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Abstract

Fuzzy Description Logics (DLs) are a family of logics which allow the
representation of (and the reasoning with) structured knowledge affected
by vagueness. Although most of the not very expressive crisp DLs, such as
ALC, enjoy the Finite Model Property (FMP), this is not the case once we
move into the fuzzy case. In this paper we show that if we allow arbitrary
knowledge bases, then the fuzzy DLs ALC under  Lukasiewicz and Product
fuzzy logics do not verify the FMP even if we restrict to witnessed models;
in other words, finite satisfiability and witnessed satisfiability are different
for arbitrary knowledge bases. The aim of this paper is to point out
the failure of FMP because it affects several algorithms published in the
literature for reasoning under fuzzy ALC.

1 Introduction

Description Logics (DLs) [2] are a logical reconstruction of the so-called
frame-based knowledge representation languages, with the aim of providing a
simple well-established Tarski-style declarative semantics to capture the mean-
ing of the most popular features of structured representation of knowledge.
Nowadays, DLs have gained even more popularity due to their application in

1

http://arxiv.org/abs/1003.1588v1


the context of the Semantic Web [4]. For example, the current standard lan-
guage for specifying ontologies, the Web Ontology Language OWL is based on
Description Logics.

It is very natural to extend DLs to the fuzzy case in order to manage fu-
zzy/vague/imprecise pieces of knowledge for which a clear and precise definition
is not possible. For a good and recent survey on the advances in the field of
fuzzy DLs, we refer the reader to [14]. One of the challenges of the research in
this community is the fact that different families of fuzzy operators (or fuzzy
logics) lead to fuzzy DLs with different properties.

In fuzzy logic, there are a lot of families of fuzzy operators (or fuzzy log-
ics). Table 1 shows the connectives involved in what are considered the main
four families. The most famous families correspond to the three basic con-
tinuous t-norms (i.e.,  Lukasiewicz, Gödel and Product [10]) together with an
R-implication1. Besides these three, we also point out Zadeh’s family corre-
sponding to the operators originally proposed by Lotfi A. Zadeh in his seminal
work [23]: Gödel t-norm and t-conorm,  Lukasiewicz negation and Kleene-Dienes
implication.

Table 1: Popular families of fuzzy operators

family t-norm α ⊗ β t-conorm α ⊕ β negation ⊖α implication α ⇒ β

Zadeh min{α, β} max{α, β} 1 − α max{1 − α, β}
 Lukasiewicz max{α + β − 1, 0} min{α + β, 1} 1 − α min{1 − α + β, 1}

Product α · β α + β − α · β

{

1, α = 0
0, α > 0

{

1, α ≤ β
β/α, α > β

Gödel min{α, β} max{α, β}

{

1, α = 0
0, α > 0

{

1 α ≤ β
β, α > β

The DL ALC [17] (Attributive Language with Complements) is a very pop-
ular logic, usually considered as a standard. ALC is a notational variant of the
multimodal logic Kn (which essentially corresponds to not having a knowledge
base) [16], and it is well known that Kn verifies the Finite Model Property
(FMP) (see [5, Proposition 2.15]). A logic verifies the FMP iff every satisfiable
theory of the logic is also satisfiable by a finite model.

However, the situation is different in the fuzzy setting. It is also well known
(see [11, Theorem 2] and [12, Theorem 8]2) that in the context of fuzzy ALC the
satisfiability problem for ABoxes (that is, the TBox is empty) in a finite model
coincides with the satisfiability in the bigger class of witnessed models. This
fact is used in [11] to prove that fuzzy ALC under  Lukasiewicz enjoys the FMP
since it is also known that first-order formulae satisfiable under  Lukasiewicz
semantics are always satisfiable in a witnessed model (see [13]). On the other
hand, the FMP fails under Gödel and Product semantics even for ABoxes [11,
Example 2].

1Every left-continuous t-norm ⊗ has associated a unique operation ⇒ called the residuum
of ⊗ (often called an R-implication) and defined as α ⇒ β = sup {γ | α⊗ γ ≤ β}.

2The result is formulated in a different framework (for example, without explicitly having
a t-conorm), but the same proof given there works.
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The aim of this paper is to show that, contrary to what was thought3 up to
now, the previous result cannot be extended to arbitrary knowledge bases; that
is, for arbitrary knowledge bases satisfiability in a finite model may not coincide
with satisfiability in the class of witnessed models. In this paper we show that
this happens at least in the cases of  Lukasiewicz and Product semantics. For
these two cases we provide knowledge bases that are satisfiable in a witnessed
model but not in any finite model. In particular, it follows that FMP is false in
 Lukasiewicz when we allow arbitrary knowledge bases.

The main reason why we can build knowledge bases that are counterexamples
to the FMP is the use of general concept inclusions in the TBox. Indeed, in
Section 4 we show that if the TBox is unfoldable then satisfiability in a finite
model coincides with satisfiability in a witnessed model.

The remainder of this document is as follows. Section 2 recalls the definition
of fuzzy ALCs. Then, Section 3 shows that, under  Lukasiewicz and Product
semantics satisfiability of a knowledge base in a witnessed model does not co-
incide with satisfiability in a finite model. Finally, Section 4 discusses some
consequences of this fact.

2 Fuzzy Description Logics ALC

The crisp DL ALC is one particular logic. On the other hand, its generalization
to the fuzzy setting is not unique since it depends on which fuzzy operators are
chosen (see Table 1). In this section, for every family of operators it is defined
a particular ALC fuzzy logic based on the guidelines given in [19, 20]. It is
worth pointing out that all these fuzzy DLs share the same syntax, although
their semantics are different.

Syntax Let C, R and I be non-empty enumerable and pair-wise disjoint sets
of concept names (denoted A), role names (denoted R) and individual names
(denoted a, b). Concepts may be seen as unary predicates, while roles may be
seen as binary predicates.

ALC (complex) concepts can be built according to the following syntax rule:

C,D → ⊤ | ⊥ | A | C ⊓D | C ⊔D | ¬C | ∀R.C | ∃R.C

There are no complex roles in ALC, but only the atomic ones. Thus, the
syntax here considered is essentially the same one than for crisp ALC. Although
it would be interesting to increase the expressive power adding an implication
C ⇒ D of concepts, we have adopted the convention to avoid it in order to
present a weaker logic where still the negative results given in Section 3 hold.

An ALC fuzzy knowledge base (fuzzy KB) K = 〈A, T 〉 consists of a fuzzy
ABox A and a fuzzy TBox T , where

3And implicitly used in several published algorithms (see Section 4).
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• a fuzzy ABox A is a finite set of fuzzy concept assertion axioms of the form
〈a :C ≥ α〉 and 〈a :C ≤ α〉, and fuzzy role assertion axioms of the form4

〈(a, b) :R ≥ α〉, where a, b are individual names, C is a concept, R is a role
and α ∈ [0, 1] is a rational number.

• a fuzzy TBox T is a finite set of fuzzy general concept inclusion (GCI)
axioms 〈C ⊑ D ≥ α〉, where C,D are concepts and α ∈ [0, 1] is a rational
number.

It is common to write τ as a shorthand for 〈τ ≥ 1〉, 〈a :C = α〉 as an abbrevia-
tion of the pair of axioms 〈a :C ≥ α〉 and 〈a :C ≤ α〉, and the concept equivalence
C ≡ D as a shorthand of the two axioms 〈C ⊑ D ≥ 1〉 and 〈D ⊑ C ≥ 1〉.

For the sake of concrete illustration, let us introduce a couple of examples of
fuzzy KBs. The second one will be used later as a counterexample to the FMP.

Example 2.1 The pair K1 = 〈A1, T1〉 with A1 = {〈jim :YoungPerson ≥ 0.2〉,
〈(jim, mary) :likes ≥ 0.8〉} and T1 = {〈Inn ⊑ Hotel ≥ 0.5〉} is a fuzzy KB.

Example 2.2 K2 is the fuzzy KB with the following axioms

(1) (a : A) = 0.5

(2) ⊤ ⊑ ∃R.⊤

(3) (∀R.A) ≡ (∃R.A)

(4) A ≡ (∀R.A) ⊓ (∀R.A)

Semantics In fuzzy DLs, concepts and roles are interpreted, respectively, as
fuzzy subsets and fuzzy relations over an interpretation domain. However, the
axioms of a fuzzy KB (i.e., the elements of its ABox or its TBox) are either
satisfied (true) or unsatisfied (false) in an interpretation. Hence, the axioms
behave as in the crisp case and they are not interpreted as a degree of truth in
[0, 1].

Informally speaking, a fuzzy axiom 〈τ ≥ α〉 in a ABox constrains the mem-
bership degree of τ to be at least α. And the intended semantics of 〈C ⊑ D ≥ α〉
states that all instances of concept C are instances of concept D to degree α,
i.e. the subsumption degree (to be clarified later) between C and D is at least
α. Next, we give precise definitions for the semantics just explained.

A fuzzy interpretation (or model) is a pair I = (∆I , ·I) consisting of a
nonempty (crisp) set ∆I (the domain) and of a fuzzy interpretation function ·I

that assigns:

4The reader may be surprised about the fact that axioms of the form 〈(a, b) :R ≤ α〉 are not
considered. The reason to not accept this kind of statements is that in the case of crisp ALC
in the ABox it is not allowed to use statements of the form 〈(a, b) :R ≤ 0〉 (remember that
in ALC the negation of a role is not allowed). On the other hand, in crisp ALC it is indeed
allowed to use 〈a :C ≤ 0〉 since it corresponds to 〈a :¬C ≥ 1〉 (remember that the negation of
a concept is allowed).

4



Table 2: Fuzzy DL semantics for ALC.

⊥I(x) = 0
⊤I(x) = 1

(C ⊓D)
I
(x) = CI(x) ⊗DI(x)

(C ⊔D)
I
(x) = CI(x) ⊕DI(x)

(¬C)
I
(x) = ⊖CI(x)

(∀R.C)
I
(x) = infy∈∆I (RI(x, y) ⇒ CI(y))

(∃R.C)
I
(x) = supy∈∆I(RI(x, y) ⊗ CI(y))

1. to each atomic concept A a function AI : ∆I → [0, 1],

2. to each role R a function RI : ∆I × ∆I → [0, 1],

3. to each individual a an element aI ∈ ∆I .

The fuzzy interpretation function is extended to complex concepts as speci-
fied in the Table 2 (where x, y ∈ ∆I are elements of the domain, and as usual we
use ⊗,⊕,⊖ and ⇒ to denote respectively the t-norm, t-conorm, negation func-
tion and implication function of the corresponding family of fuzzy operators cho-
sen). Hence, for every complex concept C we get a function CI : ∆I −→ [0, 1].

Note that 〈a :C ≤ α〉 is equivalent to 〈a :¬C ≥ 1 − α〉 under  Lukasiewicz
negation. Hence, in  Lukasiewicz it is not necessary to explicitly consider fuzzy
concept assertions of the form 〈a :C ≤ α〉.

The (crisp) satisfiability of axioms in a fuzzy KB is then defined by the
following conditions:

1. I satisfies an axiom 〈a :C ≥ α〉 in case that CI(aI) ≥ α,

2. I satisfies an axiom 〈a :C ≤ α〉 in case that CI(aI) ≤ α,

3. I satisfies an axiom 〈(a, b) :R ≥ α〉 in case that RI(aI , bI) ≥ α,

4. I satisfies an axiom 〈C ⊑ D ≥ α〉 in case that (C ⊑ D)
I

≥ α where

(C ⊑ D)
I

= infx∈∆I(CI(x) ⇒ DI(x)).

It is interesting to point out that the satisfaction of a GCI of the form
〈C ⊑ D ≥ 1〉 is exactly the requirement that ∀x ∈ ∆I , CI(x) ≤ DI(x) (i.e.,
Zadeh’s set inclusion); hence, in this particular case for the satisfaction it only
matters the partial order and not the exact value of the implication ⇒.

As it is expected we will say that a fuzzy interpretation I satisfies a KB K
in case that it satisfies all axioms in K. And it is said that a fuzzy KB K is
satisfiable iff there exist a fuzzy interpretation I satisfying every axiom in K.

As it is said in the introduction, here we mainly focus on witnessed models
and compare them to finite models. This notion (see [11]) corresponds to the
restriction to the DL language of the notion of witnessed model introduced, in
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the context of the first-order language, by Hájek in [13]. A fuzzy interpretation
I is said to be witnessed iff it holds that for every complex concepts C,D, every
role R, and every x ∈ ∆I there is some

1. y ∈ ∆I such that (∃R.C)I(x) = RI(x, y) ⊗ CI(y).

2. y ∈ ∆I such that (∀R.C)I(x) = RI(x, y) ⇒ CI(y).

3. y ∈ ∆I such that (C ⊑ D)I = CI(y) ⇒ DI(y).

The idea behind this definition is that in a witnessed interpretation all ar-
bitrary infima and suprema needed in order to compute CI and (C ⊑ D)I are
indeed minima and maxima. It is obvious that all finite fuzzy interpretations
(this means that ∆I is a finite set) are indeed witnessed, but the opposite is
not true. A fuzzy KB K is said to be satisfiable in a witnessed interpretation iff
there exist a witnessed fuzzy interpretation I satisfying every axiom in K.

3 Infinite Models in Fuzzy ALC

In this section we prove that there are fuzzy KBs that are not finitely satisfiable
while are satisfiable in a witnessed interpretation. We will prove this statement
for two cases: the  Lukasiewicz and the Product cases, and in both cases we will
use the same fuzzy KB K2 defined in Example 2.2.

First of all we focus in the  Lukasiewicz case. It is worth pointing out that
under  Lukasiewicz semantics the first axiom in K2 can be rewritten as

〈a :((A ⊔ A) ⊓ ¬(A ⊓ A)) ≥ 1〉,

and so it is simply using as a bound the crisp value 1.

Proposition 3.1 Let I be a witnessed model of K2 under  Lukasiewicz fuzzy
logic. Then, for every natural number n there are individuals b1, b2, b3, . . . , bn
such that 0.5 = AI(b1) < AI(b2) < AI(b3) < · · · < AI(bn) < 1.

Proof: For the case n = 1 this is trivial using axiom (1) in the fuzzy KB.
Now let us assume that there are individuals b1, b2, b3, . . . , bn such that 0.5 =

AI(b1) < AI(b2) < AI(b3) < · · · < AI(bn) < 1. We want to check that there is
an individual bn+1 such that AI(bn) < AI(bn+1) < 1.

Using axiom (2) we know that (∃R.⊤)I(bn) = 1. Since the model is wit-
nessed, there is a 1-successor of bn that we call b, i.e., RI(bn, b) = 1. It is
obvious that (∀R.A)I(bn) ≤ 1 ⇒ AI(b) = AI(b) and that AI(b) = 1 ⊗AI(b) ≤
(∃R.A)I(bn). Using axiom (3) we get that (∀R.A)I(bn) = AI(b) = (∃R.A)I(bn).
Therefore, axiom (4) is saying that AI(bn) = (∀R.A)I(bn) ⊗ (∀R.A)I(bn) =
AI(b) ⊗ AI(b). Using  Lukasiewicz t-norm, it follows that AI(bn) = AI(b) +
AI(b) − 1, and hence AI(b) = (AI(bn) + 1)/2. Thus, it is clear that A(bn) <
A(b) < 1. Hence, we can define bn+1 as b to finish the proof. Q.E.D.

Corollary 3.2 There is no finite model for K2 under  Lukasiewicz fuzzy logic.
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Theorem 3.3 K2 is, under  Lukasiewicz fuzzy logic, satisfiable by a witnessed
model but not by a finite model.

Proof: By the previous corollary it is enough to give a witnessed model of
K2. One witnessed model of this fuzzy KB is the model I defined by

• ∆I = {1, 2, 3, . . .} ∪ {∞},

• RI is the crisp relation {(i, i + 1) : i = 1, 2, 3, . . .} ∪ {(∞,∞)},

• AI(∞) = 1 and AI(i) = (2i − 1)/2i for every i = 1, 2, 3, . . .

• aI = 1.

The fact that this model I satisfies K2 can be easily checked by the reader, and
the same for the first two conditions in the definition of witnessed model. On
the other hand, the last condition in the definition of witnessed model is subtler,
and we give here a proof. First of all we notice the following claim.

Claim 3.4 For every (complex) concept C and every ε > 0, it holds one (and
only one) of the following two conditions:

Cond1(C, ε): CI(∞) = 0, and there is some n ∈ N such that inf{CI(i) : i ∈
N, i ≥ n} = 0 and sup{CI(i) : i ∈ N, i ≥ n} ≤ ε.

Cond2(C, ε): CI(∞) = 1, and there is some n ∈ N such that sup{CI(i) : i ∈
N, i ≥ n} = 1 and inf{CI(i) : i ∈ N, i ≥ n} ≥ 1 − ε.

Proof of Claim: First of all, we notice that a trivial induction proves that
CI(∞) ∈ {0, 1} for every concept C. Next we prove the claim by induction on
the length of the concept C. The cases of ⊤ and an atomic concept A are trivial.
Due to the interdefinability between connectives in the  Lukasiewicz case, it is
enough to study the connectives ¬, ⊓ and ∀R.C.

• The case of a concept ¬C follows from the continuity of the  Lukasiewicz
negation; we remind the reader that continuity tells us that the function
commutes with infima and suprema.

• Let us consider the case of a concept C ⊓D. If both C and D satisfy the
second condition, then it is enough to see that Cond2(C, ε/2) together with
Cond2(D, ε/2) implies Cond2(C ⊓D, ε); and this fact is a consequence of
sup{(C ⊓D)I(i) : i ∈ N, i ≥ n} = sup{CI(i) : i ∈ N, i ≥ n} ⊗ sup{DI(i) :
i ∈ N, i ≥ n} = 1⊗ 1 = 1 (by the continuity of ⊗) and (1− ε

2 )⊗ (1− ε
2 ) ≥

1 − ε. Let us consider now the case that at least one of the two concepts
satisfies the first condition. Without loss of generality, we can assume
that Cond1(C, ε) holds. From this assumption it follows Cond1(C ⊓D, ε)
because (C ⊓D)I(i) ≤ CI(i) for every i.

• The case of a concept ∀R.C follows from the fact that for every i ∈ N,
(∀R.C)I(i) = CI(i + 1).
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This finishes the proof of the claim. q.e.d.

Let us now prove the third requirement in the definition of a witnessed
interpretation. Hence, we consider two concepts C and D. Using the previous
claim for the concept ¬C ⊔D we are in one of the following two cases.

• Case (¬C ⊔ D)I(∞) = 0. In this case it is trivial that (C ⊑ D)I = 0 =
CI(∞) ⇒ DI(∞).

• Case (¬C⊔D)I(∞) = 1 and for every ε > 0 there is some n ∈ N such that
sup{(¬C ⊔ D)I(i) : i ∈ N, i ≥ n} = 1 and inf{(¬C ⊔ D)I(i) : i ∈ N, i ≥
n} ≥ 1 − ε. Without loss of generality we can assume that there is some
m ∈ N such that (¬C ⊔D)I(m) < 1, because if not, then (C ⊑ D)I = 1
and hence (C ⊑ D)I = CI(i) ⇒ DI(i) for every i ∈ I. Let us consider
a := (¬C ⊔D)I(m) and ε := 1 − a. Thus, using the claim we know that
there is some n ∈ N such that sup{(¬C ⊔D)I(i) : i ∈ N, i ≥ n} = 1 and
inf{(¬C ⊔D)I(i) : i ∈ N, i ≥ n} ≥ a. Hence,

(C ⊑ D)I = min({(¬C ⊔D)I(m)} ∪ {(¬C ⊔D)I(i) : i ≤ n}).

As (C ⊑ D)I is the minimum of a finite set the proof is finished. Q.E.D.

Next we consider the case of Product logic. The following proposition can
be proved by essentially the same argument as for Proposition 3.1, so we skip
the proof.

Proposition 3.5 Let us a consider a witnessed model I of K2 under Product
fuzzy logic. Then, for every natural number n there are individuals b1, b2, b3, . . . , bn
such that 0.5 = AI(b1) < AI(b2) < AI(b3) < · · · < AI(bn) < 1.

Corollary 3.6 There is no finite model for K2 under Product fuzzy logic.

Theorem 3.7 K2 is, under Product fuzzy logic, satisfiable by a witnessed model
but not by a finite model.

Proof: It is enough to give a witnessed model of K2. One witnessed model
of this fuzzy KB is the model I defined by

• ∆I = {1, 2, 3, . . .},

• RI is the crisp relation {(i, i + 1) : i = 1, 2, 3, . . .},

• AI(i) = 2
i−1

√

(

1
2

)

for every i = 1, 2, 3, . . . ,

• aI = 1.

The fact that this model I satisfies K2 can be easily checked by the reader, and
the same for the first two conditions in the definition of witnessed model. The
rest of this proof is devoted to prove the third condition.
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Claim 3.8 For all (complex) concepts C, one (and only one) of the following
conditions holds:

• 0 = CI(i) for every i ∈ N,

• 0 < CI(1) ≤ CI(2) ≤ CI(3) ≤ . . . and sup{CI(i) : i ∈ N} = 1.

Proof of Claim: This can be straightforwardly proved by induction on the
length of the concept C using how the fuzzy operators involved in the product
case are defined5.

• The case of a concept ¬C is a trivial consequence of the fact that Product
negation is the one given in Table 1 (usually called strict negation).

• The cases of concepts built with ⊓ and ⊔ follow from the monotonicity of
the functions ⊗ and ⊕.

• The cases of concepts built with ∀R. and ∃R. follow from the fact that for
every i ∈ N, (∀R.C)I(i) = CI(i + 1) = (∃R.C)I(i).

This finishes the proof of the claim. q.e.d.

Now it is time to use this previous claim in order to check that for every pair
of concepts C and D there is some i ∈ N such that (C ⊑ D)I = CI(i) ⇒ DI(i).
By the previous property we can distinguish three different cases, which cover
all possibilities.

• Firstly, we consider the case where 0 = CI(i) for every i ∈ N. Then, it is
trivial that (C ⊑ D)I = inf{0 ⇒ DI(i) : i ∈ N} = 1 = CI(i) ⇒ DI(i) for
every i ∈ N.

• Secondly, we consider the case where 0 6= CI(i) and 0 = DI(i) for every
i ∈ N. Then, it is trivial that (C ⊑ D)I = inf{CI(i) ⇒ 0 : i ∈ N} = 0 =
CI(i) ⇒ DI(i) for every i ∈ N.

• Lastly, we consider the case where 0 < CI(1) ≤ CI(2) ≤ CI(3) ≤ . . .,
sup{CI(i) : i ∈ N} = 1, 0 < DI(1) ≤ DI(2) ≤ DI(3) ≤ . . . and
sup{DI(i) : i ∈ N} = 1. In order to finish this proof it suffices to con-
sider the case that (C ⊑ D)I 6= 1, because if (C ⊑ D)I = 1 then it
is clear that (C ⊑ D)I = CI(i) ⇒ DI(i) for every i ∈ I. Hence, let
us assume that (C ⊑ D)I 6= 1. Thus, there is some i0 ∈ N such that

(CI(i0) ⇒ DI(i0)) = DI(i0)
CI(i0) < 1. On the other hand, by continuity we

know that

lim
i→∞

min

{

CI(i)

DI(i)
,
DI(i)

CI(i)

}

= min

{

limi→∞ CI(i)

limi→∞ DI(i)
,

limi→∞ DI(i)

limi→∞ CI(i)

}

=

= min

{

supi∈N CI(i)

supi∈N DI(i)
,

supi∈N DI(i)

supi∈N CI(i)

}

= 1

5Here, as opposed to the  Lukasiewicz case, the fact that the implication operator ⇒ is not
involved in the construction of complex ALC concepts is crucial.
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Therefore, as a consequence of the fact that for every i ∈ N,

min

{

CI(i)

DI(i)
,
DI(i)

CI(i)

}

≤ CI(i) ⇒ DI(i) ≤ 1,

it follows that limi→∞(CI(i) ⇒ DI(i)) = 1. Thus, we know that the set
I = {i ∈ N : CI(i) ⇒ DI(i) ≤ CI(i0) ⇒ DI(i0)} is finite. Since I is
finite it is obvious that there is some i ∈ I such that (C ⊑ D)I = CI(i) ⇒
DI(i). Q.E.D.

4 Discussion

The aim of this section is to discuss some interesting remarks of the failure of
the FMP exposed in Theorems 3.3 and 3.7.

The first remark is that the failure of the FMP is essentially a consequence
of the fact that the TBox is cyclic. As we will see, in the case of  Lukasiewicz
this situation does not happen if we consider only unfoldable KBs.

A TBox T is acyclic iff it verifies the following three constraints:

1. Every axiom in T is either of the form 〈A ⊑ C ≥ α〉 or A ≡ C, where A
is an atomic concept.6

2. There is no concept A such that it appears more than once on the left
hand side of some axiom in T .

3. No cyclic definitions are present in T . We will say that A directly uses
primitive concept B in T , if there is some axiom τ ∈ T such that A is on
the left hand side of τ and B occurs in the right hand side of τ . Let uses
be the transitive closure of the relation directly uses in T . T is cyclic iff
there is A such that A uses A in T .

Analogously, a fuzzy KB is said to be acyclic when its TBox is acyclic.

In the crisp case, acyclic TBoxes can be eliminated through an expansion
process [15] which only takes a finite number of steps. The fact that this process
can create an exponential growth of the KB has motivated the introduction of
the lazy expansion optimization technique [3], very useful in practice.

In the fuzzy case, acyclic TBoxes cannot be completely removed in general
due to the presence of degrees α, and we need to require some additional prop-
erty in order to do so. We say that a fuzzy TBox is unfoldable if it is an acyclic
TBox which only contains axioms of the form 〈A ⊑ C ≥ 1〉, and A ≡ C (that
is, an acyclic TBox where every fuzzy concept inclusion axiom is of the form
〈A ⊑ C ≥ α〉 with α = 1) (cf. [19, Section 3.3]). Analogously, a fuzzy KB is said
to be unfoldable when its TBox is unfoldable.

In case we allow to use truth constants α as concept constructors, then it is
trivially true for all left-continuous t-norms that 〈C ⊑ D ≥ α〉 is equisatisfiable

6In particular this forbids concept ⊤ on the left hand side of axioms.
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with 〈C ⊓ α ⊑ D ≥ 1〉. Next, we exploit a similar idea to show that, in the
particular case of  Lukasiewicz, unfoldable fuzzy TBoxes can be converted into
acyclic ones, even without having truth constants α as concept constructors.
The idea is that all axioms of the form 〈A ⊑ C ≥ α〉 can be converted into the
form 〈A ⊑ C′ ≥ 1〉. For example, 〈A ⊑ C ≥ 2

3 〉 can be converted into the form

〈A ⊑ C ⊔ ((A′ ⊓ A′) ⊓ ¬(A′ ⊓ A′ ⊓A′)) ≥ 1〉 ,

where A′ is a new atomic concept; the reason why this is so is because the
concept (A′ ⊓A′) ⊓ ¬(A′ ⊓A′ ⊓A′) always takes values onto the interval [0, 1

3 ].
In the following proof we develop this idea.

Lemma 4.1 ( Lukasiewicz Case) There is an algorithm that converts every
acyclic fuzzy KB K = 〈A, T 〉 into an unfoldable fuzzy KB K′ = 〈A, T ′〉 in such
a way that

K is satisfiable iff K′ is satisfiable.

The algorithm also preserves satisfiability in a witnessed model, and the same
for satisfiability in a finite model.

Proof: Let us consider an axiom of the form 〈A ⊑ C ≥ α〉. By the construc-
tive version of McNaughton’s Theorem (see [1]) it is obvious that there is an
algorithm that for every rational α generates a propositional concept τα(A′)
using only one atomic concept A′ and such that

P1: τα(A′) only takes values in [0, 1 − α],

P2: τα(A′) takes value 1 − α when A′ takes value α.

To finish the proof it is enough to see that for every KB K, it holds that

• K ∪ {〈A ⊑ C ≥ α〉} is satisfiable, iff

• K ∪ {〈A ⊑ C ⊔ τα(A′) ≥ 1〉} is satisfiable (where A′ is a new atomic con-
cept).

The upwards implication is a consequence of P1. On the other hand, the down-
wards implication is a consequence of P2 because we can extend any interpre-
tation I to encompass the new atomic concept A′ defining for every individual
x, A′I(x) = α. It is also obvious that this way of extending the interpreta-
tion preserves the witnessed property (because A′ takes the same value in all
individuals) and the finiteness. Q.E.D.

Next we prove, using ideas from [19], that fuzzy unfoldable TBoxes can
be eliminated through a finite expansion process when the interpretation of ⊓
is a continuous t-norm. Our proof of this result does not seem to work for
satisfiability in a witnessed model; but we know how to deal with this case
as long as the minimum constructor min{C,D} is definable in our framework.
We remind the reader that in the case of continuous t-norms the constructor
min{C,D} is definable, using an R-implication constructor →, by C⊓(C → D);
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hence, the Zadeh,  Lukasiewicz (note that in  Lukasiewicz logic, C → D coincides
with ¬C ⊔D) and Gödel families given in Table 1 satisfy the assumption in the
second item of the following result.

Lemma 4.2 (Assuming ⊗ is continuous) Let K be a fuzzy KB and let C,D
be two concepts.

1. The following statements are equivalent:

• K ∪ {〈C ⊑ D ≥ 1〉} is satisfiable,

• K ∪ {C ≡ A ⊓D}, where A is a new atomic concept, is satisfiable.

This equivalence also holds when we consider satisfiability in a finite model.

2. (Assuming the constructor min is definable) The following statements are
equivalent:

• K ∪ {〈C ⊑ D ≥ 1〉} is satisfiable,

• K∪{C ≡ min{A,D}}, where A is a new atomic concept, is satisfiable.

This equivalence also holds when we consider satisfiability in a finite model,
and the same for satisfiability in a witnessed model.

Proof: Let us consider the first item. One direction is a consequence of
the fact that t-norms satisfy x ⊗ y ≤ y. For the other, let us point out that
continuous t-norms are divisible (see [11, Lemma 2.1.10]) in the sense that for
every x, y ∈ [0, 1] there is an element a such that a⊗x = min{x, y}; this element
a can be defined as sup{z ∈ [0, 1] : x⊗ z ≤ y} and is commonly denoted x ⇒ y.
Hence, we can extend any interpretation I to encompass the new atomic concept
A defining AI(x) := DI(x) ⇒ CI(x).

One direction of the second item follows from the fact that min{x, y} ≤ y.
The other is proved extending any interpretation I to encompass the new atomic
concept A defining AI(x) := CI(x). Q.E.D.

Lemma 4.3 (Assuming ⊗ is continuous)

1. There is an algorithm that converts every unfoldable fuzzy KB K = 〈A, T 〉
into a fuzzy ABox A⋆ in such a way that

K is satisfiable iff A⋆ is satisfiable.

The algorithm also preserves satisfiability in a finite model.

2. (Assuming the constructor min is definable) There is an algorithm like
in the previous item which additionally also preserves satisfiability in a
witnessed model.
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Proof: We give the proof of the first item. The second one is proved analo-
gously but using the second item in Lemma 4.2.

Let us assume that K = 〈A, T 〉 is an unfoldable fuzzy KB. We know that all
axioms in T are either of the form 〈A ⊑ C ≥ 1〉 or A ≡ C, where A is an atomic
concept. The algorithm consists on two steps. In the first step, we replace
all axioms of the form 〈A ⊑ C ≥ 1〉 with A ≡ A′ ⊓ C (with A′ a new atomic
concept). Once this is done we know that all axioms in the new TBox K′ are of
the form A ≡ C. In the second step of the algorithm, we consider the ABox A
and replace, for every axiom A ≡ C, all occurrences of A with C. We will refer
by A⋆ to the output of this process.

Now let us check that K is satisfiable iff A⋆ is satisfiable. The first item in
Lemma 4.2 takes care of the first step of the algorithm, that is, K is satisfiable
iff K′ is satisfiable. Next we prove that K′ is satisfiable iff A⋆ is satisfiable.
The rightwards direction is trivial. For the other, it is enough to notice that
since the axioms in K′ are of the form A ≡ C with A an atomic concept we can
redefine, for every individual a appearing in the ABox A⋆, AI(aI) as the value
CI(aI). Q.E.D.

Next theorem is formulated only for  Lukasiewicz in order to use the decid-
ability result in [12, Corollary 1] for our framework. We include t-conorm as a
concept constructor as opposed to [12], but  Lukasiewicz t-conorm is clearly de-
finable from  Lukasiewicz t-norm and negation. Extensions of [12, Corollary 1]
adding a t-norm constructor would be needed in order to deal with all t-norm
logics considered in this paper, and not only  Lukasiewicz.

Theorem 4.4 ( Lukasiewicz Case)

1. For every fuzzy KB K = 〈A, T 〉 such that T is acyclic, the satisfiability in
a finite model under the fuzzy ALC coincides with the satisfiability.

2. There is an algorithm for checking the satisfiability of acyclic KBs.

Proof: By Lemma 4.1 and Lemma 4.3 it is possible to remove the TBox.
Then, we use the known results [12, Theorem 8 and Corollary 1] that in fuzzy
ALC ABoxes, satisfiability in a witnessed model and satisfiability in a finite
model coincide and are decidable problems. Note that [12] does not con-
sider a t-conorm in the language, but it can defined from  Lukasiewicz nega-
tion and t-norm. The proof finishes using the result in [13] which tells us that
for  Lukasiewicz, satisfiability coincides with satisfiability in a witnessed model.
Q.E.D.

On the other hand, the second remark concerns the fact there are several
reasoning algorithms in the literature for  Lukasiewicz [7, 21, 22], Product [6],
or any left continuous t-norm fuzzy DLs [8, 18]) that claim to support GCIs.
These algorithms restrict themselves to witnessed models. Unfortunately, these
papers are implicitly assuming that the logic satisfies FMP. By Theorems 3.3
and 3.7 we have shown that this assumption cannot be done, so these algorithms
do not work correctly for arbitrary fuzzy KBs (even if the semantics of GCIs
is defined using Zadeh’s set inclusion, as it happens in [18]). For instance,
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these algorithms are not able to provide a correct model for K2. Once these
algorithms generate a tableau, it is unknown how to build an infinite model
starting from it.

By the previous results, the cited algorithms are correct if we add some
additional restrictions:

• [7, 21, 22] consider the fuzzy DL ALC under  Lukasiewcz fuzzy logic. Ac-
cording to Theorem 4.4, the algorithms are correct in case we only consider
acyclic KBs.

• [6] consider the fuzzy DL ALC under Product fuzzy logic. By Lemma 4.3,
the algorithm is correct if we only consider unfoldable KBs.

• [8] provides reasoning algorithms for the fuzzy DLs ALC defined by fami-
lies of fuzzy operators corresponding to a left-continuous t-norm extended
with an involutive negation7. This work restricts itself to acyclic KBs, so
for instance K2 cannot be represented in the logic. According to Theo-
rem 4.4, the algorithm is correct for  Lukasiewicz logic. By Lemma 4.3, the
algorithm is also correct for unfoldable KBs. The correctness of the algo-
rithm for acyclic KBs any fuzzy logic different from  Lukasiewicz remains
a conjecture.

• [18] provides a reasoning algorithm for the fuzzy DLs SI defined by fam-
ilies of fuzzy operators corresponding to a left-continuous t-norm. Again,
the algorithm is correct if we restrict to unfoldable KBs (Lemma 4.3), or
to acyclic KBs and  Lukasiewicz fuzzy logic (Theorem 4.4).

It is a matter of future research to determine the decidability of fuzzy ALC
and sublanguages with an unrestricted TBox under  Lukasiewicz and Product
fuzzy logics.
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