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 

 

Abstract  

In this paper, stability of continuous-time polynomial fuzzy models by means of a polynomial 

generalization of fuzzy Lyapunov functions is studied. Fuzzy Lyapunov functions have been fruitfully used 

in literature for local analysis of Takagi-Sugeno models, a particular class of the polynomial fuzzy ones. 

Based on a recent Taylor-series approach which allows a polynomial fuzzy model to exactly represent a 

nonlinear model in a compact set of the state space, it is shown that a refinement of the polynomial 

Lyapunov function so as to make it share the fuzzy structure of the model proves advantageous. Conditions 

thus obtained are tested via SOS software. 

Keywords: local stability, fuzzy modeling, fuzzy Lyapunov functions, polynomial fuzzy models, sum of squares. 

 

1. INTRODUCTION 

During the last twenty years, research on fuzzy models has evolved from a purely heuristic-based 

framework to a formal mathematical model-based one [Tanaka01]. This evolution has been based 

significantly on Takagi-Sugeno (TS) fuzzy models [Takagi85] since they allow exact representations of a 

given nonlinear model as a fuzzy system to be systematically obtained in a compact set of the state 
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variables [Taniguchi01]. A TS model is constructed as a nonlinear blending of linear models via 

membership functions (MFs) which hold the convex-sum property and capture the model nonlinearities 

through a technique known as the sector nonlinearity approach [Tanaka01]. The convex structure of a TS 

model enables Lyapunov-based stability analysis and controller design to be naturally applied. Quadratic 

Lyapunov functions have been extensively employed because they lead to conditions that can be easily cast 

as linear matrix inequalities (LMIs) [Tanaka01], which can be solved by convex optimization techniques 

from semi-definite programming [Boyd94]. Plenty of results have appeared under the TS-quadratic 

framework in the last twenty years proving their usefulness and applicability on traditional control tasks 

(see [Tanaka01, Sala05] and references therein).  

Quadratic conditions are only sufficient for stability of TS models. Several directions have been explored to 

relax the inherent conservativeness of the quadratic approach, for instance: using a more general class of 

Lyapunov functions like the piecewise [Johansson99, Feng04] or the fuzzy ones [Tanaka03, Guerra04], 

handling in a less conservative way the membership-function information [Sala07, Sala08, Bernal09], or 

employing a class of models broader than the TS ones [Guerra07, Tanaka07a, Tanaka07b]. Among the 

latter direction, polynomial fuzzy (PF) models have established a new paradigm that overcomes many of 

the aforementioned problems of conservativeness since they are convex combinations of polynomial 

models instead of convex combinations of linear ones [Tanaka09a, Tanaka09b]. Moreover, conditions 

derived under this new framework can also be checked with semi-definite programming using Sum-of-

Squares (SOS) tools [Prajna04a, Prajna04b]. 

This paper is based on two recent works: the first one [Sala09a, Sala09b] provides a systematic way of 

obtaining exact polynomial fuzzy representations of nonlinear models via a Taylor-series approach, thus 

generalizing sector nonlinearity approach; the second one [Guerra09, Bernal10] shows how to escape from 

the quadratic framework by combining local analysis and fuzzy Lyapunov functions for continuous-time TS 

models. Since local analysis can be easily included via Lagrange multipliers and the Positivstellensatz 
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argumentation in the polynomial framework [Prajna04a, Sala09b], the use of more general Lyapunov 

functions such as the polynomial fuzzy ones is investigated in this paper as a generalization of those 

employed in [Guerra09]. 

In summary, the objective of this paper is reducing the conservativeness of stability analysis of smooth 

nonlinear systems; this is achieved by generalizing previous results on local stability using non-quadratic 

Lyapunov functions to the polynomial-fuzzy case. Polynomial bounds on the partial derivatives of the 

membership functions, as well as information on the shape of the region of interest, will be used by means 

of Positivstellensatz multipliers.  

The paper has the following structure: section II introduces notation, continuous-time PF models as well as 

polynomial fuzzy Lyapunov functions (PFLF) on which this paper is developed: a problem statement is 

made; section III develops the main result which combines PF models and PFLFs for local stability 

analysis; section IV provides some illustrative examples pointing out the advantages of using the proposed 

methodology; finally section V gathers some conclusions and discusses future work.  

2. PROBLEM STATEMENT 

Consider a nonlinear model    x t x f  having the origin as an equilibrium point, and assume that it can 

be expressed in the form: 

          1

1 , , ,x t h z x h z x x t

 π  (1) 

being   : n n π  a vector of polynomial functions,   nx t   the state vector,   z x t   another 

vector of polynomial functions of the state (denoted as the premise vector), and a set of functions 

  :kh   ,  1, ,k   representing possible non-polynomial nonlinearities in (1), such as 

trigonometric, exponential, etc., functions; nonlinearities  kh   are assumed bounded and smooth in a 

region of interest given by a compact set  0 . Any compact region of interest  can be included into a 
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semi-algebraic set with a piecewise polynomial boundary (for instance, a ball). This fact will be later used 

for SOS relaxations. 

For instance, a model equation   
2

2

1 1 2 2 1sinx x x x x    can be expressed in the above form by 

considering   2

1 2 2 1, ,h x x h x x   ,    sinh z z , and 2

1 2z x x  . As discussed below, if functions 

 kh z  are dC  they admit a representation as a fuzzy combination of polynomials of degree d, to be denoted 

as “polynomial fuzzy” model. The case 1d   amounts to the well-known Takagi-Sugeno models. 

Once a nonlinear system in the above general form is assumed, fuzzy techniques will be used to analyze its 

stability. The first step is converting the system to a fuzzy model (a polynomial fuzzy one, in fact).  In order 

to carry out such conversion, consider a particular non-polynomial nonlinearity  h z  as those defined 

above (subscripts and arguments are omitted for simplicity). Employing the polynomial fuzzy modeling 

described in [Sala09a, Sala09b] (which is a generalization of sector nonlinearity in [Tanaka01]), this 

function can be rewritten as a convex sum of polynomials. Indeed, in order to do so,  let us denote the d-th 

degree Taylor approximation of  h z  as  
   1

0

0

!

id
i

d

i

h
h z z

i





 , d , the residual term 

 
   d

d d

h z h z
T z

z


 , with1    

0
0 limd d

z
T T z


 , and the bounds  supd d

z

T T z


 ,  infd d
z

T T z


 , assuming 

the arbitrarily chosen degree d is low enough such that the required derivatives exist and )(zTd is 

continuous.  This notation allows defining the pair of MFs:  

 
 

0

d d

d d

T z T
w z

T T





,    1 01w z w z  ,    0 1, 0w z w z   (2) 

It is straightforward to see that the nonlinearity  h z  can now be written as  

 
1 Expressions like  dT z  having a possible division by zero will appear in several expressions as a consequence of the Taylor-based modeling technique. In 

any case they will be defined at 0 as the limit of the expression in that point [Sala09a]. 
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             
1

0 0 1 1

0

i i

i

h z w z q z w z q z w z q z


   , (3) 

with two vertex polynomials of degree d given by:    0

d

d dq z h z T z   and    1

d

d dq z h z T z  . For 

details, see [Sala09a, Sala09b]. On the sequel, arguments will be omitted when convenient for brevity, for 

instance, iw  will stand for  iw z . Basically, replacing (3) into the polynomial π  in (1) will yield the 

overall fuzzy polynomial model. However, if the polynomial π  is not linear in  kh  , say it appears with 

degree kd , it gives rise to multi-dimensional  (nested) tensor-product convex sums. Indeed, in that case, 

every function  kh  ,  1, ,k   can be written as the product of its kd  elementary convex sums of the 

form (3). Thus, expression (1) can be rewritten as the following PF model: 

 (4) 

 
1 2

1 1 2 2 1 2 1 2

1 2 1 2

1 1 1 1 1 1
1 1 2 2 1 2

0 0 0 0 0 0

, , , ,
p p

p p

dd d

p

i i i i i i i i i i i i

i i i i i i

x t w q w q w q x w w w w



 



 

      

     
                

      i i

i

π q q
I

 

with :  

 p  being the sum of the degrees in  π  of each of the   nonlinearities in (1), i.e., 
1j

p d





 .  

       1 2, , , : 0,1 , 1, ,p p ji i i i j p   iI  is the set of all p-bit binary numbers, being its 

elements, i , multidimensional index variables whose k-th bit is denoted as ki . 

   
1 2

1 2

1
p j

p
p j

i i i i j

j

w w w w w z


 i  is a product of elementary MFs obtained from those describing each 

nonlinearity in (3), 

 and  x
i

q  is a polynomial vector of the proper size.  
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Example 1: To illustrate the modeling process above, consider the model 2sin ( ) xx x e x  . It will have a 

polynomial model for 
1 1

1

1
1 1

0

sin( ) i i

i

x w q


 , and another one for 
2 2

2

1
2 2

0

x

i i

i

e w q



 , giving rise to an overall model 

in the form: 
1 2 3 1 2 3

1 2 3

1 1 1
1 2 1

0 0 0

i i i i i i

i i i

x w w w
  

 q , with 
1 2 3 1 3 2

1 1 2

i i i i i iq q q x q . Defining 3 1 1

i i iw w w   yields an expression 

in the form (4), i.e., a three-dimensional tensor product combination of vertex polynomials. 

Recall that PF model  (4) is equivalent to the original nonlinear model (1) in the compact set   of the state 

space including the origin; moreover, TS models are a subclass of the PF ones. A PF model is said to be of 

order d if the maximum order found in its Taylor approximations is d. This procedure generalizes those in 

[Sala07b, Bernal10] to the polynomial case. 

Once a polynomial fuzzy model has been obtained, consider now the following polynomial-fuzzy Lyapunov 

function candidate: 

     
1 2 1 2

1 2

1 1 1
1 2

0 0 0
p p

p p

p

i i i i i i

i i i

V x w w w p x w p x
   

    i i

i I

 (5) 

where  p x 
i

 are polynomials to be determined, and the MFs 
j

j

iw  are those in the PF model (4). This 

function is a generalization of the fuzzy Lyapunov function in [Blanco01, Tanaka03] where  p x
i

 are 

restricted to be homogeneous quadratic polynomials in the state. 

Asking this function to be a valid Lyapunov candidate means to ask  V x  to be positive and radially 

unbounded; since 0w i , it is enough to guarantee   0p x 
i

 to have   0V x  . As naturally follows from 

the polynomial nature of the PF model and the PFLF, positiveness will be tested by the sum-of-squares 

condition, i.e.,  p x
i

 is SOS     0p x 
i

. Radial unboundedness is achieved by replacing zero in the 

right-hand side with an arbitrary radially-unbounded polynomial, such as  2 2

1 2x x  , with 0   an 
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arbitrary scalar. In the next section, a solution is proposed to the problem of deriving conditions to make (5) 

a valid PFLF for PF model (4) incorporating locality and membership-shape information (bounds on partial 

derivatives).  

3. MAIN RESULT 

Note that the time-derivative of wi
 in (4) can be rewritten as follows [Guerra09, Bernal10]: 

   
1 1 11 1

k

j j

kp pp p p
ij j

k i j k i j k

k k kj jk k k
j k

ww w
w z z w z z w z z

z z z z   


 
                 

 

   i i
i

, 

where the fact that each factor in wi
 depends on only one premise variable has been used. Multiplying by 

 1 1
k k

k k

i iw w    gives 

    
1 11 1

1k k

k j k j

k kp pp p
i ik j k j

i i i i k kk
k kj jk k

j k j k

w w
w w w w w z w w z

z z  
 

 
      

   
 

  i i i
, (6) 

where  ki  is defined as the p-bit binary index resulting from changing the k -th bit of i  to its 

complement. This form will allow convex expressions to be recovered on the Lyapunov method analysis. 

Example 2: Consider 
       1 2 3

1 1 0 2 1 31,0,1
w w w z w z w z 

i
. To obtain expression (6) the expression 

 

 
              

21 33
1,0,1 2 3 1 3 1 201 1

0 2 1 3 1 1 1 1 3 2 1 1 0 2 31,0,1
1 1 2 3

k

k k

w ww w
w z w z w z z w z w z z w z w z z

z z z z

  
   

   
  must be 

written. Omitting arguments, the previous expression can be written as in (6) by multiplying each summand 

by the proper term of the form  1 1
k k

k k

i iw w   , i.e.: 
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          

     

    

21 3
2 3 1 1 1 3 2 2 1 2 3 301 1
0 1 0 1 1 1 1 0 1 2 1 0 0 1 31,0,1

1 2 3

21 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 301 1
0 0 1 1 0 1 1 1 0 1 1 1 1 2 1 0 0 1 0 1 3

1 2 3

21

01
10,0,1 1,0,1

1

ww w
w w w w w z w w w w z w w w w z

z z z

ww w
w w w w w w z w w w w w w z w w w w w w z

z z z

ww
w w z

z z

 
     
  

 
     
  


  
           

3

1
2 31,0,1 1,1,1 1,0,0 1,0,1

2 3

.
w

w w z w w z
z


  



 

Taking derivatives of the PFLF in (5) along the trajectories of PF model (4) and taking (6) into account 

gives  

         0

1 1

k

p p p

k kp p
i

k kk k
k kk k

w w
V x w p w p w p w w z p w p z p p

z z    

   
              
    i i i i i i i i i i ii i
i i iI I I

, (7)  

where the straightforward identity 
   

p p

k k
w p w p

 

 i ii i
i iI I

 has been used to write the rightmost expression. 

Example 3: Continuing with our previous example, note that according to (7), the polynomials 
 k

p pi i
 

sharing the same MF 
 1,0,1

w w
i

 are 
   1,0,1 0,0,1

p p  for 1k  , 
   1,0,1 1,1,1

p p  for 2k  , and 
   1,0,1 1,1,0

p p  for 

3k  . It is important to emphasize that should a stability problem have a non-fuzzy Lyapunov function 

solution, these terms will vanish since ,i j , p p
i j , thus proving the generalization ability behind the 

proposal in this paper. 

Consider now expressions 

T

k
k

z
z x

x

 
  

 
 and 

T
p

p x
x

 
  

 

i
i  which are fuzzy polynomials ( kz  and pi  are 

polynomials by assumption and x  is taken from its PF representation in (4)). The result of substituting 

them in (7) is: 

    

  

0

1

0

1

p p p

p p

TT kp

k

k
k k

TT kp

k

k
k k

w zp
V x w w w p p

x z x

w zp
w w p p

x z x

   

  

      
                

                      

   

 

i
i l l l l i i

i l l

i
i l l l i i

i l

q q

q q

I I I

I I

 (8) 
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All terms in the above expression are either MFs or polynomials, except possibly for 0

k

k

w

z




. The basic idea 

is that, in the same way as the nonlinearities were fuzzified, 0

k

k

w

z




 can be recast again as a convex sum of 

polynomials, following the polynomial fuzzy modeling technique already described in (2) and (3) [Sala09a, 

Sala09b].  

Example 4: Given a scalar nonlinearity   sinh x x  in  1,1  , it is easy to see that 

   0 00.8414 0.8414 1h x w w    with 0 10.5942sin 0.5w x  , from which it follows that 

0 0.5942cosdw dx x . These functions are all infinitely differentiable in the chosen region of interest 

 1,1  . The latter one, 0dw dx , can also be written as a convex sum of polynomials in  , for instance 

 0 0 00.5942 0.3211 1dw dx      with 0 2.1755cos 1.1755x   . Actually, polynomials of degree zero 

have been chosen in this example, but the methodology applies to any arbitrarily chosen degree. 

Since 
1nkz

x





 is assumed to be a polynomial vector, using a PF model of 0

k

k

w

z




, every expression 

10

k
nk

k

w z

z x

 
 

 
 in (8) can be written as 

   0

k k

k sk

k
k kk

k

w z
x x

z x




 
 

 
 v v

v

r
I

, 1, ,k p , (9) 

with ks  being the number of possible non-polynomial nonlinearities in 0

k

k

w

z




, and 1 skk k k

k k k

v v
  

v
, 

 
1

0
1ii

kk

k

vv



  ,   0i

k

k

v
    being the MFs associated with each modelled nonlinearity, and   1

k

k nx 
v

r  

being the resulting polynomial vector. 

Substituting (9) in (8) yields 
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    

     
1

1 1

1

1

1

...

k k

p p k sk

p k

p p s p sp

T
T p

k k

k
k

T p
T

p k

k
k

p
V x w w p p

x

p
w w p p

x



 

   

    

                   

  
       

  

   

i
i l l v v l i i

i l v

i
i l v v l v l i i

i l v v

q r q

q r q

I I I

I I I I

 

Defining the polynomial vector 

 

 

1

1ˆ p

p

p p

p p



 
 

  
 
 

i i

i

i i

p , the polynomial matrix 

 

 

1

1

p

T

p n

T
p



 
 
  
 
 
  

v

v

v

r

R

r

, and 

the multi-index  1, , pv v v , the previous expression can be rewritten as 

  ˆ

p p

T

Tp
V x w w

x



  

  
      
 i

i l v l i v l

i l v

q p R q
I I I

 (10) 

with 1 ps s    . 

The main result can now be stated: 

Theorem 1: The PF model (4) with MF-derivatives as in (9) is asymptotically stable if there exist 

polynomials  p x 
i

, and non-negative, radially unbounded polynomials  1 x ,  2 0x   such that 

   1p x x
i

 and     2
ˆ

T Tp x x    
i l i v l

q p R q  are SOS for all , pi l I , v I  with ˆ
ip  and 

vR  

defined as in (9)-(10). 

Proof: It follows immediately from the fact that    1p x x
i

 being SOS enforces the Lyapunov function 

candidate (5) to be non-negative and radially unbounded, whereas     2
ˆ

T Tp x x    
i l i v l

q p R q  being 

SOS assures the time-derivative of the Lyapunov function to be strictly negative outside the origin, i.e., 

  0V x  , as can be deduced from (10). □ 
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Remark: In order to reduce conservativeness of the above result, any relaxation scheme can be applied to 

the tensor-product double fuzzy summation in w wi l
 that appears in (10), for example, grouping those terms 

sharing the same factorization of w wi l
 [Tanaka01, Sala07, Sala07b]. 

3.1 LOCALITY ISSUES 

As originally explained in [Parrilo03, Prajna04a] and illustrated in [Sala09b], the Positivstellensatz 

argumentation extends the use of Lagrange multipliers and S-procedure in the LMI framework to the 

polynomial-SOS case, thus permitting local information to be included as constraints in SOS conditions. 

Assume that m known polynomial restrictions arranged as a vector     1 , , 0mF f x f x  ,   mF x   

hold in  . Then, a sufficient condition for a polynomial  x  being positive in  , i.e., locally, is that 

there exist multiplier SOS polynomials  iq x , 1, ,i n , such that      
1

n

i i

i

x q x x 


  is SOS, where 

 i x  are arbitrary fixed polynomials that are composed of products of those in F. Positivstellensatz 

theorems allow for reaching a necessary and sufficient condition as the number of multipliers increase, but 

they are not constructive. 

The previous reasoning as well as some practical considerations of polynomial order for SOS tests, leads to 

a procedure to include SOS restrictions into the local analysis. Briefly, it can be stated as follows, having 

two design parameters 1d  and 2d :  

1. Define a list of polynomial restrictions holding in the modelling area of the PF model 

    1 , , mF f x f x . Note that this non-unique list is naturally derived and a priori known from 

the modelling region. 
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2. Construct polynomials  i x  as all the product combinations of restrictions in F preserving the 

same sign up to a certain user-defined degree 
1d . 

3.  Set the degree of iq  such that      
1

n

i i

i

x q x x 


  has a degree 2d . Set the coefficients of iq  as 

free decision variables.   

Then, we have the following theorem for local stability analysis: 

Theorem 2: Assume that m restrictions     1 , , 0mF f x f x  ,   mF x   hold in  . The PF model 

(4) with MF-derivatives as in (9) is locally asymptotically stable in   if there exist polynomials 

 p x 
i

, such that      j j

j

p x u x xi  and       ˆ
T T

k k

k

p x u x x    i l i v lq p R q  are SOS, with 

 ju x ,  ku x  being SOS polynomials (multipliers) and  j x  being arbitrary polynomials composed by 

the products of those in F, for all , pi l I , v I  with ˆ
ip  and 

vR  defined as in (9)-(10). 

Proof: It follows immediately from the discussion above. 

These sufficient conditions are less conservative than those without local restrictions.  

The higher 1d  and 2d  are chosen the higher the number of decision variables and the lower the 

conservativeness. 

 

3.2 NUMERICAL ISSUES 

Polynomial-programming techniques, even if convex for a fixed degree of the polynomials, are 

computationally hard in the fuzzy-control context. The basic drawbacks are: (a) a high-degree Taylor series 

is needed to approximate the nonlinearities in a large domain; (b) the number of rules is two to the power of 
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the number of nonlinearities and the degree of them in   (however, this is also a drawback in classical TS 

modelling); (c) as polynomials diverge wildly, sometimes the obtained results are worse than ordinary TS 

ones unless Positivstellensatz multipliers are used; (d) the number of decision variables increases heavily as 

1d  and 
2d  in Section 3.1 increase.  

Hence, practical engineering applications of SOS techniques in high-order nonlinear systems may have 

severe limitations with current software but, nevertheless, they have theoretical interest and Takagi-Sugeno 

results are the particular case of degree-1. In the authors’ opinion, broadly speaking, TS models may be the 

best option regarding the trade-off “quality of results / computational resources needed” in high-order 

control applications. However, in case TS fails, conceiving an application in which SOS techniques might 

be helpful by increasing the precision of the representation of a couple of nonlinearities to second or third 

degree is always reasonable. 

4. EXAMPLES 

Example 5: Consider the following nonlinear model proposed in [Tanaka03, Tanaka09b]: 

 
1 2 1 1

1 2 1 1

7 3
4 sin

2 2

19 21
2 sin

2 2

x x x x

x t

x x x x

 
   

  
  
  

. (11) 

The stability properties of the previous model in  1ix    will be investigated. To do so, the 

nonlinearity 1sin x  is written as a convex sum of polynomials following the techniques described above 

with 1 1z x , leading to the following PF model structure:  

 
 

 

 

 1

1 1

1 2 1 0 1 2 1 1
1 1

0 1

1 1

1 2 1 0 1 2 1 1

7 3 7 3
4 4

2 2 2 2

19 21 19 21
2 2

2 2 2 2

x x x q x x x x q x

x t w w w

x x x q x x x x q x

   
        

     
      
      

 i i

i

q
I

. (12) 
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where  1

0q x ,  1

1q x  are polynomials of certain degree, and  1

0w x ,  1

1w x  are the corresponding MFs. 

Consider a 0-degree PF model: in this case,  1

0 0.8414q x   and  1

0 0.8414q x    are, plainly, constants 

while 1

0 10.5942sin 0.5w x   and 1 1

1 01w w   are the corresponding MFs. As discussed in example 4, for 

expression 
1

0
1

1

0.5942cos
w

x
x





, consider a 0-degree modeling as in (9), i.e., bounds  1

0 0.5942r x  , 

 1

1 0.3211r x  , and MFs 1

0 12.1755cos 1.1755x   , 1 1

1 01   . Theorem 1 is now used to analyze 

stability for a degree-2 PFLF candidate of the form      1 1

0 1 1 2V x w p x w p x  . 

When no Lagrange multipliers are used (global analysis) the SOS problem is unfeasible. In order to make 

local analysis as pointed out in Section 3.1, a simple list of 1- and 2-degree polynomial restrictions have 

been made:     2 2 2 2 2 2 2 2

1 2 1 2 1 20, 0, 0, 0, 0, 0F x x x x x x x x x x x x               . Then, 

double products of constraints in the list have been used to construct a second order polynomial Lagrange 

multiplier multiplied by the following constraints (valid in   with 1x  ):  

     

        

2 2 2 2 2 2 2 2 2 2 2

1 2 1 2 1 1

2 2 2 2 2 2 2 2 2

1 1 2 2 2 2

0, 0, 0, 0,

0, 0, 0.

x x x x x x x x x x x x

x x x x x x x x x x x x

           

         
 (13) 

Via SOSTools, conditions in Theorem 1 are then satisfied for   2 2

1 1 1 2 23.9106 1.863 4.1858p x x x x x    and 

  2 2

2 1 1 2 210.692 1.2375 2.569p x x x x x   . In Fig. 2 some level curves of this PFLF are displayed in dashed-

lines; the outermost Lyapunov level is in bold-dashed. Some trajectories in solid lines are also included. 
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Figure 1: Lyapunov levels for the 0-degree PFLF in Example 2 

 

Now consider a 3rd-degree PF model in (12) with polynomials  1 3

0 1 10.1585q x x x  , 

 1 3

1 1 10.1667q x x x  , and MFs 
 1 11

0 3

1

sin
122.9 20.48

x x
w

x


  , 

 1 11

1 3

1

sin
19.48 122.9

x x
w

x


   . It can be 

checked that  

   3 21
1 1 1 1 10 1 1

6 3 4 3

1 1 1 1 1

cos 1 3 sin cos 3sin 2
122.9 122.9

x x x x xw x x

x x x x x

     
      

   
, (14) 

which can be written as follows from the Taylor-series representation of its components 

1 2 4 3 5

0 1 1 1 1

3 4 3

1 1 1 1

4 5
31 1

1 13 4

1 1

1 3 2
122.9 1

2! 4! 3! 5!

1 3 1 3 1 3
122.9 122.9

4! 5! 4! 5! 6! 7!

w x x x x
x

x x x x

x x
x x

x x

    
            

     

         
                 

        

 (15) 

thus proving that it can be defined in 0 as the limit of (14) and it is therefore a smooth function. 

Then, since 1 1z x  the following 3rd-degree Taylor-based PF model in  1 1,1x    arises:  

   
1 1

1

3 31 1
1 1 1 11 1 1 10 1

0 1

01

2.0483 0.09555 2.0483 0.0975

0 0

x x x xw z
x x

z x
  



     
      

     
 v v

v

r  
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with   1 1
13 3 4 3

1 1 1 1

cos 3sin122.9 2
0.0167

x x
T x x

x x x x

 
    

 
, 

 1

0

0.0975

0.09555 0.0975

T x




 

, 1 1

1 01   . Recall that 

according to definitions (9)-(10), in this example 1 1 v v I , so matrix  
1

1 2 1
T

r  v vR . The example is 

now analyzed via Theorem 1. 

Via SOSTools polynomials     2 2

1 2 1 1 2 28.4852 0.23829 2.8658p x p x x x x x     are found satisfying 

conditions in Theorem 1 under the aforementioned constraints. Note that the corresponding Lyapunov 

function has lost its fuzzy structure since    1 2p x p x , i.e.,          1 1

0 01V x w p x w p x p x    , a 

solution which is not ruled out by conditions in Theorem 1.  

Discussion: Independently of their degree, PF models obtained by the aforementioned methodology are all 

exact representations of nonlinearities associated to a nonlinear model or the MFs’ derivatives. Then, a 

natural question arises: what is the difference between lower or higher degrees in PF modeling? The answer 

originates from the previous example: as the PF model degree increases the vertex polynomials converge to 

the Taylor series under mild assumptions; then, MFs yield their modeling influence only to the 

corresponding polynomials terms of higher degree. Therefore, the fuzzy character of the PF model becomes 

less significant for higher degree models. As a consequence of this phenomenon, in the previous example 

an ordinary quadratic polynomial Lyapunov function could not be found when the PF model was highly 

fuzzy (degree zero approximations): a non-quadratic PFLF has been found instead. On the other hand, when 

the PF model degree was increased the family of models thus represented seems to have been reduced in 

such a way that an ordinary quadratic Lyapunov function was found, thus having no need of the fuzzy 

structure for it. 

Example 6: Consider the following nonlinear model: 
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 
    

    

2 22

1 1 1 1 2 2

2 2

1 1 2 2 1 2

0.2363 0.0985 0.1 0.1 0.9

sinh 2 0.7097 0.3427 0.1 0.1

x x x x x x
x t

x x x x x x

    
 
 

     

, (16) 

which has a stable focus at the origin and an unstable limit cycle; it is therefore not globally stable.  

For different values of 0x  , let  ix x    be a square region of interest in which a decreasing 

Lyapunov function is to be found. Simulation shows that 4.15x   is the maximum admissible value for x  

for the whole   to be in the basin of attraction.  

1st- and 3rd-degree PF models of (16) have been obtained depending on whether 1st- or 3rd-degree 

polynomials were used for bounding 1sinh x . The MFs’ derivatives corresponding to these PF models have 

been also bounded by 1st- and 3rd-degree polynomials with an analogous methodology. Then, under 2nd-

order Lagrange multipliers with constraints (13), Theorem 1 has been used to search the maximum 0x   

for which stability can be proved for each combination of the previous cases. 

The test is first run for quadratic non-fuzzy polynomial Lyapunov functions of the form    V x p x , 

where of course the time-derivatives of the MFs play no role (conditions in Theorem 1 have ˆ ip 0  ); these 

results are then compared with those obtained with a 2nd-order fuzzy polynomial function 

     
p

V x w x p x


 i i

i I

. The results are shown in Table 1. 

 ix x     deg 1
i

q   deg 3
i

q  

 
Non-fuzzy PLF 2.1094x   2.6406x   

PFLF,  deg 1
k

k 
v

r  2.500x   2.6875x   

PFLF,  deg 3
k

k 
v

r  2.5313x   2.7344x   

Table 1: Comparing polynomial Lyapunov functions versus polynomial fuzzy Lyapunov functions in Example 3:  

maximum size of a square region of interest where a decreasing LF is feasible. In all cases, the degree of the candidate Lyapunov function was fixed to 4. 
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As expected, better approximations on the PF model and/or the MFs’ derivatives lead to better results. On 

the other hand, given a particular PF model, PFLFs clearly improve over non-fuzzy ones. 

5. CONCLUSIONS AND PERSPECTIVES 

A new methodology for analyzing the stability of continuous-time nonlinear models in the polynomial 

fuzzy form has been presented. It combines recent advances on Taylor-based fuzzy polynomial models and 

local stability via fuzzy polynomial Lyapunov functions, exploiting both polynomial bounds on the model’s 

non-polynomial nonlinearities and, also, polynomial bounds on the partial derivatives of the membership 

functions.  

The examples in the paper illustrate that fuzzy-polynomial Lyapunov functions prove useful in performing 

better than the unstructured polynomial Lyapunov functions, getting larger estimates of the region of 

attraction. Research on control design under this technique is under course. However, as in other 

polynomial-based approaches to control in literature, computational cost increases heavily as system order, 

polynomial degrees and number of rules in the fuzzy model increase. 
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