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Abstract

Extending the well-known result that every fuzzy metric space, in the sense of
Kramosil and Michalek, has a completion which is unique up to isometry, we show
that every KM-fuzzy quasi-metric space has a bicompletion which is unique up to
isometry, and deduce that for each KM-fuzzy quasi-metric space, the completion of
its induced fuzzy metric space coincides with the fuzzy metric space induced by its
bicompletion.
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1 Introduction

Kramosil and Michalek introduced in [11] their celebrated notion of a fuzzy
metric space and established its relation with the notion of a probabilistic
metric space. In particular, they observed that the class of fuzzy metric spaces,
in their sense, is “equivalent” to the class of Menger spaces having a continuous
t-norm. Sherwood proved in [21] that every Menger space belonging to this
class has a completion which is unique up to isometry, and thus one can easily
deduce that every fuzzy metric space has a completion which is unique up to
isometry.
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The concept of metric fuzzy metric space was generalized to the quasi-metric
setting in [1] and [9], where several properties of these structures were dis-
cussed. Recently, it were given in [16], [17] and [18], applications of fixed point
theorems, in the realm of fuzzy quasi-metric spaces, to deduce the existence
and uniqueness of solution for the recurrence equations associated to some
types of algorithms, whereas in [15] it was presented a study of a notion of
Hausdorft fuzzy quasi-pseudo-metric on the collection of nonempty subsets of
a given fuzzy quasi-metric space.

In this context, the completion of fuzzy quasi-metric spaces appears as a nat-
ural and attractive question, which will be discussed here. In fact, we show
that every fuzzy quasi-metric space (in the sense of Definition 2 below) has
a (fuzzy quasi-metric) bicompletion which is unique up to isometry. Then,
the completion of a fuzzy metric space is restated as a particular case, and
we deduce that for each fuzzy quasi-metric space, the completion of its in-
duced fuzzy metric space coincides with the fuzzy metric space induced by its
bicompletion.Some illustrative example are also given. We emphasize at this
point the while Sherwood’s construction is strongly based on the properties
of Lévy’s metric (see [6,14] for its definition and properties), our construction
avoids the use of Lévy’s metric and directly uses suprema of subsets of [0,1]
and lower limits of sequences in [0,1].

2 Basic notions and preliminary results

Our basic references for quasi-uniform and quasi-metric spaces are [3,12].

Following the modern terminology, by a quasi-metric on a set X we mean a
function d : X x X — [0,00) such that for all z,y,z € X : (i) 2z = y &
d(z,y) = d(y,x) = 0; (i) d(z, 2) < d(z,y) + d(y, 2).

A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric
on X.

Each quasi-metric d on X induces a T topology 74, on X which has as a base
the family of open balls {By(z,r) : z € X, € > 0}, where By(z,e) ={y € X :
d(z,y) <e} forall z € X and € > 0.

Given a quasi-metric d on X, then the function d=! defined by d~!(z,y) =
d(y, ), is also a quasi-metric on X, called the conjugate of d, and the function
d® defined by d*(z,y) = max{d(z,y),d *(z,y)} is a metric on X.

A quasi-metric space (X, d) is said to be bicomplete if (X, d*) is a complete
metric space. In this case we say that d is a bicomplete quasi-metric on X.



A topological space (X, 7) is called quasi-metrizable if there is a quasi-metric
d on X such that 7 = 74.

According to [20], a binary operation x* : [0, 1] x [0, 1] — [0, 1] is a continuous
t-norm if * satisfies the following conditions: (i) * is associative and commu-
tative; (ii) * is continuous; (iii) a * 1 = a for every a € [0,1]; (iv) axb < cx*d
whenever a < ¢ and b < d, with a,b,¢,d € [0,1].

Three paradigmatic examples of continuous t-norms are A, Prod and %, (the
Lukasiewicz t-norm), which are defined by a A b = min{a, b}, aProdb = a - b
and a *7, b = max{a + b — 1,0}, respectively.

Note that by conditions (iii), (iv), above, * < A for every continuous t-norm x.
Definition 1 ([1,9]). A KM-fuzzy quasi-metric on a set X is a pair (M, %)
such that * is a continuous t-norm and M is a fuzzy set in X x X X [0, 00)
such that for all z,y, 2z € X :

(KM1) M(z,y,0) = 0;

(KM2) z =y if and only if M (z,y,t) = M(y,z,t) =1 for all t > 0;

(KM3) M(x,z,t+s) > M(z,y,t) x M(y, z,s) for all t,s > 0;

(KM4) M(z,y,-) : [0,00) — [0,1] is left continuous.

A KM-fuzzy quasi-metric (M, ) on X such that for each z,y € X :

(KMb) M(z,y,t) = M(y,x,t) for all t > 0

is said to be a fuzzy metric on X (in the sense of Kramosil and Michalek [11]).

In the following, KM-fuzzy quasi-metrics will be simply called fuzzy quasi-
metrics if no confusion arises.

Definition 2 ([1,9]). A fuzzy (quasi-)metric space is a triple (X, M, *) such
that X is a set and (M, ) is a fuzzy (quasi-)metric on X.

If (M, ) is a fuzzy quasi-metric on a set X it is obvious that (M ™', ) is also
a fuzzy quasi-metric on X, where M~! is the fuzzy set in X x X x [0, 00)
defined by M~*(z,y,t) = M(y,z,t). Moreover, if we denote by M* the fuzzy
set in X x X x [0,00) given by M*(z,y,t) = min{M (z,y,t), M (z,y,t)},



then (M? ) is, clearly, a fuzzy metric on X. We shall refer to (X, M? *) as
the fuzzy metric space induced by (X, M, ).

Similarly to the fuzzy metric case, each fuzzy quasi-metric (M, *) on a set
X induces a Ty topology 73y on X which has as a base the family of open
balls {By(z,e,t) :x € X,0 < e < 1,t > 0}, where By(z,¢,t) = {y € X :
M(x,y,t) >1—¢} (see [9,10]).

The following useful facts are well-known ([1,9]):

(a) If (M, ) is a fuzzy quasi-metric space on a set X, then, for each z,y € X
the function M (z,y, -) is nondecreasing.

(b) A sequence (z,), in a fuzzy quasi-metric space (X, M,*) converges to a
point z € X with respect to 7y if and only if lim,, M (z, z,,t) = 1 for all t > 0.

Example 1. Let (X,d) be a quasi-metric space and let * be a continuous
t-norm. Then, as in the metric case, the pair (Mgy1, *) is a fuzzy quasi-metric
on X, where M is the fuzzy set in X x X x [0,00) given by Mo (z,y,t) =0
if d(x,y) >t and My (z,y,t) = 1if d(x,y) < t. Moreover, the topology 74,
induced by d, coincides with the topology Ta,,, induced by (M1, *).

We say that a topological space (X, 7) admits a compatible fuzzy quasi-metric
if there is a fuzzy quasi-metric (M, %) on X such that 7 = 7.

Then, it follows from Example 1 above that every quasi-metrizable topological
space admits a compatible fuzzy quasi-metric.

Conversely, it was shown in [9] that for each fuzzy quasi-metric space (X, M, %),
the countable family {U,, : n = 2,3,...} is a base for a quasi-uniformity Uy, on
X compatible with 757, where U,, = {(z,y) € X xX : M(z,y,1/n) > 1—1/n}.

Consequently, for every fuzzy quasi-metric space (X, M, *), the topological
space (X, Ty) is quasi-metrizable.

Moreover, the conjugate quasi-uniformity (U;)~! coincides with Uy;-1 and it
is compatible with 7,-1.

The following example shows that in case that the continuous t-norm x is
greater or equal to *, it is possible to explicitly construct a compatible quasi-
metric.

Example 2. Let (X, M, %) be a fuzzy quasi-metric space such that x; < x.
Similarly to the metric case, the function dy; : X x X — [0,1] given by



dy(z,y) = sup{t > 0:1— M(z,y,t) > t}, is a quasi-metric on X whose
induced topology coincides with 7, (compare [1, Remark 7.6.1]).

Remark 1. If in Definition 1, we assume that M is a fuzzy set in X x X x
(0,00), and conditions (KM2) and (KM4) are replaced, respectively, by:

(GV2) z =y if and only if M(z,y,t) = M(y,z,t) =1 for some ¢ > 0; and
(GV4) M(z,y,-) : (0,00) — (0,1] is continuous,

then (M, x) is called a GV-fuzzy quasi-metric on X, and (X, M, ) is called
a GV-fuzzy quasi-metric space ([9]). If, in addition, (M, x) satisfies the sym-
metry condition (KM5), then (X, M, x*) is a fuzzy metric space in the sense
of George and Veeramani ([4,5]), and we will refer to it as a GV-fuzzy metric
space. Obviously, each GV-fuzzy (quasi-)metric space (X, M, *) can be consid-
ered as a fuzzy (quasi-)metric space, in the sense of Definition 1, by defining
M (z,y,0) = 0 for all z,y € X. Therefore, each GV-fuzzy quasi-metric space
induces a topology 7, defined as in the KM-case. Moreover, the properties of
KM-fuzzy quasi-metrics given above remain valid for GV-fuzzy quasi-metrics.

We conclude this section with a paradigmatic example which shows that, actu-
ally, each quasi-metric induces a compatible GV-fuzzy quasi-metric (compare
Example 1).

Example 3 (]9]). Let (X, d) be a quasi-metric space and let M, be the function
defined on X x X x (0,00) by

My(z,y,t) = ttdr.y)

for all t > 0. Then, for each continuous t-norm %, (My, %) is a GV-fuzzy quasi-
metric on X called the GV-fuzzy quasi-metric induced by d, and (X, My, %) is
called the standard GV-fuzzy quasi-metric space of (X, d). Furthermore, it is
easy to check that (My)™' = My and (My)" = Mys. Finally, the topology 74
coincides with the topology 7, .

3 The bicompletion of a fuzzy quasi-metric space

Let us recall (compare [5]) that a fuzzy metric space (X, M, *) is complete
provided that every Cauchy sequence converges with respect to 75, where a



sequence (1), is Cauchy provided that for each ¢ € (0,1) and each ¢ > 0,
there exists an ng such that M(x,,z,,,t) > 1 — ¢ for all n,m > ny.

According to [9,10], a fuzzy quasi-metric space (X, M, ) is called bicomplete

if (X, M?, %) is a complete fuzzy metric space. In this case, we say that (M, *)
is a bicomplete fuzzy quasi-metric on X.

Definition 3 ([9,10]). A mapping f from a fuzzy quasi-metric space (X, M, %)
to a fuzzy quasi-metric space (Y, N, x) is said to be an isometry if M (z,y,t) =
N(f(x), f(y),t) for each z,y € X and each t > 0.

The fuzzy quasi-metric spaces (X, M,*) and (Y, N, *) are called isometric if

there is an isometry from X onto Y.

Definition 4 ([9,10]). Let (X, M, *) be a fuzzy quasi-metric space. A (fuzzy
quasi-metric) bicompletion of (X, M,x*) is a bicomplete fuzzy quasi-metric
space (Y, N,*) such that (X, M, ) is isometric to a Tyi-dense subspace of Y.

In the sequel we shall construct the bicompletion of a fuzzy quasi-metric space.

Indeed, let (X, M, *) be a fuzzy quasi-metric space.
Denote by S the collection of all Cauchy sequences in (X, M?, ).

Define a relation ~ on S by
(20)n ~ (Yn)n <= sup ImM"(z,,y,,s) =1 forall t >0,

0<s<t

where by imM*(z,,, y,, s) we denote, as usual, the lower limit of the sequence
(Mi(xna Yns ) )ns 1€,

mMi(xnayn> S) = Sup 1I>l£ MZ('%.TH Yn, S)'
E nZ

Then we have:

Lemma 1. ~ s an equivalence relation on S.

Proof. Let (2,)ns (Yn)ns (2n)n € S. Clearly (x,,), ~ (2,,), because M*(x,, T, s) =



1 for all n € N and s > 0, so that for each ¢ > 0,

sup imM*“(x,,x,,s) = 1.
0<s<t

Moreover, if (2,,)n ~ (Yn)n, it immediately follows that (y,), ~ (z,), because
M (2, Yn, 8) = M (yn, Ty, s) for all n € N and s > 0, so that for each t > 0,

sup imM*“(yy, Zn, 8) = sup imM*(z,,y,,s) = 1.

0<s<t 0<s<t

Finally, suppose that (z,)n, ~ (Yn)n and (yn)n ~ (2)n. Let t > 0. We shall
prove that supg.,, imM*(z,, z,,s) = 1.

To this end, choose an arbitrary € € (0,1). Then, there exists § € (0,1)
such that (1 —9) * (1 — ) > 1 — e. Hence, there exists s € (0,t) such that
Lm M (2, Yn, s') > 1 — 6, and consequently there exists k; € N such that

Mi(xn,yn, sy >1-49,

for all n > k;.

Now choose r > 0 such that s’ +r < t. Since (Yn)n ~ (2n)n, we have that
SUPg< gy WMM* (Y, 2, $) = 1. Hence, there exist s” € (0,7) and ko > k; such
that

M (Y, 2n, 8") > 1 =6,

for all n > ks.

Therefore

M2y, 20, 8" 4+ 8") > M (20, Yn, 8') % M (Y, 20, 87) > (1= 8) % (1 = 8) > 1 —¢,

for all n > ko, which implies that

WmM* (2, 2n, 8 +8") > 1 —¢.

Since 0 < s’ + s” < t, we deduce that

sup imM*(z,, zp,t) = 1,

0<s<t

and hence (z,), ~ (z,),.1



Now define a function Mg : S x S x [0,00) — [0, 1] as follows:

MS(('ITL)TH (yn>n7 0) =0,

and
MS((In)na (yn>n7 t) = sup mM(xna UYn, 3)7
0<s<t
for all t > 0.
Then:

Lemma 2. Mg satisfies conditions (KM1), (KM3) and (KMJ) of Definition
1. (In fact, My is a KM-fuzzy quasi-pseudo-metric in the sense of [9]).

Proof. Condition (KM1) is obviously satisfied by the definition of Mjg.

Let (ﬁn)na (yn)’m (Zn)n € S-a t,S > Oa and PUt a = MS((In)n7(yn)nat)7 ﬁ =
Ms((Yn)ns (2n)n, s) and v = Mg((x)n, (2n)n, t+5). We shall show that ax 3 <

.
If « =0 or 8 =0, the conclusion is obvious. So we assume that a > 0 and
B > 0. Choose an arbitrary ¢ € (0, min{«, $}/2). Then, there exist ¢’ € (0, 1)
and s € (0, s) such that

a—& < Ms((zn)n, (Yn)n, ') and 3 — e < Ms((yYn)ns (2n)ns 8)-

Furthermore, there exists n. such that for each k > n,,

MS((xn)n’ (yn)nyt/) —e< M(xkaykat/)7 and

MS((Z/TL)”? (Zn)nv S/) —e< M(yk, 2k, S/).

Then

(o —2¢) * (B —26) < (Ms((Tn)n, Wn)nst') =€) * (Ms((Yn)ns (2n)n; 8') — €)
< M (g, Y, t') % M(yg, 21, 8)
< M(mk, Zky t + S/).

for all £ > n..



Therefore

(a—2e)*(B—2¢)< Jnf M (zg, 2, t' + 8') < mM (2, 2,, 8 + §')

< sup limM(z,,2,,t' +5") = 7.

0<r<t+s

By continuity of x, it follows that o x 5 < . So condition (KM3) is satisfied.
Finally, fix (2,,)n, (yn)n € S and t > 0, and let (¢;); be a strictly increasing

sequence of positive real numbers such that lim; ¢; = ¢. Since M (xy, yx, t;) <
M (zg, yg, t), for all k, j, it follows that

MS<<IH)R7 (yn>n7 tj) < MS((xn)m (yn)7 t),

for all j.

Moreover, given ¢ > 0, there is s. € (0,t) such that

Ms((n), (yn), 1) < & + sup Inf M(a, yy, s).
Let j. such that ¢; > s. for all j > j.. From the preceding relation, we deduce
that

MS((xn)7 (yn)7t) S € + Sup mM(In,yn,S),

0<s<t,

for all j > j.. So

M ((#n)n; (Yn)n; 1) < Ms((2n), (yn), 1) < €+ Ms((@n)n; (Yn)n 1),

for all j > j.. We conclude that Mg((xy)n, (Yn)n, -) is left-continuous. There-
fore, condition (KM4) is satisfied.l

Now denote by X the quotient S/ ~, and by [(,),] the class of the element
(p)n of S.

Lemma 3. For each (x,,)n, (Yn)n € S and each (an)n € [(2n)n], (bn)n € [(Yn)n)],
one has

Ms((Zn)n, (Yn)nst) = Ms((@n)n; (bn)nst),



for all t > 0.

Proof. Let t > 0. Given ¢ € (0,t¢/2) we obtain

Ms((Zn)n, Yn)nst)
> Ms((Zn)n, (@n)n, €) * Ms((an)n, (bp)n, t — 2€) ¥ Ms((bn)ns (Yn)n, €)
= Ms((an)n, (bn)n,t — 2¢).

Since Mg((an)n, (bp)n, -) is left continuous, we deduce that

ll_r)% Ms((an)n; (bp)n,t = 26) = Ms((@n)n, (bn)n, 1).

Thus MS((xn)na (yn>n7 t) Z MS((an>n7 (bn)na t)

The same argument shows that Mg ((an)n, (bn)n,t) = Ms((2n)n, (Yn)n,t).H
Lemma 4 ([9]). Let (X, M,x*) be a fuzzy quasi-metric space and (Y, N, ) a
bicomplete fuzzy quasi-metric space. If there is a Tyri-dense subset A of X

and an isometry f: (A, M,*) — (Y, N, %), then there exists a unique isometry
F: (X, M,x) — (Y, N,x) such that F |a= f.

Now, for each [(2n)n], [(Yn)n] € X, define

M ([(xn)a): [(yn)a], 0) = 0,

and

M([(xn)N]’ [(yn)n]v t) = MS($m Yns t)a

for t > 0.

Then M is a function from X x X x [0, 00) to [0,1] (indeed, it is well-defined
by Lemma 3).

We also define i : X — X such that, for each = € X, i(x) is the class of the
constant sequence x, z, ...

From the above constructions we obtain:

Theorem 1. Let (X, M, x) be a fuzzy quasi-metric space. Then:
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(a) (M, %) is a fuzzy quasi-metric on X.

(b) i(X) is dense in (X, M, %).

(c) (X, M, %) is isometric to (i(X), M, *).
(d) (M, %) is bicomplete.

(e) If (Y, N,x) is a bicomplete fuzzy quasi-metric space such that (X, M, *)
is isometric to a Tyi-dense subspace of Y, then (Y, N,x) and (X, M,x) are
1s0metric.

Proof. (a) (M, «) satisfies conditions (KM1), (KM3) and (KM4) of Definition
1 as an immediate consequence of Lemma 2.

Now let (2 )n; (Yn)n € S such that M([(xn)n], [(Yn)n],t) = 1 for all ¢ > 0. If
(2n)n € [(Yn)n], it follows from Lemma 3 that Mg((21)n, (Yn)n,t) = 1 for all
t > 0,ie, (2n)n € [(Un)n). The same argument shows that (z,), € [(zn)n]
whenever ( n)n [( n)n]. We conclude that M ([(zn)n], [(yn)n],t) = 1 for all
t > 0, if and only if [(@n)n] = [(Yn)n]. Consequently (M, ) is a fuzzy quasi-
metric on X.

(b) Let (z,), € S, e € (0,1) and ¢t > 0. Choose an s. € (0,t). Since (x,), is
a Cauchy sequence in (X, M* %) there is n. € N such that M*(zg, z,_, s:) >
1 —¢/2 for all kK > n.. Thus

M([(xzn)n],i(xy,),t) = sup sup inf M(xy, z,_, )

O<s<t n k2n
> sup 1nf M (zy, ., Sc)
> mf M(:Uk,:cni,ss)
k>ne

> inf M"(xy, Tn,, 5¢)
k>ne

>1—¢/2>1—c¢.

Similarly, we deduce that

MY ([(w)n], i(zn,),t) > 1 — €.

We have shown that i(X) is dense in (X, M?, ).

(c) This is almost obvious because for each x,y € X and t > 0 we have

M(i(x),i(y),t) = sup M(x,y,s) = M(x,y,t).

0<s<t

11



(d) Let (%), be a Cauchy sequence in (X, M?, *). Then, there is an increasing
sequence (ny)x in N such that

M (T, Ty 27F) > 1 =275,

for all n,m > ny.
Since i(X) is dense in (X, M, ), for each k € N there is y, € X such that

Ml(fnwl(yk)?Z_k) >1- 2_k7

for all £ € N.

We show that (yx)s is a Cauchy sequence in (X, M? ). To this end, choose
g€ (0,1) and ¢ > 0. Take j € N such that 277 < t/3 and

(1-2)x(1—-2)x(1-279)>1—c¢.

Then, for each k,m > j, we have

~.

(Ym), t) > M(i(ys), i(ym), 3 - 277)

Ty 2 ]) sk M(Zpyy Tppys 277) % M (T, (Y ), 277)

Ty 2™ ) s M (T, , Ty s 27 FN)) s M (T, i(Ym), 27™)
% (1 — 27 Cmintbmd)y (1 — 27m)

(1—2 Nx(1-277)>1—c¢,

S
—~
~.
—~
<
o

M (Yr, Ym, 1)

= S

—~
~.
—~
=
??.\_/\_/\_/
=N

—_
~—

AVAR AV AV Y4
—_

|

l\')[\D

~—~

,])
and consequently (i) is a Cauchy sequence in (X, M*, x). Therefore j € X ,
where ¥ := [(yx)x]-

Finally, we prove that the sequence (Z,), converges to g in (j(v LM x). Indeed,
as in part (c) above, choose ¢ € (0,1) and ¢t > 0. Take j € N such that
277 < t/3, and

(1-2)x(1—-2)x(1-279)>1—c¢.

Since (y;)r is a Cauchy sequence in (X, M?, %), the proof of part (b) shows
that there is £ > j such that

M, i(yy),277) > 1 - 277

Then, for n > n; we obtain
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> MG, i(ye), 277) % MU(i(Yr), Ty 277) 5 M (T, Ty 277)
> (1= 277) s M (i(yg), Fnyr 27F) % M (Z, , Ty 27F)
>(1-29)x(1-2"F)x(1-27F)

>(1 -2 x(1—-2)x(1-279)>1—c¢.

MG, Ty, t)

We conclude that ()7 M, *) is bicomplete.

(e) This follows directly from Lemma 4 and standard arguments.ll

Remark 2. The preceding theorem implies that every fuzzy quasi-metric
space Q(, , M, ) has a bicompletion which is unique up to isometry. We refer
to (X, M, ) as the bicompletion of (X, M, ).

Remark 3. Note that if (X, M, *) is a fuzzy quasi-metric space, then M=

M~ on X. On the other hand, if (X, M, ) is a fuzzy metric space, then (M %)
is a fuzzy metric on X, and thus the complete fuzzy metric space (X M, ) is
the completion of (X, M, ).

From Theorem 1 and Remark 3 we deduce the following result which essen-
tially shows that the for each fuzzy quasi-metric space, the completion of its
induced fuzzy metric space coincides with the fuzzy metric space induced by
its bicompletion.

Proposition 1. Let (X M, x) be a fuzzy quasi-metric ¢ space. Then the (com-
plete) fuzzy metrics (M, %) and (M?,*) coincide on X.

Proof. By Theorem 1, (b) and (d), (X, M?, %) is a complete fuzzy metric space
that contains ¢(X) has a dense subspace On the other hand, it follows from
Remark 3 and the construction of X that (X, M? «) is the completion of
(X, M, %). Therefore (X, M, *) and (X, M, *) coincide by the * uniqueness of

the gompletion, i.e., the (Complete) fuzzy metrlcs (M?, %) and (M, *) coincide
on X.A

In the next we apply our constructions to obtain the relationship between the
bicompletion of the quasi-metric spaces and of the fuzzy quasi-metric spaces
of Examples 1 and 2, respectively. In order to help to the reader we recall the

construction of the bicompletion of a quasi-metric space (see [2,19] or p. 163
of [13]).
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Let (X, d) be a quasi-metric space. Denote by Y the set of all Cauchy sequences
in the metric space (X,d*). For each (z,)n, (Yn)n € Y put (zn)n ~ (Yn)n
if and only if lim, d*(z,,y,) = 0. Then ~ is an equivalence relation on
Y. Denote by X? the quotient Y/ ~ . For each [(z,)n], [(Yn)n) € XPB, let
dB([(zn)nl], [(Yn)n]) = lim, d(zpn, y,). Then (XB dP) is a bicomplete quasi-
metric space such that (X, d) is isometric to a dense subspace of the metric
space (X B, (dP)*). The space (X B, dP) is said to be the bicompletion of (X, d).
Furthermore, the bicompletion coincides with the standard completion when
(X, d) is a metric space.

Example 4. Let (X,d) be a quasi-metric space and let (X, Myo1,%) be
the fuzzy quasi-metric space of Example 1. It is almost obvious that a se-
quence in X is a Cauchy sequence in (X, d®) if and only if it is a Cauchy
sequence in (X, (Mgo1)’, %), and thus it easily follows that X = XB. For each
()], [(4n)n] € X and t > 0 we have

A2 ([(2n)n], [(Wn)a]) < t < Maor([(@a)nl, [(Gn)a]) = 1,
and hence ]\7[;,0/1 = M5, on X.

Example 5. Let (X, M, *) be a fuzzy quasi-metric space such that % < x. It
is clear that a sequence in X is Cauchy in (X, (dy,)®) if and only if it is Cauchy
in (X, M, ). We show that (dy)? = dy; on XP. Indeed, first note that for

[(Z0)n)s [(Yn)n] € XB and t > 0, one has t < 1— M ([(xn)n], [(Yn)n], t) whenever
t < 1— M(xy,yn,t) eventually, and consequently (dps)” < d. On the other

hand, given t > 0 with t <1 — M ([(zs)n], [(Yn)n], t), for each e € (0,t/2) and
s € (0,t) with t < s+¢ we can find an ng such that M (z, yn,,s) < 1—t+e, so
that s < e+1—M(zp,,Yn.,S) < e+1—M(xp,, Yn,,S—¢), and thus t < s+¢ <
2e +sup{r > 0:7 <1— M(z,,yn,7)}. Hence t < (dar)P([(2n)n]; [(Yn)n]), sO
that dy; < (du)”.

We conclude the paper with some observations on the (bi)completion of GV-
fuzzy (quasi-)metric spaces, for which the situation is quite different to the
corresponding one for KM-fuzzy (quasi-)metric spaces.

Remark 4. In Example 2 of [10] it was shown that if (X,d) is a quasi-
metric space, then the bicompletion (X, My, *) of the standard GV-fuzzy
quasi-metric space (X, My, ) is (isometric to) the GV-fuzzy quasi-metric space
(XB, Mys, %), i.e., the bicompletion of the standard GV-fuzzy quasi-metric
space (X, My, *) is the standard GV-fuzzy quasi-metric space of the bicom-
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pletion of (X, d). On the other hand, it was given in [7] an example of a GV-
fuzzy metric space whose completion is not a GV-fuzzy metric space, and in
8], it was obtained a characterization of those GV-fuzzy metric spaces whose
completion is a GV-fuzzy metric space. (This characterization was extended
to the fuzzy quasi-metric framework in [10].)
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