation we propose 
will take 0(n ) time complexity, where n is the number of elements under 
consideration, and is expected to produce a T-transitive opening. To the 
authors' knowledge, there are no other proposed algorithm that computes 
T-transitive lower approximations or openings while preserving the 
reflexivity and symmetry properties. 

Keywords: Fuzzy relation; fuzzy proximity relation; T-transitive 
relation; fuzzy similarity; T-indistinguishability; T-transitive lower 
approximation; T-transitive opening. 

1. Introduction 

Schweizer and Sklar introduced triangular norms to generalize the 
triangle inequality in probabilistic metric spaces. Some common applications of t-
norms are found in different intersection operators for fuzzy sets and in modeling 
of the logical connective AND in fuzzy logic. 

The transitive property of fuzzy relations 
can be understood as a threshold on the degree of the relation (for example, a 
degree of equality) between two elements, when a degree of relation between 



those elements and a third element of a universe of discourse is known. The 
classical concept of transitivity is generalized in fuzzy logic by the T-transitivity 
property of fuzzy relations, where T is a triangular norm. 

Consistency of a crisp preference relation has been traditionally associated to 
completeness together with transitivity, in such a way that decisión makers are 
assumed to be always able to choose a best alternative from any pair of 
alternatives, and no contradiction follows when they are shown a sequence of 
preferences. Although alternative approaches can be found in the literature , a 
classical approach within a fuzzy context is to extend such a concept into the T-
transitivity property by means of a triangular norm T, according to the definitions 
below. 

Approximate reasoning applications using fuzzy inference typically use the 
compositional rule of inference with T-transitive fuzzy relations such as T-
preorders, T-indistinguishabilities, similarities, or equivalence relations, allowing 
the comparison of objects and the formulation of complete conclusions. 
Algorithms that search for the T-transitivity property can be used in many 
approximate reasoning applications, including datábase management systems 
(DBMS), pattern recognition, expert systems, artificial intelligence (AI), and 
intelligent systems. 

Fuzzy relations represent partial degrees of relations between elements in a 
universe of discourse and can be used to obtain consequences from a set of 
premises by the use of fuzzy compositional rules of inference. Some properties of 
fuzzy relations provide information about the consequences of the inference. For 
example, when an inference is performed with a reflexive and T-transitive fuzzy 
relation (called a T-preorder), the consequences obtained with a single fuzzy 
composition contain all the inferable information [11]. The consequences C(A) of 
a fuzzy set A and fuzzy inference with T-preorders are Tarski consequences, 
verifying fuzzy inclusión (A c C(A)), monotony (if A c B then C(A) c C(B)), and 
idempotence (C(C(A)) = C(A)) for any fuzzy set A and B. 

All oc-cuts of a min-transitive fuzzy relation (one of the classical relations 
defined by couples of elements that have a degree of relationship greater or equal 
to a) are transitive relations [39]. This property does not hold for any t-norm other 
than the minimum. Only the t-norm minimum satisfies the property that the min-
transitive closure operation commutes with the transitive closure of the oc-cut 
classical relation. These huge differences between the properties of the min t-
norm and those of other t-norms pose a new challenge to efforts to design 
extensions of useful algorithms that are defined only for the min t-norm. 

Analogously to transitivity of crisp relations, the transitive property of fuzzy 
relations can be understood as a threshold on the degree of the relation (for 
example, a degree of equality) between two elements, when a degree of relation 
between those elements and a third element of a universe of discourse is known. 
Either in a crisp or fuzzy framework, the chances of violating transitivity 
increases with the number of elicitations. Each elicitation is subject to error and 
each error may produce an inconsistency. In practice, this will be mostly the case 
when dealing even with a not very big number of elements, whenever such 
elicitations have to be made in a continuous range of valúes, as happens in the 
fuzzy context , where intransitivity of indifference chains in the classical 
sugar paradox is explained in terms of fuzzy sweetness preference). Henee, 



developing procedures to estímate the true transitive relation from intransitive 
elicitations become crucial in many contexts (but remind that transitivity neither 
completeness are the unique approaches to consistency, ). 

Algorithms to compute T-transitive fuzzy relations are useful in many 
branches of artificial intelligence. Among the applications of similarities and T-
indistinguishabilities are classification and clustering methods, which allow us to 
distinguish and to "classify" objects . Such fuzzy relations can be used to 
represent the concepts of equality and neighborhood, thus generalizing the 
classical equivalence relations. Clustering applications often need to compute 
fuzzy equivalence relations from reflexive and symmetric fuzzy relations. 

Fuzzy relations on a finite set can also represent labeled directed graphs. 
Symmetric fuzzy relations can represent weighted complete undirected graphs, 
where the set of nodes is the universe and the weights of the edges are the 
relationship degrees. All triangular paths of a T-transitive graph are T-transitive. 

In approximate and uncertain reasoning, the T-transitivity property is 
important, and sometimes the knowledge acquired is represented by a non-T-
transitive relation to be replaced by the closest possible T-transitive relation. 
Given a fuzzy relation R (or a directed graph), its T-transitive closure R is the 
lowest T-transitive fuzzy relation that contains R. In the past few years, some 
authors have developed new, fast algorithms to compute the min-transitive closure 
of fuzzy relations . However only a few methods 
exist to compute a T-transitive lower approximation of a given fuzzy relation 

, and in general a unique T-transitive lower approximation does 
not exist. 

This paper proposes a fast method to compute one or several T-transitive 
lower approximations or T-transitive openings of a reflexive and symmetric fuzzy 
relation for the minimum t-norm and for strictly increasing t-norms (for example, 
all t-norms in the family of the product t-norm ). 

A method to compute a T-transitive lower approximation of fuzzy relations 
can be used to provide a new measure of the T-transitivity of fuzzy relations. 

It can also be used to build T-transitive fuzzy relations from a given fuzzy 
relation. When the initial fuzzy relation is reflexive, the algorithm generates T-
preorders that are different from the T-preorders generated by T-transitive closure. 
Some T-transitivization algorithms maintain reflexivity and oc-reflexivity. 
However, T-transitive closure maintains reflexivity, but not oc-reflexivity. The 
only well-established methods for generating a T-transitive opening of a fuzzy 
relation and any t-norm do not preserve the symmetry property. 

The T-transitive closure is uniquely defined; however, several T-transitive 
relations are contained in the initial relation. After generating 100 random fuzzy 
relations for all dimensions from 2 to 100 and computing their average 
distance with the T-transitive closure and with the computed T-transitive lower 
approximation, it has been observed that for any distance, for any t-norm, and for 
any dimensión that the computed T-transitive lower approximation is closer to the 
initial relations than the T-transitive closure when using average distances. 

There exist several T-transitive openings of a given fuzzy relation, but in 
general, the highest T-transitive opening cannot be found. , two algorithms 
that compute a T-transitive lower approximation from a symmetric fuzzy relation 
are given, but those algorithms do not always yield a T-transitive opening. A set 



of T-transitive fuzzy relations, where T gradually moves towards the minimum 
operator, has also been investigated inside a parameterized family of t-norms. 
Leclerc has proved that an injective and symmetnc fuzzy relation on a 
universe of n elements has exactly {n-\)\ symmetnc min-transitive openings. 

To the authors' knowledge, the problem of finding one or several T-transitive 
openings of a proximity relation without losing the symmetry property has still 
not been solved. This paper is a step towards such a solution, by proposing the 
existence of a reflexive and symmetric T-transitive lower approximation or 
opening from a reflexive and symmetric fuzzy relation. 

2. Preliminaries 

Let£'= {e\, ..., en} be afinite set. 
A fuzzy relation is a map R: ExE —> [0, 1] and the degree of the relation for 

elements e¡ and e¡ is denoted as ey-. So ey- = R{eh e¡). 
A fuzzy relation R is reflexive if eu = 1 for 1 < /' < n. 
A fuzzy relation R is symmetric if e;y = e;; for 1 < i,j < n. 

Definition 2.1: A binary operation T: [0, 1] x [0, 1] —> [0, 1] is a t-norm [33] 
if it satisfies the following axioms: 

1. T(l,x) = x 
2. T(x,y) = T(y,x) 
3. T(x,T(y,z)) = T(T(x,>0,z) 
4. If x < x ' and .y <y' then T(x, y) < T(x', y'). 

Definition 2.2. Let T be a triangular norm. A fuzzy relation R: ExE —> [0, 1] is 
T-transitive if T(R(a, b), R(b, c)) < R(a, c) for all a, b, c in E. So, T(e;¿, %) < e;y for 
all i,j, A:from 1 ton. 

Definition 2.3. A reflexive and symmetric fuzzy relation is called a proximity 
relation. 

A similarity is a reflexive, symmetric and min-transitive fuzzy relation 

A T-indistinguishability is a reflexive, symmetric, and T-transitive fuzzy 
relation . Note that a similarity is a min-indistinguishability. 

Definition 2.4. A relation A includes a relation B (and it is denoted A 3 5) if 
a;y> éy for all z',y. 

Definition 2.5. Let i5 be a property of fuzzy relations on a universe E. A 
fuzzy relation R is called the P-closure of a fuzzy relation i? if: 

1) Rp has property i5 

2) R^R? 
3) If i? c i?' and R' has property i5, then RP^R\ 

Theorem 2.1. A P-closure exists for all fuzzy relations on a universe E if 
and only if 

1) The universal relation UE has property P; 



2) The intersection ofany non-empty family of fuzzy relations on E verifying 
property P, also has property P. 

Definition 2.6. Given a t-norm T and a proximity relation i? on a finite 
universe, then there exists a unique T-indistinguishability R , called the T-
transitive closure of R, that includes R, and if a T-indistinguishability includes R, 
then it also includes R . 

Definition 2.7. Given a t-norm T and a fuzzy relation i? on a finite universe, a 
T-transitive lower approximation of R is a T-transitive fuzzy relation included in 
i? [12]. 

Definition 2.8. Let i5 be a property of fuzzy relations on a universe E. A 
fuzzy relation Rp is called the P-opening of a fuzzy relation R if: 

1) Rp has property P 
2) i ? P e i? 
3) If i?' has property i5 and RP^R' e i? then JRP = JR'. 

Note that, according to this definition, a fuzzy relation i? can have an infinite 
number of f-openings, even on a finite universe. 

In particular: 
Given a t-norm T and a fuzzy relation i? on a finite universe, a T-transitive 

opening ofR is a relation RT satisfying: 
1) Rj is a T-transitive fuzzy relation 
2) i?T is included in R (RT c i?) 
3) If any T-transitive relation H includes Rj and is included in R, then it is Rj 

(If 3//T-transitive; Rj^H^R then J7 = i?T). 
Note that there can be several T-transitive openings of a fuzzy relation. 

Definition 2.9. The residual implication J of a left-continuous t-
norm T, or a quasi-inverse of T, is the binary operation J : [0, 1] —> [0, 1], 
defined by J (x, y) = 

In particular: 

= Sup{z e [0, 1]; T(x, z )*y>. 

jM>n{ ) = \ \ ifxíy, 
[y, ifx>y 

JProd(x,y) = . 
1, ifx<y, 

y -r 
Lx 

J ^ (x, .y) = min{l - x + y, 1} . 

For a left-continuous t-norm T and any x,ye [0, 1], it is known that T(x, J (x, 
y)) < y, i.e. J (x, _y) is the greatest solution z of the inequality T(x, z) < _y. In the 
case of a left-continuous t-
of the equation T(x, z) =y. 
case of a left-continuous t-norm T and y < x, then J (x, _y) is the greatest solution z 



3. Algorithm to compute a T-transitive lower approximation or opening of a 
proximity relation 

Algorithm 1. 
Let A be a proximity relation defined on a universe of dimension n, let T be a 

left-continuous t-norm, and let JT be the corresponding residual implication. 

Input: a proximity relation A 
Output: a T-indistinguisability B 

The algorithm runs as follow: 
Step 1. Set B initially blank 
Step 2. Let U(A) be the list of elements of the upper 

triangular matrix of A sorted in decreasing 
order. 

Step 3. Set bii = 1 for all 1 £ i £ n. 
Step 4. While there is a blank in B do 

Let ars be the highest value of the list U(A). 
If brs is blank, 

I = { j ; brj is not blank in B} and 
I’ = {i; bis is not blank in B } . 
Let H(A) be the list of elements aij, iÎI, jÎI’ 
sorted in increasing order. 
While H(A) is not empty 

Let aij be the first element in H(A) such 
that bij is blank. 
Set bij = bji = min{aij, mink{J

T(bik, b k j ) , 
JT(bjk, bki)}}. 
Delete the first element from H(A). 

Delete the first element from U(A). 

Notice in the above algorithm that the lists U(A) and H(A) inside the loop in 
step 4 are not always unique. Sometimes the highest values are repeated, and one 
edge must be arbitrarily chosen as the highest. However, for a given list, the 
algorithm provides a unique T-transitive lower approximation. Choosing a 
different edge with the same highest value can lead to the same T-transitive lower 
approximation or to a different T-transitive lower approximation. Therefore, the 
algorithm can also be used to find a set of T-transitive lower approximations of a 
proximity relation, but it always finds one T-transitive lower approximation for 
every possible list. 

This algorithm can be regarded as a clustering algorithm. In every step, two 
already-obtained clusters for which there exists a linking edge that presently 
carries the highest weight are merged into one cluster. In the merging process, the 
weights of all edges between the two clusters are adjusted in a precise order 
(starting from the link that carries the lowest weight). By analyzing the algorithm 
from this perspective, it is clear that it always generates a T-indistinguishability 
that lies entirely below the given fuzzy relation. 



Example 1. Given the following proximity relation: 

A 

1 0.7 0.8 0.9̂ 1 
0.7 1 0.2 0.3 
0.8 0.2 1 0.7 
0.9 0.3 0.7 1 J 

the algorithm can be applied as follows to compute a min-transitive lower 
approximation or a min-transitive opening B. 

Step 1: Set B to be blank 

Step 2: Let U(A) be the list of elements of the upper triangular matrix of A 
sorted in decreasing order: U(A) = (a14, a13, a34, a12, a24, a23) = (0.9, 0.8, 0.7, 0.7, 
0.3, 0.2). 

Step 3: Set bii =1 for all i. 

B 
1 

1 

Step 4: The greatest value of U(A), a14 = 0.9, is chosen. Let I = {j; b1j that are 
not blank values in matrix B} = {1} and let I’ = {i; bi4 that are not blank in matrix 
B} = {4}. H(A) = (a14). The values b41 = b14 = a14 = 0.9 are inserted into B. 

1 0.9 

B = 1 

0.9 1 

The next greatest element in U(A) is a13 = 0.8. I = {j; b1j are not blank in B} = 
{1, 4} and I’ = {i; bi3 is not blank in B} = {3}. The values b13, b34, and their 
symmetric values are inserted into B. H(A) = (a34, a13) = (0.7, 0.8), then b43 = b34 = 
a34 = 0.7 and b13 = b31 = min{a13, mink{JT(b1k, bk3), JT(b3k, bk1)}} = min{a13, 
min{JT(b14, b43), JT(b34, b41)}} = min{0.8, min{JMin(0.9, 0.7), JMin(0.7, 0.9)}} = 
min{0.8, min{0.7, 1}} = 0.7. 

( 1 

B 

0.7 0.9̂ 1 
1 

0.7 1 0.7 
0.9 0.7 1 J 

1 

1 

The next greatest element in U(A) is a12 = 0.7. I = {j; b1j are not blank in B} = 
{1, 3, 4} and I’ = {i; bi2 is not blank in B} = {2}. H(A) = (a23, a24, a12) = (0.2, 0.3, 



rr1 7 7 7 7 T / 7 T / 7 

0.7). Ine valúes 023 = 032 = «23 = 0.2; 024 = 042 = min{a24, min¿{J (04 ,̂ b¡¿2), J (#2fo 
bu)}} = min{a24, min{J (¿43, ¿32), ./ (¿23, ¿34)}} = min{0.3, min{J^in(0.7, 0.2), 

(0.2, 0.7)}} = min{0.3, min{0.2, 1}} = 0.2; bu = 021 = min{ai2, min¿{J (oi¿, 
bki), J (p2k, bki)}} = min{ai2, minj./ (¿13, ¿32), J (¿23, ¿31), J (¿14, ¿42), J (¿24, 
041)}} = min{0.7, minjj (0.7, 0.2), J (0.2, 0.7), J (0.9, 0.2), J (0.2, 0.9)}} 
= min{0.7, min{0.2, 1, 0.2, 1}} = 0.2. 

B 

f 1 0.2 0.7 0.9̂ 1 
0.2 1 0.2 0.2 
0.7 0.2 1 0.7 
0.9 0.2 0.7 1 

A Prod-transitive lower approximation given by this method is: 

B 

1 0.257 0.777 0.9 
0.257 1 0.2 0.285 
0.777 0.2 1 0.7 

0.9 0.285 0.7 1 
J 

The steps to reach B are computed as follows: 
Set bü =1 for all i. 

41 14 ^14 

= 0.9 
7 7 1 7 T /7 7 T /7 7 

043 = 034 = ¿?34 = 0.7, 013 = 031 = min{ai3, min¿{J (oi¿, 0*3), J (03 ,̂ OH)}} = 
min{ai3, minj./ (¿14, ¿43), J (¿34, ¿Mi)}} = min{0.8, mm{J^ro (0.9, 0.7), . / r o (0.7, 
0.9)}} = min{0.8, min{0.7/0.9, 1}} = 0.111. 

7 7 7 7 T T /7 7 M ^ 

023 = 032 = «23 = 0.2, 042 = 024 = min{a24, min¿{J (b^, b¡a), J (#2fo %)}) = 
min{a24, min{J (¿43, ¿32), ./ (¿23, ¿34)}} = min{0.3, mm{J^ro (0.7, 0.2), sro (0.2, 
0.7)}} = min{0.3, min{0.2/0.7, 1}} = 0.285; 

7 T 7 rT/7 7 T /7 

012 = bi\ = min{ai2, min¿{J (b\k, #¿2), ^ (#2fo 0¿i)}} = min{ai2, min{J (013, 
¿32), J (¿23, ¿31), J (bu, ¿42), J (b24, ¿41)}} = min{0.7, minj./™ (0.777, 0.2), 
j 1 0 (0.2, 0.777), ^rro (0.9, 0.285), ./ ro (0.285, 0.9)}} = min{0.7, min{0.2/0.777, 1, 
0.285/0.9, 1}} = min{0.7, 0.257, 1, 0.316} = 0.257. 

A W-transitive lower approximation given by this method is: 
( 1 0.4 0.6 0.9̂ 1 

B 
0.4 1 0.2 0.3 

0.6 0.2 1 0.7 

0.9 0.3 0.7 1 
The steps to obtain B are computed as follows: 
Set bii =1 for all i. 

b41 = b14 = a14 = 0.9 and a = 0.9. 



7 7 7 7 T /7 7 T /7 7 

043 = 034 = ¿?34 = 0.7, 013 = 031 = min{ai3, min¿{J (oi¿, #¿3), J (03 ,̂ OH)}} = 
min{ai3, min^}./ (¿14, ¿43),./ (¿34, ¿Mi)}} = min{0.8, 0.9, minj./ (0.9, 0.7), J (0.7, 
0.9)}} = min{0.8, 0.9, min{0.6, 1}} = 0.6. 

7 7 A 7 7 T /7 7 r T / 7 7 \ i 

¿23 = 032 = «23 = U.2, 042 = 024 = min{a24, min¿{J (04/fc, #¿2), ^ \pik-, %)}) = 
min{a24, minj./ (¿43, ¿32), J (pn, ¿34)}} = min{0.3, minj./ (0.7, 0.2), J (0.2, 
0.7)}} = min{0.3, min{0.5, 1}} = 0.3. 

¿12 = ¿21 = min{ai2, min^j./ (¿i¿, ¿¿2), J (¿2fo ¿ H ) } } = min{ai2, minj./ (¿13, 
¿32), J (¿23, ¿31), J {bu, ¿42), J (¿24, ¿41)}} = miníO.7, mm{J (0.6, 0.2), J (0.2, 

W W 

0.6), J (0.9, 0.3), J (0.3, 0.9)}} = min{0.7, min{0.6, 1, 0.4, 1}} = 0.4. 

Lemma 1. 77ze output of the algorithm applied to a proximity relation A is a 
T-indistinguishability B, such that B czA. 

Proof: By the construction method, B is a reflexive fuzzy relation (step 3), B is 
a symmetric fuzzy relation (step 4: by = bp = ...), and B czA because for all i, j , by 
= min{a;y, ...} < ay. 

The T-transitive property oíB is imposed by the assignment by = bp = min{a;y, 
mink{J (b¡k, bk¡), J (bjk, bk¡)}}. Then by < min¿{J (b¡k, bkj), J {bjk, bk¡)} and if b¡k 
>bk¡ then by< min¿{./ (b¡k, bk¡)} and then é;¿ > T(by, bk¡) = T(by, bjk) for all j . 

The following lemma shows that the previous algorithm gives a T-transitive 
lower approximation of a reflexive and symmetric fuzzy relation when T is the 
minimum t-norm or a strictly increasing t-norm (for example, the family of all 
product t-norm s). 

Lemma 2. The T-transitive lower approximation of a proximity relation 
computed by algorithm 1 takes 0(n ) time complexiíy in the worst case. 

Proof. The computational time complexity of the algorithm can be analyzed as 
follows: 

2 
Step 2 sorts n valúes, so it takes 0(n log rí) time complexity. 

2 
Step 4: A general proof of the time complexity of step four can be achieved by 

computing the complexity in the worst case, which is the case in which n-\ blocks 
of dimensión one must be filled. Suppose that for each valué in U(A), a block of 
dimensión one must be added. Then n-\ blocks must be constructed in B, 
numbered from k=2 to n, and each block-construction step must sort the (k-l) 
elements in H(Á) and then make the k-l assignments in B. Then the final time 

n 
complexity of the step four is of the order of ^ ((sort of k-l elements in H(A)) + 

k=2 
(assignments of k-l elements in B, looking at the previous assignments)). The 
step four time complexity can therefore be computed as follows: 

file:///pik


k = 2{ j=\ J k=l\ ¿ J k=2 

which is the time complexity of the algonthm. 
Note that the most efficient known algonthm for computing the T-transitive 
closure of a fuzzy relation, with T other that the minimum t-norms, also takes 
0(n3) time. 

4. Conclusions 

An 0(n ) time algorithm to compute a T-transitive lower approximation or 
opening of a proximity relation (a reflexive and symmetric fuzzy relation) has 
been given. 

Sometimes the algorithm must choose an edge firom the (possibly repeated) 
highest valué of an ordered list. For every chosen list, the algorithm computes a T-
transitive approximation. Therefore, in some cases, the algorithm can be used to 
find several T-transitive approximations or openings. 

It remains an open problem whether the algorithm gives a T-transitive opening 
for all continuous t-norms. 

It is also proved that the algorithm preserves the reflexivity and symmetry 
properties and so, the computed T-transitive lower approximation or opening is a 
T-indistinguishability. 

Applications of this algorithm can be considered in various fields, including 
deductive databases, pattern recognition, expert systems, artificial intelligence and 
intelligent systems. 

An implementation in java of the proposed algorithm for the minimum, 
product and Lukasiewicz t-norms can be downloaded from 
http://www.fdi.ucm.es/profesor/lgarmend/SC/Programas/openings.iar 

To run it it is necessary to install a 'java virtual machine' or 'Java Runtime 
Environment' (JDK), downloadable at http://java.sun.com/. Most computers 
already have it installed. 
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