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THE UNCOVERED SET AND INDIFFERENCE IN

SPATIAL MODELS:

A FUZZY SET APPROACH

1. Cycling in Fuzzy Spatial Models

In spite of substantial criticism [1], a great number of spatial models are

grounded in the rational choice assumption that political actors are self-interested,

utility maximizers possessing Euclidean preferences over alternatives. Were it not

for the substantial incongruence between the predictions made by these models

and empirical reality, criticism of the assumptions behind the models might be

more easily dismissed. The most well-known incongruence is the majority cycling

problem. McKelvey [2] found that in the absence of Plott�s [3] radial symme-

try, outcomes of majority rule games under assumptions of sincere voting should

lead anywhere. The problem is that there is little empirical evidence of cycling in

political life [4], a fact that has led many to question the validity of spatial models.

In more formal terms, McKelvey argues that there is no core, or set of majority

preferred outcomes. A core is de�ned as

M(R;X) = fx 2 X j 8y 2 X; ~yPxg; (1)

where X is the set of alternatives, R is a binary relation, and R is complete. P is

the strict preference relation associated with R. Let N denote the set of players
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and let n denote the number of players. Let R denote the set of all binary relations

on X that are re�exive, complete, and transitive. Let Rn denote the set of all n-

tuples � = (R1; :::; Rn), where Ri belongs to R, i = 1; :::; n. Let f be a majority

aggregation rule on Rn. We suppress the notation f(�) and simply write R. Then

P denotes the strict preference relation associated with f(�).

We will refer to a core as a maximal set under majority rule. We de�ne

majority rule as

x P y � jfi j x Pi ygj >
n

2
: (2)

If x defeats y under majority rule, then x P y � jfi j x Pi ygj > n
2 > jfj j y Pj xgj.

In the absence of a majority rule maximal set, there is no equilibrium, majority

cycling results, and spatial models can not predict outcomes.

An approach to resolving the majority cycling problem, that has been long

known, but remains largely under-developed, is the introduction of thick indi¤er-

ence to models [5]. Several studies have found that the probability of a majority

rule maximal set increases when actors are indi¤erent over regions of the policy

space [6,7,8]. Much of this work makes use of the epsilon-core. Until the distance

between two alternatives exceeds some arbitrary distance �, actors are indi¤erent

in a choice between them [9,10]. Actors are essentially indi¤erent to alternatives

within radius � from one another, in a region de�ned as the ��core.

A recent addition to the literature on indi¤erence o¤ers a fuzzy set theory ap-
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proach to spatial models [11]. The fuzzy approach not only permits the modeling

of a substantial degree of indi¤erence, it also thickens the line that de�nes a player�s

win-circle. Furthermore, in contrast to the ��core concept, it models uniform in-

di¤erence over a �xed and discrete region of the policy space. Nonetheless, despite

predicting a majority rule maximal set under a considerable number of conditions,

fuzzy spatial models do not guarantee a stable maximal rule outcome in all cases

[11]. This raises the issue of how to arrive at a prediction set when spatial models

do not generate a maximal set.

One strand of the public choice literature argues that, in the absence of a

majority rule maximal set, political actors should choose an alternative in the

uncovered set, the set of alternatives that sophisticated voters would reach by

some amendment agenda [12,13,14]. The speci�c alternative chosen depends on

the amendment order. This paper develops a fuzzy uncovered set. We follow

the lead in [11] and adopt discrete fuzzy numbers to represent the preferences of

political actors. We demonstrate that with one relatively mild exception, the

fuzzy uncovered set comprises an improper subset of the Pareto set.

2. Fuzzy Spatial Models

Fuzzy set spatial models permit us to model a substantial degree of indi¤erence

in political actors�preferences over policy options. Each element x in the universe

of policy alternativesX over which political players are making choices are assigned
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a value on the interval [0; 1]. The assigned value indicates the degree to which a

political actor considers the given alternative to be an ideal policy. Formally, each

element x has a degree of set inclusion, eF (x), in the set of ideal preferences that is
speci�ed by a function eF [15]. For � in [0; 1], the sets F� = fx 2 X j F (x) � �g

are referred to as alpha-levels (��levels).

Individual indi¤erence is captured by the ��level concept. A political player

is indi¤erent between all alternatives at the same ��level, essentially treating

them as equivalents. Alpha-levels may take any value, which permits modelers

to distinguish between actors who are more or less discerning in their preferences.

The conventional approach locks us into modeling players who have the capac-

ity to make in�nitesimally small distinctions between alternatives. While a fuzzy

approach can accommodate such an assumption by assigning ��levels along the

continuum from 0 to 1, individual preferences over policies are likely to be sub-

stantially less discriminating. Following the lead in [11], we model such coarse-

grained distinctions using a �nite set of discrete ��levels T = f0; :25; :5; :75; 1g.

This Likert-like scale has an intuitive appeal to it. The set of ideal policy pref-

erences for an actor are assigned an ��level of 1 (full membership in the set of

ideal policies). All remaining policies are scored on the degree to which they come

close to being ideal. Those considered almost ideal are assigned :75 (three-fourths

membership in the set of ideal policies), those considered �neither ideal nor not

ideal�are scored :50 (one-half membership in the set of ideal policies), those �less
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ideal than ideal�are scored :25 (one-quarter membership in the set of ideal poli-

cies), and those that are �not ideal�to any degree 0 (no membership in the set of

ideal policies).

Since all alternatives at the same ��level are equally preferred to one another,

a player is indi¤erent to all alternatives at a given ��level. Thus, fuzzy spatial

models map individual preferences as bounded regions (de�ned by each ��level),

within which a political player can not di¤erentiate among policy positions.

Consider �gure 1, which maps the preferences of three players N = fA;B;Cg

at � = 1; :75; :50; and :25 in two-dimensional space. The inner-most regions

represent � = 1. The intersection of the ��levels for the three players (three-

tuples) are noted in parentheses, ( eA(x); eB(X); eC(x)). If a maximal set exists

under majority rule, it falls in one of the intersections of a majority of players�

��levels. The set of options that are majority preferred (the winset) to each

numbered alternative are noted. All alternatives are majority preferred by at

least one other alternative. Hence, there is no majority rule maximal set in the

situation de�ned by these sets of preferences.

[Place Figure 1 here.]

The potential for cycling in fuzzy spatial models leaves open the question of

how to predict outcomes in the absence of a majority rule maximal set. This paper

develops a fuzzy uncovered set as an alternative prediction set when no majority
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rule maximal set exists. In what follows, we demonstrate that with one exception

our fuzzy uncovered set is an improper subset of the Pareto set (Theorem 10). As

it turns out, the exception is quite mild, since it requires that no alternative is

majority preferred to any other.

3. A De�nition of Covering Given Fuzzy Preferences

The uncovered set is the set of sophisticated voting outcomes in an amendment

agenda. Miller [12] originally examined the covering relation and the uncovered

set in majority preference tournaments (amendment agendas) that result when an

odd number of voters have strong preferences over discrete alternatives. Formally,

the uncovered set is de�ned as

UC(X) = fx 2 X j ~y C x 8y 2 Xg; (3)

where C is a covering relation. Provided that C is de�ned in a manner that

makes it both asymmetric and acyclic (as in the tournament case), UC(X) is

never empty. Miller [12,16] originally assumed that players would exercise strict

preference over all alternatives. He de�ned he covering relation is de�ned as

x C y �W�1(y) �W�1(x) ; (4)

where W�1(x) is the set of all alternatives to which x is strictly preferred by a

majority. W�1(x) is everything that x beats. W�1(x) is called the inverse winset
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of x. Formally, W�1(x) = fy 2 X j xPyg. In words, x covers y if and only if

every point beaten by y is also beaten by x.

A number of alternative de�nitions of the covering relations C have subse-

quently been proposed. In the conventional approach to spatial modeling, in-

di¤erence among an odd number of players is �thin.� (Indi¤erence is limited to

the indi¤erence curves that describe individual preference.) Under conditions of

thin indi¤erence, all of the de�nitions of the covering relation in the literature are

equivalent. However, Penn [17] and Miller [18] have noted that in any context

that allows ties, these equivalences break down,

In the case of fuzzy spatial models, both individual indi¤erence and collective

indi¤erence (tie sets) are �thick.� Hence, the equivalence relations among the

various proposed de�nitions of the covering relation do not hold; and the de�nitions

of the covering relation return di¤ering results [17,19].

Several types of collective indi¤erence are possible in the fuzzy approach. Con-

sider the three-player case. The three-tuple representing the alternative lying at

the intersection of the preferences (��levels) of three players at (:75; :5; :25) is not

majority preferred to that at (:75; :5; :0). In this case, players one and two would

select either alternative since each of the players in the coalition views the policies

as essentially the same (in terms of their respective preferences). The second

type of indi¤erence that can occur is when the same coalition members prefer two

di¤erent points, but each member of the coalition prefers the point at a di¤erent
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��level. Take for instance, (:75; :5; :25) and (:5; :75; :25). Here we have a case

in which the same coalition is indi¤erent between two alternatives, but player one

prefers the �rst to the second, but player two prefers the second to the �rst. A

third type of indi¤erence occurs when a single player has the ability to form more

than one coalition that would allow her to choose between alternatives that she

prefers at the same ��level. Consider (:75; :5; :25) and (:25; :5; :75). Player two

has the option of forming a coalition with either player one or three. It is im-

possible to know the choice she will make since she is indi¤erent between the two

alternatives. A fourth type of indi¤erence is more easily resolvable. Suppose

players one and two have a choice between (:75; :5; :0) and (:75; :25; :0). While

the two-player coalition can choose either over the objections of the third player,

if player two is willing to hold out, the �rst alternative will be selected.

Collective indi¤erence leaves open the question of an appropriate de�nition of

the covering relation given fuzzy preferences. Thus, we must enter unexplored

territory to come with a de�nition of covering that seems most appropriate in the

fuzzy context.

In what follows, we identify an appropriate de�nition for the covering relation-

ship when indi¤erence over alternatives is introduced. We proceed by reconsid-

ering the set of plausible outcomes in sophisticated voting agenda. We conclude

by formally characterizing the fuzzy uncovered set. We are guided in our task

by Miller [12] and Shepsle and Weingast [13]. The latter formalize a process for
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determining the sophisticated outcome in an amendment agenda. Their process

focuses on levels in the voting order rather than the decision nodes in the voting

tree representing an amendment agenda. Formally, a voting tree is �an amend-

ment agenda if there exists an ordering � : f1; :::; rg ! X such that the majority

voting sequence is (�(1); �(2); :::; �(r)), where �(1) is �rst voted against �(2), the

winner against �(3), etc.�(Austen-Smith and Banks 2005, p. 132).

We demonstrate Shepsle and Weingast�s approach as follows. Suppose that we

have a cycle set: (:25; :25; :5) P (:75; 0; :25) P (:5; 1; 0) P (:25; :75; 1) P (1; :5; :75).

Let the agenda order A be:

A = f(:25; :25; :5); (1; :5; :75); (:5; 1; 0); (:25; :75; 1); (:75; 0; :25)g:

Any alternative chosen by sophisticated players must be preferred by a majority

to the �nal alternative in the voting order. Those that fail to do so, can not be the

sophisticated outcome. Furthermore, the sophisticated outcome must be majority

preferred to all alternatives that are majority preferred at any level of the game.

Following the Shepsle and Weingast procedure, the step-by-step results are:
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�(5) = (:75; 0; :25)

�(4) = (:25; :75; 1), (:25; :75; 1)P (:75; 0; :25)

�(3) = (:25; :75; 1), (:5; :1; 0)P (:25; 75; 1) but (:75; 0; :25)P (:5; 1; 0)

�(2) = (:25; :75; 1), (1; :5; :75)P (:75; 0; :25) but (:25; :75; 1)P (1; :5; :75)

�(1) = (:25; :75; 1), (:25; :25; :5)P (:75; 0; :25) but (:25; :75; 1)P (:25; :25; :5)

By re�exivity, the �nal alternative is at least as good as itself. Hence, in the

construction of the backward induction process that is common to determining

the sophisticated winner in a voting game, (:75; 0; :25) is trivially the winner at

the level �(5). At the next level, (:25; :75; 1) is majority preferred to (:75; 0; :25).

Hence, it is the alternative at level �(4). While (:5; 1; 0) defeats (:25; :75; 1) at

level �(4), it is defeated by (:75; 0; :25) at level �(5). Thus, (:25; :75; 1) carries

over as the winner at level �(3). By the same reasoning, (:25; :75; 1) carries over

as the winner at levels �(2) and �(1). Since it is the winner at level �(1), it is

the sophisticated majority winner.

While this particular voting order appears to suggest that Shepsle and Wein-

gast�s [13] method can be used with fuzzy preferences, the problem induced by

indi¤erence comes into full view if we consider the voting agenda

A = f(:75; :25; 0); (:25; 0; :75); (0; :5; :75); (:75; 0; :5); (:75; :5; 0)g:

The results through the �rst three levels are:
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�(5) = (:75; :5; 0)

�(4) = outcome uncertain,(:75; :5; 0)I(:75; 0; :5)

�(3) = outcome uncertain, (0; :5; :75; )P (:75; :0; :5) but (0; :5; :75)I(:75; :5; 0)

In this case, (:75; :5; 0) is trivially majority preferred at level �(5), but it is tied

(it is indi¤erent, as noted by I) with (:75; 0; :5) at level �(4). Furthermore, while

(0; :5; :75) defeats (:75; 0; :5) by a majority, it is indi¤erent to (:75; :5; 0).

We are faced with two issues: (1) how to proceed when an alternative defeats

at least one alternative majority preferred at previous levels but ties all others and

(2) how to proceed when an alternative ties all alternatives majority preferred at

previous levels? Issue (1) is the easiest of the two challenges to deal with. An

alternative that defeats at least one alternative more than a successor in the voting

order is superior to the successor. Therefore, we should designate it the winner

at the given level. However, in the case of issue (2), since neither alternative is

superior in this sense, we are compelled to accept having to list both at the given

level. This forces us to compare subsequent predecessors with both alternatives.

The guiding principle is that the sophisticated outcome is one that majority defeats

one or more majority preferred successor and ties all others.

Using this procedure, we get,
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�(5) = (:75; :5; 0)

�(4) = (:75; :5; 0) & (:75; 0; :5), (:75; :5; 0)I(:75; 0; :5)

�(3) = (0; :5; :75), (0; :5; :75; )P (:75; 0; :5) and (0; :5; :75)I(:75; :5; 0)

�(2) = (0; :5; :75), (:25; 0; :75)I(0; :5; :75); (:25; 0; :75)I(:75; 0; :5),but (:75; :5; 0)P (:25; 0; :75)

�(1) = (0; :5; :75), (:75; :25; 0)I(:75; :5; 0); (:75; :25; 0)I(:75; 0; :5),but (0; :5; :75)P (:75; :25; 0)

.

The alternative represented by the preference three-tuple (0; :5; :75) is the so-

phisticated outcome given this amendment agenda, and it is an element in the

uncovered set.

The procedure that we followed is de�ned by the following de�nition of cover-

ing,

x C y () xRy&W�1(y) �W�1(x) =) x C 03 y&~y C
0
3 x: (5)

In words, x is at least tied with y, x beats everything that y beats, and x beats

something (perhaps y itself) that y fails to beat. Bordes [20] labels the uncovered

set that results from this de�nition the FD set. It di¤ers from any of the three

de�nitions considered by Penn [17], all of which imply that x is strictly preferred

to y, xPy. Henceforth, we use this de�nition of covering, which we formally de�ne

in De�nition 10.

In what follows, we give formal consideration to UC(X). Our major theorem,

Theorem 10, is that with one mild exception, any element in UC(X) is in the
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Pareto set. Formally, the Pareto set is [21, p. 7]

PSN (R) = fx 2 X j 8y 6= x; P (y; x;R) 6= ; =) P (x; y;R) 6= ;g: (6)

4. The Uncovered Set with Fuzzy Preferences

Let N denote the set of players and X denote the set of alternatives. We

assume that X is a subset of a universe U of interest. Let R denote the set

of all binary relations on X which are re�exive, complete and transitive. Let

Rn = f� j � = (R1; :::; Rn); Ri 2 R; i = 1; :::; ng; where jN j = n: Let � be a

partial order on U: Suppose that � satis�es the following properties:

(1) 8x; y 2 U; x � y implies 8i 2 N; yRix;

(2) 8x; y; z 2 U;8i 2 N;x � y and xRiz implies yRiz;

(3) 8x; y; z 2 U;8i 2 N;x � y and xPiz implies yPiz;

(4) 8x; y 2 U; x < y implies 9i 2 N such that yPix;

(5) 8x; y; z 2 U;8i 2 N;x � y and zRiy implies zRix;

(6) 8x; y 2 U; x and y incomparable under � implies 9i 2 N such that xPiy

implies9j 2 N such that yPjx:

De�nition 1 De�ne hi : P(U) ! P(U) by 8S 2 P(U); hSi = fx 2 U j 9s 2

S; x � sg.

Proposition 2 Let hi : P(U) ! P(U) be de�ned as above. Then the following

conditions hold.
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1. 8S 2 P(U); S � hSi;

2. 8S1; S2 2 P(U); S1 � S2 implies hS1i � hS2i;

3. 8S 2 P(U); hSi = hhSii;

4. 8S 2 P(U); hSi = [s2Shfsgi;

5. 8S 2 P(U);8x; y 2 X;x 2 hS [ fygi and x =2 hSi implies x 2 hfygi:

Proof. (1) Let s 2 S: Then s � s and so s 2 hSi: Thus S � hSi:

(2) Let x 2 hS1i: Then there exists s 2 S1 such that x � s: Since s 2 S2; x 2

hS2i:

(3) By (1), hSi � hhSii: Let x 2 hhSii: Then there exists y 2 hSi such that

x � y: There exists s 2 S such that y � s: Since � is transitive, x � s: Thus

x 2 hSi: Hence hhSii � hSi:

(4) For all s 2 S; hfsgi � hSi by (2). Thus [s2Shfsgi � hSi: Let x 2 hSi: Then

there exists s 2 S such that x � s: Thus x 2 hfsgi and so x 2 [s2Shfsgi: Hence

hSi � [s2Shfsgi:

(5) Suppose x 2 hS [ fygi and x =2 hSi: Then there does not exist s 2 S such

that x � s: Hence x � y: Thus x 2 hfygi:

De�nition 3 MR = fx 2 X j @y 2 X;x < yg:

Proposition 4 MR = PSN (R):
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Proof. Suppose x 2MR: Let y 2 X: Suppose 9i 2 N such that yPix: Now there

does not exist y 2 X such that x < y: Thus 8y 2 X; either y � x or x and y are

not comparable. Since yPix; y � x is impossible else xRiy8i 2 N by (1). Hence

x and y are incomparable under � : Thus 9j 2 N such that xPjy by (5). Hence

x 2 PSN (R): Thus MR � PSN (R):

Suppose x 2 PSN (R): Suppose there exists y 2 X such that x < y: Then

9i 2 N such that yPix: Since x 2 PSN (R); there exists j 2 N such that xPjy:

Thus x < y is impossible. Hence x 2MR: Therefore PSN (R) �MR:

Corollary 5 Let x 2 X:

(1) Suppose 8y 2 X;x � y implies x = y: Then x 2 PSN (R).

(2) If x =2 PSN (R); then there exists y 2 PSN (R) such that x < y.

Proof. (1) Clearly x 2MR; but MR = PSN (R):

(2) Since x =2 PSN (R); x =2 MR: Thus there exists y 2 X such that x < y: Let y

be the largest such element. Then y 2MR = RSN (R):

Proposition 6 hXi = hPSN (R)i.

Proof. Clearly, PSN (R) � X: Thus hPSN (R)i � hXi: Let x 2 X: If x =2

hPSN (R)i; then x =2 PSN (R) and so by (2) of Corollary 5, there exists y 2

PSN (R) such that x < y: Thus x 2 hfygi � hPSN (R)i: Hence X � hPSN (R)i

and so hXi � hPSN (R)i:

Unless otherwise stated, we assume that hPSN (R)i denotes the set of alter-
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natives. In other words, there is an alternative for every possible n�tuple of

preferences descending from the Pareto set.

Let T = f0; :25; :5; :75; 1g. Let X � Tn and let Jn
2
= fea 2 Tn j ai 2 f0; 1g; i =

1; :::; n; gjfi j ai = 0gj � n=2 and 9j 2 N such that ai = 1g. In the following

result we use the notation [[]] to denote the greatest integer function.

Proposition 7 Let x; y 2 X: If xCy; then either x > y or y 2 hJn
2
i:

Proof. Suppose x � y: Then clearly @w 2 X such that xPw and not yPw;

contradiction since xCy: Thus either x > y or x and y are not comparable with

respect to � : Suppose x and y are not comparable w. r. t. � : Then 9i; j 2 N

such that xi > yi and xj < yj : Since xCy; xRy. Thus not yPx: Hence strictly

fewer that [[n2 ]]+1 of the yi are strictly greater then the corresponding xi: There is

no loss in generality in assuming y1 � x1; :::; yr � xr and yr+1 > xr+1; :::; yn > xn;

where n�r < [[n2 ]]+1: Suppose y1 = ::: = ys�1 = 0 for s � 1: (The case s = 1 says

no yi = 0:) We show s� 1 � n=2: Assume s� 1 < n=2: Then n� s+1 > n=2: Let

x = (x1; :::; xn) and y = (y1; :::; yn): Let t be such that r�t�s+1+n�r = [[n2 ]]+1:

Now let y0s; :::; y
0
r�t be such that ys > y

0
s � 0; :::; yr�t > y0r�t � 0: Let

z = (x1; :::; xs�1;
r�t�s+1
y0s; :::; y

0
r�t;

t
xr�t+1; :::; xr;xr+1; :::; xn):
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Now n� t� s+ 1 = [[n2 ]] + 1: Thus

t+ s� 1 =

8>><>>:
[[n2 ]]� 1 if n is even,

[[n2 ]] if n is odd.

Now t + s � 1 is the number of components xi is strictly greater than the corre-

sponding components of z: Thus not xPz: However, r� t�s+1+n�r = [[n2 ]]+1

(see above) is the number of components of y that are strictly greater than the

corresponding components of z: Thus yPz; contradicting the hypothesis that xCy:

Thus s� 1 � n=2: Hence y 2 hJn
2
i:

Proposition 8 Let x; y 2 X: If x > y; then either (9w 2 X such that xPw and

not yPw) or x 2 hJn
2
i:

Proof. Suppose x and y di¤er in [[n2 ]] + 1 or more components, where [[]] denotes

the greatest integer function. Then let w = y: Suppose x and y di¤er in fewer than

[[n2 ]]+1 components. There is no loss in generality in assuming that x = (x1; :::; xn)

and y = (y1; :::; yn); where x1 = y1; :::; xr = yr; xr+1 > yr+1; :::; xn > yn; and

n� r � [[n2 ]]: Thus

r � n� [[n
2
]] =

8>><>>:
n
2 if n is even,

[[n2 ]] + 1 if n is odd.

Suppose x =2 hJn
2
i: Then fewer than n

2 of the xi = 0; say x1 = ::: = xs = 0; where
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s < n
2 : Thus s < r: Let t be such that t� s+ n� r = [[

n
2 ]] + 1: Let

w = (x1; :::; xs;
t�s

ws+1; :::; wt;
r�t

yt+1; :::; yr;
n�r

yr+1; :::; yn);

where xs+1 > ws+1 � 0; :::; xt > wt � 0: Then t� s+ n� r of the components of

x are strictly greater than the corresponding components of w: Thus xPw: Now

t � s components of y are greater than the corresponding components of w and

t� s � [[n2 ]]: Hence not yPw:

Proposition 9 Let x 2 X: Suppose x is C-uncovered. Then either x 2 PSN (R)

or x 2 hJn
2
i.

Proof. Suppose x =2 PSN (R): Then y 2 X such that yi > xi for some i 2 N

and @j 2 N such that xj > yj ; where x = (x1; :::; xn) and (y1; :::; yn): Thus

y > x: Hence yRx: Also 8z 2 X;xPz ) yPz: We may assume without loss of

generality that x1 � y1; :::; xr � yr; xr+1 < yr+1; :::; xn < yn and 1 � n � r �

[[n2 ]]: If for n=2 � s � r; x1 = ::: = xs = 0; then x 2 hJn
2
i since r � n=2

(r � n � [[n2 ]] =

8>><>>:
n
2 if n is even,

[[n2 ]] + 1 if n is odd.
): Suppose x1 = ::: = xs = 0; where

s < n=2: Then 9x0s+1; :::; x0r such that 0 � x0i < xii = s + 1; :::; r: Let w =

(0; :::; 0; x0s+1; :::; x
0
r; xr+1; :::; xn): Then yPw since n � s of the components of y

are strictly greater than the corresponding components of w and n � s > n=2

since s < n=2: Now not xPw since r � s of the components of x are greater than
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the corresponding components of w and r � s � n=2 since n=2 � s � r whence

n� s � n=2: Thus yCx; contradicting the hypothesis that x is C-uncovered.

Theorem 10 Suppose x =2 hJn
2
i. Let x 2 X. If x is C-uncovered, then x 2

PSN (R).

Proof. Suppose x =2 PSN (R): Then x 2 hJn
2
i by proposition 6. Hence,W�1(x) =

;. Let y 2 X�hJn
2
i. ThenW�1(x) �W�1(y) since (0; :::; 0) 2W�1(y). Clearly

yRx. Thus yCx, a contradiction of the fact that x is C-uncovered. Hence,

x 2 PSN (R).

Note that if x 2 hJn
2
i, then every element of X is C-uncovered.

In words, all elements in the uncovered set are either in the Pareto set or they

are in a special set of alternatives, hJn
2
i. At �rst blush, the latter possibility

appears to put a severe constraint on the ability of the de�nition of the covering

relationship developed in this paper to result in a reasonably constructed uncovered

set. Closer scrutiny, reveals the exception to be relatively mild in its e¤ect.

Jn
2
comprises all those alternatives that less than half of the players consider to

be perfectly in the set of ideal points (� = 1) and all remaining players consider

entirely not in the set of ideal points (� = 0). hJn
2
i is the set of all alternatives

that descend directly from those in Jn
2
. By de�nition, none of the alternatives

in either Jn
2
or hJn

2
i can defeat any alternative by majority vote. Hence, they

can not cover any other alternative. Moreover, if there is even one alternative for
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which a majority of players express the slightest degree of preference (that is, a

majority prefer the alternative at � > 0), then every alternative in hJn
2
i is covered

by that alternative and by de�nition can not be in the uncovered set. While

the alternative may tie elements in hJn
2
i, it can defeat all alternatives lying in

the region outside of the support for all players preferences (that is, all players

preferences for these alternatives are � = 0). Hence, it covers elements in hJn
2
i.

Thus, elements in hJn
2
i are uncovered if and only if hJn

2
i are the only elements in

X. That is, no alternatives are supported by a majority at any ��level.

5. Conclusions and Some Final Considerations

Existing de�nitions of the covering relation return di¤erent uncovered sets un-

der thick indi¤erence. Fuzzy preferences are thick. Thus, we have developed an

appropriate de�nition of the covering relation for fuzzy preferences. Furthermore,

we have demonstrated that in the absence of a maximal set, the resulting uncov-

ered set is contained in the Pareto set. The only exception are those elements

that are not strictly preferred by majority rule to at least one other alternative.

Thus, as long as the entire set of alternatives is not con�ned to those elements,

then all alternatives in the uncovered set are also in the Pareto set.

We return to the representation of the preferences of three players in �gure 1 at

the beginning of this paper. The maximal set is empty. There are six alternatives

in the Pareto set:
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PSN (R) = f(1; 0; 0); (0; 1; 0); (0; 0; 1); (:5; :25; 0); (:25; 0; :5); (0; :5; :25)g:

The �rst three alternatives are elements of hJn
2
i and are not strictly preferred

to any other alternatives. Given the results of this paper, the remaining three

alternatives comprise the unique uncovered set:

UC(X) = f(:5; :25; 0); (:25; 0; :5); (0; :5; :25)g:

The model predicts that strategic players in an agenda amendment will pick one

of these three alternatives.

However, our conclusion rests on the assumption that hPSN (R)i denotes the set

of alternatives. In other words, there is an alternative for every possible n�tuple

of preferences descending from the Pareto set. As it turns out, UC(X) can result

in a non-Pareto e¢ cient outcome when immediate predecessors of elements of the

Pareto set PSN (R) are not contained in X, the set of alternatives, a situation

we label �vulnerability to holes.� We give consideration to this possibility before

concluding.

De�nition 11 Let x; y 2 X: Suppose xCy: Let Wx;y = fw 2 X j xPw and not

yPw; y 6= w 6= (0; 0; 0)g: Then (x; y) is said to be vulnerable to holes if not xCy
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in X nWx;y:

Proposition 12 Let x; y 2 X: Suppose xCy: Then x =2 hI1i:

Proof. Suppose x 2 hI1i: Then there does not exist w 2 X such that xPw: Hence

not xCy:

Proposition 13 Let x; y 2 X: Suppose xCy: Then (x; y) is vulnerable to holes if

and only if y =2 hI1i and not xPy:

Proof. Suppose (x; y) is vulnerable to holes. Suppose y 2 hI1i: Then xCy in

XnWx;y since (0; 0; 0) 2Wx;y and not yP (0; 0; 0); where the latter condition holds

since x =2 hI1i by the previous Proposition. It is not the case that xPy else xPy

in Wx:y since y 2Wx;y and not yPy; i.e., y is a w:

Conversely, suppose y =2 hI1i and not xPy: Suppose xCy in Wx;y: Then there

exists w 2 X nWx;y such that xPw and not yPw: Hence either w = (0; 0; 0) or

w = y: Suppose w = (0; 0; 0): Since not yPw; y 2 hI1i; a contradiction. Suppose

w = y: Then xPy; a contradiction. Hence not xCy in XnWx;y:

Theorem 14 Let x; y 2 X: Suppose xCy: Suppose also that (x; y) is vulnerable

to holes. Then 8w 2Wx;y; the following conditions hold:

(1) If x � w; then there exists a permutation � of f1; 2; 3g such that x�(1) =

y�(1) > w�(1); w�(2) > x�(2) = y�(2); and x�(3) > w�(3) � y�(3):

(2) If x > w; then (a) there exists a permutation � of f1; 2; 3g such that x�(1) =

y�(1) > w�(1); x�(2) = y�(2) = w�(2); and x�(3) > y�(3) = w�(3) or (b) there exists
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a component of w strictly greater than the corresponding component of y and there

exists a permutation � of f1; 2; 3g such that x�(1) = y�(1) = w�(1); x�(2) = y�(2) >

w�(2); and x�(3) > w�(3) > y�(3):

Conversely, if w 2 X and satis�es either (1) or (2); then w 2Wx;y:

Proof. Let w 2 Wx;y: Then x 6= w since xPw: Since y =2 hI1i; x > y by Propo-

sition 4. Since xRy and not xPy; two of the components of x equal the two

corresponding components of y and the remaining component of x is greater than

the corresponding component of y:

Suppose x � w: Since xPw; two of the components of x are strictly greater than

the corresponding components of w and the remaining component of w is strictly

greater then the corresponding component of x: For simplicity and without loss of

generality, we can write either (i)x1 = y1 > w1; x2 = y2 > w2 and w3 > x3 > y3:

or (ii)x1 = y1 > w1; w2 > x2 = y2; and x3 > y3; x3 > w3: However (i) does not

hold else yPw: Suppose (ii) holds. If y3 > w3; then yPw; a contradiction. Thus

w3 � y3: Hence (1) holds.

Suppose x > w: Then as in the previous paragraph, we can write without loss

of generality, x1 = y1 > w1; x2 = y2 � w2; and either (i) y3 � w3 or (ii)w3 > y3:

Suppose (i) holds. Then x1 = y1 > w1 and since not yPw; x2 = y2 = w2 and

x3 > y3 = w3: In this case, (2) holds. Suppose (ii) holds. Then x1 = y1 =

w1; x2 = y2 > w2; and x3 > w3 > y3 since not yPw: In this case, (2) holds.

For the converse, the only possible way w = (0; 0; 0) is if (2a) holds, but then
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y 2 hI1i; a contradiction. Clearly w 6= y: It is easily veri�ed that xPw and not

yPw:

The situation in which x � w occurs is illustrated in �gure 2. In such cases, the

��levels of a majority of players�preferences are identical over the policy space.

[Place Figure 2 here.]

Figure 2 depicts holes where x � w for some w 2Wx;y. Players A and B have

identical preferences. Let x = (:25; :25; :25) and let y = (:25; :25; 0). It follows

that

Wx;y = f(1; 0; 0); (0; 1; 0); (:75; 0; 0); (0; :75; 0); (:5; 0; 0); (0; :5; 0); (:25; 0; 0); (0; 0; :25)g:

Wx;y 2 X, and x does not cover y.

The situation in which x > w occurs is illustrated in �gure 3. In such cases,

the ��levels of one or more of the players�preferences encompass the same region

for that player over at least part of the policy space.

[Place Figure 3 here.]

Figure 3 illustrates holes where x > w for 8w 2 Wx;y. The borders of the

��levels at :25 and :5 for player A are congruent at important segments of the

policy space. Let x = (:5; :75; 0) and let y = (:25; :75; 0). It follows that
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Wx;y = f(:25; :5; 0); (:25; :25; 0); (:25; 0; 0)g:

Wx;y 2 X, and x does not cover y.

We have demonstrated both phenomena using a three-player game. While the

simplicity of the three-player game commends it for depicting these situations, it

also greatly overstates the likelihood of the occurrence of either. The situation

where x � w is a particularly extraordinarily unique circumstance that is not likely

to occur While the situation where x > w is more likely, the probability of its

occurrence will dramatically decrease as the number of players increases. With

T 5, a three player game has 125 possible alternatives, a four player game has 625

alternatives, and a �ve player game has 3; 125 alternatives. With a high enough

N , thousands of alternatives with the right preferences descending from the Pareto

set would need to be missing.

We conclude by noting that we know of no sustaining argument for a majority

coalition to choose a Pareto de�cient alternative. Therefore, even in those rare

situations in which a non-Pareto element is identi�ed in the UC(X) of a fuzzy

model, we would be inclined to exclude it from consideration.
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Figure 1: An Empty Maximal Set in a Fuzzy Spatial Model
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A    B

C

(1, 1, 0)

(.75, .75, 0)

(.5, .5, 0)

(.25, .25, 0)

(.25, .25, .25)

(0, 0, 1)

(0, 0, .75)

(0, 0, .5)

(0, 0, .25)

Figure 2: Players A and B with identical policy preferences.
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Figure 3: Player A with congruent preferences at � = :25 and :5
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