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Abstract

This paper investigates fuzzy adaptive control schemes for a class of multi-input multi-output (MIMO) unknown nonlinear systems
with known and unknown sign of the control gain matrix. Three fuzzy adaptive control schemes are developed. In the design of the
second and third controller, we will exploit a decomposition of the control gain matrix into a symmetric positive-definite matrix, a
diagonal matrix with diagonal entries +1 or —1 and a unity upper triangular matrix. The Nussbaum-type function is used to deal with
the unknown control direction (i.e. the unknown sign of the control gain matrix). For updating the parameters of the fuzzy system,
an adaptation proportional-integral (PI) law is proposed. Theoretical results are illustrated through two simulation examples.
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1. Introduction

In control engineering, most systems are multivariable in nature. It is certain that the control theory for multivariable
systems will find immediate application in a wide variety of problems (space technology, electrical machines and
robotics). The control of multivariable systems is a complicated problem due to the coupling that exists between the
control inputs and the outputs. When multivariable systems are nonlinear and uncertain, their control problem becomes
more challenging. In this area, theoretical results and constructive procedures for designing satisfactory controllers are
really very few.

In the last decade, the nonlinear control based on the universal function approximators (fuzzy systems, neural
networks) has received much attention [1,2,4,9,15,21,23,25-27,31]. Fuzzy control, in particular, has an impact in the
control community because the fuzzy controllers provide a systematic and efficient framework to incorporate linguistic
fuzzy information from human expert. Adaptive fuzzy control schemes for a class of multi-input multi-output (MIMO)
nonlinear uncertain systems have been developed in [3,5,8,11,13,14,16,19,28-30] thanks to the universal approximation
theorem [31]. Indeed, this class has the following form: y(’) = F(x)+ G(x)u, where x is the overall state vector, u € R”
the control input vector, y € R” is the output vector, F(x) € R” and G(x) = [g;;] € RP*P are unknown continuous
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nonlinear functions. The stability of the underlying closed-loop system is analyzed in Lyapunov sense. To cope with the
fuzzy approximation error as well as external disturbances, these adaptive fuzzy controllers are commonly augmented
by a robust control term that can be a supervisory control [8], sliding mode control [5,11,13,19,29,30], and/or H*®
control [3,8,16,28]. Conceptually, there exist two distinct approaches to design a fuzzy adaptive control system: direct
and indirect approaches. In direct approach, [3,14,16,19], the fuzzy system is used to estimate the so-called ideal control
and the parameters of the fuzzy system are adjusted to meet the required control objective. Unlike the direct approach,
the indirect adaptive approach uses fuzzy systems to estimate the system nonlinearities F(x) and G(x), and then a
control law is calculated based on these estimates [3,5,8,11,13,16,19,28-30].

In fuzzy indirect adaptive control schemes, efforts have to be made to avoid the possible singularity problem when
calculating the inverse of the estimated “decoupling matrix” (i.e. the estimate of the control gain matrix G(x)). In
order to avoid the controller singularity, the authors of [3,8,11,28,29] suggest to use a projection algorithm to keep
the estimated fuzzy parameters of G(x, 04) (where G(x, 0¢) is the fuzzy estimate of the control gain matrix and 0,
represents the adjustable fuzzy parameters) inside a feasible set in which the singularity problem does not happen.
Practically speaking, this solution has some disadvantages [31]. Indeed, it is usually requires a priori knowledge for the
feasible parameter set and no systematic procedure is available for constructing such a set for general plant. In [13,30],
authors propose another alternative to avoid the controller singularity problem. It consists in the use of the regularized
inverse of G(x, 0¢) in the control law instead of its inverse.

A key assumption in these fuzzy adaptive control schemes [3,5,8,11,13,14,16,19,28-30] is that the sign of the control
gain matrix is known a priori. However, as stated in [32], the assumption on the sign knowledge of the so-called high-
frequency gains (i.e. the sign of the control gain matrix) does not appear to be realistic in the general case. When
there is no a priori knowledge about the sign of the control gains, the design of the adaptive controllers for MIMO
nonlinear systems becomes more challenging. For a special class of MIMO nonlinear systems with unknown gain signs,
adaptive (neural and fuzzy) control schemes have been, respectively, proposed in [33,34]. In these control schemes,
the Nussbaum-type function [18] has been used to deal with the unknown control direction. Moreover, two restrictive
modelling assumptions have been made to facilitate the stability analysis and the control design, namely: nonlinear
systems with a lower triangular control structure and the boundedness of the high-frequency control gains.

In this paper, three fuzzy adaptive control schemes are developed for a class of MIMO uncertain nonlinear systems
with known and unknown control direction.

The first fuzzy adaptive control scheme proposed, which is a direct scheme, is developed for a class of MIMO
unknown nonlinear systems with symmetric control gain matrix whose sign is known. Bearing in mind the available
results [3,14,16,19], the main contributions of this work include:

(1) The assumptions on the control gain matrix are realistic and not too restrictive. Recall that in [3,14,16,19],
restrictive assumptions are made on the control gain matrix (see Remark 1 in Section 4.1).

(2) An adaptation proportional-integral (PI) law augmented by e-modification [17] is proposed to update the fuzzy
parameters. Unlike a-modification concept, the combination of e-modification concept with the robust term Ko Sign(S)
in the proposed adaptive control scheme can assure a convergence of the tracking error to zero. As for the proportional
term, it allows to fuzzy adaptive parameters a fast convergence. Indeed, the latter introduces a negative term in the
Lyapunov’s function derivative.

The second fuzzy adaptive control scheme proposed, being an indirect version, is designed for a class of MIMO
unknown nonlinear systems with nonsymmetric or symmetric control gain matrix but with known signs of its leading
principal minors. Compared with [3,5,8,11,13,16,19,28-30], there are four main contributions that are worth to be
emphasized:

(1) Motivated by a matrix decomposition introduced in [6,7,12,35], we decompose G(x) into the product of a
symmetric positive-definite matrix, a diagonal matrix with 41 or —1 on the diagonal and a unity upper triangular
matrix. It is worth noticing that the diagonal matrix elements are nothing than the ratios of the signs of the leading
principal minors of the control input gain matrix.

(2)In [3,5,8,11,13,16,19,28-30], extra care should be taken to ensure that G(x, 0g) (recall that G(x, 0g) is the fuzzy
estimate of G(x)) does not singular during the adaptation. However, in the proposed method, no extra care is need.

(3) An adaptation PI law augmented by e-modification is also proposed to update the fuzzy parameters.

The third fuzzy adaptive control scheme proposed, which is an indirect version, is developed for a class of MIMO
unknown nonlinear systems with nonsymmetric or symmetric control gain matrix and with unknown sign. To the best
of our knowledge, in the literature, there are only two works dealing with uncertain MIMO nonlinear systems with



unknown sign of high-frequency gains [33,34]. The main contributions of this paper with respect to [33,34] are the
following:

(1) The class of MIMO nonlinear systems is different from that considered in [33,34]. The modelling assumptions
are realistic and not restrictive. Recall that in [33,34], restrictive assumptions are made on the high-frequency control
gains, i.e. the g;;(x) are assumed bounded. Moreover, to facilitate the stability analysis and the control design, the
authors considered MIMO nonlinear systems with a lower triangular control structure.

(2) A unique Nussbaum-type function is used here in order to estimate the true sign of the control gain matrix. Note
that in [33,34] many Nussbaum-type functions have been used to deal with the unknown sign of control gains.

(3) Motivated by a matrix decomposition introduced in [6,7,12,35], the control gain matrix G(x) is decomposed into
the product of a symmetric positive-definite matrix, a diagonal matrix with 41 or —1 on the diagonal and a unity upper
triangular matrix.

(4) In our fuzzy adaptive control scheme, the method of stability analysis is relatively simple and different from that
pursued in [33,34]. Recall that an integral Lyapunov function is considered in [33,34] in order to avoid the controller
singularity which may be caused by time-varying gains function in indirect adaptive control schemes.

2. Notation and problem statement

Consider the following class of nonlinear MIMO systems described by

4
W= f100 + Zgu(X)uj,

j=1

p
W = 0+ gpuy, (1)

j=1
where x = [y, y1, ...,ygr'_]), s Yps Vps oo yﬁ,r"_])]T € R’ is the overall state vector which is assumed available
for measurementand ry + -+ - +rp =r,u = [uy, ..., u,,]T € R? is the control input vector, y = [yy, ..., y,,]T € R?
is the output vector, and f;(x),i =1, ..., p are continuous unknown nonlinear functions, and g;;(x),i, j =1, ..., p

are continuous unknown nonlinear C! functions.
Let us denote

")
YO = T

F(x)=[fi(x) - fr(017,
g1 (x) ... gipx)

3

G(x)=
gp1(x) ... gpp(x)

Then, the system (1) can be rewritten in the following compact form:
YO = F() + Goou, 2)

where F(-) € R? and G(-) € RP*P,
The objective of this paper is to design a control law u such as the output vector follows the specified desired trajectory

ya = a1, .-+, yd,,]T € RP, with all involved signals in the closed-loop system remain bounded.

. . . - . —1 ) .
Note that the desired trajectory vector, xg = [ya1, Yal, --- , y‘([]' D yfir]'), coes Ydps Vdps -+ s y((;[; ), y‘(;[;)]T, is sup-
posed continuous, bounded and available for measurement. Then, x4 € Q,, C R™*P with €, is a known bounded

compact set.



Let us define the tracking error as

€1 = Yd1 — Y1,

€p = Ydp — Vp
and the filtered tracking error as
S =181, .... S,

with

d ri—1
Si:I:E—}—ﬂ,} e forZ; >0, Vi=1,...,p.

Then, we can write (5) as follows:
Si= A e+ (i = DA e+ (= Dagel T Y,

withi =1,..., p.

Notice that if we choose 4; > 0, withi = 1, ..., p, then the roots of polynomial H;(s) = i;i_] +(ri — DA™

st (rp — DysTi —2 4 s"i~! related to the characteristic equation of S; = 0 are all in the open left-half plane.
The relation (6) can be rewritten in the following compact form:

S; = ClE;,
with

(ri=2) e?ri_])]T,

Ei=leié - ¢

cl = i =D = DAy 11
Consequently, the vector S takes the form:
S=C"E,
where
¢’ = diag[C{ €I -+ Cll(pur)
E=1E] B} - ETIL.,
And the dynamic of S; is described by
S; = CLE; +e§ri) and i=1,...,p,
where C,; is given by
Cl=10 277" i = DA% o 050 — (i — 2022 (ri — D).
The dynamic of § can be written into the following compact form:
$ = C,TE + e,
where
¢ =diaglC/ Cry -+ Crplipxn)s

e — [e(lrl) eérz) e;’/r)]T

3

3)

“)

&)

(6)

2s—i—

(N

®)
€))

(10)

Y
12)

13)

(14)

5)

(16)

a7



with

e =y =y, (18)
where v = (r1) () rp)T - .
yW=Iy »n yp"'1" is previously defined, and
(rp)
v =00 a5 (19)

From (18), we can write (15) as follows:
S=CIE+y] —yo. (20)
Thereafter, (20) will be intensively used in the development of the fuzzy controllers and the stability analysis.

3. Description of the fuzzy logic system

The basic configuration of a fuzzy logic system consists of a fuzzifier, some fuzzy IF-THEN rules, a fuzzy inference
engine and a defuzzifier, as shown in Fig. 1. The fuzzy inference engine uses the fuzzy IF-THEN rules to perform a

mapping from an input vector x” = [x1, x2, ..., x,] € R" to an output f € R.
The ith fuzzy rule is written as
R®: if xq is A’i and ... and x,, is Ai, then fis fi, 201
where A"], Aé, ..., and Al are fuzzy sets and f' is the fuzzy singleton for the output in the ith rule. By using the

singleton fuzzifier, product inference, and center-average defuzzifier, the output of the fuzzy system can be expressed
as follows:

. ity AT /"Aif(xj))

T@= Z?”:](H?:] NA;(XJ))
=0"Y(x), (22)
where ,uA; (x;) is the degree of membership of x; to A;, m is the number of fuzzy rules, 07 = [f] , fz, ey f™]is the
adjustable parameter vector (composed of consequent parameters), and ! = [y! y? ... y™], where
Vo) = b= ) 23)

2ty (Tjor i o)

is the fuzzy basis function (FBF). It is assumed that the FBFs are selected so that there is always at least one active rule
[31],ie >/, (H;l':] fhgi (x5)) > 0.

It is worth noting that Jthe fuzzy system (22) is the most frequently used in control applications. Following the
universal approximation results [31], the fuzzy system (22) is able to approximate any nonlinear smooth function f

‘ Fuzzy Rules Base

| ™

Fuzzifier

/
Defuzzifier ».

Fuzzy Inference
Engine

Fig. 1. The basic configuration of a fuzzy logic system.



on a compact operating space to an arbitrary degree of accuracy. Of particular importance, it is assumed that the structure
of the fuzzy system and the membership function parameters are properly specified in advance by the designer. This
means that the designer decision is needed to determine the structure of the fuzzy system, namely the pertinent inputs,
the number of membership functions for each input, the membership function parameters and the number of rules. As
for the consequent parameters, i.e. 0, they must be determined by learning algorithms.

4. Design of fuzzy adaptive controllers

In this section, three fuzzy adaptive control schemes are developed for three different classes of unknown nonlinear
systems, namely:

o MIMO systems with G(x) symmetric and of a known sign,
o MIMO systems with known signs of the leading principal minors of G(x), but it can be symmetric or nonsymmetric,
e MIMO systems with an unknown sign of G(x), but it can be symmetric or nonsymmetric.

4.1. First fuzzy adaptive control scheme

In this section, we will develop a direct fuzzy adaptive control where the control gain matrix is supposed symmetric
and with known sign. In the controller design, we need the following assumptions on system (2).

Assumption 1.

(a) G(x)is symmetric positive-definite. Then, it exists an unknown positive constant g, such that: G(x) > a¢/p, with
Ip is an identity matrix.

(b)
SIGT' N < Bx), Vx e R, (24)

where f(x) is an unknown continuous positive function.

Remark 1.
(a) There are many physical systems, such as robotic systems and electrical machines, which satisfy Assumption 1(a).
In fact, this assumption enables us to have:

e an easy analysis of the stability,
e and especially, such a property of G(x) ensures that the matrix G(x) is always regular and, therefore system (1)
is feedback linearizable by a static state feedback.

(b) Assumption 1(b) is not restrictive, since we assume only the existence of fi(x) and not its knowledge. Moreover,
there are several physical (MIMO or SISO) systems of which the control gain matrix G(x) satisfies the inequality
(24), e.g. manipulator robots, electrical machines, inverted pendulum, chaotic systems, etc. In fact, these dynamical
nonlinear systems and many others are characterized by a control gain matrix which depends only on the vector
X = [V, Y1505 yir' _2), s Yps Vpo ...,yﬁ,r"_z)]T € R"~P, then the matrix G~'(x) depends only on the state

. —1 . (rp—1)
VCCtOI‘x:[y],y],...,yYI ),...,y,,,y,,,...,y,,r' 7.

(c) To the best of our knowledge, in the literature, there are only four works dealing with direct fuzzy control for MIMO
nonlinear systems [3,14,16,19]. Compared with our assumption, restrictive assumptions are made on the control
gain matrix in [3,14,16,19], namely:

e In [3], the control gain matrix G(x) is assumed positive-definite and known.

e In [16], G(x) is supposed positive-definite, constant and known.

o As for [19], each entry of G(x) is bounded by known constant |g;;(x)| < g;j, i, j =1, ..., p, i#]. Also, the
entries in main diagonal must satisfy 0 < gij < gii(x) < gij < 00,i =1, ..., p and their derivatives be defined

and satisfy |g;;(x)| < M;;(x),i =1, ..., p, where glj, gij and M;;(x) are known bounds.



e In [14], G(x) is assumed symmetric positive-definite and bounded as follows: 0,x, < g0l < G(x) < a1,
where ¢ and o] are some positive constants.

Substituting (2) into the tracking error dynamics (20), we get
§=ClE+y{ - Fx) - Gou. (25)
Eq. (25) can be arranged as follows:
G1(x)$ = Gi(x)v + Fi(x) —u, (26)
where G1(x) = G~!(x), F1(x) = —G~'(x)F(x) and the vector v is given by
v=ClE+){. 27

It is very clear that if G(x) is symmetric and positive-definite, then its inverse G(x) = G~!(x) is also symmetric and
positive-definite. In fact, this useful property of G1(x) will be intensively exploited in the stability analysis.

4.1.1. Ideal controller
If the nonlinear functions G(x) and F(x) (or G1(x) and Fj(x)) are known, to achieve the control objectives, we can
use the following ideal control u*:

u=u"=Gx)v+ Fi(x)+ (K + p(x)I,)S, (28)

where f(x) is previously defined in Assumption 1(b), K is a positive diagonal matrix.
If we apply the ideal controller (28) to system (2) (i.e. if we replace the ideal controller (28) in error dynamics (26)),
we obtain the following closed-loop system dynamics:

G1(x)S = —(K + B(x)I,)S. (29)

Theorem 1. Consider system (1). Suppose that Assumption 1 is satisfied. Then, the control law defined by (28) guar-
antees the following properties:

o All signals in the closed loop system are bounded.

o The tracking errors and their derivatives decrease asymptotically to zero, i.e. e?j)(t) — Qast > oofori=1,...,p
and j =0,1,...,r, — 1.

Proof of Theorem 1. Since G(x) is symmetric positive-definite, we can define the following Lyapunov function:

V=15"Gi(x)S. (30)
The time derivative of Vis given by

V=5"Gi(x)$ + 157G (x)S. (31)
Using (24) and (29), (31) can be bounded as follows:

V=5"Gi(x)$ + 1T G1(x)S

< —ST(K + B)DS + S1G 10181
<-STks. (32)

From (32), and using the Barbalat’s lemma, we can easily show, as in [22], that s; — 0, when ¢+ — oo. Thus, the

tracking errors and their derivatives decrease asymptotically to zero, i.e. e?’ )(t) — Oast - oofori=1,...,pand
j=01,....,r;,—1. O



4.1.2. Fuzzy adaptive control design and stability analysis

Since the nonlinear functions G(x) and F'(x) are not known, the above controller, i.e. (28), cannot be applied directly.
In this paper, we propose the use of fuzzy systems to approximate the ideal controller (28).

Before proposing an estimation scheme for the ideal controller, let us rearrange (28) as follows:

u* = G1(x)v + Fi(x) + (K + p(x)1,)S
=a(X)+KS, (33)
where o(¥) = [o1(X), 02(%), ..., 2,(0)]T = G1(x)v+Fi(x)+Bx)I,S, withi = [xT vT ST]T € Di ¢ R"xRP xRP.
The compact set Dj is defied as follows:

Qe = {[x", 0", 8T)]x € Q¢ C R", x4 € Qx,}

Thereafter, the fuzzy estimate of o(x) is used to develop an adaptive controller with its adaptive law in order to meet
control objectives and guarantee boundedness of all involved signals of the closed-loop system.
The nonlinear function «; (x) can be approximated, over compact set Dy, by the fuzzy systems (22) as follows:
B(X0;) = 0] (%), i=1,....p, (34)

where ; (x) is the FBF vector, which is fixed a priori by the designer, and 0; is the adjustable parameter vector of the
fuzzy system.
Let us define

0f = argmin | sup |o;(X) — & (%, 0;)| (35)
0; xeDy

as the ideal parameters of 0;.

Note that the ideal parameters 0] are artificial constant quantities introduced only for analysis purposes, and their
values are not needed when implementing the controller.

Define

b,‘ =0; — 01* withi =1,...,p

as the parameter estimation error, and

& (%) = 04 (%) — (x, 07) (36)

is the fuzzy approximation error, where &; (%, 0}) = 0F7 ;(¥).

As in literature [31], we commonly assume that the used fuzzy systems do not violate the universal approximator
property on the compact set Dy, which is assumed large enough so that input vector of the fuzzy system remains within
Dj; under closed-loop control system. So it is reasonable to assume that the fuzzy approximation error is bounded for
all x € Dy, i.e.

lei(X)] <&, VX € Dy,
where g; is a given constant.
Now, let us denote
B(x, 0) = 0" (@) = [B1(F, 01), ... 8p(E, 0],
o) = [e1(X), ..., e,(D)],
E=1[e1, ..., 51"
From the above analysis, we have
a(x, 0) — a(x) = a(x, 0) — a(x, 0%) + a(x, 0%) — ()
=¥, 0) — a(x, 0%) — &(x)
~T -
=0 Yix) — &x), (37
~T T =T =T _r ~ *
where 0 Y(x) = [0) Y1(X), 0, Yp(%), ..., 0 lp,,(x)] ,and 0; =0, — 07,i =1, ..., p.



We can rearrange the tracking error dynamics (26) as follows:
G1(x)S = a(X) — u — B(x)1,S. (38)

Recall that o(X) = [o1(X), 02(X), ..., ap(¥)]T = G1(x)v + Fi(x) + B(x)I,S.
Using (34), the ideal control (33) can be approximated as follows:
u=20o(x, 0)+ K15 + Ko Sign(S)
=0Ty(X) + K1 S + Ko Sign(S), (39)

where 6(x, 0) = 07 () = [0] Y, (%), 03 (%), ..., 1% , ()], and Ko = diaglkor, koo, .., kopl, with ko; > 0, i =
1, ..., p, are positive constants and will be defined later. K| = diag[ky1, k12, ..., k1], withky; >0, i =1, ..., p,
are free positive constants of the design.

By applying the controller (39) to system (2) (i.e. by replacing (39) into tracking error dynamics (38)), and using
expression (37), we can obtain

G1(0)S = —B(0)1,S — K1 S — Ko Sign(8) — 0 Y(®) + a(®). (40)

Multiplying S” to (40), we have

14 14
STG1(0)S = —BISI® = STK1S = Y KoilSil = Y 01 wi(0)Si + ST (). (41)

i=1 i=1

In order to meet the control objective, the fuzzy parameters 0; are updated by the following adaptation PI law:

t
0; :_/ [—0i70iSi10; + yo; Sivh; (O1dT — 7,04, @
0
with
0; = 0|S;10; — Siy; (%),

where 7;, 71;, 0i > 0 are design constants. It is worth mentioning that, in the adaptation law (42), two terms are
introduced for different purposes. The term g; y; | Si |0; , borrowed to the e-modification concept [17], is mainly motivated
by parameter boundedness purposes. Unlike o-modification concept, the combination of e-modification concept with
the robust term K Sign(S) in the proposed adaptive control schemes can assure a convergence of the tracking error
to zero. Whereas d;, which is a proportional term, can allow to fuzzy adaptive parameters a fast convergence. Indeed,
afterwards, we will see that the addition of the latter to the adaptation law (42) makes possible to have an important
negative term in the Lyapunov’s function derivative.

Note that the control term OTlp()E) + K1§ in (39) is an estimation of the ideal controller (33). As for the last term
Ko Sign(S), it is used to deal with the fuzzy approximation error and external disturbances and eliminate the effect of
terms 0.50; ||0; I2,i =1, ..., p, due to the use of the e-modificationin the adaptation law (42).

In summary, the update law (42) has a nice property as stated by the following lemma.

Lemma 1. The adaptation PI law (42) guarantees that 0; € Lo, for bounded initial parameters 0;(0).

Proof of Lemma 1. Choose the following Lyapunov candidate function:
1
Vo, = — (0 + 71,007 (0; + 71;6i). (43)
20
The time derivative of Vj, along of (42) is
. 1 . i
Vo, = V_(Oi + 91607 (0 + 71;:60)
0i
= (0; + 710" (=01 Si10; + Si; (%)) (44)



If we select 6; = a;|Si|0; — Siy;(x), we get
Vo, < —ail Silll0: 11* + 1S: 110: 1y, GONl = 71 16:12
< —ai 1SN0 1C010: 1| — (1 /a: ). (45)

Noting cy; = sup;, [|;(x)||. Therefore V(;,. < 0 once ||0;]| > cy;/0;. Because cj; and g; are positive constants, one
concludes that ; € Lo,. O

Remark 2. From (45), we remark that J; introduces in V(h a negative term which can be important, if yy; is selected
large. Consequently, the proportional term J; can contribute to the closed-loop stability and can allow to 0; a fast
convergence.

Remark 3. In order to avoid the problem of the algebraic loop being in (42), when implementing the controller, the
update law (42) must be rearranged as follows:

1

t
0 = ———— / [=0i70i1Si10; + 70; Sih; (X)) dT + 7 iSilﬁi(f))-
1+ 74;0ilSil ( 0 0 0 :

Now, we are ready to give the following theorem:
Theorem 2. Consider system (1). Suppose that Assumption 1 is satisfied. Then, the control law defined by (39) with

the adaptation law given by (42) guarantee the following properties:

e All signals in the closed-loop system are bounded. '

e The tracking errors and their derivatives decrease asymptotically to zero, i.e. elw(t) — Qast > oofori=1,....,p
and j =0,1,...,r; — 1.

Proof of Theorem 2. Let us consider the following Lyapunov function candidate:

14

1 1 1 -~ .
V= ESTGl(x)S—f—i ZV—(0i+y]i5i)T(0i+y]i5i). (46)
i=1 10

Its time derivative is given by

: A Po1 . : .

V=5"Gi(x)S + §STG1(x)S +y y_(()i + 91007 (0; + 7,;:00). (47)

i=1 10

Eq. (47) can be expressed as

V=Vi+W, (48)
where

Vi=STGi)S+ 187 G(x)S (49)
and

. L : .

V=Y V_(Oi +9;100" 05 + 71;0)). (50)

0i

i=1
Using (41) and Assumption 1, V| can be bounded as follows:

4 4
. . ~T _ _
Vi< —STK1S =Y KoilSil = BOISI2 +0.51GWINISI2 = D 0; ,(0)S; + STe(@)

i=1 i=1

14 14 14
~T _ _
<—STKiS =Y KoilSil = Y 0; ¢;(5)Si + Y _&lSil. (51)

i=l1 i=1 i=l1



The substitution of the parameter adaptation law (42) into (50) gives

4
V=Y (i + 710107 (=01l Si10; + Sih; (%))
i=l1
4 T 4 1 4 B 1 4
< ; 0; ¥,(¥)S; — ;y,i 1ouil* = 5 ; ail Si 011> + 5 ; ailSi 1110711, (52)
where the following inequality —2(~)iT 0; < — ,‘p=1 ||5i 12 + le:] ||0;‘||2 was used in the above development.

From the previous results, it follows that
_ p p p p
V<= kS =Y koilSil+ D _EIS|+05) ol Sill6F1. (53)
i=1 i=1 i=1 i=1

If we select kg; > 0.5 le | Oi 07 I2 4+ &, V can be bounded by

4
V< —Zk”SiZ. (54)
i=l1

From (54), V is always negative, which implies that the signals S; and 0; + 71;0i are bounded.

To show the boundedness of 0; and 0;, we can use the following expression which is obtained from the expression
of 9; in Eq. (42) and 0; = 0; — 0

[0; 4 71:0:1 + 1 Sivy; (%) + 07

0; =
1 +vy;0i18:]

Using the above expression, and because 0; + 71;0i, 07, (%) and S; € Loo, we can easily show that 0; and 0; € Loo.
Since S;, 0; € Lo, it implies the boundedness of x, u. Since V is non-increasing function of time and bounded from
below, the lim;_, o, V(t) = V(00) exists. By integrating (54) from 0 to co, we have

oo P
/ Y kiiSAt)dt < V(0) — V(00) < 00 (55)
0 =

which implies that S; € Lj. .
In order to show the boundedness of S;, we must rearrange Eq. (40) as follows:

$ = G)[—B)I,S — KS — Ko Sign(S) — 0’ ¥(®) + e()]. (56)

where G(x) = G]_](x). Since x € Lo, and the functions G(x) and f(x) are continuous functions, then they are
bounded. Since all terms in the right of (56) are bounded, then S; € L.

Finally, since S; € L, N Ly and Si € L, by using Barbalat’s lemma [22] we can conclude that S;(r) — 0 as
t — oo. Therefore, the tracking errors and their derivatives converge asymptotically to zero, i.e. e?’ )(t) — Qast — o0
fori=1---pand j=0,1,...,r;, — 1. O

4.2. Second fuzzy adaptive control scheme

The control scheme presented previously is only applicable for nonlinear systems with a standard, symmetric control
gain matrix (e.g., Lagrange—Euler systems, electrical machines). It is worth noting that there are some practical systems
which do not possess a symmetric control gain matrix G (x), e.g. the visual servoing problem and the automotive thermal
management system [35]. Motivated by a matrix decomposition introduced in [6,7,12], we can decompose G (x) into
the product of a symmetric positive-definite matrix Gs(x) € R”** and a diagonal matrix D € R”*" with +1 or —1
on the diagonal (comprised the ratios of the signs of the leading principal minors of the control input gain matrix) and
a unity upper triangular matrix 7' (x) € RF*F.



4.2.1. Decomposition of the matrix G(x)
The design of this fuzzy controller and the third controller (in Section 4.3) is based on the following useful lemma.

Lemma 2 (Costa et al. [7]). Any real matrix G(x) € RP*P with non-zero leading principal minors can be decomposed
as follows:

G(x) = Gs(x)DT(x), (57)

where Gg(x) € RP*P is a symmetric positive-definite matrix, D € RP*? is a diagonal matrix with +1 or —1 on the
diagonal and T (x) € RP*P is a unity upper triangular.

Proof of Lemma 2. See [7,24]. O

It is worth noting that the decomposition of the matrix G(x) in (57) is very useful. In fact, the symmetric positive-
definite matrix G (x) will be exploited in the Lyapunov-based stability, D contains information on the sign of the
original matrix G(x), while the unity upper triangular matrix 7'(x) allows for algebraic loop free sequential synthesis
of control signals u;, Vi = 1,2, ..., p.

Note that if G(x) has non-zero leading principal minors, three cases can arise:

e If G(x) is positive-definite, then D = Ip.
o If G(x) is negative-definite, then D = —1,.
e While in the case where G (x) is indefinite, the matrix D has +1 and —1 on the diagonal.

4.2.2. Fuzzy adaptive control design
Consider system (2), with the following assumption.

Assumption 2.

(a) G(x) has non-zero leading principal minors and their signs are also known.
(b) G4(x) and (d/dt)GS_] (x) are continuous.

(©) 0gij(x)/ay! ™V =0,vi=1,2,...,p,and j = 1,2,..., p.

Remark 4.

(a) Itis worth noting that several physical systems (MIMO or SISO) have a G (x) positive-definite (i.e. D = Ip),namely:
robotic systems, electrical machines, inverted pendulum. However, the assumption on the signs knowledge of the
leading principal minors of G(x) can be restrictive in the general case.

(b) Assumption 2(c) means that the control gain matrix G(x) depends only on the following state vector x, =
1, V1, -.es y%r' _2), e Y Vps ...,yﬁ,r"_z)]T € R"™P. Consequently, matrices G4(x) and T(x) are only func-
tions of x,. Physically speaking, Assumption 2(c) is not restrictive as there are several (MIMO or SISO) systems of
which the control gain matrix G (x) satisfies Assumption 2(c), e.g. manipulator robots, electrical machines, inverted
pendulum, chaotic systems. Note that Assumption 2(c) allows us to have a d GS_] (x)/dt which depends only on
the state vector x = [y, 1, ..., yﬁr'_]), R ...,yﬁ,r"_])]T €R'".

Using the matrix composition (57) and the dynamics of (20), the dynamics of S can be rewritten as follows:

G;7l)S =G 1) — F(x)] = DT (x)u. (58)
Posing G1(x) = G; '(x), Fi(x,u) = G;'(x)[v — F(x)] — [DT(x) — D]u, Eq. (58) becomes

G1(x)S = Fi(x,u) — Du. (59)
Similar to the previous fuzzy adaptive control scheme, (59) can be rearranged as follows:

G1(x)S = —1G1S + a(Z) — Du, (60)

where o(Z) = [01(Z1), 02(Z2), ..., pEp))T = Fi(x,u) + 3G1(0)S, with 7 = [z, 2], ..., Z0]7.



By examining the expression of F1(x, u) and o(z), the elements of the vector z can be selected by

=[x, 8T un, o upl”,

7= [xT, 8T, us, .,u,,]T,

Zp—1=[x", 8" upl”,

7, = [xT, sT)7. (61)
Itis very clear from the propriety of the matrix of DT (x) — D that z; depends on control inputs u, ..., up, Z> depends
on u3, ..., up, and so on. In fact, the structure of the nonlinearities (z) is known under the name “upper triangular

control structure”. Recall that this useful structure allows for algebraic loop free sequential synthesis of control signals
ui,Vi=1,2, ..., p.

Define the compact sets as follows:

Dz ={Ix", ST ui1, o upl lx € Qe CR x4 € ), i=1,2,...,p—1,
Q:, ={Ix",S"1lx € Qx C R",xq € Qu;}.

Remark 5. The choice of the vectors z; (input arguments of the unknown functions «;) is not unique. In fact, since we
known that S and u are functions of state x and x4, then it can be seen quite simply that all z; are functions of x and
xg (e.g. we can choose Z; = [xT,xJ17 orz; = [xT, ET]T, withi = 1,2, ..., p). Also, since x4 is bounded, we can
choose z; = x.

The unknown smooth function o(z) can be approximated optimally by fuzzy logic systems as follows:

w(z) =z, 0°) + &(2)
=0"TY(2) + &2), (62)

where 0*Ty(z) = (01 W, (Z1), 05 Ya(Z2), ..., O Y p(Zp)IT and &Z) = [e1(Z1), ..., &p(Zp)]" . Since the sign of the
control gain matrix G(x) is supposed known, we can propose the following fuzzy adaptive controller:

u= D[z, 0) + K1 S + K Sign(S)]
= D[0TY(Z) + K1 S + Ko Sign(9)], (63)

where D = D~! = Sign(D) = diag[dy1,d22, ..., dppl, Ko and K are already defined in the previous section.

Remark 6.
(a) Note that the control law (63) is different from the control law (39), for the following reasons:

e The inputs of the fuzzy systems are different.

e In the control law (63), the signs of the leading principal minors of G(x) are incorporated.

e In (63), the fuzzy term OTlp(z) is used to estimate the nonlinearities o.(z), thus this adaptive control scheme can be
considered as an indirect version. In contrast, in (39), the fuzzy term 0T y(z) is employed with an aim of estimating
the ideal controller (33). Thus, the adaptive control scheme of (39) can be seen as a direct version.

o In the design of the controller (63), the matrix G(x) is not assumed to be symmetric.

(b) If one chooses z; = x, this adaptive scheme becomes more cost-effective than the previous indirect adaptive
control schemes [3,5,8,11,13,16,19,28-30], since it requires p fuzzy systems to implement the controller. Whereas
in [3,5,8,11,13,16,19,28-30], to implement the indirect control algorithm, we require p x p + p fuzzy systems:
i.e. p x p fuzzy systems used to estimate the control gain matrix G(x) and p fuzzy systems to approximate the
function (vector) F(x).

Similarly to Section 4.1, after substituting (63) and (62) into (60), we can get the following dynamics:

G108 = —1G1S — K1S — Ko Sign(S) — 0 Y(@) + e(2). (64)

where DD = DD~! = Dsign(D) = I, and 0 = 0 — 0*.



Multiplying S” to (64), we have

. 1 .. P Por _
STG(x)S = —ESTGlS —STK, S — Z KoilSi| — Z 0; V;(2)S; + STe(3). (65)

i=1 i=1
To update the fuzzy parameters, we keep the adaptation PI law (42).
Theorem 3. Consider system (2). Suppose that Assumption 2 is satisfied. Then, the control law defined by (63) with
the adaptation law given by (42) guarantee the following properties:

e All signals in the closed-loop system are bounded. '
e The tracking errors and their derivatives decrease asymptotically to zero, i.e. elm(t) — Qast > oofori=1,....,p
and j =0,1,...,r; — 1.

Proof of Theorem 3. This proof is very similar to that of Theorem 2. [
4.3. Third fuzzy adaptive control scheme

The two control schemes presented previously are only applied for nonlinear systems with a known sign of the
control gain matrix. In this section, we propose a fuzzy adaptive controller which does not require a priori knowledge
of the sign of the control gain matrix. In the control input, a Nussbaum function is incorporated, and its argument
is tuned online via an appropriately designed update law. Indeed, this function can estimate the true direction of the
control.

A function N ({) is called a Nussbaum-function, if it has the following useful properties [10,18]:

(1) limy—s 400 sup(1) [ N(0)d{ = +oo;
(2) limg— 400 inf(1) f§ N(O)d{ = —o0.

Example. The following functions are Nussbaum functions [10,18,33]:

Ni(©) = (¥ cos(0),
Na(0) = Eeos(v/1ED),

N3({) = cos (gé) &
N4(0) = In({ + 1) cos(v/In({ + 1)).

Of course, the cosine in the above examples can be replaced by the sine. It is very easy to see that Ny ({), N2({), N3(0)

and N4({) are Nussbaum functions. As in [33,34], the even Nussbaum N({) = cos((7t/2)C)eC2 will be used throughout
this paper.

In the stability analysis, we need this lemma.

Lemma 3 (Ge and Wang [10]). Let V(-) and {(-) be smooth functions defined on [0, t r), with V(t) > 0, Vt € [0, tf),
and N (-) be an even Nussbaum function. If the following inequality holds:

t
V(t)<co+ f (gN(©) £ Dldz, Vrel0,1), (66)
0

where g is non-zero constant and c represents some suitable constant, then V(t), {(t) and fé (gN©+ I)é dt must be
bounded on [0, t 7).

Proof of Lemma 3. To proof this lemma, see [10] (in pp. 1417-1418). O



Consider again system (2) with the following assumptions.

Assumption 3. (a) The sign G(x) is unknown. But, it must be positive-definite or negative-definite.
(b) G4(x) and (d/dt)G,(x) are continuous.
(©) 0gij(x)/ay""™V =0,¥i=1,2,...,p,and j = 1,2, ..., p.

Remark 7. It is worth mentioning that in this controller the sign of G (x) (or that of the matrix D) is assumed unknown
but positive or negative. This is to say that the case where the sign G(x) is indefinite (i.e. the matrix D has +1 and —1
on its diagonal) is not included here.

Consider the following control law which incorporates the Nussbaum function

u=NOI[-uz, 0) — K1 — Ko Sign(5)]

= NOI-0" (@) — K1 S — Ko Sign(5)], (67)
where
T 2
N () = cos <§C) e, (63)
and
4
(=107 Wi @) + ki Si + ko Sign(S)IS:. (69)

i=1

Recall that kp; > 0.5 le:] || 07 > + &. To update the fuzzy parameters, we will keep the adaptation PI law (42).

It is very clear from (63) and (67) that the scalar function N({) replaces Sign(—d;;), i = 1,2, ..., p. Recall that
Sign(—d;;) = —d,;, where d;; are the diagonal elements of the matrix D. The scalar function N({) is used here in order
to estimate online Sign(—d;;).

It is worth noting that, since the sign of G (x) is unknown, the control law (67) can be also replaced by the following
control law:

u= N YE) + K1S + Ko Sign(5)]. (70)

In this case, the Nussbaum function N ({) can estimate online Sign(d;;). Later, details concerning the choice of u and C
will be given in remark 8.

Similarly to Sections 4.1 and 4.2, after substituting (67) into tracking error dynamics (60), we can get the following
dynamics:

Gi1(x)S =—-0.5G1S — K18 — Ko Sign(S) — ?)TW) +8(2) + [0TW(Z) + K1 S + Ko Sign(S)] — Du
=—0.5G|S — K15 — Ko Sign(§) — ?)Tlﬁ(z) +8(2) + [0"Y(2) + K1 S + Ko Sign(HI[1 + gN(O)], (71)

where g = d;;, Vi =1,2, ..., p.
Multiplying (71) by ST, we have

14 14
. . ~T _
STG1(0)S =-058"G1S — STK1S = ) Koil Sil = ST0 (@) + ) _ & @IS

i=1 i=l

p
+(1+gN() (Z Si[07 W, (Zi) + ki Si + koi SigH(Si)])
i—1

14 14
= —0.557G1S — STK1S = Y KoilSil = ST0 w(@) + Y eiEISil + 4+ gNOL. (72)

i=1 i=l



Table 1

Choices of u and C

Expression of u Expression off.: N({) estimates
Choice 1 u= N(C)[—()TW(Z) — K1S — Ko Sign(95)] C = ST[()TW(z) + K1 S + Ko Sign(5)] Sign(—d;;)
Choice 2 u= N(C)[—()TW(Z) — K1 S — Ko Sign(S)] C = —ST[()Tlﬁ(z) + K1S + Ko Sign(S)] Sign(—d;;)
Choice 3 u= N(C)[()Tlﬁ(i) + K 1S + Ko Sign(S)] C ST[()TW(z) + K1 S + Ko Sign(5)] Sign(d;;)
Choice 4 u= N(C)[()Tlﬁ(i) + K 1S + Ko Sign(S)] C = —ST[()Tlﬁ(z) + K1S + Ko Sign(S)] Sign(d;;)

Theorem 4. Consider system (2). Then, the control law defined by (67)—(69) with the adaptation law given by (42)
guarantee the following properties:

o All signals in the closed-loop system are bounded.

e The tracking errors and their derivatives decrease asymptotically to zero, i.e. e?j )(t) —Qast > oofori=1,...,p
and j =0,1,...,r; — 1.

Proof of Theorem 4. Let us consider the following Lyapunov function candidate:

1 T
V=35"G10S + 5 2,:@(0 + 910070 + 7,;00) (73)

]

Following the same stages as in Proof of Theorems 3 and 2, the time derivative of (73) can be bounded as follows:

14
V<= kuS +{+eNOL (74)
i=1

Integrating (74) over [0, t], we have

t P
V) < V(t)—i—/ Y kiiStdr
0 =

t . .
<V + /0 (¢ + gNOD d. (75)

According to Lemma 3, [10,34], we have V (¢), fé a1+ gN(C))é dr, { is bounded in [0, ¢ ). Similar to discussion in
[10], we know that the above discussion is also true for ¢y = +o00 (see [10,34]). Therefore S;, (9 ~+71;0i € Loo. Then,

from the boundedness of S;, 0 ~+ v1;0i, and {, we can easily conclude about the boundedness of 0;, u, and z. From
(75) and since fo 1+ gN(C))C dt is bounded and V(0), V(c0) € Lo, it is very easy to show that fo i ] S2 dt

exists, i.e. S e L. Similar to discussion in Proof of Theorems 2 and 3, using (71) and since S;, 0,, u,0;,x € Ly, and
Gs(x) = ] (x) and G 1(x) are continuous functions, we can easily show that S € L.

Finally, since S; € L, N Ly and S € L, by using Barbalat’s lemma [22] we can conclude that S;(r) — 0 as
t — oo. Therefore, the tracking errors and their derivatives converge asymptotically to zero, i.e. e?’ )(t) — Qast — oo
fori=1...pand j =0,1,...,r; — 1. O

Remark 8. We can prove thanks to Lemma 3 that there are still other possibilities for the choice of { and the control
u. Table 1 summarizes these choices. In fact, the sign of the control input gain matrix is unknown, and thus the sign
choice in the expressions of { and the control law u is free. Similarly to Proof of Theorem 4, and using Lemma 3, we
can easily show that all possible choices in Table 1 guarantee the boundedness of all involved signals in the closed-loop
system and the convergence of all tracking errors to zero.

Remark 9.
(a) To eliminate the chattering effect caused by the discontinuous control term in (39), (63) and (67), the function
Sign(S;) must be replaced by any equivalent smooth function such as: Tanh(k,; S;), Arctan(k,; S;),or S; /(eri + |Si|),



Sat(S;) ... where ki, ¢, > 0, withi = 1... p. However, the use of these continuous functions only enables us to
have a convergence of the tracking errors to a neighborhood of the origin.

(b) Since the value 0.50; || or | + & is unknown, the parameters ko; can be estimated online by the following relation:
koi = 7;1Sil,i =1... p, where y,; > 0.

Remark 10. Asin[3,5,8,11,13,14,16,19,28-30], since the fuzzy approximation (Eqs. (36) and (62)) is only guaranteed
within a compact set, the stability results proposed in this work are semi-global in the sense that, for any compact
set, there exists a controller with fuzzy approximation (with sufficiently large number of rules) such that all the
closed-loop signals are bounded when the initial states are within this compact set. In practical applications, the
number of rules usually cannot be chosen too large due to the possible computation problem. This implies that the
fuzzy system approximation capability is limited, and some constraints on €2, are necessary to guarantee such an
approximation.

5. Simulation results and comparison between the three controllers

In this section, simulation studies are carried out to show the effectiveness of the proposed adaptive fuzzy controllers.
Two control problems are considered to this end. The first one concerns a two-link rigid robot manipulator moving a
horizontal plane (with a symmetric control gain matrix), while the second one concerns an academic MIMO system
(having a nonsymmetric control gain matrix). Moreover, a simple comparison between the three controllers is given
in the end of this section.

5.1. Example 1

Consider a two-link rigid robot manipulator moving a horizontal plane. The dynamic equations of this MIMO system
are given by [13,22,28]

i M M\ [ —hgx —h(g1+42) \ (4,
W)= - - ; (76)
92 My M2 Uz hq 0 @

where
M11 = ay + 2a3 cos(q2) + 2a4 sin(q2),
Mz = as,
M3 = M1z = az + a3 cos(qa) + a4 sin(qa),
h = a3 sin(q2) — a4 cos(q2),
with
ay = I +ml2) + Lo+ mel2, + mel},
2

ay = I, +m,l,,
a3 = melilee c0s(de),
a4 = melilee sSin(oe).
In the simulation, the following parameter values are used:
m =1, me=2, h=1, lg=05, l.=06, I, =0.12, I,=0.25 14, =30°

Lety = [y1, y21" = [q1. 21", u = [u1, u2]", x = [q1. 41, 92. 421" .
Then, the robot system (76) can be expressed as follows:

y=F&)+ Gxu, 7
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Fig. 2. Simulation results for the controller 1 (Example 1). (a) Tracking errors of link 1: eq (dotted line) and é; (solid line). (b) Tracking errors of
link 2: e, (dotted line) and é1 (solid line). (c) Control input signals: u (dotted line) and u (solid line). (d) Norm of fuzzy parameters: |0} || (dotted
line), ||0>]| (solid line).

where

Pl (mx)) oy (—h.ﬂiz ~h(g +q'2>) (cp )
f2(x) hq, 0 92

Gy = (M@ 8@ (M” M )—‘ .
821(x) g22(x) Mz Mz

The control objective is to force the system outputs g; and ¢ to track the sinusoidal desired trajectories y4; = sin(z)
and yg2 = sin(?), respectively. The external disturbances are added to the system (76), they are assumed to be square
waves having an amplitude 1 with a period of 27(s).

Within all simulations, the robot dynamics are assumed completely unknown, i.e. the proposed controller does not
require the knowledge of the system’s model unlike in conventional model-based adaptive controllers (e.g. adaptive
controllers in [6,35]). In fact, the dynamic model (76) is only required for simulation purposes.

In all simulations, the initial conditions are selected as: x(0) = [0.25 0 0.25 0], 61(0) = 0 and 0,(0) = 0.

(a) Results of the first controller: It is assumed here that the sign of G(x) is known. Notice that we can easily show
that G(x) satisfies Assumption 1.

The fuzzy systems 02T W, (x) and 0{1&,(2) have ¢1, 41, g2, g2 as inputs. For each variable of inputs of the fuzzy
systems, we define three triangular membership functions uniformly distributed on the interval [—2, 2].

The design parameters used in this simulation are chosen as follows: yg; = 79, = 500, y;; = 12 = 500,01 = 02 =
0,005, 11 = A2 = 2, k1; = koi = 0.2. Note that k1; and k¢, are selected small in order to see the fuzzy contribution in
the control law (39).

Fig. 2 shows the simulation results of the adaptive fuzzy controller (39). These results show good tracking perfor-

mances with all signals in the closed-loop being bounded. Figs. 2(a) and (b) show the tracking errors of the two links.
Fig. 2(c) presents the boundedness of control signals. Fig. 2(d) illustrates the norms of adaptive fuzzy parameters.
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Fig. 3. Simulation results for the controller 2 (Example 1). (a) Tracking errors of link 1: eq (dotted line) and ¢ (solid line). (b) Tracking errors of
link 2: e, (dotted line) and é5 (solid line). (c) Control input signals: u; (dotted line) and uy (solid line). (d) Norm of fuzzy parameters: |0} || (dotted
line), ||0> || (solid line).

(b) Results of the second controller: In this controller, the signs of diagonal elements of D are assumed known. Since
G(x) is positive-definite, in this example we have D = I,,.

The input vectors of the fuzzy systems 0 1, (Z2) and 0 ¥/ (Z1) are 22=I[q1. §1. q2. 42)" and Z1=I[q1. G1. q2. 42, u2]"
respectively. We define three triangular membership functions uniformly distributed on the interval [-2, 2] for q1, g1, g2,
and g2, and [—25, 25] for uy. The design parameters used in this simulation are chosen as follows: y5; = 79, = 500,
Y11 = 712 =500, 61 = 62 = 0,005, 41 = A2 =2, k1; = koi = 0.2.

Fig. 3 shows the simulation results of the adaptive fuzzy controller (63). These results show also good tracking
performances with all signals in the closed-loop being bounded.

(c) Results of the third controller: Note that in this controller the sign of the matrix G(x) is assumed unknown.
The design parameters are chosen as follows: yg; = 792 = 200, y1; = 715 = 200, 01 = g2 = 0.1, 41 = Ao = 2,
and kj; = ko; = 0.1. The fuzzy system 02Tlﬁ2(22) has q1, 41, 42, ¢2 as inputs, while 0{1#1(21) has g1, 41, 92, §2, uz as
inputs. For each variable of the inputs of the fuzzy systems, we define three triangular membership functions uniformly
distributed on the interval [—2, 2] for g1, ¢1, g2, and ¢», and [—25, 25] for u;.

Fig. 4 shows the simulation results obtained by using the controller (67) incorporating a Nussbaum function. From
Figs. 4(a) and (b), we can see that the tracking errors are bounded and converge to zero. Fig. 4(c) illustrates that the
control signals are bounded. The boundedness of the fuzzy parameters is illustrated in Fig. 4(d). The variation of the
Nussbaum gain N({) and that of { are shown in Figs. 4(e) and (f), respectively. From these figures, we can see that all
signals are also bounded.

5.2. Example 2

Note that in the previous example the control gain matrix G(x) is symmetric. In this example, we consider an
academic MIMO nonlinear system of which the control gain matrix is not symmetric. The dynamic equations of this
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Fig. 4. Simulation results with the controller 3 (Example 1). (a) Tracking errors of link 1: e (dotted line) and ¢ (solid line). (b) Tracking errors of
link 2: e; (dotted line) and é, (solid line). (¢) Control input signals: u (dotted line) and u, (solid line). (d) Norm of fuzzy parameters: |01 (dotted
line), |0 (solid line). (¢) Evolution of N({). (f) Evolution of {.

MIMO system are given by

X1 = x12,
X12 = x21 — 0.3 sin(x1x12) + x]22 + (3 + cos(x1))uy + (1 + x22] Yup + di(t),
X21 = X22, (78)

X2 = x3 +x11 +x% —ur + (1 + x3)uz + do(t),

Y1 = X11, Y2 = X2.

Let y = [y1, y21", u = [u1,u2]”, x = [x11, x12, x21, x221”, and d(1) = [d1(1), d2(1)]". Then, the academic system
(Eq. (78)) can be expressed as follows:

¥ =Fx)+ Gxu+d@), (79)
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Fig. 5. Simulation results for the controller 1 (Example 2). (a) Tracking errors: e (dotted line) and é1 (solid line). (b) Tracking errors: e (dotted
line) and ¢; (solid line). (c) Control input signals: u| (dotted line) and u3 (solid line). (d) Norm of fuzzy parameters: ||01 | (dotted line), |02 || (solid
line).

where

x21 — 0.3sin(x11x12) + x3, (3 + cos(x11)) (1 +x3))
F(x)= ) ) . G = L
Xy X1+ X1y -1 (1 +x3)

The control objective is to force the system outputs y; and y, to track the sinusoidal desired trajectories y;; = sin(¢)
and ygo = sin(z), respectively. The external disturbances dj(¢) and da(¢) are assumed to be square waves having an
amplitude 1 with a period of 27(s).

In each controller, the structure of the fuzzy systems (i.e. the inputs of the fuzzy systems, the universes of discourse,
the number and the type of the membership functions) is selected similar to that of Example 1. In all simulations, the
initial conditions are selected as: x(0) = [0.5 0 0.5 0], 6;(0) = 0 and 0,(0) = 0.

(a) Results of the first controller: The design parameters used in this simulation are chosen as follows: y¢; = Y9 =
200, 11 =712 =200, 01 =02 =0,02, 41 = A» =2, ky; = ko; = 0.2.

Fig. 5 shows the simulation results obtained using the adaptive controller (39). It can be seen that fairly good tracking
performance is obtained.

(b) Results of the second controller: The values of the design parameters are given by: y5; = 79, = 200, y; =
712 = 200,01 =02 =0,02, 41 = 42 =2, k1; = ko; =0.2.

The simulation results using the adaptive controller (63) are shown in Fig. 6. From these results, it is shown that the
performance of this controller is also satisfactory.



15 15
1 ¢ - 1t
\

05 || { 05}

0} \\\ PR /\ /‘\ N f\/\ /\ /\1,/ g or — ]

-0.5 -0.5
0 5 10 15 20 0 5 10 15 20
time (s) time (s)
c d
15 30
25
10 E
20
5t E 15
|
‘\/ )A /L/\ )\/ 10 | 1
0 r - 1 A o A
- \‘\fo " N N e
| [ L~ O\ —
-5 0
0 5 10 15 20 0 5 10 15 20
time (s) time (s)

Fig. 6. Simulation results for the controller 2 (Example 2). (a) Tracking errors: e (dotted line) and é1 (solid line). (b) Tracking errors: e (dotted
line) and ¢; (solid line). (c) Control input signals: u| (dotted line) and u3 (solid line). (d) Norm of fuzzy parameters: ||01 | (dotted line), |02 || (solid
line).

(c) Results of the third controller: The values of the design parameters are given by: yo; = Yoo = 100, 711 = 712 =
100,61 =02 =0,02, A1 = A, =2, k;; = ko; =0.2.
The simulation results using the adaptive controller (67) are shown in Fig. 7.

5.3. Comparison between the three controllers

In both examples, the results of simulation show clearly that the performances of controllers 1 and 2 are per-
fectly the same. In spite of its average transient behavior, steady-state performances of the third controller are very
good. In fact, the function of Nussbaum amplified the control signal. The rest of this comparison is summarized
in Table 2.

6. Conclusion

In this paper, fuzzy adaptive control schemes for a class of MIMO unknown nonlinear systems with known and
unknown sign of the control gain matrix have been presented. To deal with the unknown control direction, the Nussbaum-
type function has been used. In the designing of the second and third fuzzy adaptive controller, the decomposition
property of the control gain matrix has been exploited. For updating the fuzzy parameters, an adaptation PI law has
been proposed. It has been proven that the proposed control schemes can guarantee the convergence of the tracking
errors to zero and the boundedness of all involved signals in the closed-loop system. Simulation results have shown the
effectiveness of the proposed controllers.
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Fig. 7. Simulation results with the controller 3 (Example 2). (a) Tracking errors: e (dotted line) and ¢ (solid line). (b) Tracking errors: e (dotted
line) and ¢; (solid line). (c) Control input signals: u{ (dotted line) and u5 (solid line). (d) Norm of fuzzy parameters: ||01 | (dotted line), ||0> || (solid
line). (¢) Evolution of N({). (f) Evolution of (.

Table 2
Comparison between the three controllers.

Controller 1 Controller 2 Controller 3
Assumption made on the sign of G(x) Positive-definite but with Signs of its leading principal Positive-definite or
known sign minors are known negative-definite but
with unknown sign
Symmetry of the G(x) Necessary Not necessary Not necessary
Tracking performances in simulation results Good Good Very good
The type of the adaptive scheme Direct Indirect Indirect
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