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Fuzzy Uniformities on Function Spaces
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Abstract. We study several uniformities on a function space
and show that the fuzzy topology associated with the fuzzy unifor-
mity of uniform convergence is jointly fuzzy continuous on Cf (X, Y ) ,
the collection of all fuzzy continuous functions from a fuzzy topologi-
cal space X into a fuzzy uniform space Y . We define fuzzy uniformity
of uniform convergence on starplus-compacta and show that its corre-
sponding fuzzy topology is the starplus-compact open fuzzy topology.
Moreover, we introduce the notion of fuzzy equicontinuity and fuzzy
uniform equicontinuity on fuzzy subsets of a function space and study
their properties.
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1. Introduction

The notion of a uniform space was introduced by Andre Weil [18] in 1937.
The first systematic exposition of the theory of uniform spaces was given by
Bourbaki [4] in 1940. Weil elaborated the topology associated with a uni-
formity and proved that a topological space is uniformizable if and only if
it is completely regular. He extended the notion of uniform continuity and
uniform isomorphisms to the framework of uniform spaces and obtained the
uniform space version of Alexandroff-Uryshon metrization theorem that a uni-
form space is metrizable if and only if its uniformity has a countable base. The
concept of function space was evolved around the close of the nineteenth cen-
tury and the study of function spaces began with the work of Ascoli [3], Arzelà
[2] and Hadamard [8]. The uniformity of pointwise convergence and uniform
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convergence were first defined and studied by Fox [7]. The term function space
is introduced much earlier in connection with questions of a topological na-
ture about sets of functions. The study of topologies on function spaces is an
active area of research and, besides their multifaceted applications, forms a
well-established and sound body of knowledge.
The study of useful fuzzy topologies and uniformities on function spaces, be-
sides their intrinsic interest, is important from applications viewpoint. The
first effort in this direction was made by Peng [17] in 1984. Subsequently,
Alderton [1] studied the problem from categorical viewpoint and utilized the
well-developed theory of cartesian closedness of monotopological categories to
the fuzzy topologies on a function space. Burton [6] defined analogues of the
uniformities of pointwise convergence and uniform convergence and obtained
conditions for completeness and compactness of fuzzy subsets of a function
space. Jäger considered fuzzy uniform convergence and equicontinuity in [9].
In [13], we defined three different fuzzy topologies on a function space, which
are analogues of the topology of pointwise convergence, compact-open topology
and the topology of joint continuity in general topology.
In this paper, we elaborate on the pointwise fuzzy uniformity, fuzzy unifor-
mity of uniform convergence and fuzzy uniformity of uniform convergence on
starplus compacta and their associated fuzzy topologies on a function space. It
turns out that the fuzzy topology associated with the fuzzy uniformity of uni-
form convergence is jointly continuous; and that the fuzzy topology of uniform
convergence on starplus compacta is the starplus-compact open fuzzy topology
[13]. Further, we study the notion of fuzzy equicontinuity on fuzzy subsets of
a family of functions from a fts/fuzzy uniform space to a fuzzy uniform space.

2. Preliminaries

Throughout the paper the closed unit interval [0, 1] will be denoted by I. The
symbols and I0 and I1 will stand for the intervals (0, 1] and [0, 1), respectively.

Definition 2.1. For a fuzzyy set µ in X, the set µα = {x ∈ X : µ(x) > α}
and µα = {x ∈ X : µ(x) ≥ α} are called the strong α -level set of µ and the
weak α-level set of µ , respectively. The set {x ∈ X : µ(x) > 0} is called the
support of µ and is denoted by suppµ .

Definition 2.2 ([13]). A fuzzy set µ in a fts (X, τ) is said to be starplus-

compact if µα is compact in (X, iα(τ)) for each α ∈ I1. The fts (X, τ) is said
to be starplus-compact if (X, iα(τ)) is compact for each α ∈ I1.

Let X be a non-empty set and let (X, τ) be a fuzzy topological space. Let Y X

denote the collection of all functions from X into Y and let ℑ be a nonempty
subset of Y X .

Definition 2.3 ([12]). For each x ∈ X, let the map ex : ℑ −→ Y be defined
by ex(f) = f(x). We call ex the evaluation map at x ∈ X . The initial fuzzy
topology on ℑ generated by the collection of maps {ex : x ∈ X} is called the
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pointwise fuzzy topology on ℑ and is denoted by τp. The pair (ℑ, τp) is
called the pointwise fuzzy function space.

The pointwise fuzzy topology on ℑ concides with the subspace fuzzy topolology
it inherits as a subspace of the product fuzzy topology on Y X . .

Definition 2.4 ([13]). Let (X, τ) and (Y, σ) be fts and let ℑ be a nonempty
subset of Y X . For each starplus-compact fuzzy set κ in X and each open fuzzy
set µ in Y , define a fuzzy set κµ on ℑ by κµ =

∧
x∈suppκ

e−1
x (µ). The collection

of all fuzzy sets κµ, where κ is a starplus-compact fuzzy set in X and µ is an

open fuzzy set in Y , forms a subbase for a fuzzy topology τ+
∗C on ℑ called the

starplus-compact open fuzzy topology on ℑ. The pair (ℑ, τ+
∗C) is referred

to as a starplus-compact open fuzzy function space.

Proposition 2.5 ([13]). The starplus-compact open fuzzy topology on ℑ is
stronger than the pointwise fuzzy topology τp on ℑ.

Theorem 2.6 ([13]). Let (X, τX) be a topologically generated fts and let (Y, τY )
be a fts. Then a fuzzy topology τ is a starplus-compact open fuzzy topology on ℑ
if and only if iα(τ) = T α

C for each α ∈ I1, where T α
C denotes the compact open

topology on ℑ and X is endowed with the topology i0(τX) and Y is equipped
with the topology iα(τY ).

Definition 2.7 ([13]). A fuzzy topology τ on ℑ such that the map φ : ℑ×X −→
Y defined by φ(f, x) = f(x) is fuzzy continuous, where ℑ × X is endowed
with the product fuzzy topology, is called a jointly fuzzy continuous fuzzy

topology on ℑ.

Theorem 2.8 ([13]). The fuzzy topology of joint fuzzy continuity is a good
extension.

Definition 2.9 ([15]). A subset F ⊂ IX is called a prefilter if and only if
F 6= φ, and

i) For all µ, ν ∈ F we have µ ∧ ν ∈ F .
ii) If µ ≥ ν and ν ∈ F , then µ ∈ F .
iii) 0 6∈ F .

Definition 2.10 ([15]). A subset B ⊂ IX is a base for a prefilter if and
only if B 6= φ, and

i) For all µ, ν ∈ B there exists a ξ ∈ B such that ξ ≤ µ ∧ ν.
ii) 0 6∈ B.

Definition 2.11 ([15]). A prefilter generated by a prefilter base B is denoted
as 〈B〉 and 〈B〉 = {µ ∈ IX : there exists a ν ∈ B such that µ ≥ ν}. If B is a

prefilter base, then B̂ = {sup
ǫ∈I0

(βǫ − ǫ) : (βǫ)ǫ∈I0 ∈ BI0}.

Proposition 2.12 ([15]). If B is a prefilter base, then 〈B̂〉= 〈B〉. We shall

denote by B̃ the prefilter 〈B̂〉 = 〈B〉.



180 J. K. Kohli and A. R. Prasannan

Definition 2.13 ([15]). A prefilter F is called prime if µ ∨ ν ∈ F implies
µ ∈ F or ν ∈ F .

Definition 2.14 ([15]). If F is a prefilter on X, then we define the following:
P (F) = {G : G is a prime prefilter and F ⊂ G} and Pm(F) = {G : G ∈ P (F)
and G is minimal}.

Definition 2.15 ([15]). For a prefilter F the characteristic of F is defined by
c(F) = inf

ν∈F
sup ν. For a prefilter F the lower characteristic of F is defined

by c(F) = inf
G∈Pm(F)

c(G). If F is a prime, then c(F) = c(F).

Definition 2.16 ([16]). If X is a set, µ ∈ IX and ν ∈ IX×X , then the section

of ν over µ is defined by ν〈µ〉(x) = sup
y∈X

µ(y) ∧ ν(y, x) for all x ∈ X.

Definition 2.17 ([16]). If µ, ν ∈ IX×X , then the composition µ◦ν is defined
by µ ◦ ν(x, y) = sup

z∈X

ν(x, z) ∧ µ(z, y) for all (x, y) ∈ X × X.

Definition 2.18 ([16]). If ν ∈ IX×X , then its symmetric sν ∈ IX×X is
defined by sν(x, y) = ν(y, x) for all (x, y) ∈ X × X.

Throughout this paper we follow the terminology and notions of a fuzzy uni-
formity as defined by Lowen [16].

Definition 2.19 ([16]). A fuzzy uniformity on X is a subset U ⊂ IX×X ,
which satisfies the following conditions:

i) U is a prefilter.

ii) Û = U, i.e., for every family (νǫ)ǫ∈I0 ∈ UI0 =⇒ sup
ǫ∈I0

(νǫ − ǫ) ∈ U.

iii) For all ν ∈ U and for all x ∈ X, ν(x, x) = 1.
iv) For all ν ∈ U, sν ∈ U.
v) For all ν ∈ U and for all ǫ ∈ I0 there exists νǫ ∈ U such that νǫ◦νǫ−ǫ ≤

ν.

The pair (X,U) is called a fuzzy uniform space.

Definition 2.20 ([16]). A subset B ⊂ IX×X is called a base for a fuzzy
uniformity if and only if the following conditions hold:

i) B is a prefilter basis.
ii) For all β ∈ B and for all x ∈ X, β(x, x) = 1.
iii) For all β ∈ B and for all ǫ ∈ I0, there exists βǫ ∈ B such that βǫ −

ǫ ≤ sβ.
iv) For all β ∈ B and for all ǫ ∈ I0, there exists βǫ ∈ B such that βǫ ◦ βǫ −

ǫ ≤ β.

Definition 2.21. If U is a fuzzy uniformity on X then B ⊂ IX×X is a basis

for U iff B is a prefilter basis and B̃ = U.

Proposition 2.22. If U is a fuzzy uniformity on X, then the family of sym-
metric fuzzy entourages sU = {ν ∈ U : sν = ν} is a basis for U.
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Definition 2.23. Let (X, τ) be a fts. Then the closure µ of a fuzzy set µ of
X is defined as µ = inf{ν : µ ≤ ν, 1 − ν ∈ τ}.

Definition 2.24 ([14]). A fuzzy closure operator on a fts X is a map
¯: IX −→ IX which satisfies the following conditions:

i) α = α, for all α ∈ I.
ii) µ ≥ µ, for all µ ∈ IX .
iii) µ ∨ ν = µ ∨ ν, for all µ, ν ∈ IX .
iv) µ = µ, for all µ ∈ IX .

Proposition 2.25 ([16]). Let (X, U) be a fuzzy uniform space. The
map¯: IX −→ IX defined by µ= inf

ν∈U
ν〈µ〉 is a fuzzy closure operator.

Definition 2.26 ([5]). If F is a prefilter on (X,U), then AdhF and limF are
fuzzy sets in X and is defined by AdhF = inf

ν∈F
ν and limF = inf

G∈Pm(F)
AdhG.

If µ ∈ IX , we say that F is U-convergent in µ iff c(F) 6 sup µ ∧ limF and
F is U-convergent iff c(F) 6 sup limF .

Definition 2.27. Let (X,U) be a fuzzy uniform space and F is a prefilter on
X. Then F is U-cauchy iff c(F) 6 inf

σ∈U
sup inf

G∈Pm(F)
inf
ν∈G

σ〈ν〉.

Definition 2.28. Let (X,U) and (Y,U1) be fuzzy uniform spaces. Then a map
f : X −→ Y is said to be fuzzy uniformly continuous if for each ν ∈ U1,
(f × f)−1(ν) ∈ U.

Proposition 2.29. If (X,U) and (Y,U1) are fuzzy uniform spaces, B and B1

are basis for U and U1, respectively and f : X −→ Y , then f is fuzzy uniformly
continuous iff for all β1 ∈ B1 and for all ε ∈ I0 there exist β ∈ B such that
β − ε ≤ (f × f)−1(β1).

Theorem 2.30. If (X,U) and (Y,U1) are fuzzy uniform space and f : X −→
Y is uniformly continuous, then f is fuzzy continuous.

Throughout this paper uniformity on a nonempty set X is denoted by U and a
fuzzy uniformity by U. We denote the topology associated with a uniformity U
by T (U) and the fuzzy topology associated with a fuzzy uniformity U by τ(U)
[16], where τ(U) is the fuzzy topology whose fuzzy closure operator is defined
in Proposition 2.25.

Definition 2.31 ([16]). Let X be a non empty set and let {fj : X → (Yj ,Uj),
j ∈ J} be a family of functions from X into the family of fuzzy uniform spaces
{(Yj ,Uj), j ∈ J}. Then the coarsest fuzzy uniformity U on X making each
fj, j ∈ J is fuzzy uniformly continuous is called the initial fuzzy uniformity

on X and is denoted by sup
j∈J

(fj × fj)
−1(Uj).

Let UNIF denote the category of uniform spaces and uniformly continuous
functions and FUNIF denote the category of fuzzy uniform spaces and fuzzy
uniformly continuous functions. Then the functors ωu : UNIF → FUNIF and
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iu : FUNIF → UNIF are defined as follows and are the uniform analogues of
the functors ω and i introduced in [14].
For each (X,U) ∈ UNIF, ωu(X,U) = (X, ωu(U)), where ωu(U) = {µ ∈
IX×X : µ−1(α, 1] ∈ U , ∀α ∈ I1} and for each (X,U) ∈ FUNIF, iu(X,U) =
(X, iu(U)), where iu(U) = {µ−1(α, 1] : µ ∈ U, α ∈ I1} .

Theorem 2.32 ([16]). If U is a uniformity on X and U a fuzzy uniformity on
X. Then,

1) ωu(U) is a fuzzy uniformity on X.
2) iu(U) is a uniformity on X.
3) iu(ωu(U)) = U .
4) ωu(iu(U)) is the coarsest fuzzy uniformity generated by a uniformity

and is finer than U. We denote ωu(iu(U)) by U.
5) τ(ωu(U))= ω(T (U)).
6) T (iu(U)) = i(τ(U).

7) τ(U) = τ(U).

We shall call a notion in FUNIF a good extension of a notion in UNIF if it
reduces to the standard notion in case of the fuzzy uniformity U = ω(U).

Definition 2.33 ([10]). If U is a fuzzy uniformity on a nonempty set X, then
its α-level uniformity, for 0 ≤ α ≤ 1 is defined by iu,α(U) = {µβ ∈ 2X×X :
µ ∈ U, β ∈ [0, 1 − α)} .

The functor iu,α : FUNIF −→ UNIF is the uniform analogue of the functor
iα discussed in [16]. Also, iu = iu,0 .

Theorem 2.34 ([10]). The topology T (iu,α(U)) on X, induced by the α-level
uniformity iu,α(U) of the fuzzy uniform space (X,U), coincides with the α-level
topology iα(τ(U)).

3. Fuzzy Uniformities on Function Spaces

Let X be a non-empty set and let (Y,U) be a fuzzy uniform space. Let Y X

denote the collection of maps from X into Y . Let ℑ be a nonempty subset
of Y X . In this section we study the pointwise fuzzy uniformity and fuzzy
uniformity of uniform convergence and their associated fuzzy topologies. It is
shown that the fuzzy topology associated with the fuzzy uniformity of uniform
convergence is jointly fuzzy continuous on Cf (X, Y ).

Definition 3.1. The initial fuzzy uniformity Up on ℑ generated by the col-
lection of maps {ex : x ∈ X} is called the pointwise fuzzy uniformity or

fuzzy uniformity of pointwise convergence on ℑ. The pair (ℑ,Up) is
called the pointwise fuzzy uniform space.

Remark 3.2. The above definition of pointwise fuzzy uniformity on ℑ coin-
cides with the definitions of pointwise fuzzy uniformity given in [6, 9].
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The following theorem of Lowen [16] reflects upon the relationship that exists
between the initial fuzzy topology and the fuzzy topology generated by the
initial fuzzy uniformity.

Theorem 3.3 ([16]). Let X be a set and let (Y,Uj), j ∈ J be a family of fuzzy
uniform spaces. If {fj : X −→ Yj , j ∈ J} is a family of functions, then

τ(sup
j∈J

(fj × fj)
−1(Uj)) = sup

j∈J

f−1
j (τ(Uj)).

In view of Definitions 2.3, 3.1 and Theorem 3.3, the following result is imme-
diate.

Theorem 3.4. The fuzzy topology associated with the fuzzy uniformity Up of
pointwise fuzzy uniformity is the pointwise fuzzy topology τ

P
.

Theorem 3.5. Let X be a non-empty set and let (Y,U) be a uniform space.
Let Up denote the pointwise uniformity on ℑ and let Up be the pointwise fuzzy
uniformity on ℑ, where Y is endowed with the fuzzy uniformity ωu(U). Then
ωu(Up) = Up.

Proof. Let
n∧

i=1

(ex × ex)−1(νi) be a basic element for the fuzzy uniformity Up,

where Y is endowed with the fuzzy uniformity ωu(U). Since νi ∈ ωu(U), να
i ∈

U for each α ∈ I1 and hence [
n⋂

i=1

(ex × ex)−1(να
i )] ∈ Up. This shows that

[
n∧

i=1

(ex × ex)−1(νi]
α ∈ Up and so

n∧
i=1

(ex × ex)−1(νi) ∈ ωu(Up). Thus we have

ωu(Up) ⊇ Up. The proof of the opposite inclusion, ωu(Up) ⊆ Up, is similar to
the one given above. �

Proposition 3.6. Let X be a set and let (Y,U) be a fuzzy uniform space.
Let Up be the fuzzy uniformity of pointwise convergence on ℑ . Then for
each α ∈ I1, the α-level uniformity iu,α(Up) is the uniformity of pointwise
convergence on ℑ with respect to iu,α(U) on Y .

Proof. Let (ex × ex)−1(ν) be a subbasic element in Up.
Then for each α ∈ I1,

[(ex × ex)−1(ν)]β = {(f, g) ∈ ℑ × ℑ : ν(f(x), g(x)) > β}, β ∈ [0, 1 − α)

= {(f, g) ∈ ℑ × ℑ : (f(x), g(x)) ∈ νβ}

= (ex × ex)−1(νβ),

which is a subbasic element in the pointwise uniformity on ℑ, where Y is
endowed with the uniformity iu,α(U). �

Theorem 3.7 ([6]). Let F be a prefilter in the pointwise fuzzy uniform space
(Y X ,Up). Then F is a Cauchy prefilter if and only if for each x ∈ X, ex(F)
is a Cauchy prefilter in (Y,UY ).
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Fuzzy Uniformity of Uniform Convergence.

In this subsection we study the notion of fuzzy uniformity of uniform conver-
gence on a function space ℑ ⊂ Y X (which was initiated by Burton [6]), where
X is a nonempty set and (Y,U) is a fuzzy uniform space.

Definition 3.8 ([6]). For each ν ∈ U, the fuzzy set Wν =
∧

x∈X

(ex × ex)−1(ν)

in ℑ × ℑ, where ex : ℑ −→ Y is the evaluation map, is defined by,
Wν(f, g) =

∧
x∈X

ν(f(x), g(x)). Let B be the collection of all Wν , where ν varies

over U.

Proposition 3.9 ([6]). The collection B is a base for a fuzzy uniformity on ℑ.

Example 3.10. If µ ∈ Iℑ, then the section of Wν over µ is defined by

Wν〈µ〉(f) =
∧

x∈X

ν〈ex(µ)〉(f(x))

= inf
x∈X

{sup
g∈ℑ

(ex(µ)(g(x))
∧

ν(g(x), f(x)))}

for each f ∈ ℑ.

Definition 3.11 ([6]). The fuzzy uniformity Uu generated by B is called the
fuzzy uniformity of uniform convergence. The fuzzy topology associated
with Uu is called the fuzzy topology of uniform convergence and it is
denoted by τu.

In the following results we give a short description of the concepts that Burton
[6] uses relative to the fuzzy uniform convergence.

Theorem 3.12 ([6]). Let F be a prefilter in Y X with c(F) = c(F) . Then F
is Uu-cauchy, α ≤ c, lim

Up

(F)(f) ≥ α =⇒ lim
Uu

(F)(f) ≥ α .

Theorem 3.13 ([6]). If (X,U) is complete then (Y X ,Uu) is complete.

Corollary 3.14 ([6]). If µ : Y X −→ I is Up-closed and (Y,U) is complete,
then µ is Uu-complete.

Theorem 3.15 ([6]). If µ is a closed fuzzy set in (Y X ,Up) and for all x ∈ X,

ex(µ) is complete in (X,U) , then the fuzzy set µ is complete in (Y X ,Uu).

Proposition 3.16. If Wνi
, 1 ≤ i ≤ n are members of Uu. Then the following

hold:

i)
n∧

i=1

Wνi
= W

(
n
V

i=1

νi)
and

ii) W
α
ν = Wνα , for α ∈ I1.
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Proof. i) For each i, Wνi
=

∧
x∈X

(ex × ex)−1(νi). Hence,

n∧

i=1

Wνi
=

n∧

i=1

{
∧

x∈X

(ex × ex)−1(νi)}

=
∧

x∈X

[(ex × ex)−1(

n∧

i=1

νi)

= W
(

n
V

i=1

νi)
.

ii) For each α ∈ I1,

Wνα =
⋂

x∈X

{(f, g) : (f(x), g(x)) ∈ να}

=
⋂

x∈X

{(f, g) : (ex × ex)(f, g) ∈ να}

=
⋂

x∈X

{(f, g) : (f, g) ∈ (ex × ex)−1(να)}

=
⋂

x∈X

{(f, g) : (f, g) ∈ [(ex × ex)−1(ν)]α}

=
⋂

x∈X

[(ex × ex)−1(ν)]α

= [
∧

x∈X

(ex × ex)−1(ν)]α

= (Wν)α.

�

The following theorem shows that for each α ∈ I1, the α-level uniformity of the
fuzzy uniformity of uniform convergence Uu on the function space ℑ coincides
with the uniformity of uniform convergence on ℑ when Y is endowed with the
uniformity iu,α(U).

Theorem 3.17. For each α ∈ I1, iu,α(Uu) is the uniformity of uniform con-
vergence on ℑ, where Y is endowed with the uniformity iu,α(U).

Proof. Let Wν be a basic element for the fuzzy uniformity of uniform con-
vergence Uu, where ν ∈ U. Then Wα

ν is a basic element for the uniformity
iu,α(Uu). By Proposition 3.16(ii), Wνα = Wα

ν and the fact that Wνα is a basic
element for the uniformity of uniform convergence on ℑ, where Y is endowed
with the uniformity iu,α(Uu), the theorem follows. �

Jäger in [9] showed that the notion of fuzzy uniformity of uniform convergence
is a good extension.
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Theorem 3.18. Let C(X, Y ) denote the collection of all continuous functions
from a topological space X into a uniform space Y and let Uu denote the unifor-
mity of uniform convergence on C(X, Y ). Then the fuzzy topology associated
with the fuzzy uniformity ωu(Uu) is jointly fuzzy continuous.

Proof. The uniform topology T (Uu) on C(X, Y ) is jointly continuous. Since in
view of Theorem 2.8 the fuzzy topology of joint fuzzy continuity is a good ex-
tension, the fuzzy topology ω(T (Uu)) is jointly fuzzy continuous. By Theorem
2.32, τ(ωu(Uu)) = ω(T (Uu)). This shows that the fuzzy topology τ(ωu(Uu))
associated with the fuzzy uniformity ωu(Uu) is jointly fuzzy continuous. �

Corollary 3.19. Let X be a topological space and let Y be a uniform space with
the uniformity UY . Let Cf (X, Y ) denote the collection of all fuzzy continuous
maps from the topologically generated fts ω(X) into the topologically generated
fts ω(Y ). Then the fuzzy topology of uniform convergence on Cf (X, Y ) is jointly
fuzzy continuous.

Proof. Since X and Y are topologically generated fts, Cf (X, Y ) and C(X, Y )
are equal as sets. Since the uniformity of uniform convergence is a good ex-
tension, the fuzzy uniformity of uniform convergence Uu is same as ωu(Uu),
where Uu is the uniformity of uniform convergence on C(X, Y ). Hence in view
of Theorem 3.18, the fuzzy topology associated with the fuzzy uniformity of
uniform convergence Uu is jointly fuzzy continuous. �

Definition 3.20. Let X be a fuzzy topological space and let (Y,U) be a fuzzy
uniform space. Let S be the collection of all starplus-compact fuzzy sets in X.
For each κ ∈ S and ν ∈ U, define a fuzzy set W(κ, ν) : ℑ× ℑ −→ I by

W(κ, ν)(f, g) =
∧

x∈suppκ

(ex × ex)−1(ν)(f, g)

=
∧

x∈suppκ

ν(f(x), g(x)).

Then the collection of all fuzzy sets {W(κ, ν) : κ ∈ S, ν ∈ U} is a base
for a fuzzy uniformity on ℑ and is called the fuzzy uniformity of uniform

convergence on starplus-compacta.

Theorem 3.21. Let ℑ be the set of all fuzzy continuous maps from a topolog-
ically generated fts (X, τX) into a fuzzy uniform space (Y,U). Then the fuzzy
topology of fuzzy uniform convergence on starplus-compacta is the starplus-
compact open fuzzy topology.

Proof. Let U+
∗C be the fuzzy uniformity of uniform convergence on starplus-

compacta. Since X is a topologically generated fts, a subset K of X is com-
pact in (X, i0(τX)) if and only if χK is starplus-compact in (X, τX). Hence
iuα(U+

∗C) = UUC , where UUC denotes the uniformity of uniform convergence
on compacta, where X is endowed with the topology i0(τX) and Y is equipped
with the uniformity iuα(U). So by [11, Theorem 7.11], T (iuα(U+

∗C)) is the com-

pact open topology for each α ∈ I1. By Theorem 2.6, T (iuα(U+
∗C)) = iα(τ+

∗C)
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for each α ∈ I1. Again by Theorem 2.34, iα(τ(U+
∗C)) = T (iuα(U+

∗C)) = iα(τ+
∗C)

for each α ∈ I1. This completes the proof. �

4. Fuzzy Equicontinuity

In this section we introduce the notion of fuzzy equicontinuity and fuzzy uni-
form equicontinuity on fuzzy subsets of ℑ and obtain results, which show that
if a fuzzy subset κ of Y X is fuzzy equicontinuous (respectively, fuzzy uniformly
equicontinuous), then each f ∈ suppκ is fuzzy continuous (respectively, fuzzy
uniformly continuous).

Definition 4.1. Let (X, τ) be a fts and let (Y,U) be a fuzzy uniform space.
Then a fuzzy subset κ of Y X is said to be fuzzy equicontinuous at a fuzzy
point xα of X if for each µ ∈ U, there is a τ-neighbourhood η of xα such that
f(η) ≤ µ〈f(xα)〉 for each f ∈ suppκ. We say that the fuzzy subset κ of Y X is
fuzzy equicontinuous on a fuzzy subset θ of X if κ is fuzzy equicontinuous at
each fuzzy point xα in θ.

Definition 4.2. A fuzzy subset κ of Y X , where (X,UX) and (Y,UY ) are fuzzy
uniform spaces, is said to be fuzzy uniformly equicontinuous if

∧

f∈suppκ

(f × f)−1(µ) ∈ UX for each µ ∈ UY .

The following is a characterization of fuzzy equicontinuity.

Theorem 4.3. A fuzzy subset κ of Y X is fuzzy equicontinuous if and only if
for each µ ∈ UY , the fuzzy set

∧
f∈suppκ

f−1(µ〈f(xα)〉) is a neighbourhood of xα.

Proof. Suppose that a fuzzy subset κ of Y X is fuzzy equicontinuous at a fuzzy
point xα of X . Then for each µ ∈ UY , there is a τ -neighbourhood η of xα such
that f(η) ≤ µ〈f(xα)〉 for each f ∈ suppκ. So η ≤

∧
f∈suppκ

f−1(µ〈f(xα)〉) and

hence
∧

f∈suppκ

f−1(µ〈f(xα)〉) is a neighbourhood of xα.

Conversely, suppose that
∧

f∈suppκ

f−1(µ〈f(xα)〉) is a neighbourhood of the fuzzy

point xα for each µ ∈ UY . Let η =
∧

f∈suppκ

f−1(µ〈f(xα)〉). Then clearly

g(η) ≤ µ〈g(xα)〉 for each g ∈ suppκ and so κ is fuzzy equicontinuous at the
fuzzy point xα. �

Theorem 4.4. If a fuzzy set κ in Y X is fuzzy equicontinuous, then suppκ is
equicontinuous, where X is endowed with the topology i0(τX) and Y is equipped
with the uniformity iu,α(UY ).

Proof. Let κ be fuzzy equicontinuous. Then for each fuzzy point xλ in X

and for each µ ∈ UY , there exist a neighbourhood η of xλ in X such that
f(η) ≤ µ〈f(xλ)〉 for each f ∈ suppκ. Hence in particular, f(η) ≤ µ〈f(x1)〉
with λ = 1. This shows that f(ηβ) ⊂ µβ〈f(x)〉, β ∈ [0, 1 − α). Thus for each
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x ∈ X and µβ ∈ iu,α(UY ), there exist a neighbourhood ηβ of x such that
f(ηβ) ⊂ µβ〈f(x)〉, for each f ∈ suppκ. Hence suppκ is equicontinuous. �

Theorem 4.5. If a fuzzy subset κ in Y X is fuzzy equicontinuous, then κα

is equicontinuous for each α ∈ I1, where Y is equipped with the uniformity
iu,α(UY ).

First we prove the following lemma.

Lemma 4.6. If ν ≤ κ and κ is fuzzy equicontinuous then ν is also fuzzy
equicontinuous.

Proof. Since ν ≤ κ, suppν ⊂ suppκ.

Hence
∧

f∈suppκ

f−1(µ〈f(xα)〉) ≤
∧

f∈suppν

f−1(µ〈f(xα)〉) and so the result fol-

lows. �

Proof of Theorem 4.5. Since κα ⊂ suppκ for each α ∈ I1 and since κ is fuzzy
equicontinuous then by Theorem 4.4 and Lemma 4.6, κα is equicontinuous.2.

Theorem 4.7. If a fuzzy subset κ of Y X is fuzzy equicontinuous, then each
f ∈ suppκ is fuzzy continuous.

Proof. Since
∧

f∈suppκ

f−1(µ〈f(xα)〉) ≤ f−1(µ〈f(xα)〉) for each fuzzy point xα

of X , f−1(µ〈f(xα)〉) is a neighbourhood of xα for each µ ∈ UY and so f is
fuzzy continuous at each xα. Hence f is fuzzy continuous on X . �

Theorem 4.8. If κ is fuzzy uniformly equicontinuous, then each f ∈ suppκ is
fuzzy uniformly continuous.

Proof. Suppose that κ is fuzzy uniformly equicontinuous. Then for each µ ∈
UY ,

∧
f∈suppκ

(f × f)−1(µ) ∈ UX . This implies that for each µ ∈ UY ,

(f × f)−1(µ) ∈ UX . Hence f is fuzzy uniformly continuous. �
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