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STANDARD FUZZY UNIFORM STRUCTURES BASED ON CONTINUOUS
t-NORMS

J. GUTIÉRREZ–GARCÍA, S. ROMAGUERA, AND M. SANCHIS

Abstract. This paper deals with fuzzy uniform structures. Our approach in-
volves a covariant functor Ψ (introduced previously by the authors) from the cat-
egory of fuzzy uniform spaces and fuzzy uniformly continuous mappings (in our
sense) to the category of uniform spaces and uniformly continuous mappings. We
show that Ψ is well-behaved with respect to some significant fuzzy uniform con-
cepts, which behavior provides a method to introduce notions of fine fuzzy uniform
structure and Stone-Čech fuzzy compactification in this context. Our method also
applies to obtain fuzzy versions of some classical results on topological algebra and
hyperspaces. The case of quasi-uniform structures is also analyzed.

1. Introduction

In this paper we deal with a notion of fuzzy uniform space introduced by the
authors in [13]. They proved in this previous paper that, for each continuous t-
norm, the category of all fuzzy uniform spaces in authors’ sense (and fuzzy uniformly
continuous mappings) is isomorphic to the category of uniform spaces (and uniformly
continuous mappings) by means of a covariant functor Ψ which leaves mappings
unchanged.

In this context, a question deserving further exploration is whether the functor Ψ
carries natural fuzzy uniform concepts to natural uniform concepts. A first step in
this direction is presented in [13, Section 4] where it is shown that the image by Ψ of
a complete fuzzy uniform space is a complete uniform space. This fact permits us to
show that a Hausdorff fuzzy uniform space has a unique Hausdorff fuzzy completion
up to a fuzzy uniform isomorphism (see [13, Theorem 4.3 and Remark 4.4]).

In the light of the previous comments, the aim of the present paper is to reveal
that the functor Ψ behaves well with regard to certain fuzzy completions. The
fact that Ψ is well-behaved to respect to standard fuzzy uniform notions allows
us to obtain fuzzy versions of some important results on topological algebra and
hyperspaces. Although this procedure can be extended to take care of situations
similar to the ones presented here, let us stress that the authors do not intend to do
it. Extensions of our approach to other settings are left to the interested reader. For
a contextualization of our approach in the realm of theories of fuzzified uniformities,
see Section 1 and Remark 4.5 in [13].

The paper is organized as follows: in Section 2 we borrow from [13] the basic
facts on fuzzy uniform structures that are useful in the sequel. Section 3 is devoted
to discuss the fine fuzzy uniformity and the Stone-Čech fuzzy compactification (for
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other different approaches to Stone-Čech type fuzzy compactifications see, for in-
stance, [12, 18]). Fuzzy uniform structures on topological groups and hyperspaces
are studied in Section 4 and Section 5, respectively. Finally, in Section 6 we set up
fuzzy quasi-uniform structures.

2. Preliminaries and notation

Our basic references are [6] for general topology, and [9] and [14] for uniform
spaces and uniform structures.

Next we recall some pertinent concepts on fuzzy (pseudo)metric spaces (in the
sense of Kramosil and Michalek) which will be useful later on. We recall to the
reader that in this context fuzzy means [0, 1]-valued, where the usual order is taken
on [0, 1].

A continuous t-norm [29] is a binary operation ∗ : [0, 1] × [0, 1] → [0, 1] which
satisfies the following conditions: (i) ∗ is associative and commutative, (ii) ∗ is con-
tinuous, (iii) a∗ 1 = a for every a ∈ [0, 1], and (iv) a1 ∗ b1 ≤ a2 ∗ b2 whenever a1 ≤ a2
and b1 ≤ b2, with a1, a2, b1, b2 ∈ [0, 1].

DEFINITION 2.1. [15] A fuzzy pseudometric on a set X is a pair (M, ∗) such that
M is a fuzzy set in X ×X × [0,∞) and ∗ is a continuous t-norm satisfying for all
x, y, z ∈ X and t, s > 0:

(i) M(x, y, 0) = 0;
(ii) M(x, x, t) = 1;
(iii) M(x, y, t) = M(y, x, t);
(iv) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s); and
(v) M(x, y, ·) : [0,∞)→ [0, 1] is left continuous.

If the fuzzy pseudometric (M, ∗) satisfies (ii’) x = y if and only if M(x, y, t) = 1
for all t > 0, then (M, ∗) is said to be a fuzzy metric ([15]).

By a fuzzy (pseudo)metric space we mean a triple (X,M, ∗) such that X is a set
and (M, ∗) is a fuzzy (pseudo)metric on X.

Each fuzzy (pseudo)metric (M, ∗) on X induces a topology τM on X, which has
as a base the family of open sets of the form {BM(x, ε, t) : x ∈ X, ε ∈ (0, 1), t > 0},
where BM(x, ε, t) = {y ∈ X : M(x, y, t) > 1− ε} for all x ∈ X, ε ∈ (0, 1) and t > 0.

In fact, every fuzzy (pseudo)metric (M, ∗) induces a uniformity UM on X which
has as a base the countable family {Un : n ∈ N}, where Un = {(x, y) ∈ X × X :
M(x, y, 1/n) > 1 − 1/n} for all n ∈ N (compare, for instance, [10, Theorem 1]).
Hence the topology τM is (pseudo)metrizable.

Given two fuzzy pseudometrics (M, ∗) and (N, ∗) on X, the map M ∧ N : X ×
X× [0,∞)→ [0, 1] defined by (M ∧N)(x, y, t) = min{M(x, y, t), N(x, y, t)} for each
x, y ∈ X and t > 0 is a fuzzy pseudometric on X.

EXAMPLE 2.2. (Cf. [8, 10]). Let (X, d) be a (pseudo)metric space. Define a fuzzy
set Md in X × X × [0,∞) by Md(x, y, 0) = 0, and Md(x, y, t) = t/(t + d(x, y)) if
t > 0. Then (Md,∧) is a fuzzy (pseudo)metric on X, and thus (Md, ∗) is a fuzzy
(pseudo)metric on X for all continuous t-norm ∗, the so-called fuzzy (pseudo)metric
induced by (X, d), or the standard fuzzy (pseudo)metric of (X, d). Note that the
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uniformities Ud and UMd
, induced, respectively, by d and (Md, ∗), coincide ([13,

Proposition 2.5]), and thus the topologies induced by d and (Md, ∗) are the same.

George and Veeramani introduced in [8] a modification of Kramosil and Michalek’s
notion of a fuzzy (pseudo)metric, taking fuzzy sets M in X×X×(0,∞) with values
in (0, 1], which satisfy conditions (ii) (resp. (ii’)), (iii) and (iv) in Definition 2.1, and
(v’): M(x, y, ·) : (0,∞)→ (0, 1] is continuous on (0,∞) for each x, y ∈ X.

Clearly, every fuzzy metric (M, ∗) in George and Veeramani’s sense can be consid-
ered as a fuzzy metric in Kramosil and Michalek’s sense by putting M(x, y, 0) = 0.
Moreover, every standard fuzzy (pseudo)metric is actually a fuzzy (pseudo)metric
in George and Veeramani’s sense when we restrict Md to X ×X × (0,∞).

The following concepts and results on fuzzy uniform structures and fuzzy uniform
spaces may be found in [13].

DEFINITION 2.3. Let X be a (nonempty) set and let ∗ be a continuous t-norm. A
fuzzy uniform structure for ∗ is a nonempty family (M , ∗) of fuzzy pseudometrics
(M, ∗) on X such that:

(FU1) if (M, ∗), (N, ∗) ∈ (M , ∗), then (M ∧N, ∗) ∈ (M , ∗), and
(FU2) if (M, ∗) is a fuzzy pseudometric on X, and if for each ε ∈ (0, 1) and each

t > 0, there exist (N, ∗) ∈ (M , ∗), δ ∈ (0, 1) and s > 0 such that

N(x, y, s) ≥ 1− δ implies M(x, y, t) ≥ 1− ε

for all x, y ∈ X, then (M, ∗) ∈ (M , ∗).
A fuzzy uniform structure (M , ∗) is called a Hausdorff fuzzy uniform structure if

(FU3) for each x, y ∈ X with x 6= y, there exist (M, ∗) ∈ (M , ∗) and t > 0 such
that M(x, y, t) < 1.

By a (Hausdorff) fuzzy uniform space we mean a triple (X,M , ∗) such that X is
a set and (M , ∗) is a (Hausdorff) fuzzy uniform structure on X. If no confusion can
arise, we will write M instead of (M , ∗).

For fuzzy uniform structures, the definitions of subbase and base are given in a
similar way to the one in the case of uniform structures (see [13, Section 2]).

Clearly, each fuzzy uniform structure (M , ∗) on a set X induces a topology τM
such that for each x ∈ X, the family

{
BM(x, ε, t) : M ∈ M , ε ∈ (0, 1), t > 0

}
is

a neighborhood base at x. As in the realm of uniform spaces, a topological space
(X, τ) is said to be fuzzy uniformizable if there is a fuzzy uniform structure (M , ∗)
such that τM = τ and in this case, we say that (M , ∗) is admissible.

In Section 3 of [13] we define the category FUNIF of fuzzy uniform spaces and
fuzzy uniformly continuous mappings, where a mapping f : (X,M , ∗)→ (Y,N , ?)
is said to be fuzzy uniformly continuous if for each N ∈ N , ε ∈ (0, 1) and t > 0
there exist M ∈M , δ ∈ (0, 1) and s > 0 such that N(f(x), f(y), t) > 1−ε whenever
M(x, y, s) > 1− δ.

Furthermore, it is shown in Section 3 of [13] that given a t-norm ∗, the subcategory
FUNIF(∗) whose objects are the fuzzy uniform spaces (X, M , ∗) is isomorphic
to the topological category UNIF of uniform spaces (and uniformly continuous
mappings) by means of a (covariant) functor which leaves mappings unchanged.
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This is done as follows: If D is a (Hausdorff) uniform structure on a set X, in
the sense of [9], then the family {{(x, y) : d(x, y) < ε} : d ∈ D , ε > 0} is a base for
a (Hausdorff) uniformityUD such that τD = τUD

. Conversely, if U is a uniformity
on X, then the family P of all pseudometrics on X that are uniformly continuous
on (X ×X,U ×U ) form a base for a uniform structure DU such that the family
{{(x, y) : d(x, y) < ε} : d ∈P, ε > 0} is a base for U ; in particular, τU = τDU

.
Then they were proved in Section 3 of [13] the following results:
(a) If D is a (Hausdorff) uniform structure on a set X, then the family B =
{ (Md, ∗) : d ∈ D } is a base for a (Hausdorff) fuzzy uniform structure ϕ∗(D) on X.
Besides, UD = Uϕ∗(D), and thus τD = τϕ∗(D).

(b) If M is a fuzzy uniform structure on X, choose for each (M, ∗) ∈ (M , ∗) a
pseudometric d(M) on X whose induced uniformity coincides with UM . Then, the
family {d(M) : (M, ∗) ∈ (M , ∗)} is a subbase for a uniform structure ψ(M ) on X.
Besides UM = Uψ(M ), and thus τM = τψ(M ).

(c) The mappings Φ∗ : UNIF → FUNIF(∗) and Ψ: FUNIF(∗) → UNIF de-
fined, respectively, as

Φ∗((X, U )) = (X, ϕ∗(DU ), ∗ ) for every (X, U ) ∈ UNIF,

Ψ((X, M , ∗)) = (X, Uψ(M )) for every (X, M , ∗) ∈ FUNIF(∗)
and both Φ∗ and Ψ leave the mappings unchanged, are (covariant) functors, and
Φ∗ ◦ Ψ = 1FUNIF(∗) and Ψ ◦ Φ∗ = 1UNIF. Consequently, the categories UNIF and
FUNIF(∗) are isomorphic. In particular, FUNIF(∗) is a topological category.

(d) Given continuous t-norms ∗ and ?, the categories FUNIF(∗) and FUNIF(?)
are isomorphic.

Finally, we recall some notions and results on completeness and completion of
fuzzy uniform structures which will needed in the rest of the paper.

Following [13, Section 4], a filter F on a fuzzy uniform space (X, M , ∗ ) is said
to be a Cauchy filter if for each M ∈ M , each ε ∈ (0, 1) and each t > 0, there is
x ∈ X such that BM(x, ε, t) ∈ F . The fuzzy uniform space (X, M , ∗ ) is called
complete if every Cauchy filter on X converges. In this case, we say that ( M , ∗ )
is a complete fuzzy uniform structure on X. A one-to-one, fuzzy uniformly con-
tinuous mapping whose inverse is also fuzzy uniformly continuous is called a fuzzy
uniform isomorphism. A fuzzy completion of a fuzzy uniform space (X, M , ∗ ) is a

pair ( f, ( X̂, M̂ , ∗)) where ( X̂, M̂ , ∗) is a complete fuzzy uniform space and f is

a fuzzy uniform isomorphism from X onto a dense subspace of ( X̂, M̂ , ∗).
It was proved in Section 4 of [13] that the functors Φ∗ and Ψ preserve completeness,

and that each Hausdorff fuzzy uniform space has a unique (up to fuzzy uniform
isomorphism) Hausdorff fuzzy completion.

3. The fine fuzzy uniformity and the Stone-Čech fuzzy
compactification

We begin by describing the fine fuzzy uniform structure. For a Tychonoff space
X, the fine (or the universal) uniformity is generated by all the continuous pseudo-
metrics and, consequently, it is the largest admissible uniformity on X. Motivated
by this fact, given a continuous t-norm ∗, by the fine (or universal) fuzzy uniform
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structure on X we mean the fuzzy uniform structure ( FN , ∗ ) generated by all the
continuous fuzzy pseudometrics on X. Our purpose is to show that ( FN , ∗ ) is the
largest fuzzy uniform structure on X.

From now on, assume that we are given a continuous t-norm, say, ∗. Our first
result asserts that ( FN , ∗ ) is in fact a fuzzy uniform structure. We will need the
following lemma. (We omit the proof which is an easy adaptation of the argument
used in Proposition 1 of [23].)

LEMMA 3.1. Let (X, τ) be a topological space. If (M, ∗) is an admissible fuzzy
pseudometric on X, then M is continuous on X ×X × (0,∞).

THEOREM 3.2. If (X, τ) is a Tychonoff space, then the family of all fuzzy pseu-
dometrics that are continuous on X ×X × (0,∞) is a base for an admissible fuzzy
uniform structure on X.

Proof. By [9, Problem 15G.4] the family, say D , of all continuous pseudometrics on
X ×X is an admissible uniform structure. Thus, Proposition 3.8 in [13] shows that
the family

{ (Md, ∗) : d ∈ D }
is a base for an admissible fuzzy uniform structure on X. Lemma 3.1 concludes the
proof. �

As a consequence of the previous result, ( FN , ∗ ) is an admissible fuzzy uniform
structure on X. The following theorem states the desired property of ( FN , ∗ ).

THEOREM 3.3. If (M , ∗) is an admissible fuzzy uniform structure on X, then
(M , ∗) ⊆ ( FN , ∗ ).

Proof. It suffices to show that (M , ∗) has a base formed by continuous fuzzy pseudo-
metrics on X×X×(0,∞). To see this, choose, for each M ∈ (M , ∗), a pseudometric
d(M) such that UM = Ud(M). Then d(M) is continuous on X ×X and the family

B =
{

(Md(M), ∗) : M ∈ (M , ∗)
}

is a base for the fuzzy uniform structure of the space Φ∗(Ψ((X, M , ∗))). Since
Φ∗ ◦Ψ = 1FUNIF(∗), we have just showed that B is a base for (M , ∗). �

We now turn to a discussion of another kind of completion which is relevant in
the framework of Tychonoff spaces: the Stone-Čech compactification. Our approach
makes use of the notion of the Samuel compactification of a space X with respect to
a uniformity U . Thus, we start by considering precompact fuzzy uniform structures
because the idea of a Samuel compactification relies on the concept of precompact-
ness. As we show below the relation between precompactness and compactness
emerges clearly by means of the concept of completeness.

DEFINITION 3.4. A fuzzy uniform structure ( M , ∗ ) on a set X is said to be
precompact if for each ε ∈ (0, 1), each t > 0, and each fuzzy pseudometric M ∈
( M , ∗ ) there is a finite subset F of X such that X =

⋃
a∈F BM(a, ε, t). In this case,

we say that (X,M , ∗ ) is a precompact fuzzy uniform space.
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It should be noted that the definition of a precompact fuzzy uniform structure,
as stated in Definition 3.4, is a natural adaptation of the notion of a precompact
fuzzy metric space given in [10, Definition 1].

The following simple but useful result is an easy consequence of the well-known
facts that a pseudometric space (X, d ) is precompact if and only if every ultrafilter
on X is Cauchy on the uniform space (X, Ud ), and that Ud = UMd

.

PROPOSITION 3.5. A pseudometric space (X, d ) is precompact if and only if the
fuzzy pseudometric space (X, Md, ∗ ) is precompact.

With these previous results we can obtain the following:

THEOREM 3.6. The functors Φ∗ and Ψ preserve precompactness.

Proof. Suppose that (X, M , ∗ ) is a precompact fuzzy uniform space. Since, by [13,
Proposition 3.12], the uniformity of the uniform space Ψ((X, M , ∗)) is UM , the fact
that Ψ preserves precompactness is a straightforward consequence of the description
of UM obtained in [13, Proposition 3.4]. Now to establish that Φ∗ preserves precom-
pactness, notice that if (X, U ) is a precompact uniform space, then the pseudo-
metric spaces (X, d ) are precompact whenever d belongs to the family DU of the
all uniformly continuous pseudometrics on (X × X, U × U ). Then by Propo-
sition 3.5 all the fuzzy pseudometric spaces (X, Md, ∗) are precompact whenever
d ∈ DU . The results now follows from the fact that the fuzzy pseudometrics (Md, ∗)
(d ∈ DU ) generate the fuzzy uniform structure on Φ∗((X, U )). �

COROLLARY 3.7. Let { (Xi, Mi, ∗ ) }i∈I be a family of fuzzy uniform spaces. Then
the product fuzzy uniform space

∏
i∈I(Xi, Mi, ∗ ) is precompact if and only if all

(Xi, Mi, ∗ ) are precompact.

Proof. According to [6, Theorem 8.3.3], the uniform space Ψ(
∏

i∈I(Xi, Mi, ∗ )) is
precompact if and only if all the uniform spaces Ψ((Xi, Mi, ∗ )) are precompact.
Thus, the result follows from the fact that Φ∗ and Ψ preserve precompactness, and
the equality Φ∗ ◦Ψ = 1FUNIF(∗). �

COROLLARY 3.8. (a) A fuzzy uniform space (X, M , ∗ ) is compact if and only if
it is both precompact and complete.

(b) A completion of a fuzzy uniform space (X, M , ∗ ) is compact if and only if
(X, M , ∗ ) is precompact.

Proof. (a) First notice that by [13, Proposition 3.12], it follows that (X, M , ∗ )
is compact if and only if Ψ((X, M , ∗ )) is compact. Now, by [14, Theorem 32],
this is equivalent to Ψ((X, M , ∗ )) being precompact and complete. The result
is an easy consequence of the fact that both Φ∗ and Ψ preserve completeness and
precompactness.

(b) Assume that (X, M , ∗ ) has a compact fuzzy completion ( X̂, M̂ , ∗ ). By clause
(a) and the fact that Ψ preserves precompactness, Ψ((X, M , ∗ )) is a dense sub-

space of the precompact uniform space Ψ(( X̂, M̂ , ∗ )). Since dense subspaces of
precompact uniform spaces are precompact, (X, M , ∗ ) = Φ∗(Ψ((X, M , ∗ ))) is a
precompact fuzzy uniform space.
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To see the converse, notice that a completion of the uniform space Ψ((X, M , ∗ ))
is compact in the case that (X, M , ∗ ) is precompact ([14, Theorem 32]). Then the
result follows from the fact the Φ∗ preserves completeness. �

Now we will deal with compact fuzzy uniform spaces. We will see that the usual
properties of compact uniform spaces also hold for compact fuzzy uniform spaces.
We begin with a usual property of continuous mappings on compact fuzzy uniform
spaces.

PROPOSITION 3.9. Each continuous mapping from a compact fuzzy uniform space
into a fuzzy uniform space is fuzzy uniformly continuous.

Proof. Let f : (X,M , ∗) → (Y,N , ?) be a continuous mapping between two fuzzy
uniform spaces with (X,M , ∗) compact. Then the uniform space (X,Ψ((M, ∗))) is
compact so that f : (X,Ψ((M, ∗))) → (X,Ψ((N, ?))) is uniformly continuous ([14,
Chapter 6, Proposition 31]. Now the conclusion follows from [13, Proposition 3.13].

�

It is well known that every Hausdorff compact space has a unique admissible uni-
formity. A similar result is valid for fuzzy uniform spaces. The reason is apparent:
given a continuous t-norm ∗, an easy consequence of Theorem 3.6 is that there
exists a one-to-one correspondence between (precompact) fuzzy uniform structures
and (precompact) uniformities on a set X. From this fact and [9, Problem 15R], we
have:

PROPOSITION 3.10. For a Hausdorff topological space (X, τ ), the following are
equivalent:

(i) (X, τ ) has a unique admissible uniformity.
(ii) For each continuous t-norm ∗, (X, τ ) has a unique admissible fuzzy uniform

structure.
(iii) There exists a continuous t-norm ∗ for which (X, τ ) has a unique admissible

fuzzy uniform structure.
(iv) For each continuous t-norm ∗, (X, τ ) has a unique admissible precompact fuzzy

uniform structure.
(v) There exists a continuous t-norm ∗ for which (X, τ ) has a unique admissible

precompact fuzzy uniform structure.

COROLLARY 3.11. Let (X, τ ) be a Hausdorff compact topological space. Then for
each continuous t-norm ∗, (X, τ ) has a unique admissible fuzzy uniform structure.

In the remainder of this section all spaces are assumed to be Tychonoff. We now
turn our attention to coarser precompact fuzzy uniform structures and Samuel fuzzy
compactifications. In his paper [27], Samuel shows that for every uniformity U on
X the uniformity S , generated by the family of all functions from X into the unit
interval I (endowed with the usual topology) which are uniformly continuous with
respect to U and the unique uniformity on I, is an admissible precompact uniformity
on X coarser than U . It is not difficult to prove that the uniformity S is the finest
uniformity on X which is precompact and coarser than U . The compact space sX,

where (sX, Ŝ ) is the completion of the uniform space (X,S ), is called the Samuel



8 J. GUTIÉRREZ–GARCÍA, S. ROMAGUERA, AND M. SANCHIS

compactification of X with respect to U . Samuel’s results prompt the authors to
introduce the following notion of a Samuel fuzzy compactification: Let (X,M , ∗)
be a fuzzy uniform space. Consider the family I of all fuzzy uniformly continuous
functions from (X,M , ∗) into I equipped with its unique fuzzy uniform structure.
The completion of the fuzzy uniform space (X,SI, ∗), where (SI, ∗) is the coarser
of all fuzzy uniform structures (N , ∗) on X enjoying the properties

(i) (N , ∗) ⊆ (M , ∗), and
(ii) if f ∈ I, then f : (X,N , ∗)→ I is fuzzy uniformly continuous,

is called the Samuel fuzzy compactification of X with respect to (M , ∗).
In the sequel, given a function f : X → R, we will denote by ψf the pseudometric

on X defined for all x, y ∈ X as

ψf (x, y) = |f(x)− f(y)|.
C∗(X) stands for the family of all bounded continuous real-valued functions on X.
The family of all continuous functions from X into I is denoted by C∗(X, I).

THEOREM 3.12. For a fuzzy uniform space (X,M , ∗), the following are equivalent:

(i) (X,M , ∗) is precompact.
(ii) (M , ∗) is generated by a family of fuzzy pseudometrics Mψf

with f a fuzzy
uniformly continuous function from (X,M , ∗) into I.

(iii) (M , ∗) is generated by a family of fuzzy pseudometrics Mψf
with f ∈ C∗(X).

Proof. (ii)⇒(iii) is obvious. So we only need to show (i)⇒(ii) and (iii)⇒(i).

(i)⇒(ii) Consider the uniform space (X, Uψ(M )) = Ψ((X, M , ∗)). Since by The-

orem 3.6 the functor Ψ preserves precompactness, its completion (X̂, Ûψ(M )) is
a compact space whose unique admissible uniformity is generated by the family{
ψf : f ∈ C∗(X̂, I)

}
. Thus, the fuzzy uniformity of the space Φ∗((X̂, Ûψ(M ))) is

generated by
{
Mψf

: f ∈ C∗(X̂, I)
}

. By [13, Theorem 4.1], Φ∗((X̂, Ûψ(M ))) is
the completion of the fuzzy uniform space (X,M , ∗) which implies that (M , ∗) is

generated by the fuzzy pseudometrics Mψf |X
with f ∈ C∗(X̂, I). Since every con-

tinuous function on a compact space is fuzzy uniformly continuous, every function

f |X with f ∈ C(X̂, I) is fuzzy uniformly continuous from (X,M , ∗) into I.
(iii)⇒(i) Suppose that (M , ∗) is generated by a family F of fuzzy pseudometrics Mf

with f ∈ C∗(X). Then the family
{
ψf : Mψf

∈ F
}

is a subbase for the uniform
space Ψ((X,M , ∗)) so that Ψ((X,M , ∗)) is precompact ([9, 15I (1)]). The result
now follows from the fact that Φ∗ preserves precompactness (Theorem 3.6). �

As straightforward consequences of the previous theorem we have:

COROLLARY 3.13. Let (X,M , ∗) be a fuzzy uniform space. Then the fuzzy uniform
structure (SI, ∗) on X is generated by the family of all fuzzy pseudometrics Mψf

with
f ∈ I.

COROLLARY 3.14. The fuzzy uniform structure (SI, ∗) of a space X with respect
to a fuzzy uniform structure (M , ∗) is the finest fuzzy uniform structure on X which
is precompact and coarser than (M , ∗).
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COROLLARY 3.15. The image under Ψ of the Samuel fuzzy compactification of X
with respect to a fuzzy uniform structure (M , ∗) is the Samuel compactification of
X with respect to the uniformity Uψ(M ). Conversely, the image under Φ∗ of the
Samuel compactification of X with respect to a uniformity U is the Samuel fuzzy
compactification of X with respect to the fuzzy uniform structure (ϕ∗(DU ), ∗).

Next we shall introduce the Stone-Čech fuzzy compactification of a space X.
Several constructions are known of the usual Stone-Čech compactification βX of X.
Probably, the simplest is the one presented in [9, Chapter 11] which makes use of
an embedding in the product of real lines. The procedure adopted in this paper fits
into the concept of a Samuel fuzzy compactification.

DEFINITION 3.16. The Samuel fuzzy compactification βFX of X with respect to
the finest fuzzy uniform structure on X is called the Stone-Čech fuzzy compactifica-
tion of X.

The following theorem provides a useful characterization of βFX.

THEOREM 3.17. The Stone-Čech fuzzy compactification βFX of X is the comple-
tion of the fuzzy uniform space (X,C∗F , ∗) where the fuzzy uniform structure (C∗F , ∗)
is generated by the family

{
Mψf

: f ∈ C∗(X)
}

.

Proof. As a matter of definition, βFX is the completion of (X,SF, ∗) where (SF, ∗)
is the finest precompact fuzzy uniform structure on X. The result now follows from
Theorem 3.12 and Corollary 3.13. �

COROLLARY 3.18. Let X be a space. Then Ψ(βFX) = βX and Φ∗(βX) = βFX.

As an application of the previous results, fixed a continuous t-norm ∗, we will
describe the unique fuzzy uniform structure on the Tychonoff plank, the name com-
monly given to Tychonoff’s classic example of a nonnormal space. As is customary,
the constant function, on any set, whose constant value is the real number 1, is
denoted by 1.

EXAMPLE 3.19. Let W? denote the compact space of all ordinals less or equal
to the first uncountable ordinal ω1. Consider the compact space W? × N? where
N? stands for the one-point compactification N ∪ {ω} of the natural numbers N
endowed with the discrete topology. The Tychonoff’s plank T is the space

T = (W? ×N?) \ {(ω1, ω)} .
It is a well-known fact that T has a unique admissible (Hausdorff) uniformity

generated by the family D of all the pseudometrics ψf (f ∈ C(T)) where f vanishes
at (ω1, ω) or f = 1 (see [9, 8.20 and Problem 15R(7)]). Thus, given a continuous
t-norm ∗, T has a unique admissible fuzzy uniform structure (M , ∗). Of course, the
construction of (M , ∗) may be accomplished in a variety of ways. We will explain
two possible approaches to illustrating such procedures.

The first one is a fairly direct consequence of Proposition 3.8 in [13]: indeed, the
fuzzy standard pseudometrics Mψf

(with f ∈ C(T)) generate (M , ∗).
To see a second method of identifying (M , ∗), for each ψf ∈ D define a fuzzy

pseudometric Mψf ,01 as follows:
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Mψf ,01(x, y, 0) = 0 for all x, y ∈ T,

and, for all x, y ∈ T and t > 0,

Mψf ,01(x, y, t) =

{
1 if ψf (x, y) ≤ t,

0 if ψf (x, y) > t.

It is an easy matter to show that (Mψf ,01, ∗) is a fuzzy pseudometric on T whose
induced topology coincides with the topology induced by the pseudometric ψf (f ∈
C(T)). Thus, the fuzzy uniform structure (H , ∗) generated by

{
(Mψf ,01, ∗) : f ∈ C(T)

}
is admissible on T. Since T has a unique admissible fuzzy uniform structure,
(H , ∗) = (M , ∗).

We close the section with another example of application of our techniques.

EXAMPLE 3.20. Let ∗ be a continuous t-norm. If X is a discrete space, the fuzzy
uniform structure (M , ∗) on X generated by all (Mψfx

, ∗), where fx is the charac-
teristic function of {x} (x ∈ X), is precompact (Theorem 3.12) so that, by Corol-

lary 3.8, the completion (X̂, M̂ , ∗) of (X,M , ∗) is compact. Since the completion
of X for the uniformity generated by all ψfx is the one-point compactification X?

of X, (see, for instance, [9, Problem 15K]), the topology of X? coincides with the

topology of X̂. Thus, the one-point compactification X? of a discrete space X can
be described by the fuzzy completion of (X,M , ∗), that is, the completion of the
fuzzy uniform structure on X generated by the family of all the fuzzy pseudometric
(Mψfx

, ∗) (x ∈ X) where

Mψfx
(z, y, 0) = 0 for all z, y ∈ X,

and, for all z, y ∈ X and t > 0,

Mψfx
(z, y, t) =


1 if z 6= x and y 6= x,

1 if z = y = x,

t

t+ 1
otherwise.

4. Fuzzy uniform structures on topological groups

By a fuzzy uniformizable group G it is meant a 4-tuple (G, ·, M , ∗ ) where
(G,M , ∗) is a fuzzy uniform space and (G, ·, τM ) is a topological group. It is a
well-known fact that every T0 topological group is a Tychonoff space. Therefore a
topological group G is a Tychonoff space if and only it has an admissible Hausdorff
fuzzy uniform structure ([13, Corollary 3.10]).

The following definition is borrowed from [25, Definition 1].

DEFINITION 4.1. A fuzzy pseudometric (M, ∗) on an abstract (i.e. not necessarily
topological) groupG is said to be left-invariant (resp. right-invariant) ifM(x, y, t) =
M(ax, ay, t) (resp. M(x, y, t) = M(xa, ya, t)) for all a, x, y ∈ G and all t > 0.
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Given a topological group (G, τ), an admissible fuzzy uniform structure (M , ∗)
is called left-invariant if it has a base of left-invariant fuzzy pseudometrics. The
definition of right-invariant fuzzy uniformity is self-explanatory. The following result
can be proved in a similar way to the one in [25, Proposition 1].

THEOREM 4.2. If (G, τ) is a topological group, then there exists an one-to-one
correspondence between admissible left-invariant fuzzy uniform structures on (G, τ)
and right-invariant fuzzy uniform structures on (G, τ).

Now, let (G, τ ) be a topological group and let ξ(e) be a base for G at the neutral
element e. Every member U of ξ(e) determines three entourages of the diagonal:

UL = { (x, y) : x−1y ∈ U }, UR = { (x, y) : yx−1 ∈ U } and UB = UL ∩ UR.
Denote by UL, UR and UB, respectively, the collection of all UL, UR and UB, where
U ∈ ξ(e). Each of the collections UL, UR and UB defines an admissible uniformi-
ty on the topological group (G, τ), the so-called, respectively, left uniformity, right
uniformity and bilateral uniformity. From now on, unless the contrary is explicitly
stated, we shall work with the left uniformity UL. Note that every statement on UL

has a dual result for both UR and UB.
Our next result generalizes [25, Theorem 3].

THEOREM 4.3. If (G, τ) is a topological group and (M , ∗) an admissible left-
invariant fuzzy uniform structure on G, then the uniformity UM coincides with
the left uniformity UL.

Proof. Since the fuzzy uniform structure (M , ∗) is admissible, a basic neighborhood
of the neutral element e is Mt,ε = { y : M(e, y, t) > 1− ε } with ε ∈ (0, 1), t > 0
and M ∈ (M , ∗). Therefore a base for UL is the family V of all sets{

(x, y) : x−1y ∈Mt,ε

}
, (ε ∈ (0, 1), t > 0, M ∈ (M , ∗)) .

We conclude the proof by showing that V is base for UM . In fact, given ε ∈ (0, 1),
t > 0 and M ∈ (M , ∗), we have

{ (x, y) : x−1y ∈Mt,ε } = { (x, y) : M(e, x−1y, t) > 1− ε }
= { (x, y) : M(x, y, t) > 1− ε }
= UM,t,ε ,

because (M , ∗) is left-invariant. Thus, the family V coincides with the base

{UM,t,ε : M ∈ (M , ∗), ε ∈ (0, 1), t > 0 }
of UM and the proof is complete. �

As a matter of fact, there exists only one admissible left-invariant fuzzy uniform
structure on a topological group, say, UL. Given a topological group (G, τ), we
will denote by DL the family of all left-invariant pseudometrics which are uniformly
continuous on (G,UL).

THEOREM 4.4. Let (G, τ) be a topological group. If (M , ∗) is an admissible left-
invariant fuzzy uniform structure on G, then a base for (M , ∗) is the family of all
standard fuzzy pseudometrics (Md, ∗) where d runs over the family DL.



12 J. GUTIÉRREZ–GARCÍA, S. ROMAGUERA, AND M. SANCHIS

Proof. Since Theorem 4.3 tells us that Ψ((G,M , ∗)) = (G,UL), the result is a
consequence of the fact that the family DL is a base for the uniform structure
associated to UL. �

Since the functor Ψ is one-to-one on objects, we have

COROLLARY 4.5. Let (G, τ) be a topological group. The left-invariant fuzzy uni-
form structure on G generated by the family { (Md, ∗) : d ∈ DL } is the only admis-
sible left-invariant fuzzy uniform structure on G.

Let (FUL
, ∗) denote the uniform structure described in Corollary 4.5. Taking into

account the previous results, (FUL
, ∗) is called the left fuzzy uniform structure on

(G, τ). It is plain that Ψ(G,FUL
, ∗) = (G,UL).

Let ∗L denote the Lukasiewiez t-norm, i.e., a ∗L b = max{a + b − 1, 0} for all
a, b ∈ [0, 1].

EXAMPLE 4.6. Let (G, τ) be a topological group, and consider an admissible left-
invariant fuzzy uniform structure (M , ∗) on G, with ∗L ≤ ∗. Then, a line of rea-
soning similar to the one in the metric case (see [2, Remark 7.6.1]), with the trivial
adjustments necessary to fit the argument to this new situation, proves that, for
each (M, ∗) ∈ (M , ∗), the function dM defined by

dM(x, y) = sup {t ≥ 0 : M(x, y, t) ≤ 1− t} ,
for all x, y ∈ G, is a (left-invariant) pseudometric on G. Observe that the uniformity
VM generated by the family {dM : (M, ∗) ∈ (M , ∗)} coincides with the uniformity
UM ; in fact, for each ε ∈ (0, 1), we have

{(x, y) : M(x, y, ε) > 1− ε} = {(x, y) : dM(x, y) < ε}.
Since Theorem 4.3 tells us that UM = UL, we have just proved that the left

uniformity on G can be generated by a family of left-invariant pseudometrics defined
by means of left-invariant fuzzy pseudometrics.

A fuzzy uniform space (X,M , ∗) is said to be locally precompact if every x ∈ X
has a neighborhood V such that the fuzzy uniform space (V,M |V , ∗) is precompact.

An argument similar to the one used in Theorem 3.6 permits us to obtain:

THEOREM 4.7. The functors Ψ and Φ∗ preserve local precompactness.

Recall that a topological group (G, τ) is said to be locally precompact if the
uniform space (G,UL) is locally precompact. If (G,UL) is a locally precompact

group, then its completion (Ĝ, ÛL) is called the Weil completion of (G, τ) and it
plays an important role in the theory of topological groups. The properties of the
functors Ψ and Φ∗ allow us to introduce these concepts in the framework of fuzzy
uniform spaces and to make use of fuzzy uniform structures to characterize several
classes of topological groups.

We need to introduce some concepts. A topological group (G, τ) is fuzzy locally
precompact if the fuzzy uniform space (G,FUL

, ∗) is locally precompact. In this

case, its fuzzy completion (Ĝ, F̂UL
, ∗) is called the Weil fuzzy completion of (G, τ).

Since the functors Ψ and Φ∗ preserves completeness, the following result arises:
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THEOREM 4.8. The functors Ψ and Φ∗ preserve Weil completeness.

THEOREM 4.9. For a topological group (G, τ), the following are equivalent:

(i) (G, τ) is a (locally) precompact group.
(ii) The left-invariant fuzzy uniform structure (FUL

, ∗) is (locally) precompact.
(iii) The Weil fuzzy completion of (G, τ) is a (locally) compact space.

Proof. (i)⇒(ii) Since Φ∗((G,UL)) = (G,FUL
, ∗), the implication follows from the

fact that Φ∗ preserves local precompactness.

(ii)⇒(iii) It is a consequence of the well-known fact that the Weil completion of a
(locally) precompact group (G, τ) is a (locally) compact space and Theorem 4.8.

(iii)⇒(i) Since (Ĝ, F̂UL
, ∗) is (locally) compact, (G,FUL

, ∗) is (locally) precompact
and then so is Ψ((G,FUL

, ∗)) = (G,UL). �

One of the most celebrated results on pseudocompact topological groups is the
Comfort-Ross-van Douwen theorem [3, 5] which states that the Weil completion of a
pseudocompact group is, actually, a compact topological group which coincides with
its Stone-Čech compactification. This theorem was generalized for locally pseudo-
compact groups in [4] and for an arbitrary product of locally pseudocompact groups
in [28]. These results are applied in order to obtain:

THEOREM 4.10. For a (locally) precompact group (G, τ), the following are equiva-
lent:

(i) (G, τ) is a (locally) pseudocompact group.
(ii) The Weil fuzzy completion of (G, τ) is a (locally) compact group.

(iii) The Weil fuzzy completion of (G, τ) coincides with (the fine completion of
(G, τ)) βFX.

We now shift to quotients topological groups. A celebrated result in the theory
of metric topological groups states that given a (complete) metric group G and a
closed normal subgroup N , the quotient groups G/N is a (complete) metrizable
group. Moreover, if N and G/N are complete, then G is complete.

One might tempted to try to extend this result to fuzzy metric spaces (in the sense
of George and Veeramani). Nevertheless, as it was sshowed in [25], the natural way
to define a fuzzy metric on G/N does not satisfy the conditions of a fuzzy metric
in George and Veeramani’s sense. In the following, given a continuous t-norm ∗,
we shall see as the functors Ψ and Φ∗ allow us to guess a suitable definition of a
quotient fuzzy uniform structure on G/N .

DEFINITION 4.11. Let (G, ·,FUL
, ∗ ) be a fuzzy uniformizable group and let N be

a closed normal subgroup of G. The uniform structure of the fuzzy uniform space
Φ∗((G/N,UL/N)) is called the quotient fuzzy uniform structure on G/N .

Our next step is to obtain a reasonable description of the quotient fuzzy uniform
structure which will be denoted by FUL

/N . It is well known that if d is a pseudo-

metric on DL, then the pseudometrics d̂ defined as

d̂(x̂, ŷ) = inf { d(x, y) : x ∈ x̂, y ∈ ŷ }
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form a base for the uniform structure UL/N . It is an easy matter to see that the

fuzzy pseudometric Md̂ induced by d̂ on G/N takes the values

Md̂(x̂, ŷ, t) = sup {Md(x, y, t) : x ∈ x̂, y ∈ ŷ }

for all t > 0. Notice that Md̂ is left-invariant whenever d̂ so is.

THEOREM 4.12. The family

ML =
{

(Md̂, ∗) : d ∈ DL

}
is a base for the fuzzy uniform structure FUL

/N .

Proof. It suffices to apply [13, Proposition 3.8]. �

As a consequence of the previous results, we have that the fuzzy uniformizable
group (G/N, ·,FUL

/N, ∗ ) is metrizable if and only if (G/N, ·,UL/N ) so is.

COROLLARY 4.13. Let (G, τ) be a (complete) metrizable group and let N be a
closed normal subgroup. Then the fuzzy uniformizable group (G/N, ·,FUL

/N, ∗ ) is
complete and metrizable. In addition, if (N, ·,FUL

|N , ∗ ) and (G/N, ·,FUL
/N, ∗ )

are complete, then (G, ·,FUL
, ∗) is complete.

5. The Hausdorff-Bourbaki fuzzy uniformity

Given a uniform space (X,U ) we denote by P0(X) the collection of all nonempty
subsets of X and by K0(X) the collection of all nonempty compact subsets of X.

Let us recall that if (X,U ) is a uniform space and for each U ∈ U we put

UH = {(A,B) ∈P0(X)×P0(X) : B ⊆ U(A) and A ⊆ U(B)},
then {UH : U ∈ U } is a base for a uniformity UH on P0(X) called the Hausdorff-
Bourbaki uniformity of (X,U ) ([19]).

Next we recall the construction of the Hausdorff fuzzy pseudometric of a fuzzy
pseudometric space (X,M, ∗).

Given x ∈ X, A ∈P0(X) and t > 0, set M(x,A, t) = supa∈AM(x, a, t).
For each A,B ∈P0(X) let

M−
H (A,B, 0) = M+

H (A,B, 0) = 0,

M−
H (A,B, t) = sup

0<s<t
inf
a∈A

M(a,B, s), M+
H (A,B, t) = sup

0<s<t
inf
b∈B

M(A, b, s),

for all t > 0, and

MH(A,B, t) = min{M−
H (A,B, t),M+

H (A,B, t)},
for all t ≥ 0.

Then (MH , ∗) is a fuzzy pseudometric on P0(X), called the Hausdorff fuzzy pseu-
dometric of (X,M, ∗).

Now, we define the Hausdorff-Bourbaki fuzzy uniformity of a fuzzy uniform space
as follows.

Let (X,M , ∗) be a fuzzy uniform space. For each (M, ∗) ∈ (M , ∗), let (MH , ∗)
be the Hausdorff fuzzy pseudometric on P0(X) of (X,M, ∗). Then the collection

{(MH , ∗) : (M, ∗) ∈ (M , ∗)},
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is a subbase for a fuzzy uniformity (MH , ∗) on P0(X), which will be called the
Hausdorff-Bourbaki fuzzy uniformity of (X,M , ∗).

We wish to show that actually UMH
= (UM )H on P0(X) (recall that (UM )H is

the Hausdorff-Bourbaki uniformity on P0(X) of the uniform space (X,UM ).
To this end, we first note that if {Ui : i ∈ I} is a family of uniformities on a set

X, then we easily deduce the following:
Fact 1. (

∨
i∈I Ui)H =

∨
i∈I(Ui)H

Next we generalize [23, Theorem 2] to our context as follows:

LEMMA 5.1. Let (X,M, ∗) be a fuzzy pseudometric space. Then (UM)H = UMH
on

P0(X).

Proof. For each n ∈ N set Un = { (x, y) : d(x, y) < 2−n }. Then, for each n ∈ N, we
easily obtain the following relations

{(A,B) ∈P0(X)×P0(X) : B ⊆ Un+1(A) and A ⊆ Un+1(B)}
⊆ { (A,B) ∈P0(X)×P0(X) : MH(A,B, 1/n) > 1− 1/n }
⊆ { (A,B) ∈P0(X)×P0(X) : B ⊆ Un(A) and A ⊆ Un(B }.

We conclude that (UM)H = UHM
on P0(X). �

Observe that from [13, Remark 3.6] we deduce the following:
Fact 2. UMH

=
∨
M∈M UMH

.
Fact 3. (UM )H = (

∨
M∈M UM)H .

Now we prove the promised result.

THEOREM 5.2. Let (X,M , ∗) be a fuzzy uniform space. Then UMH
= (UM )H on

P0(X).

Proof. By applying successively Fact 2, Lemma 5.1, Fact 1 and Fact 3, we obtain

UMH
=

∨
M∈M

UMH
=

∨
M∈M

(UM)H =
( ∨
M∈M

UM

)
H

=
(
UM

)
H
,

on P0(X). �

Michael proved in [19] that a uniform space (X,U ) is precompact if and only if
(P0(X),UH) is precompact, and Morita proved in [20] (see also [1]) that a Hausdorff
uniform space (X,U ) is complete if and only if (K0(X),UH) is complete.

With the help of Theorem 5.2 and the following lemma, Michael’s theorem and
Morita’s theorem can be easily extended to the fuzzy uniform framework as we shall
show in the sequel.

LEMMA 5.3. (Cf. [13, Theorem 4.14 and Corollary 4.4]) Let (X,M , ∗) be a fuzzy
uniform space. Then

(a) (X,M , ∗) is precompact if and only if the uniform space (X,UM ) is precompact.
(b) (X,M , ∗) is complete if and only if the uniform space (X,UM ) is complete.

THEOREM 5.4. Let (X,M , ∗) be a fuzzy uniform space. Then (P0(X),MH , ∗) is
precompact if and only if (X,M , ∗) is precompact.
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Proof. By Lemma 5.3 (a) and Michael’s theorem, we have that (X,M , ∗) is pre-
compact if and only if (P0(X), (UM )H) is precompact. Since, by Theorem 5.2,
(UM )H = UMH

on P0(X), it follows from Lemma 5.3 (a), that (P0(X),MH , ∗) is
precompact if and only if (P0(X), (UM )H) is precompact. Thus (P0(X),MH , ∗) is
precompact if and only if (X,M , ∗) is precompact. �

THEOREM 5.5. Let (X,M , ∗) be a Hausdorff fuzzy uniform space. Then (K0(X),MH , ∗)
is complete if and only if (X,M , ∗) is complete.

Proof. By Lemma 5.3 (b) and Morita’s theorem, we have that (X,M , ∗) is complete
if and only if (K0(X), (UM )H) is complete. Since, by Theorem 5.1, (UM )H = UMH

on K0(X), it follows from Lemma 5.3 (b), that (K0(X),MH , ∗) is complete if and
only if (K0(X), (UM )H) is complete. Thus (K0(X),MH , ∗) is complete if and only
if (X,M , ∗) is complete. �

6. Fuzzy quasi-uniform structures

It is well known that quasi-uniform spaces provide a natural approach to the
study of point-set topology, as well as to discuss and to solve problems in theory
of hyperspaces and in asymmetric topological algebra, while quasi-metric spaces
constitute a useful tool in domain theory and in theoretical computer science (see,
for instance, [16, 17] and their bibliographies).

These facts together with the recent contributions to the development of the the-
ory of fuzzy quasi-metric spaces and their applications ([2, 11, 24, 26, etc]) motivate
the natural question of extending our results on fuzzy uniform structures to the
quasi-uniform setting. In this section we briefly discuss this question. In fact, we
will show that a suitable combination of our techniques with well-known results on
quasi-uniform spaces and fuzzy quasi-pseudometric spaces, provide indeed appropri-
ate extensions of our main constructions.

Our basic references for quasi-uniform spaces and quasi-metric spaces are [7, 16],
and for fuzzy quasi-pseudometric spaces [2, 11, 24]. Terms and undefined concepts
may be found in such references.

First we give the quasi-uniform counterpart of the notion of a uniform structure.

DEFINITION 6.1. A quasi-uniform structure on a set X is a nonempty family D
of quasi-pseudometrics on X such that: (i) if d, e ∈ D , then d ∨ e ∈ D ; and (ii) if
e is a quasi-pseudometric on X and if for each ε > 0, there exist d ∈ D and δ > 0
such that d(x, y) ≤ δ implies e(x, y) ≤ ε, for all x, y ∈ X, then e ∈ D .

A quasi-uniform structure D is called T0 if for each x, y ∈ X, with x 6= y, there
exists d ∈ D such that d(x, y) > 0 or d(y, x) > 0.

The notions of base and subbase for a quasi-uniform structure are defined as in
the uniform case. In particular, a nonempty family D of quasi-pseudometrics on X
satisfying condition (i) above is called a quasi-gauge in [21] and it is a base for a
quasi-uniform structure on X.

Each quasi-uniform structure D on X induces a topology τD on X such that for
each x ∈ X, the family {Bd(x, ε) : d ∈ D , ε > 0} is a neighborhood base at x. If D
is a T0 quasi-uniform structure, then τD is a T0 topology.
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Extending classical results on uniforms structures (compare Section 2) to the
quasi-uniform setting, Reilly proved in [22, Proposition 2] that a pseudometric d
on X is quasi-uniformly continuous on (X × X,U ×U −1) if and only if the set
{(x, y) : d(x, y) < ε} belongs to U for all ε > 0.

By means of this result he deduced ([22, Theorem 1]) that if U is a quasi-uni-
formity on X, then the family P of all quasi-pseudometrics that are quasi-uniformly
continuous on (X×X,U ×U −1) form a base for a quasi-uniform structure DU such
that the family {{(x, y) : d(x, y) < ε} : d ∈P, ε > 0} is a base for U and τU = τDU

.
Conversely, if D is a quasi-uniform structure then the family {{(x, y) : d(x, y) < ε} :
d ∈ D , ε > 0} is a base for a quasi-uniformity UD such that τD = τUD

.
Concerning fuzzy quasi-metric spaces we recall that a fuzzy quasi-pseudometric

on a set X is a pair (M, ∗) where ∗ is a continuous t-norm and M is a fuzzy set in
X ×X × [0,∞) that satisfies conditions (i), (ii), (iv) and (v) of Definition 2.1. If,
in addition, M satisfies (ii’) x = y if and only if M(x, y, t) = M(y, x, t) = 1 for all
t > 0, then (M, ∗) is called a fuzzy quasi-metric.

Note that if (M, ∗) is a fuzzy quasi-(pseudo)metric and M i(x, y, t) = M(x, y, t) ∧
M(y, x, t) for each x, y ∈ X and t ≥ 0, then (M i, ∗) is a fuzzy (pseudo)metric.

By a fuzzy quasi-(pseudo)metric space we mean a triple (X,M, ∗) such that X is
a (nonempty) set and (M, ∗) is a fuzzy quasi-(pseudo)metric.

Furthermore (cf. [11]) if, in Example 2.2, (X, d) is a quasi-(pseudo)metric space,
then (Md, ∗) is a fuzzy quasi-(pseudo)metric for all continuous t-norm ∗, the so-called
fuzzy quasi-(pseudo)metric induced by (X, d), or the standard fuzzy (pseudo)met-
ric of (X, d). The quasi-uniformities Ud and UMd

, induced, respectively, by d and
(Md, ∗), coincide and thus the topologies induced by d and (Md, ∗) are the same.

Next we extend the notion of a fuzzy uniform structure to the quasi-uniform
setting.

DEFINITION 6.2. Let X be a set and let ∗ be a continuous t-norm. A nonempty
family (M , ∗) of fuzzy quasi-pseudometrics (M, ∗) on X that satisfies conditions
(FU1) and (FU2) in Definition 2.3 is called a fuzzy quasi-uniform structure for ∗.

A fuzzy quasi-uniform structure (M , ∗) is said to be T0 if

(FU3’) for each x, y ∈ X with x 6= y, there exist (M, ∗) ∈ (M , ∗) and t > 0 such
that M i(x, y, t) < 1.

By a (T0) fuzzy quasi-uniform space we mean a triple (X,M , ∗) such that X is a
set and (M , ∗) is a (T0) fuzzy uniform structure.

The notions of subbase and base are defined as in the case of fuzzy uniform
structures.

Each fuzzy quasi-uniform structure (M , ∗) on a set X induces a topology τM on
X such that for each x ∈ X, the family

{
BM(x, ε, t) : M ∈M , ε ∈ (0, 1), t > 0

}
is

a neighborhood base at x.
The following quasi-uniform versions of Propositions 3.8 and 3.12 of [13], respec-

tively, are straightforward.

PROPOSITION 6.3. If D is a (T0) quasi-uniform structure on X, then the family
B = { (Md, ∗) : d ∈ D } is a base for a (T0) fuzzy quasi-uniform structure ϕ∗(D).
Besides, UD = Uϕ∗(D), and thus τD = τϕ∗(D).
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PROPOSITION 6.4. If M is a fuzzy quasi-uniform structure on X, and for each
(M, ∗) ∈ (M , ∗), d(M) is a quasi-pseudometric whose induced quasi-uniformity
coincides with UM , then the family {d(M) : (M, ∗) ∈ (M , ∗)} is a subbase for a
quasi-uniform structure ψ(M ). Besides UM = Uψ(M ), and thus τM = τψ(M ).

Now generalizing in the obvious manner the notion of a fuzzy uniformly continuous
mapping to the fuzzy quasi-uniform framework we can obtain the corresponding ana-
logues to [13, Proposition 3.11 and 3.13], and we can define the category FQUNIF
of fuzzy quasi-uniform spaces and fuzzy quasi-uniformly continuous mappings.

Next, given a t-norm ∗, we shall deduce that the subcategory FQUNIF(∗) of
fuzzy quasi-uniform spaces (X, M , ∗), is isomorphic to the category QUNIF of
quasi-uniform spaces (and quasi-uniformly continuous mappings) by means of a (co-
variant) functor which leaves mappings unchanged. To this end define the mappings
qΦ∗ : QUNIF→ FQUNIF(∗) and qΨ: FQUNIF(∗)→ QUNIF, respectively, as

qΦ∗((X, U )) = (X, ϕ∗(DU ), ∗ ) for every (X, U ) ∈ QUNIF,

qΨ((X, M , ∗)) = (X, Uψ(M )) for every (X, M , ∗) ∈ FQUNIF(∗).
and both qΦ∗ and qΨ leave the mappings unchanged.

Similarly to [13, Theorem 3.14 and Cor, 3.15] we can obtain the following:

THEOREM 6.5. qΦ∗ and qΨ are covariant functors, qΦ∗◦qΨ = 1FQUNIF(∗) and qΨ◦
qΦ∗ = 1QUNIF. Hence, the categories QUNIF and FQUNIF(∗) are isomorphic.

Finally, we discuss bicompleteness and bicompletion of fuzzy quasi-uniform struc-
tures.

First note that if (X,M , ∗) is a (T0) fuzzy quasi-uniform space, then (X,M i, ∗)
is a (Hausdorff) fuzzy uniform space, where by M i we denote the family of fuzzy
pseudometrics (M i, ∗) when (M, ∗) ∈ (M , ∗).

We say that a fuzzy quasi-uniform space (X, M , ∗ ) is bicomplete if the fuzzy uni-
form space (X,M i, ∗) is complete. In this case, we say that ( M , ∗ ) is a bicomplete
fuzzy quasi-uniform structure on X.

As in [13, Theorem 4.1], we can show that qΦ∗ and qΨ preserve bicompleteness.
A one-to-one fuzzy quasi-uniformly continuous mapping whose inverse is also

fuzzy quasi-uniformly continuous is called a fuzzy quasi-isomorphism. A fuzzy bi-

completion of a fuzzy quasi-uniform space (X, M , ∗ ) is a pair ( f, ( X̂, M̂ , ∗))
where ( X̂, M̂ , ∗) is a bicomplete fuzzy quasi-uniform space and f is a fuzzy quasi-

isomorphism from X onto a dense subspace of ( X̂, (M̂ )i, ∗).
It is well known that every T0 quasi-uniform space has a T0 bicompletion which is

unique up to quasi-isomorphism (the construction of the bicompletion may be found
in [7, Chapter 3]). With the help of this result, we can extend Theorem 4.3 of [13]
as follows.

THEOREM 6.6. Each T0 fuzzy quasi-uniform space has a unique (up to quasi-
isomorphism) T0 fuzzy bicompletion.
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Unibertsitatea, Apartado 644, 48080, Bilbao, (Spain)

E-mail address: javier.gutierrezgarcia@ehu.es

Current address: Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica
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