
ar
X

iv
:1

10
5.

61
90

v1
 [

cs
.F

L
]

 3
1

M
ay

 2
01

1

Construction of fuzzy automata from fuzzy regular expressions✩

Aleksandar Stamenković, Miroslav Ćirić∗

University of Niš, Faculty of Sciences and Mathematics, Višegradska 33, 18000 Niš, Serbia

Abstract

Li and Pedrycz [Y. M. Li, W. Pedrycz, Fuzzy finite automata and fuzzy regular expressions with membership values
in lattice ordered monoids, Fuzzy Sets and Systems 156 (2005) 68–92] have proved fundamental results that provide
different equivalent ways to represent fuzzy languages with membership values in a lattice-ordered monoid, and gener-
alize the well-known results of the classical theory of formal languages. In particular, they have shown that a fuzzy
language over an integral lattice-ordered monoid can be represented by a fuzzy regular expression if and only if it
can be recognized by a fuzzy finite automaton. However, they did not give any effective method for constructing an
equivalent fuzzy finite automaton from a given fuzzy regular expression. In this paper we provide such an effective
method.

Transforming scalars appearing in a fuzzy regular expressionα into letters of the new extended alphabet, we convert
the fuzzy regular expression α to an ordinary regular expression αR. Then, starting from an arbitrary nondeterministic
finite automaton A that recognizes the language ‖αR‖ represented by the regular expression αR, we construct fuzzy
finite automata Aα and A r

α with the same or even less number of states than the automaton A , which recognize the fuzzy
language ‖α‖ represented by the fuzzy regular expression α. The starting nondeterministic finite automaton A can be
obtained from αR using any of the well-known constructions for converting regular expressions to nondeterministic
finite automata, such as Glushkov-McNaughton-Yamada’s position automaton, Brzozowski’s derivative automaton,
Antimirov’s partial derivative automaton, or Ilie-Yu’s follow automaton.

Keywords: Fuzzy automata; fuzzy regular expressions, nondeterministic automata; regular expressions, position
automata; state reduction; right invariant equivalences; lattice-ordered monoids;

1. Introduction

Study of fuzzy automata and languages was initiated in 1960s by Santos [73–75], Wee [81], Wee and Fu
[82], and Lee and Zadeh [50]. From late 1960s until early 2000s mainly fuzzy automata and languages with
membership values in the Gödel structure have been considered (see for example [28, 31, 62]). The idea of
studying fuzzy automata with membership values in some structured abstract set comes back to W. Wechler
[80], and in recent years researcher’s attention has been aimed mostly to fuzzy automata with membership
values in complete residuated lattices, lattice-ordered moinoids, and other kinds of lattices. Fuzzy automata
taking membership values in a complete residuated lattice were first studied in [68, 69], where some basic
concepts have been discussed, and later, extensive research of these fuzzy automata has been carried out in
[70, 71, 83–87]. From a different point of view, fuzzy automata with membership values in a complete
residuated lattice were studied in [23, 24, 35–37, 39, 78]. Fuzzy automata with membership values in a
lattice-ordered monoid have been investigated in [51, 52, 55, 57], fuzzy automata over other types of lattices
were the subject of [27, 47, 48, 54, 56, 63–66], and automata which generalize fuzzy automata over any type
of lattices, as well as weighted automata over semirings, have been studied recently in [18, 26, 46]. It is worth
noting that fuzzy automata and languages are widely used in lexical analysis, description of natural and

✩Research supported by Ministry of Education and Science, Republic of Serbia, Grant No. 174013
∗Corresponding author. Tel.: +38118224492; fax: +38118533014.

Email addresses: aca@pmf.ni.ac.rs (Aleksandar Stamenković), miroslav.ciric@pmf.edu.rs (Miroslav Ćirić)

Preprint submitted to a journal August 4, 2021

http://arxiv.org/abs/1105.6190v1

programming languages, learning systems, control systems, neural networks, clinical monitoring, pattern
recognition, databases, discrete event systems, and many other areas.

Li and Pedrycz [55] have proved fundamental results that provide different equivalent ways to represent
fuzzy languages with membership values in a lattice-ordered monoid, e.g., by fuzzy finite automata, crisp-
deterministic fuzzy finite automata, fuzzy regular expressions, and fuzzy regular grammars. These results
generalize the well-known results of the classical theory of formal languages. In particular, they have shown
that a fuzzy language over an integral lattice-ordered monoid can be represented by a fuzzy regular expres-
sion if and only if it can be recognized by a fuzzy finite automaton. However, Li and Pedrycz did not give any
effective method for constructing an equivalent fuzzy finite automaton from a given fuzzy regular expres-
sion. The purpose of the present paper is to provide such an effective method.

Our basic idea is to convert a fuzzy regular expression α into an ordinary regular expression αR, trans-
forming scalars appearing in the fuzzy regular expression α into letters of the new extended alphabet. Then,
starting from an arbitrary nondeterministic finite automaton A that recognizes the language ‖αR‖ repre-
sented by the regular expressionαR, we construct a fuzzy finite automaton Aαwith the same number of states
as the automaton A , which recognizes the fuzzy language ‖α‖ represented by the fuzzy regular expressionα.
Moreover, we construct a reduced version A r

α of the fuzzy automaton Aα, a fuzzy finite automaton which
also recognizes the fuzzy language ‖α‖ and can have even smaller number of states than Aα. The method is
generic, which means that it can be used in combination with any method for constructing a nondetermi-
nistic finite automaton from an ordinary regular expression. In the past, many different techniques for con-
structing nondeterministic finite automata from regular expressions have been proposed. Besides Thomp-
son’s construction [79], which build nondeterministic finite automata with ε-transitions, other well-known
constructions build nondeterministic finite automata without ε-transitions. The best known and most used
such constructions are the position automaton, discovered independently by Glushkov [30] and McNaughton
and Yamada [61], Brzozowski’s derivative automaton [7], Antimirov’s partial derivative automaton [2], and Ilie
and Yu’s follow automaton [40–43]. Each of these constructions can serve as a basis for the construction
of our fuzzy finite automata. More information on the algorithms for building small nondeterministic finite
automata from regular expressions can be found in [42].

It should be noted that the same idea of treating scalars appearing in a fuzzy regular expression as the let-
ters of a new extended alphabet, and then treating a fuzzy regular expression as an ordinary regular expres-
sion over a larger alphabet, has been recently used by Kuske [49] in the context of weighted regular expres-
sions and weighted finite automata over semirings. However, there are some significant differences between
his and our approach. First, Kuske considered only weighted regular expressions that define proper power
series, i.e., power series with zero as the coefficient of the empty word. In terms of the theory of fuzzy lan-
guages, these are fuzzy languages which (absolutely) do not contain the empty word. There is one even more
important difference. In the mentioned paper [49], Kuske gave a new proof of the famous Schützenberger’s
theorem [29, 72] which asserts that the behaviors of weighted finite automata over an arbitrary semiring are
precisely the rational formal power series, i.e., formal power series defined by weighted regular expressions.
In his proof, Kuske first converts a weighted regular expression E to a regular expression E′, then he starts
from an arbitrary deterministic finite automaton that recognizes the language defined by E′, and from this
automaton he constructs a weighted finite automaton whose behavior is the formal power series defined
by E. However, the number of states of deterministic finite automata obtained from regular expressions can
be exponentially larger than the lengths of the corresponding regular expressions. For this reason, regular
expressions are more often converted to nondeterministic finite automata, and the above mentioned con-
structions outputs nondeterministic finite automata whose number of states is equal to the length of the
regular expression plus one, or even less than that number. In addition, our constructions output fuzzy fi-
nite automata with the same or even smaller number of states than the original nondeterministic finite
automaton.

As we have said, the size of an automaton obtained from a regular expression plays a very important role,
and for that reason regular expressions are mostly converted to nondeterministic finite automata. On the
other hand, for practical applications deterministic finite automata are usually needed, but determinization
of a nondeterministic finite automaton can cause an exponential blow up in the number of states. That is why
the number of states of a nondeterministic finite automaton has to be reduced prior to determinization. As

2

the minimization of nondeterministic finite automata is computationally hard, we must be satisfied with the
methods for reducing the number of states that do not necessarily give a minimal automaton, but rather pro-
vide a reasonably small automaton that can be effectively computed. Such reduction methods have been
recently investigated in [9, 11, 41–45], in the context of nondeterministic finite automata, and in [23, 24, 78], in
the context of fuzzy finite automata (see also [19, 21, 22]). Key role in the state reduction of nondeterministic
finite automata play right and left invariant equivalences, which have been generalized in the fuzzy frame-
work as right and left invariant fuzzy equivalences (cf. [23, 24, 78]). It is worth noting that right and left
invariant (fuzzy) equivalences are also known as forward and backward bisimulation (fuzzy) equivalences
(cf. [19, 21, 22]). In particular, it has been proved in [14–16, 40–43] that both the partial derivative automaton
and the follow automaton are factor automata of the position automaton with respect to certain right invar-
iant equivalences. State reduction of fuzzy finite automata by means of right invariant fuzzy and crisp equi-
valences will be also considered in this paper. Let us also note that the above mentioned determinization
problem has been recently investigated in the fuzzy framework in [4, 18, 36, 46, 55].

Our main results are the following. We start from a given fuzzy regular expression α over an alphabet X
and a lattice-ordered monoid L = (L,∧,∨,⊗, 0, 1, e), and we define an ordinary regular expression αR over
a new alphabet X ∪ Y, where Y consists of the letters associated with different scalars appearing in α. The
mapping ϕα of X∪Y to L , which maps all letters from X to e, and letters from Y to related scalars appearing
in α, can be extended in a natural way to a homomorphism ϕ∗α of the free monoid (X ∪ Y)∗ to the monoid
(L,⊗, e). In the case when L is an integral lattice-ordered monoid, using this homomorphism we establish
a relationship between the fuzzy language ‖α‖ represented by α and the language ‖αR‖ represented by αR

(cf. Theorem 3.6), and starting from any nondeterministic finite automaton A that recognizes the language
‖αR‖ we define the fuzzy automaton Aα associated with A and α, and we prove that Aα recognizes the
fuzzy language ‖α‖ represented by the fuzzy regular expression α (cf. Theorem 3.7).

However, the aforementioned definition of the fuzzy automaton Aα is not sufficiently constructive,
because the computing of the fuzzy transition relation and the fuzzy set of terminal states of Aα requires
the computing of minimal words in certain infinite languages with respect to the embedding order, which
might be a problem. We solve this problem introducing a reflexive and transitive fuzzy relation RA on the
set of states of the starting nondeterministic finite automaton A , which can be effectively computed as the
n-th power of an easily computable fuzzy relation, where n is the number of states of A . We express the
fuzzy relation RA in terms of the homomorphism ϕ∗α and the transition relation of A (cf. Theorem 4.3),
and then we express the fuzzy transition relation and the fuzzy set of terminal states of Aα in terms of the
fuzzy relation RA , the transition relation of A , and the set of terminal states of A (cf. Theorem 4.4). This
result provides an effective construction of the fuzzy finite automaton Aα associated with A and the fuzzy
regular expression α.

Using the fuzzy relation RA we also construct a version A r
α of the fuzzy finite automaton Aα which can

have even smaller number of states than the fuzzy automaton Aα and the automaton A , and recognizes
the same fuzzy language ‖α‖ (cf. Theorem 5.1). We show by an example that the number of states of A r

α

can be strictly smaller than the number of states of A and Aα. We also discuss the state reduction of the
fuzzy automaton Aα by means of right invariant crisp equivalences, and we show that even if the starting
automaton A is a minimal deterministic automaton, the number of states of the fuzzy automaton Aα could
be reduced. Finally, we describe certain properties of fuzzy automata obtained from the position and the
follow automaton.

The structure of the paper is as follows. In Section 2 we recall some basic definitions and results concern-
ing fuzzy sets and relations over lattice ordered monoids, nondeterministic and fuzzy automata, and regular
and fuzzy regular expressions. In Section 3 we give the basic construction of a fuzzy finite automaton Aα

associated with a fuzzy regular expression α and a nondeterministic finite automaton A recognizing the
language ‖αR‖. Section 4 addresses the issue of the effective construction of the fuzzy automaton Aα, and
in Section 5 we deal with the version of this construction that gives a fuzzy automaton with a reduced
number of states with respect to the original construction. Finally, in Section 6 we discuss the problem of
the reduction of the number of states of fuzzy finite automata constructed from fuzzy regular expressions.

3

2. Preliminaries

In this section we recall some basic definitions and results concerning fuzzy sets and relations over lattice
ordered monoids, nondeterministic and fuzzy automata, and regular and fuzzy regular expressions.

2.1. Lattice-ordered monoids

A lattice-ordered monoid or an ℓ−monoid [52, 53, 55, 77] is an algebra L = (L,∧,∨,⊗, 0, 1, e) such that

(L1) (L,∧,∨, 0, 1) is a lattice with the least element 0 and the greatest element 1,

(L2) (L,⊗, e) is a monoid with the unit e,

(L3) x ⊗ 0 = 0 ⊗ x = 0, for every x ∈ L,

(L4) x ⊗ (y ∨ z) = x ⊗ y ∨ x ⊗ z, (x ∨ y) ⊗ z = x ⊗ z ∨ y ⊗ z, for all x, y, z ∈ L.

The operation ⊗ is called the multiplication. In addition, if (L,∧,∨, 0, 1) is a complete lattice and satisfies the
following infinite distributive laws

x ⊗
(∨

i∈I

xi

)
=

∨

i∈I

(x ⊗ xi),
(∨

i∈I

xi

)
⊗ x =

∨

i∈I

(xi ⊗ x), (1)

then L is called a quantale. In the general case, in an ℓ-monoid L = (L,∧,∨,⊗, 0, 1, e) the greatest element 1
of the lattice (L,∧,∨, 0, 1) and the unit element e of the monoid (L,⊗, e) are different. If 1 and e coincide, then
L is called an integral ℓ−monoid.

It can be easily verified that with respect to 6, the multiplication ⊗ in an ℓ-monoid is isotone in both
arguments, i.e., for all x, y, z ∈ L we have

x 6 y implies x ⊗ z 6 y ⊗ z and z ⊗ x 6 z ⊗ y. (2)

An integral quantale with commutative multiplication is known as a complete residuated lattice (cf. [5, 6]).
The most studied and applied kinds of complete residuated lattices, with the support [0, 1], x∧ y = min(x, y)
and x∨y = max(x, y), are the Lukasiewicz structure, with the multiplication defined by x⊗y = max(x+y−1, 0),
the Goguen or product structure, with x ⊗ y = x · y, and the Gödel structure, with x ⊗ y = min(x, y). The fourth
important type of complete residuated lattices is the two-element Boolean algebra of classical logic with
the support {0, 1}, called the Boolean structure.

In the further text, if not noted otherwise, L will be an ℓ−monoid. A fuzzy subset of a set A is defined as any
mapping from A into L. Ordinary crisp subsets of A are considered as fuzzy subsets of A taking membership
values in the set {0, e} ⊆ L. Let f and 1 be two fuzzy subsets of A. The equality of f and 1 is defined as the
usual equality of functions, i.e., f = 1 if and only if f (x) = 1(x), for every x ∈ A. The inclusion f 6 1 is also
defined pointwise: f 6 1 if and only if f (x) 6 1(x), for every x ∈ A. Endowed with this partial order the set
LA of all fuzzy subsets of A forms the distributive lattice, in which the meet (intersection) f ∧ 1 and the join
(union) f ∨ 1 of any fuzzy subsets f , 1 of A are also fuzzy subsets of A over L defined by

(f ∧ 1)(x) = f (x) ∧ 1(x), (f ∨ 1)(x) = f (x) ∨ 1(x). (3)

for each x ∈ L. The crisp part of a fuzzy subset f ∈ LA is a crisp subset f̂ = {a ∈ A | f (a) = e} of A. We will also

consider f̂ as a mapping f̂ : A→ L defined by f̂ (a) = e, if f (a) = e, and f̂ (a) = 0, otherwise.
A fuzzy relation on A is any fuzzy subset of A×A. The equality, inclusion and ordering of fuzzy relations

are defined as for fuzzy sets. For fuzzy relations R and S on a set A, their composition R◦S is a fuzzy relation
on A defined by

(R ◦ S)(a, b) =
∨

c∈A

R(a, c) ⊗ S(c, b), (4)

4

for all a, b ∈ A, and for a fuzzy subset f of A and a fuzzy relation R on A, the compositions f ◦R and R ◦ f are
fuzzy subsets of A defined, for any a ∈ A, by

(f ◦ R)(a) =
∨

b∈A

f (b) ⊗ R(b, a), (R ◦ f)(a) =
∨

b∈A

R(a, b) ⊗ f (b). (5)

For fuzzy subsets f and 1we write

f ◦ 1 =
∨

a∈A

f (a) ⊗ 1(a). (6)

It is well known that the composition of fuzzy relations is associative. Moreover

(f ◦ R) ◦ S = f ◦ (R ◦ S), (R ◦ S) ◦ f = R ◦ (S ◦ f), (f ◦ R) ◦ 1 = f ◦ (R ◦ 1), (7)

for all fuzzy subsets f and 1 of A, and fuzzy relations R and S on A. If A is a finite set with n elements, then
R and S can be treated as n × n matrices over L , and R ◦ S is their matrix product, whereas f ◦ R can be
treated as the product of the 1×n matrix f and the n×n matrix R, and R◦ f as the product of the n×n matrix
R and the n × 1 matrix f t (the transpose of f).

For a finite set A and an fuzzy relation R on A, a fuzzy relation Rn is defined inductively as follows: R0 is
the crisp equality on A, and Rn+1 = Rn ◦ R, for n ∈N ∪ {0}.

A fuzzy relation R on A is said to be

(R) reflexive if R(a, a) = e, for every a ∈ A;

(S) symmetric if R(a, b) = R(b, a), for all a, b ∈ A;

(T) transitive if for all a, b, c ∈ A we have R(a, b) ⊗ R(b, c) 6 R(a, c).

It is easy to check that a reflexive fuzzy relation R is transitive if and only if R2 = R, and then Rn = R, for
every n ∈ N. A reflexive, symmetric and transitive fuzzy relation is called a fuzzy equivalence. For a fuzzy
equivalence E on A and a ∈ A we define a fuzzy subset Ea of A by Ea(x) = E(a, x), for every x ∈ A. We call Ea

the equivalence class of E determined by a. The set A/E = {Ea | a ∈ A} is called the factor set of A with respect
to E (cf. [5, 6, 20]). We use the same notation for crisp equivalences, i.e., for an equivalence π on A, the
related factor set is denoted by A/π, the equivalence class of an element a ∈ A is denoted by πa. A fuzzy
equivalence E on a set A is called a fuzzy equality if for all x, y ∈ A, E(x, y) = e implies x = y. In other words,

E is a fuzzy equality if and only if its crisp part Ê is a crisp equality.

2.2. Fuzzy regular expressions

Let X be a non-empty set, which is called an alphabet and whose elements are called letters, and let X∗ be
the free monoid over X, i.e., the set of all finite sequences of letters from X, including the empty sequence,
equipped with the concatenation operation. Elements of X∗ are called words, and the empty sequence is
denoted by ε and called the empty word.

A fuzzy language in X∗ is defined as any fuzzy subset of X∗. A language in X∗ is a fuzzy language in X∗

taking membership values in the set {0, e}. For a fuzzy language f and a scalar λ ∈ L, the scalar multiplication
λ ⊗ f is a fuzzy language in X∗ defined by

(λ ⊗ f)(u) = λ ⊗ f (u),

for any u ∈ X∗. The union (join) f ∨ 1 of fuzzy languages f and 1 is defined as the union of fuzzy subsets f
and 1. The concatenation (product) f1 of fuzzy languages f and 1 is defined by

(f1)(u) =
∨

u=vw

f (v) ⊗ 1(w).

5

The concatenation of fuzzy languages is an associative operation, and for n ∈ N, the n-th power of a fuzzy
language f is defined inductively by f 0 = fε, where fε is a characteristic function of the empty word ε, i.e.,

fε(u) =


e if u = ε

0 otherwise
, (8)

and f n+1 = f n f , for each n ∈N ∪ {0}. The Kleene closure of a fuzzy language f , denoted by f ∗, is defined by

f =
∨

n∈N∪{0}

f n.

Recall the following result proved in [55].

Proposition 2.1. If L is an integral ℓ−monoid, then for any fuzzy language f , the Kleene closure is well defined.

The family L R of fuzzy regular expressions over a finite alphabet X is defined inductively in the following
way (cf. [52, 55]):

(i) ∅ ∈ L R;

(ii) ε ∈ L R;

(iii) x ∈ L R, for all x ∈ X;

(iv) (λα) ∈ L R, for all λ ∈ L and α ∈ L R (scalar multiplication);

(v) (α1 + α2) ∈ L R, for all α1, α2 ∈ L R (addition);

(vi) (α1α2) ∈ L R, for all α1, α2 ∈ L R (concatenation);

(vii) (α∗) ∈ L R, for all α ∈ L R (star operation);

(viii) There are no other fuzzy regular expressions than those given in steps (i)–(viii).

In order to avoid parentheses it is assumed that the star operation has the highest priority, then concatenation
and then addition. For any fuzzy regular expressionα ∈ L R, the fuzzy language ‖α‖ determined byα is defined
inductively as follows (cf. [52, 55]):

(i) ‖∅‖(u) = 0, for every u ∈ X∗,

(ii) For α ∈ X ∪ {ε}, ‖α‖ = fα, where fα is the characteristic function of α defined by

fα(u) =


e if u = α

0 otherwise
;

(iii) ‖λα‖ = λ ⊗ ‖α‖ for all λ ∈ L and α ∈ L R;

(iv) ‖(α1 + α2)‖ = ‖α1‖ ∨ ‖α2‖, for all α1, α2 ∈ L R;

(v) ‖(α1α2)‖ = ‖α1‖ ‖α2‖, for all α1, α2 ∈ L R;

(v) ‖α∗‖ = ‖α‖∗, for all α ∈ L R.

For a fuzzy regular expression α over X, the length of α, denoted by |α|X, is the number of occurrences of
letters from X in α.

A fuzzy regular expression αwhich does not contain any occurrence of an element of L is called a regular
expression over an alphabet X. In other words, regular expresions are those fuzzy regular expressions that
are obtained without using any scalar mutiplication. Note that the fuzzy language ‖α‖ defined by a regular
expression α takes membership values in the set {0, e}, and thus, it can be considered as an ordinary subset
of X∗.

For the free monoid X∗ we set X+ = X∗ \ {ε}. The length of a word u ∈ X∗, in notation |u|, is the number of
appearances of letters from X in u. The embedding order relation 6em is defined on X∗ by

u 6em v ⇔ u = u1u2 · · ·un and v = v0u1v1u2 · · · vn−1unvn, (9)

where n ∈N and u, v, u1, u2, . . . , un, v0, v1, . . . , vn ∈ X∗.

6

Proposition 2.2. ([32, 33]) For any alphabet X, 6em is a partial order on X∗. Any set of pairwise incomparable words
in the partially ordered set (X∗,6em) is finite.

Consequently, for any U ⊆ X∗, the set M(U) of all minimal words from U with respect to 6em is finite.

Throughout the paper, the set of all minimal words from U ⊆ X∗with respect to the embedding order6em

will be denoted by M(U), as in the previous proposition.

2.3. Fuzzy automata

Let L be an ℓ−monoid. A fuzzy automaton (over L) is defined as a five-tuple A = (A,X, δA, σA, τA), where
A and X are non-empty sets, called respectively the set of states and the input alphabet, δA : A×X×A→ L is a
fuzzy subset of A×X×A, called the fuzzy transition relation, σA ∈ LA is the fuzzy set of initial states, and τA ∈ LA

is the fuzzy set of terminal states. We will assume that the input alphabet X is always finite. A fuzzy auto-
maton whose set of states is finite is called a fuzzy finite automaton. Since all fuzzy automata considered in
this paper will be finite, we will speak simply fuzzy automaton instead of fuzzy finite automaton. Cardinality
of a fuzzy automaton A , in notation |A |, is defined as the cardinality |A| of its set of states A.

The fuzzy transition relation δA can be extended up to a mapping δA
∗ : A × X∗ × A→ L in the following

way: If a, b ∈ A and ε ∈ X∗ is the empty word, then

δA
∗ (a, ε, b) =


e if a = b

0 otherwise
, (10)

and if a, b ∈ A, u ∈ X∗ and x ∈ X, then

δA
∗ (a, ux, b) =

∨

c∈A

δA
∗ (a, u, c) ⊗ δA(c, x, b) (11)

Without danger of confusion we shall write just δA instead of δA
∗ .

By (L4) and Theorem 3.1 in [55] we have that

δA(a, uv, b) =
∨

c∈A

δA(a, u, c) ⊗ δA(c, v, b), (12)

for all a, b ∈ A and u, v ∈ X∗.
For any u ∈ X∗ we define a fuzzy relation δA

u ∈ LA×A, called the fuzzy transition relation determined by u,
by δA

u (a, b) = δA(a, u, b), for all a, b ∈ A. Then for all u, v ∈ X∗, the equality (12) can be written as δA
uv = δ

A
u ◦ δ

A
v .

A fuzzy language recognized by a fuzzy automaton A = (A,X, δA, σA, τA), denoted by L(A), is a fuzzy
language in X∗ defined by

L(A)(u) =
∨

a,b∈A

σA(a) ⊗ δA(a, u, b) ⊗ τA(b), (13)

or equivalently,

L(A)(u) = σA ◦ δA
u ◦ τ

A = σA ◦ δA
x1
◦ δA

x2
◦ · · · ◦ δA

xn
◦ τA, (14)

for any u = x1x2 . . . xn ∈ X∗ with x1, x2, . . . , xn ∈ X.
In particular, if A = (A,X, δA, a0, τ

A) is a fuzzy automaton having a single crisp initial state a0, then the
fuzzy language L(A) recognized by A is given by

L(A)(u) =
∨

a∈A

δA(a0, u, a) ⊗ τA(a). (15)

or equivalently,

L(A)(u) = (δA
u ◦ τ

A)(a0) = (δA
x1
◦ δA

x2
◦ · · · ◦ δA

xn
◦ τA)(a0), (16)

7

for any u = x1x2 . . . xn ∈ X∗ with x1, x2, . . . , xn ∈ X.
In the further text, ordinary nondeterministic automata will be considered as fuzzy automata. Namely,

by a nondeterministic automaton we mean a fuzzy automaton A = (A,X, δA, σA, τA) such that δA
x is a fuzzy

relation taking values in the set {0, e}, for each x ∈ X, and σA and τA are fuzzy sets also taking values in {0, e}.
In this case, the fuzzy language recognized by A is a crisp language, and it is exactly the language recognized
by a nondeterministic automaton in the sense of the well-known definition from the classical theory of non-
deterministic automata.

Let A = (A,X, δA, σA, τA) be a fuzzy automaton and let E be a fuzzy equivalence on A. Without any re-
striction on the fuzzy equivalence E, we define a fuzzy transition relation δA/E : A/E × X × A/E → L by

δA/E(Ea, x,Eb) =
∨

a′,b′∈A

E(a, a′) ⊗ δ(a′, x, b′) ⊗ E(b′, b) = (E ◦ δx ◦ E)(a, b) = Ea ◦ δx ◦ Eb, (17)

and fuzzy sets σA/E ∈ LA/E and τE ∈ LA/E of initial and terminal states by

σA/E(Ea) =
∨

a′∈A

σA(a′) ⊗ E(a′, a) = (σA ◦ E)(a) = σA ◦ Ea, (18)

τA/E(Ea) =
∨

a′∈A

τA(a′) ⊗ E(a′, a) = (τA ◦ E)(a) = τA ◦ Ea, (19)

for any a ∈ A. Evidently, δA/E, σA/E and τA/E are well-defined, andA /E = (A/E,X, δA/E, σA/E, τA/E) is a fuzzy
automaton, called the factor fuzzy automaton of A with respect to E.

2.4. Position automata

In this section we recall the construction of the position automaton from a regular expression [30, 61].
Letαbe a regular expression over an alphabet X. Denote byα the expression obtained fromαby marking

each letter in αwith its position. The same notation will be used for removing indices, that is, for a regular

expression αwe put α = α. We define the following sets:

(i) pos0(α) = {0, 1, . . . , |α|X},

(ii) f irst(α) = {i | xiu ∈ ‖α‖},

(iii) last(α) = {i | uxi ∈ ‖α‖},

(iv) f ollow(α, i) = { j | uxix jv ∈ ‖α‖},

(v) f ollow(α, 0) = f irst(α),

(vi) last0(α) =


last(α), ε < ‖α‖

last(α) ∪ {0}, ε ∈ ‖α‖
.

Define δpos ⊆ pos0(α) × X × pos0(α) by

(i, x, j) ∈ δpos ⇔ x j = x and j ∈ f ollow(α, i).

Then Apos(α) = (pos0(α),X, δpos, 0, last0(α)) is a nondeterministic automaton called the position automaton of α.
It was shown by Glushkov [30] and McNaughton and Yamada [61] that L(Apos(α)) = ‖α‖.

For the sake of simplicity, instead of Apos(α) = (pos0(α),X, δpos, 0, last0(α)), in the further text we will write

Ap(α) = (Ap,X, δ
Ap , 0, τAp).

3. Fuzzy automata from fuzzy regular expressions: Basic construction

For an ℓ−monoid L = (L,∧,∨,⊗, 0, 1, e), A,B ⊆ L and λ ∈ L we will use the following notation

A ⊗ B = {a ⊗ b | a ∈ A, b ∈ B}, A ∨ B = {a ∨ b | a ∈ A, b ∈ B}, λ ⊗ A = {λ ⊗ a | a ∈ A}.

The following lemma will be useful in our further work.

8

Lemma 3.1. Let L = (L,∧,∨,⊗, 0, 1, e) be an ℓ−monoid, let A,B ⊆ L and λ ∈ L. If there exist finite sets C ⊆ A
and D ⊆ B such that

(∀a ∈ A)(∃c ∈ C) a 6 c and (∀b ∈ B)(∃d ∈ D) b 6 d,

then there exist
∨

A,
∨

B,
∨

A ⊗ B,
∨

A ∨ B and
∨
λ ⊗ A, and we have that

∨
A =

∨
C,

∨
B =

∨
D, and

∨
A ⊗ B =

(∨
A
)
⊗

(∨
B
)
,

∨
A ∨ B =

(∨
A
)
∨

(∨
B
)
,

∨
λ ⊗ A = λ ⊗

(∨
A
)
.

Proof. The proof of this lemma is elementary and will be omitted.

Let L be an ℓ−monoid and let α be a fuzzy regular expression over a finite alphabet X. Let K be the set
of all λ ∈ L appearing in α (if α is a fuzzy regular expression without scalar multiplication then K = ∅) and
let Y be an alphabet such that Y∩X = ∅ and |K| = |Y|, and let λ 7→ λ′ be an arbitrary bijective mapping from
K to Y. We will call Y the alphabet associated with α. It is clear that Y is finite.

Let us denote by αR the expression obtained from α by replacing each λ ∈ K by the corresponding letter
λ′ ∈ Y. Obviously, αR is a regular expression over the alphabet X∪Y. Further, ‖αR‖ is considered as a fuzzy
language over an alphabet X ∪ Y, taking values in the set {0, e} ⊆ L.

Let ϕα : X ∪ Y→ L be a mapping defined by

ϕα(x) =


e, if x ∈ X

λ, if x = λ′ ∈ Y
, (20)

for any x ∈ X∪Y. Denote byϕ∗α a homomorphism from the monoid (X∪Y)∗ into the monoid (L,⊗, e) defined
by: ϕ∗α(ε) = e and ϕ∗α(u) = ϕα(x1) ⊗ ϕα(x2) ⊗ · · · ⊗ ϕα(xn), for any u = x1x2 · · ·xn with x1, . . . , xn ∈ (X ∪ Y)∗.

Example 3.2. Let L be an arbitrary ℓ−monoid and let α be a fuzzy regular expression over an alphabet X.
If α is without scalars then αR = α.

Example 3.3. Let L be the Gödel structure. Consider α = 0.2((0.1(xy)∗)∗+y), a fuzzy regular expression over
the alphabet {x, y}. An expression αR = λ((µ(xy)∗)∗ + y) is a regular expression over the alphabet {x, y, λ, µ},
obtained from α by replacing 0.2 with λ and 0.1 with µ. The mapping ϕα is given by

ϕα =

(
x y λ µ
1 1 0.2 0.1

)
.

Example 3.4. Consider a fuzzy regular expression α = (0.1x∗)(yx+ 0.8y)∗,where L is the product structure.
Then αR = (λx∗)(yx + µy)∗ is a regular expression over the alphabet {x, y, λ, µ}, where λ replaces 0.1 and µ
replaces 0.8. The mapping ϕα is given by

ϕα =

(
x y λ µ
1 1 0.1 0.8

)
.

Now we prove the following.

Lemma 3.5. Let L be an integral ℓ−monoid, and let X be an arbitrary alphabet. Then every homomorphism ϕ from
the monoid X∗ into the monoid (L,⊗, 1) is antitone, i.e.,

u 6em v ⇒ ϕ(v) 6 ϕ(u), (21)

for all u, v ∈ X∗. Furthermore, for any U ⊆ X∗ and any γ : X∗ → {0, 1} there exists
∨
{ϕ(u) ⊗ γ(u) | u ∈ U} and

∨

u∈U

ϕ(u) ⊗ γ(u) =
∨

u∈M(U′)

ϕ(u) ⊗ γ(u), (22)

where U′ = {u ∈ U | γ(u) = 1}.

9

Proof. If u 6em v, then by (9) we have

u = u1u2 · · ·un and v = v0u1v1u2 · · · vn−1unvn,

where n ∈N and u, v, u1, u2, . . . , un, v0v1, . . . , vn ∈ X∗. Consequently, according to (2) ,we have

ϕ(v) = ϕ(v0) ⊗ ϕ(u1) ⊗ ϕ(v1) ⊗ ϕ(u2) ⊗ · · · ⊗ ϕ(vn−1) ⊗ ϕ(un) ⊗ ϕ(vn)

6 1 ⊗ ϕ(u1) ⊗ 1 ⊗ ϕ(u2) ⊗ · · · ⊗ 1 ⊗ ϕ(un) ⊗ 1 = ϕ(u1) ⊗ ϕ(u2) ⊗ · · · ⊗ ϕ(un) = ϕ(u).

Therefore, ϕ(v) 6 ϕ(u).
Further, for any U ⊆ X∗, γ : X∗ → {0, 1}, and u ∈ U′ = {v ∈ U | γ(v) = 1} there exists w ∈ M(U′) such that

w 6em u, and by (21) it follows thatϕ(u) 6em ϕ(w). According to Proposition 2.2, we have that M(U′) is finite,
and by Lemma 3.1 we obtain that

∨
{ϕ(u) ⊗ γ(u) | u ∈ U} =

∨
{ϕ(u) | u ∈ U′} exists and (22) holds.

In particular, for a given regular expression α, the homomorphism ϕ∗α satisfies (21) and (22).
Let Z be an alphabet. The shuffle operation, denoted by� is defined in the following way

u� v =
{
u1v1u2v2 · · ·unvn

∣∣∣ u = u1u2 . . .un, v = v1v2 . . . vn, ui, vi ∈ Z∗, 1 6 i 6 n, n ∈N
}
, (23)

where u, v ∈ Z∗.
The above operation is naturally extended to languages by the shuffle of languages, defined as

L1� L2 =
⋃

u∈L1,v∈L2

u� v. (24)

where L1, L2 ⊆ Z∗.
Let us return now to the fuzzy regular expression α over the alphabet X and the alphabet Y associated

with α. Supposing ∅∗ = {ε}, for any u ∈ X∗ we define a language UY(u) ⊆ (X ∪ Y)∗ by

UY(u) = u� Y∗.

It is easy to check that the following holds

UY(ε) = Y∗, (25)

If Y = ∅ then UY(u) = {u}, for every u ∈ X∗, (26)

UY(u)UY(v) = UY(uv), for all u, v ∈ X∗, (27)

UY(x) = Y∗xY∗, for every x ∈ X, (28)

where the set UY(u)UY(v) is the concatenation of sets UY(u) and UY(v), and Y∗xY∗ is the concatenation of Y∗,
{x} and Y∗.

One of the main results of this paper is the following theorem.

Theorem 3.6. Let L be an integral ℓ−monoid. Let α be a fuzzy regular expression over a finite alphabet X, and let
Y be an alphabet associated with α. Then

‖α‖(u) =
∨

v∈UY(u)

ϕ∗α(v) ⊗ ‖αR‖(v), (29)

for every u ∈ X∗.

Proof. Consider an arbitrary u ∈ X∗.
For U = UY(u), if the set U′ = {v ∈ U | ‖αR‖(v) = 1} is non-empty, then by Lemma 3.5 it follows that the

supremum on the right side of (29) exists, and
∨

v∈UY(u)

ϕ∗α(v) ⊗ ‖αR‖(v) =
∨

v∈M(U′)

ϕ∗α(v) ⊗ ‖αR‖(v). (30)

10

Otherwise, if U′ = ∅, then

∨

v∈UY(u)

ϕ∗α(v) ⊗ ‖αR‖(v) = 0.

Thus, we have proved that the supremum on the right side of (29) always exists.

Further, if α is a fuzzy regular expression without scalar multiplication, i.e., if Y = ∅, then UY(u) = {u},
α = αR, ‖α‖ = ‖αR‖, and ϕ∗α(v) = 1 for every v ∈ X∗ = (X ∪ Y)∗. As a result, we have

∨

v∈UY(u)

ϕ∗α(v) ⊗ ‖αR‖(v) = ‖αR‖(u) = ‖α‖(u).

The rest of the proof will be done by induction of the length of the fuzzy regular expression α. Suppose
that (29) holds for arbitrary fuzzy regular expressions whose length is less than the length of α.

Let α = λβ, for λ ∈ L and β ∈ L R, and let Y1 ⊆ Y be the alphabet associated with β. For each v ∈ (X∪Y)∗

we have

‖αR‖(v) =


‖βR‖(w) if v = λ′w, for some w ∈ (X ∪ Y)∗

0 otherwise
.

For every w ∈ (X ∪ Y1)∗ we have that ϕ∗α(w) = ϕ∗
β
(w) and λ′w ∈ UY(u) if and only if w ∈ UY1

(u), and also, for

every w ∈ (X ∪ Y)∗ which contains a letter from Y \ Y1 we have that ‖βR‖(w) = 0. Consequently,

∨

v∈UY(u)

ϕ∗α(v) ⊗ ‖αR‖(v) =
∨

w∈UY1
(u)

ϕ∗α(λ
′w) ⊗ ‖βR‖(w) =∗ λ ⊗

∨

w∈UY1
(u)

ϕ∗β(w) ⊗ ‖βR‖(w) = λ ⊗ ‖β‖(u) = ‖α‖(u).

The equality marked with * follows by Lemmas 3.1 and 3.5.

Let α = β+γ, for β, γ ∈ L R, let Y1 ⊆ Y be the alphabet associated with β, and let Y2 ⊆ Y be the alphabet
associated with γ. For every v ∈ (X ∪ Y)∗ we have that the following is true

‖αR‖(v) = ‖βR‖(v) ∨ ‖γR‖(v),

ϕ∗α(v) = ϕ∗β(v), for v ∈ (X ∪ Y1)∗, and ϕ∗α(v) = ϕ∗γ(v), for v ∈ (X ∪ Y2)∗, (31)

‖βR‖(v) = 0, for v < (X ∪ Y1)∗, and ‖γR‖(v) = 0, for v < (X ∪ Y2)∗. (32)

Therefore,

∨

v∈UY(u)

ϕ∗α(v) ⊗ ‖αR‖(v) =
∨

v∈UY(u)

ϕ∗α(v) ⊗ (‖βR‖(v) ∨ ‖γR‖(v))

=∗
(∨

v∈UY(u)

ϕ∗α(v) ⊗ ‖βR‖(v)
)
∨

(∨

v∈UY(u)

ϕ∗α(v) ⊗ ‖γR‖(v)
)

=
(∨

v∈UY1
(u)

ϕ∗β(v) ⊗ ‖βR‖(v)
)
∨

(∨

v∈UY2
(u)

ϕ∗γ(v) ⊗ ‖γR‖(v)
)
= ‖β‖(u) ∨ ‖γ‖(u) = ‖α‖(u),

The equality marked with * follows by Lemmas 3.1 and 3.5.

Next, let α = βγ, for β, γ ∈ L R, let Y1 ⊆ Y be the alphabet associated with β, and let Y2 ⊆ Y be
the alphabet associated with γ. Then (31) and (32) hold, and ‖αR‖(v) =

∨
v=wp ‖βR‖(w) ⊗ ‖γR‖(p), for every

11

v ∈ (X \ Y)∗. Thus
∨

v∈UY(u)

ϕ∗α(v) ⊗ ‖αR‖(v) =
∨

v∈UY(u)

ϕ∗α(v) ⊗
∨

v=wp

(‖βR‖(w) ⊗ ‖γR‖(p))

=∗
∨

v∈UY(u)

∨

v=wp

(
ϕ∗α(w) ⊗ ‖βR‖(w)

)
⊗

(
ϕ∗α(p) ⊗ ‖γR‖(p)

)

=
∨

u=qr

∨

w∈UY(q), p∈UY(r)

(
ϕ∗α(w) ⊗ ‖βR‖(w)

)
⊗

(
ϕ∗α(p) ⊗ ‖γR‖(p)

)

=
∨

u=qr

∨

w∈UY1
(q), p∈UY2

(r)

(
ϕ∗β(w) ⊗ ‖βR‖(w)

)
⊗

(
ϕ∗γ(p) ⊗ ‖γR‖(p)

)

=∗∗
∨

u=qr

((∨

w∈UY1
(q)

ϕ∗β(w) ⊗ ‖βR‖(w)
)
⊗

(∨

p∈UY2
(r)

ϕ∗γ(p) ⊗ ‖γR‖(p)
))

=
∨

u=qr

‖β(q)‖ ⊗ ‖γ(r)‖ = ‖α‖(u),

The equality marked with * follows by ϕ∗α(p)⊗‖βR‖(w) = ‖βR‖(w)⊗ϕ∗α(p), which is true since ‖βR‖(w) ∈ {0, 1},
and the equality marked with ** follows by Lemmas 3.1 and 3.5.

Finally, let α = β∗, for β ∈ L R, and for any n ∈ N let βn = ε + β + · · · + β
n. Clearly, β and βn have the

same associated alphabet as α, the alphabet Y. Also, ‖βn‖(u) 6 ‖α‖(u), for all u ∈ X∗ and n ∈ N. In addition,
by the proof of Proposition 2.1 (cf. [55, p. 80]), we have that for every u ∈ X∗ there exists n ∈ N such that
‖α‖(u) 6 ‖βn‖(u), and then

‖α‖(u) 6 ‖βn‖(u) =
∨

v∈UY(u)

ϕ∗α(v) ⊗ ‖(βn)R‖(v) 6
∨

v∈UY(u)

ϕ∗α(v) ⊗ ‖αR‖(v),

for every u ∈ X∗. Conversely, for every u ∈ X∗ and v ∈ UY(u) there exists m ∈N such that

ϕ∗α(v) ⊗ ‖αR‖(v) 6 ϕ∗α(v) ⊗ ‖(βm)R‖(v) 6 ‖βm‖(u) 6 ‖α‖(u).

In conclusion,

‖α‖(u) =
∨

v∈UY(u)

ϕ∗α(v) ⊗ ‖αR‖(v),

which completes the proof of the theorem.

For a fuzzy regular expression α over an alphabet X, let αR be a regular expression over an alphabet X∪Y,
where Y is an alphabet associated with α. Now, let A = (A,X∪Y, δA, a0, τ

A) be an arbitrary nondeterministic
automaton recognizing the language ‖αR‖. Evidently, the automaton A , considered as a fuzzy automaton,
recognizes the fuzzy language ‖αR‖. Further, let Aα = (Aα,X, δ

Aα , aα
0
, τAα) be a fuzzy automaton with Aα = A,

aα
0
= a0, and a fuzzy transition relation δAα defined by

δAα (a, x, b) =
∨

v∈UY(x)

ϕ∗α(v) ⊗ δA(a, v, b), (33)

for all a, b ∈ Aα and x ∈ X,

τAα (a) =
∨

v∈Y∗

∨

b∈A

ϕ∗α(v) ⊗ δA(a, v, b) ⊗ τA(b), (34)

or equivalently,

τAα (a) =
∨

v∈Y∗

ϕ∗α(v) ⊗ (δA
v ◦ τ

A)(a).

12

for each a ∈ Aα. Note that the existence of the above suprema by v ∈ UY(x) and v ∈ Y∗ follows immediately
by equation (22) in Lemma 3.5.

We prove the following fundamental result.

Theorem 3.7. Let L be an integral ℓ−monoid, let α be a fuzzy regular expression, and let A = (A,X∪Y, δA, a0, τ
A)

be an arbitrary nondeterministic automaton which recognizes ‖αR‖.
Then Aα = (Aα,X, δ

Aα , a0, τ
Aα) is a well-defined fuzzy automaton and it recognizes the fuzzy language ‖α‖.

Proof. According to (15), we have

L(Aα)(u) =
∨

a∈Aα

δAα (a0, u, a) ⊗ τAα (a).

Thus, for the empty word ε ∈ X∗, by Theorem 3.6, we have

L(Aα)(ε) = τ
Aα (a0) =

∨

v∈Y∗

∨

b∈A

ϕ∗α(v) ⊗ δA(a0, v, b) ⊗ τA(b) =
∨

v∈Y∗

ϕ∗α(v) ⊗
(∨

b∈A

δA(a0, v, b) ⊗ τA(b)
)

=
∨

v∈UY(ε)

ϕ∗α(v) ⊗ ‖αR‖(v) = ‖α‖(ε).

Suppose that δAα (a, u, b) =
∨
{ϕ∗α(v) ⊗ δA(a, v, b) | v ∈ UY(u) }, for some u ∈ X∗ and all a, b ∈ Aα. Then for

any x ∈ X we have

δAα (a, ux, b) =
∨

c∈Aα

δAα (a, u, c) ⊗ δAα (c, x, b) =
∨

c∈A

(∨

v∈UY(u)

ϕ∗α(v) ⊗ δA(a, v, c)
)
⊗

(∨

w∈UY(x)

ϕ∗α(w) ⊗ δA(c,w, b)
)

=
∨

c∈A

∨

v∈UY (u),

w∈UY (x)

ϕ∗α(v) ⊗ δA(a, v, c)⊗ ϕ∗α(w) ⊗ δA(c,w, b) =
∨

v∈UY (u),

w∈UY (x)

ϕ∗α(vw) ⊗
(∨

c∈A

δA(a, v, c)⊗ δA(c,w, b)
)

=
∨

v∈UY (u),

w∈UY (x)

ϕ∗α(vw) ⊗ δA(a, vw, b) =
∨

v∈UY(ux)

ϕ∗α(v) ⊗ δA(a, v, b).

Observe that the above equalities follow by Lemmas 3.1 and 3.5, and equation (27). We have also used the
equality δA(a, v, c)⊗ ϕ∗α(w) = ϕ∗α(w) ⊗ δA(a, v, c), which follows by the fact that δA(a, v, c) ∈ {0, 1}.

Consequently, for any u ∈ X+, due to Theorem 3.6, (33) and (34), we have

L(Aα)(u) =
∨

a∈Aα

δAα (a0, u, a) ⊗ τAα (a) =
∨

a∈A

(∨

v∈UY(u)

ϕ∗α(v) ⊗ δA(a0, v, a)
)
⊗

(∨

w∈Y∗

∨

b∈A

ϕ∗α(w) ⊗ δA(a,w, b) ⊗ τA(b)
)

=
∨

v∈UY (u)

w∈Y∗

ϕ∗α(vw) ⊗
(∨

a,b∈A

δA(a0, v, a) ⊗ δA(a,w, b) ⊗ τA(b)
)
=

∨

v∈UY(u)

ϕ∗α(v) ⊗
(∨

a∈A

δA(a0, v, b) ⊗ τA(b)
)

=
∨

v∈UY(u)

ϕ∗α(v) ⊗ ‖αR‖(v) = ‖α‖(u).

This completes the proof of the theorem.

The fuzzy automaton Aα = (Aα,X, δ
Aα , a0, τ

Aα) will be called the fuzzy automaton associated with A and α.

4. Fuzzy automata from fuzzy regular expressions: Effective construction

Let L be an integral ℓ−monoid, and let α be an arbitrary fuzzy regular expression. Theorem 3.7 allows
us to construct different types of fuzzyautomata from α, i.e., different fuzzy automata recognizing the fuzzy
language ‖α‖. Namely, in the general case, by choosing different nondeterministic automata A constructed
from αR, we obtain different fuzzy finite automata Aα of α.

13

Let us recall that there are many well-known constructions of small nondeterministic automata from a
given regular expression. The most famous are those of Thompson [79], Glushkov [30] and McNaughton-
Yamada [61]. The last one is known as the position automaton. In addition, Antimirov in [2] constructed the
partial derivative automaton, which generalizes Brzozowski’s derivative automaton [7]. However, in spite of
improvements made by Brzozowski and Antimirov, the position automaton is the most often used, probably
because of its simplicity and the fact that other constructions did not make any practical improvements. The
latest nondeterministic automaton constructed from a regular exporession is the follow automaton, introduced
by Ilie et al. [40–42]. It has been proved that the follow automaton is the quotient of the position automaton,
and therefore it is smaller than the position automaton.

Let L be an integral ℓ−monoid, and let α be an arbitrary fuzzy regular expression over an alphabet X.
Consider a regular expression αR over X ∪ Y, where Y is an alphabet associated with α. Starting from the
position automaton Ap(αR) = (Ap,X ∪ Y, δAp , 0, τAp) of αR, by means of (33) and (34) we construct the fuzzy

automaton associated with Ap(αR) and α, which will be denoted by Apf(α) = (Apf,X, δ
Apf , 0, τApf). The com-

puting of Apf(α) for a given fuzzy regular expression is described in Theorem 3.7, and Examples 4.1 and 4.5
clarify this construction.

Example 4.1. Let L be the Gödel structure. Consider α = 0.2((0.1(xy)∗)∗ + y), a fuzzy regular expression
over the alphabet {x, y} from Example 3.3. HereαR = λ((µ(xy)∗)∗+y) is a regular expression over the alphabet
{x, y, λ, µ}, obtained from α. The marked version of the expression αR is αR = λ1((µ2(x3y4)∗)∗ + y5), and ϕα is
given by

ϕα =

(
x y λ µ
1 1 0.2 0.1

)
.

The picture bellow represents the graph of the position automaton Ap(αR):

0 1 2

3

4

5

λ

y

µ

x

µ

y

x

µ

Figure 1. The automaton Ap(αR)

Let us observe that

δApf (i, x, j) =



∨

u∈M (i,x, j)

ϕ∗α(u) if P(i, x, j) , ∅

0 otherwise

,

for all x ∈ X, i, j ∈ Ap (in notation from the proof of Theorem 3.7).

Let us, for example, describe how to determine δApf (0, x, 3). For each word u ∈M (0, x, 3) there is a path
in the graph of Ap(αR),which starts in 0 and ends in 3, with a single edge marked with x and with all other
edges marked with symbol λ or µ (see Figure 1.). Obviously, M (0, x, 3) = {λµx}.Now,

δApf (0, x, 3) = ϕ∗α(λµx) = 0.2 ⊗ 0.1 ⊗ 1 = 0.1

14

Further, M (1, x, 3) = {µx},M (2, x, 3) = {x},M (4, x, 3) = {x} and M (i, x, j) = ∅ in all other cases, and we have

δApf (1, x, 3) = 0.1, δApf (2, x, 3) = 1,

δApf (4, x, 3) = 1, and δApf (i, x, j) = 0,

for (i, j) < {(0, 3), (1, 3), (2, 3), (4, 3)}.
From Figure 1 one can see that M (0, y, 5) = {λy}, M (1, y, 5) = {y}, M (3, y, 2) = {yµ} and M (3, y, 4) = {y},

whereas M (i, y, j) = ∅ in all other cases. Therefore, we have

δApf (0, y, 5) = 0.2, δApf (1, y, 5) = 1, δApf (3, y, 2) = 0.1, δApf (3, y, 4) = 1, δApf (i, y, j) = 0,

for (i, j) < {(0, 5), (1, 5)(3, 2), (3, 4)}.

To summarize, fuzzy transition relations δ
Apf

x , δ
Apf

y , and the fuzzy set τApf of final states of the fuzzy
automaton Apf(α) are:

δ
Apf

x =




0 0 0 0.1 0 0
0 0 0 0.1 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0




, δ
Apf

y =




0 0 0 0 0 0.2
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0.1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0




, τApf =




0.2
1
1
0
1
1




,

and the graph of Apf(α) is presented by Figure 2.

0 1

2

3

4

5

y/0.2
y/1

x/0.1

x/0.1

x/1

y/0.1

y/1

x/1

Figure 2. Apf(α)

It is important to note that the computing of the transition relation of the fuzzy automaton Apf(α), for a
given regular expression, might be a problem. Namely, in the general case, for given i, j ∈ Apf and x ∈ X the

set P(i, x, j) of all words u ∈ UY(x) such that δAp (i, u, j) = 1 is infinite, and hence, the computing of the set
M (i, x, j) of all minimal words of P(i, x, j) with respect to 6em might be a difficult task. In the sequel we
consider this problem.

The next lemma is the well-known result which, for instance, was proved in [25] for fuzzy relations with
membership values in the real unit interval and the composition defined by means of a t-norm. In the same
way it can be proved for fuzzy relations over an integral ℓ−monoid.

Lemma 4.2. Let L be an integral ℓ−monoid and let R be a fuzzy relation on a finite set A with |A| = n. Then

n∨

k=1

Rk (35)

is the least transitive fuzzy relation on A which contains R.
In particular, if R is reflexive, then the least transitive fuzzy relation on A containing R is equal to Rn.

15

Let L be an integral ℓ−monoid, and letαbe an arbitrary fuzzy regular expression over an alphabet X. For
a regular expression αR over X∪Y, where Y is an alphabet associated with α, and let A = (A,X∪Y, δA, a0, τ

A)
be an arbitrary nondeterministic automaton which recognizes the language ‖αR‖. Let us define a reflexive
fuzzy relation R on A as follows

R(a, b) =



1 if a = b∨

λ′∈Y

λ ⊗ δA(a, λ′, b) otherwise , (36)

and let us denote by RA the least transitive relation containing R. By Lemma 4.2 we obtain that RA = Rn,
where n is the number of states of A . Now, we can prove the following:

Theorem 4.3. Let L be an integral ℓ−monoid and letα be an arbitrary fuzzy regular expression. For an arbitrary non-
deterministic automaton A = (A,X ∪ Y, δA, a0, τ

A) recognizing the language ‖αR‖ we have

RA (a, b) =
∨

u∈Y∗

ϕ∗α(u) ⊗ δA(a, u, b), (37)

for all a, b ∈ A.

Proof. First we note that the existence of the supremum on the right side of (37) follows by Lemma 3.5.
Let n be the number of states of A . If a = b then

RA (a, a) = 1 = ϕ∗α(ε) = ϕ
∗
α(ε) ⊗ δ

A(a, ε, a) 6
∨

u∈Y∗

ϕ∗α(u) ⊗ δA(a, u, a),

and hence, (37) holds. Otherwise, we have the following

RA (a, b) = Rn(a, b) =
∨

a1,...,an−1∈A

R(a, a1) ⊗ R(a1, a2) ⊗ · · · ⊗ R(an−1, b)

=
∨

a1 ,...,ak−1∈A,

k6n, ai,ai+1

R(a, a1) ⊗ R(a1, a2) ⊗ · · · ⊗ R(ak−1, b)

=
∨

a1 ,...,ak−1∈A,

k6n, ai,ai+1

∨

λ′
1
,...,λ′

k
∈Y

λ1 ⊗ · · · ⊗ λk ⊗ δ
A(a, λ′1, a1) ⊗ · · · ⊗ δA(ak−1, λ

′
k, b)

=
∨

λ′
1
,...,λ′

k
∈Y

λ1 ⊗ · · · ⊗ λk ⊗

(∨

a1 ,...,ak−1∈A,

k6n, ai,ai+1

δA(a, λ′1, a1) ⊗ · · · ⊗ δA(ak−1, λ
′
k, b)

)

6

∨

λ′
1
,...,λ′

k
∈Y

λ1 ⊗ · · · ⊗ λk ⊗ δ
A(a, λ′1 · · ·λ

′
k, b) =

∨

λ′
1
,...,λ′

k
∈Y

ϕ∗α(λ
′
1 · · ·λ

′
k) ⊗ δA(a, λ′1 · · ·λ

′
k, b)

6

∨

u∈Y∗

ϕ∗α(u) ⊗ δA(a, u, b).

On the other hand, consider an arbitrary u = λ′
1
· · ·λ′

k
∈ Y∗, with λ′

1
, . . . , λ′

k
∈ Y, k ∈N. Then

ϕ∗α(u) ⊗ δA(a, u, b) = λ1 ⊗ · · ·λk ⊗ δ
A(a, λ′1 · · ·λ

′
k, b)

= λ1 ⊗ · · ·λk ⊗
∨

a1,...,ak−1∈A

δA(a, λ′1, a1) ⊗ · · · ⊗ δA(ak−1, λ
′
k, b)

6

∨

a1,...,ak−1∈A

λ1 ⊗ · · ·λk ⊗ δ
A(a, λ′1, a1) ⊗ · · · ⊗ δA(ak−1, λ

′
k, b)

6

∨

a1,...,ak−1∈A

R(a, a1) ⊗ · · · ⊗ R(ak−1, b) = Rk(a, b) 6 RA (a, b),

16

whence it follows that

∨

u∈Y∗

ϕ∗α(u) ⊗ δA(a, u, b) 6 RA (a, b).

Therefore, (37) holds.

By the previous theorem we can conclude that RA is the transitive closure of the adjacency matrix of
the weighted graph obtained from the graph of the automaton A by removing all the edges marked by the
symbols from the alphabet X, in which the weight of the edge marked by λ′ ∈ Y equals ϕ∗α(λ

′).

Next we prove the following.

Theorem 4.4. Let L be an integral ℓ−monoid and letα be an arbitrary fuzzy regular expression. For an arbitrary non-
deterministic automaton A = (A,X ∪ Y, δA, a0, τ

A) recognizing the language ‖αR‖ and the fuzzy automaton Aα

associated with A and α we have

δAα
x = RA ◦ δ

A
x ◦ RA , and τAα = RA ◦ τ

A, (38)

for every x ∈ X.

Proof. By (33), (28) and (37), we have

δAα (a, x, b) =
∨

u∈UY(x)

ϕ∗α(u) ⊗ δA(a, u, b) =
∨

u,v∈Y∗

ϕ∗α(u) ⊗ δA(a, uxv, b)⊗ ϕ∗α(v)

=
∨

u,v∈Y∗

∨

c,d∈A

ϕ∗α(u) ⊗ δA(a, u, c) ⊗ δA(c, x, d)⊗ δA(d, v, b)⊗ ϕ∗α(v)

=
∨

c,d∈A

(∨

u∈Y∗

ϕ∗α(u) ⊗ δA(a, u, c)
)
⊗ δA(c, x, d)⊗

(∨

v∈Y∗

ϕ∗α(v) ⊗ δA(d, v, b)
)

=
∨

c,d∈A

RA (a, c) ⊗ δA(c, x, d)⊗ RA (d, b),

for all a, b ∈ A. Let us note that the existence of the above suprema follows by Lemmas 3.1 and 3.5.

The rest of the proof follows immediately from (34) and Theorem 4.3.

The previous theorem gives an efficient method for computing the fuzzy automaton corresponding to
a given fuzzy regular expression α. Namely, for α and a nondeterministic automaton A recognizing the
language ‖αR‖, the fuzzy transition relations of Aα are just matrix products of RA and the related fuzzy
transition relation of A (cf. Example 4.5).

Example 4.5. Consider α = 0.2((0.1(xy)∗)∗ + y), the fuzzy regular expression from Example 4.1. It is easy to
verify, using Figure 2, that fuzzy relations R and RAp

are those given by matrices

R =




1 0.2 0 0 0 0
0 1 0.1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0.1 0 1 0
0 0 0 0 0 1




, RAp
=




1 0.2 0.1 0 0 0
0 1 0.1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0.1 0 1 0
0 0 0 0 0 1




.

17

Now, by Theorem 4.4, we compute δ
Apf

x , δ
Apf

y and τApf as follows:

δ
Apf

x = RAp
◦ δ

Ap

x ◦ RAp
=




0 0 0 0.1 0 0
0 0 0 0.1 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0




,

δ
Apf

y = RAp
◦ δ

Ap

y ◦ RAp
=




0 0 0 0 0 0.2
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0.1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0




, τApf = RAp
◦ τAp =




0.2
1
1
0
1
1




.

5. Fuzzy automata from fuzzy regular expressions: Reduced construction

Let L be an integral ℓ−monoid, and let α be an arbitrary fuzzy regular expression over an alphabet X.
For a regular expression αR over X∪Y, where Y is an alphabet associated with α, let A = (A,X∪Y, δA, a0, τ

A)
be a nondeterministic automaton recognizing the language ‖αR‖. Besides, let Aα = (Aα,X, δ

Aα , a0, τ
Aα) be the

fuzzy automaton associated with A and α. Set

Ar
α = {a0} ∪ {a ∈ Aα | (∃b ∈ Aα)(∃x ∈ X) δA(b, x, a) = 1}.

Let us denote by A r
α = (Ar

α,X, δ
Ar
α , a0, τ

Ar
α) a fuzzy automaton defined by

δ
Ar
α

x (a, b) = (RA ◦ δ
A
x)(a, b), τAr

α (a) = (RA ◦ τ
A)(a). (39)

for all a, b ∈ Ar
α, and x ∈ X. The fuzzy automaton A r

α is called the reduced fuzzy automaton associated with A

and α.

Theorem 5.1. Let L be an integral ℓ−monoid, let α be an arbitrary fuzzy regular expression, let Aα be an arbitrary
nondeterministic automaton recognizing the language ‖αR‖, and let A r

α be the reduced fuzzy automaton defined as in
(39). Then

L(A r
α) = ‖α‖. (40)

Proof. First, we have that

L(A r
α)(ε) = τAr

α (a0) = τAα (a0) = ‖α‖(ε).

Next, for every u ∈ X+, where u = x1x2 · · · xn, with x1, x2, . . . , xn ∈ X, by (16), Theorems 3.7 and 4.4, and
idempotency of RA we obtain that

‖α‖(u) = L(Aα)(u) = (δAα
x1
◦ · · · ◦ δAα

xn
◦ τAα)(a0) = (RA ◦ δ

A
x1
◦ R2

A
◦ · · · ◦ R2

A
◦ δA

xn
◦ R2

A
◦ τA)(a0)

= (RA ◦ δ
A
x1
◦ RA ◦ · · · ◦ RA ◦ δ

A
xn
◦ RA ◦ τ

A)(a0)

=
∨

a1,...,an∈Aα

(RA ◦ δ
A
x1

)(a0, a1) ⊗ · · · ⊗ (RA ◦ δ
A
xn

)(an−1, an) ⊗ (RA ◦ τ
A)(an)

=∗ (δ
Ar
α

x1
◦ · · · ◦ δ

Ar
α

xn
◦ τAr

α)(a0)

= L(A r
α).

The equality marked by ∗ follows from the fact that (RA ◦ δ
A
x)(a, b) = 0, for all b ∈ Aα \ Ar

α, and x ∈ X.

18

Obviously, Theorem 5.1 describes a method of construction a fuzzy automaton from a given fuzzy regular
expression, which can be significantly smaller than the one made by the basic construction. Furthermore, if
the starting nondeterministic automaton recognizing ‖αR‖ is the position automaton Ap(αR), then A r

pf
(α) has

exactly |α|X+1 states (Example 5.2 illustrates this fact). Accordingly, since the position automaton of a given
regular expression has the number of states equal to the length of the considered regular expression, the
fuzzy automaton A r

pf
(α) is called the position fuzzy automaton of the given fuzzy regular expression α.

Example 5.2. Consider a fuzzy regular expression α = (0.1x∗)(yx+0.8y)∗ from Example 3.4. Fuzzy transition

relations δ
Apf

x , δ
Apf

y and the fuzzy set τApf of terminal states of the fuzzy automaton Apf(α) are:

δ
Apf

x =




0 0 0.1 0 0 0.08 0
0 0 1 0 0 0.8 0
0 0 1 0 0 0.8 0
0 0 0 0 1 0.8 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




, δ
Apf

y =




0 0 0 0.1 0 0.064 0.08
0 0 0 1 0 0.64 0.8
0 0 0 1 0 0.64 0.8
0 0 0 0 0 0 0
0 0 0 1 0 0.64 0.8
0 0 0 0 0 0.8 1
0 0 0 1 0 0.64 0.8




, τApf =




0.1
1
1
0
1
0
1




.

Evidently, Ar
pf
= {0, 2, 3, 4, 6}, and hence, the fuzzy finite automaton A r

pf
has two states less than the position

fuzzy automaton Apf(α).

Fuzzy transition relations δ
Ar

pf

x , δ
Ar

pf

y , and the fuzzy set τ
Ar

pf of terminal states of A r
pf

(α) are:

δ
Ar

pf

x =




0 0.1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0



, δ

Ar
pf

y =




0 0 0.1 0 0.08
0 0 1 0 0.8
0 0 0 0 0
0 0 1 0 0.8
0 0 1 0 0.8



, τ

Ar
pf =




0.1
1
0
1
1



.

6. Reducing the size of position fuzzy automata by right invariant crisp equivalences

The reduction of the number of states of fuzzy automata with membership values in complete residuated
lattices has been recently investigated in [23, 24, 78], where the state reduction problem has been related to
the problem of solving particular systems of fuzzy relation equations and inequalities. Central place in the
state reduction is held by right and left invariant fuzzy equivalences, as well as by right and left invariant
fuzzy quasi-orders.

Complete residuated lattices have a rich algebraic structure that provides powerful tools for solving
fuzzy relational equations and inequalities, including those that define right and left invariant fuzzy equiva-
lences. Unfortunately, when we deal with fuzzy automata over lattice ordered monoids we do not have such
tools, and we are forced to work with crisp equivalences. Therefore, here we reduce the number of states of
fuzzy automata over ℓ-monoids using right invariant crisp equivalences.

The reduction of fuzzy automata over complete residuated lattices by means of right invariant fuzzy
equivalences and fuzzy quasi-orders has been recently studied in [23, 24, 78]. It has been proved that
better state reductions can be achieved employing right invariant fuzzy equivalences. Residuated lattices
are rich algebraic structures supplied with operations called residuum and biresiduum, and satisfying many
other important algebraic properties. In some sources residuated lattices are called integral, commutative,
residuated ℓ−monoids. There, the operations of residuum and biresiduum play a very important role, and
are used for modelling right invariant fuzzy equivalences and fuzzy quasi-orders. In this paper, however,
we deal with ℓ−monoids, in which, due to the lack of algebraic properties and operations, construction of
fuzzy equivalence relations is a problem. Therefore, here we investigate the problem of the reduction of
fuzzy automata by right invariant crisp equivalences only. Note that the state reduction of fuzzy automata

19

by means of crisp equivalences has been already studied in [3, 17, 59, 62, 67], but in very special cases, and
the algorithms provided there are based on computing and merging indistinguishable states.

Let A = (A,X, δA, σA, τA) be a fuzzy automaton over an ℓ-monoid L , and let E be a fuzzy equivalence
on its set of states A. If E is a solution to the system

E ◦ δA
x 6 δ

A
x ◦ E, x ∈ X,

E ◦ τA = τA,
(41)

then it is called a right invariant fuzzy equivalence on A . Dually we define left invariant fuzzy equivalences.
A crisp equivalence on A which is a solution to (41) is called a right invariant crisp equivalence on A . Note
that ordinary crisp equivalences on A are considered here as fuzzy equivalences on A taking membership
values in the set {0, e} ⊆ L.

It has been shown in [24] that right invariant fuzzy equivalences are immediate generalizations of right
invariant equivalences on nondeterministic automata, studied in a series of papers by Ilie, Yu [40–45], as well
as in [9–11], or well-behaved equivalences, studied by Calude et al. [8]. It has been also proved in [24] that
congruences on fuzzy automata, studied by Petković in [67], are just right invariant crisp equivalences on
fuzzy automata, in the terminology from this paper. Note that right invariant fuzzy equivalences have been
called in [21, 22] forward bisimulation fuzzy equivalences, whereas left invariant ones were called backward
bisimulation fuzzy equivalences.

In the same way as in [24] we can show that the inequality E ◦ δA
x 6 δ

A
x ◦ E is equivalent to the equation

E ◦ δA
x ◦ E = δA

x ◦ E, for each x ∈ X. We can also prove that if E ◦ δA
x 6 δ

A
x ◦ E or E ◦ δA

x ◦ E = δA
x ◦ E holds for

every letter x ∈ X, then it also holds if we replace the letter x by an arbitrary word u ∈ X∗.
In the sequel we provide an algorithm for computing the greatest right invariant crisp equivalence on a

fuzzy automaton with membership values in an integral ℓ−monoid. Such algorithm has been first given in
[67], for fuzzy automata over the Gödel structure, and later in [23, 24], for fuzzy automata over a complete
residuated lattice. The proof of the next theorem is the same as the proof of the corresponding theorem for
fuzzy automata over a complete residuated lattice, so it will be omitted.

Theorem 6.1. [24, 67] Let L be an integral ℓ−monoid, let A = (A,X, δA, σA, τA) be a fuzzy finite automaton over
L . Define inductively a sequence {Ek}k∈N of crisp equivalences on A as follows:

E1(a, b) =


1 if τA(a) = τA(b)

0 otherwise
, for all a, b ∈ A, (42)

Ek+1 = Ek ∧ Er
k, for each k ∈N, (43)

where Er
k

is a crisp equivalence on A defined by

Er
k(a, b) =


1 if (δx ◦ Ek)(a, c) = (δx ◦ Ek)(b, c), for all x ∈ X and c ∈ A

0 otherwise
, for all a, b ∈ A, (44)

Then the sequence {Ek}k∈N is finite and descending, there is the least k ∈N such that Ek = Ek+m, for each m ∈N, and
Ek is the greatest right invariant crisp equivalence on the fuzzy automaton A .

Now we prove the following.

Proposition 6.2. Let L be an integral ℓ−monoid and let α be an arbitrary fuzzy regular expression. For an
arbitrary nondeterministic automaton A = (A,X∪Y, δA, a0, τ

A) recognizing the language ‖αR‖, the fuzzy automaton
Aα associated with A and α, and an arbitrary right invariant crisp equivalence E on A we have that

(a) E ◦ RA 6 RA ◦ E;

(b) RA /E(Ea,Eb) = (RA ◦ E)(a, b) for all a, b ∈ A.

20

Proof. (a) First, by Theorem 4.3 and Lemmas 3.1 and 3.5 we have the following

(E ◦ RA)(a, b) =
∨

c∈A

∨

u∈Y∗

E(a, c)⊗ ϕ∗α(u) ⊗ δA(c, u, b) =
∨

u∈Y∗

ϕ∗α(u) ⊗ (E ◦ δA
u)(a, b)

6

∨

u∈Y∗

ϕ∗α(u) ⊗ (δA
u ◦ E)(a, b) =

∨

c∈A

∨

u∈Y∗

ϕ∗α(u) ⊗ δA(a, u, c)⊗ E(c, b)

= (RA ◦ E)(a, b),

for every a, b ∈ A. Consequently, E ◦ RA 6 RA ◦ E.
(b) By Theorem 4.3, Lemmas 3.1 and 3.5, and (17), we obtain

RA /E(Ea,Eb) =
∨

u∈Y∗

ϕ∗α(u) ⊗ δA/E(Ea, u,Eb) =
∨

u∈Y∗

ϕ∗α(u) ⊗ (E ◦ δA
u ◦ E)(a, b)

=
∨

u∈Y∗

ϕ∗α(u) ⊗ (δA
u ◦ E)(a, b) =

∨

c∈A

∨

u∈Y∗

ϕ∗α(u) ⊗ δA
u (a, c) ⊗ E(c, b)

= (RA ◦ E)(a, b),

for arbitrary a, b ∈ A.

Theorem 6.3. Let L be an integral ℓ−monoid and let α be an arbitrary fuzzy regular expression. Moreover, consider
an arbitrary nondeterministic automaton A = (A,X ∪ Y, δA, a0, τ

A) recognizing the language ‖αR‖, and the fuzzy
automaton Aα associated with A and α.

Then every right invariant equivalence E on A is a right invariant crisp equivalence on Aα, and the fuzzy auto-
maton (A /E)α is isomorphic to the factor fuzzy automaton Aα/E.

Proof. Let E be an arbitrary right invariant equivalence on A . First, by Theorem 4.4 and statement (a) of
Proposition 6.2 we obtain

E ◦ δAα
x = E ◦ RA ◦ δ

A
x ◦ RA 6 RA ◦ E ◦ δA

x ◦ RA 6 RA ◦ δ
A
x ◦ E ◦ RA 6 RA ◦ δ

A
x ◦ RA ◦ E = δAα

x ◦ E,

for every x ∈ X. In a similar way, we show that E ◦τAα = τAα . Consequently, E is a right invariant crisp equi-
valence on Aα.

Next, by (17), Theorem 4.4, and statement (b) of Proposition 6.2 we have

δ
(A/E)α
x (Ea,Eb) = (RA /E ◦ δ

A/E
x ◦ RA /E)(Ea,Eb) = (RA ◦ E ◦ δA

x ◦ E ◦ RA ◦ E)(a, b)

= (RA ◦ δ
A
x ◦ RA ◦ E)(a, b) = (δAα

x ◦ E)(a, b) = (E ◦ δAα
x ◦ E)(a, b) = δAα/E

x (Ea,Eb),

for all x ∈ X and a, b ∈ A. In addition, it is easy to check that

τ(A/E)α (Ea) = τ
Aα/E(Ea)

for every a ∈ A. Thus the identity function on A/E is an isomorphism from (A /E)α to Aα/E.

According to the previous theorem, for an arbitrary fuzzy regular expressionα, and any nondeterministic
automaton A recognizing ‖α‖, the greatest right invariant equivalence on the nondeterministic automaton
A is less or equal to the greatest right invariant crisp equivalence on the fuzzy automaton Aα. The following
example shows that even if the starting automaton A is a minimal deterministic automaton of the language
‖αR‖, the fuzzy automaton Aαmay be further reduced by right invariant crisp equivalences, i.e., the greatest
right invariant crisp equivalence on Aα differs from the equality relation on Aα.

Example 6.4. Let L be Gödel structure, and α = x + 0.5x, a fuzzy regular expression over the alphabet
{x}. We have that αR = x + λx, and the graph of the minimal deterministic automaton A recognizing the
language ‖αR‖ is presented by Figure 3a.

21

0

1

2

λ x

x
0

1

2
x/1

x/1

Figure 3a. The automaton A Figure 3b. The fuzzy automaton Aα

Figure 3b presents the fuzzy automaton Aα associated with A and α. The fuzzy set τAα of terminal states
of Aα, and the greatest right invariant crisp equivalence Ecri on Aα are represented by:

τAα =



0
0
1


 , Ecri =



1 1 0
1 1 0
0 0 1


 .

Theorem 6.5. Let L be an integral ℓ−monoid and let α be an arbitrary fuzzy regular expression. Moreover, consider
an arbitrary nondeterministic automaton A = (A,X ∪ Y, δA, a0, τ

A) recognizing the language ‖αR‖, and the fuzzy
automaton Aα associated with A and α.

Then for an arbitrary right invariant equivalence E on A there exists a right invariant crisp equivalence Er on A r
α ,

such that the factor fuzzy automata (A /E)r
α and (A r

α)/Er are isomorphic.

Proof. Let E be any right invariant equivalence on A . Define a crisp relation Er on Ar
α by Er(a, b) = E(a, b),

for all a, b ∈ Ar
α. Obviously, Er is a crisp equivalence on the set Ar

α. Moreover, by (39) and Proposition 6.2,
and we have that

(Er ◦ δ
Ar
α

x)(a, b) =
∨

c∈Ar
α

E(a, c) ⊗ (RA ◦ δ
A
x)(c, b) 6

∨

c∈Aα

E(a, c) ⊗ (RA ◦ δ
A
x)(c, b)

= (E ◦ RA ◦ δ
A
x)(a, b) 6 (RA ◦ δ

A
x ◦ E)(a, b) =∗ (δ

Ar
α

x ◦ Er)(a, b),

for all a, b ∈ Ar
α.Note that the equality marked by ∗ follows from the fact that (RAα ◦ δ

Aα
x)(a, b) = 0, for every

b ∈ Aα \Ar
α, and every x ∈ X. Thus Er is a right invariant crisp equivalence on A r

α .
Define a mapping Φ : Ar

α/E
r → (A/E)r

α by Φ(Er
a) = Ea, for every Er

a ∈ Ar
α/E

r. For an arbitrary Er
a ∈ Ar

α/E
r,

there are b ∈ A and x ∈ X such that δA(b, x, a) = 1. Since we have that δA/E(Eb, x,Ea) > δ
A(b, x, a), we obtain

Ea ∈ (A/E)r
α.Moreover, from

Er
a = Er

b ⇔ Er(a, b) = 1⇔ E(a, b) = 1⇔ Ea = Eb,

for all a, b ∈ Ar
α,we conclude that Φ is both a well-defined and an injective mapping.

Further, for any Ea ∈ (A/E)r
α there are Eb ∈ A/E and x ∈ X such that δA/E(Eb, x,Ea) = 1, which implies

δA(c, x, d) = 1, Eb = Ec, Ed = Ea, for some c, d ∈ A.

Thus d ∈ Ar
α, and Φ(Er

d
) = Ed = Ea. In conclusion, Φ is a bijective mapping.

Finally, by (17), (39), and Proposition 6.2, we have

δ
Ar
α/E

r

x (Er
a,E

r
b) = (δ

Ar
α

x ◦ Er)(a, b) =
∨

c∈Ar
α

(RA ◦ δ
A
x)(a, c) ⊗ Er(c, b)

=
∨

c∈A

(RA ◦ δ
A
x)(a, c) ⊗ Er(c, b) = (RA ◦ δ

A
x ◦ E)(a, b)

= (RA ◦ E ◦ δA
x ◦ E)(a, b) = (RA /E ◦ δ

A/E
x)(Ea,Eb) = δ

(A/E)r
α

x (Φ(Er
a),Φ(Er

b))

for all Er
a,E

r
b
∈ A r

α/E. Therefore, Φ is an isomorphism.

22

Let us recall that Theorem 5.1gives us a simple method to construct various types of fuzzy automata from
the fuzzy regular expression α. This method is based on choice of different nondeterministic automata A

recognizing ‖αR‖, from which we obtain different fuzzy automata Aα recognizing ‖α‖.

Let L be an integral ℓ−monoid, and letαbe an arbitrary fuzzy regular expression over an alphabet X. For
a regular expressionαR over X∪Y, where Y is an alphabet associated withα, let Af(αR) = (Af,X∪Y, δAf , 0, τAf)
be the follow automaton of αR. In this paper we will assume that the the follow automaton of α is exactly the
factor automaton of the position automaton of α with respect to a particular right invariant equivalence E,
called the follow equivalence. For the definition of the follow equivalence we refer to [40–43]. Starting from
Af(αR), by (33), (34) and (39) we obtain the reduced fuzzy automaton associated with Af(αR) and α, which is
denoted by A r

ff
(α) = (Aff,X, δ

Aff , 0, τAff). The fuzzy automaton A r
ff

(α) is called the follow fuzzy automaton of α.

Theorem 6.6. Let L be an integral ℓ−monoid, let α be an arbitrary fuzzy regular expression, and let A r
pf

(α) and

A r
ff

(α) be respectively the position fuzzy automaton and the follow fuzzy automaton of α.

Then the follow fuzzy automaton A r
ff

(α) of α is isomorphic to the factor fuzzy automaton of the position fuzzy
automaton A r

pf
(α) of α with respect to some right invariant crisp equivalence on A r

pf
.

Proof. The proof is an immediate consequence of Theorem 6.5.

By Theorem 6.6 we obtain that the follow fuzzy automaton is the reduced position fuzzy automaton with
respect to some right invariant crisp equivalence, and therefore, it may be significantly smaller. However,
Example 6.4 shows that, in the general case, follow equivalences are not necessarily the greatest right
invariant crisp equivalences on the position fuzzy automata. Consequently, smaller fuzzy automata from a
given α can be obtained by reducing the size of the position fuzzy automaton of α by means of the greatest
right invariant crisp equivalence.

Example 6.7. Let L be Gödel structure. Consider α = xx∗ + 0.1x∗, the fuzzy regular expression over the
alphabet X = {x}. An expression αR = xx∗ + λx∗, over the alphabet {x, λ}, is the regular expression obtained
from α.

The position automaton Ap(αR) is given by the following fuzzy transition relations

δ
Ap

x =




0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1



, δ

Ap

λ
=




0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



, τAp =




0
1
1
1
1



,

and the position fuzzy automaton A r
pf

(α) is given by the following fuzzy transition relations

δ
Ar

pf

x =




0 1 0 0.1
0 0 1 0
0 0 1 0
0 0 0 1



, and τ

Ar
pf =




1
1
1
1



.

The follow relation Ef on Ap(αR), and the related right invariant crisp equivalence Er
f

on Ar
pf

(α) are

Ef =




1 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1



,Er

f =




1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1



,

23

and therefore follow fuzzy automaton A r
ff

(α) has 3 states. However, since the greatest right invariant crisp

equivalence Ecri
1

on A r
pf

(α) is given by

Ecri
1 =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



.

we conclude that the fuzzy finite automaton A r
pf

(α)/Ecri
1

has only 1 state, and is significantly smaller than

A r
pf

(α).

Letα be an regular expression. Observe that, starting from the partial derivative automaton of the regular
expression αR obtained from α, it is possible to construct the fuzzy partial derivative automaton of α. Since
the partial derivative automaton is isomorphic to the factor automaton of the position automaton with
respect to certain right invariant equivalence (cf. [14–16, 42]), the result which correspond to Theorem 6.6,
concerning fuzzy partial derivative automata, can be easily derived.

7. Concluding remarks

In this paper we have discussed the problem of the effective construction of a fuzzy finite automaton from
a given fuzzy regular expression. We have approached this problem by converting a given fuzzy regular
expression α over an alphabet X in an ordinary regular expression αR over a larger alphabet X∪Y obtained
by adding new letters assigned to different scalars that appear in the fuzzy regular expression α. Starting
from an arbitrary nondeterministic finite automaton A that recognizes the language ‖αR‖ represented by
the regular expressionαR, we have constructed a fuzzy finite automaton Aα associated with A and α, which
recognizes the fuzzy language ‖α‖ represented by α. The starting nondeterministic finite automaton A can
be obtained from αR using any of the well-known constructions for converting regular expressions to non-
deterministic finite automata, such as Glushkov-McNaughton-Yamada’s position automaton, Brzozowski’s
derivative automaton, Antimirov’s partial derivative automaton, or Ilie-Yu’s follow automaton.

The fuzzy finite automaton Aα that we have constructed has the same number of states as the starting
nondeterministic finite automaton A , but we have also given the reduced version of the fuzzy automaton
Aα which can have strictly less number of states than A . Moreover, we have discussed the reduction of the
number of states of the fuzzy automaton Aα by means of right invariant crisp equivalences.

All the main results of the paper have been proved for fuzzy automata taking membership values in an
integral lattice-ordered monoiod.

References

[1] C. Allauzen, M. Mohri, A unified construction of the Glushkov, follow and Antimirov automata, In: R. Královič, P. Urzyczyn
(eds.), MFCS 2006, Springer, Heidelberg, Lecture Notes in Computer Science 4162 (2006) 110-121. 110–121.

[2] V. Antimirov, Partial derivatives of regular expressions and finite automaton constructions, Theoretical Computer Science 155
(1996) 291–319.

[3] N. C. Basak, A. Gupta, On quotient machines of a fuzzy automaton and the minimal machine, Fuzzy Sets and Systems 125
(2002) 223–229.

[4] R. Bělohlávek, Determinism and fuzzy automata, Information Sciences 143 (2002) 205–209.
[5] R. Bělohlávek, Fuzzy Relational Systems: Foundations and Principles, Kluwer, New York, 2002.
[6] R. Bělohlávek, V. Vychodil, Fuzzy Equational Logic, Springer, Berlin/Heidelberg, 2005.
[7] J. Brzozowsky, Derivatives of regular expressions, Journal of the ACM 11 (1964) 481–494.
[8] C. S. Calude, E. Calude, B. Khoussainov, Finite nondeterministic automata: Simulation and minimality, Theoretical Computer

Science 242 (2000) 219–235.
[9] C. Câmpeanu, N. Sântean, S. Yu, Mergible states in large NFA, Theoretical Computer Science 330 (2005) 23–34.

[10] J.-M. Champarnaud, F. Coulon, NFA reduction algorithms by means of regular inequalities, In: Z. Ésik, Z. Fülöp (eds.), DLT
2003, Lecture Notes in Computer Science 2710 (2003) 194–205.

[11] J.-M. Champarnaud, F. Coulon, NFA reduction algorithms by means of regular inequalities, Theoretical Computer Science 327
(2004) 241–253 (erratum: Theoretical Computer Science 347 (2005) 437–40).

24

[12] J.-M. Champarnaud, E. Laugerotte, F. Ouardy, D. Ziadi, From regular weighted expression to finite automata,International
Journal of Foundations of Computer Science 15 (2004) 687-700

[13] J.-M. Champarnaud, F. Ouardy, D. Ziadi, An efficient computation of the equation K-automaton of a regular K-expression,
Fundamenta Informaticae 90 (2009) 1–16.

[14] J.-M. Champarnaud, D. Ziadi, New finite automaton constructions based on canonical derivatives, In: S. Yu, A. Paun (eds.),
CIAA 2000, Springer, Berlin, Lecture Notes in Computer Science 2088 (2001) 94–104.

[15] J.-M. Champarnaud, D. Ziadi, Computing the equation automaton of a regular expression in O(s2) space and time, In: A. Amir,
G. Landau (eds.), CPM 2001, Springer, Berlin, Lecture Notes in Computer Science 2089 (2001) 157–168.

[16] J.-M. Champarnaud, D. Ziadi, Canonical derivatives, partial derivatives and finite automaton constructions, Theoretical
Computer Science 289 (2002) 137–163.

[17] W. Cheng, Z. Mo, Minimization algorithm of fuzzy finite automata, Fuzzy Sets and Systems 141 (2004) 439–448.

[18] M. Ćirić, M. Droste, J. Ignjatović, H. Vogler, Determinization of weighted finite automata over strong bimonoids, Information
Sciences 180 (2010) 3497–3520.

[19] M. Ćirić, J. Ignjatovic, M. Bašić, I. Jančić, Nondeterministic automata: Simulation, bisimulation and structural equivalence,
submitted to Computers & Mathematics with Applications.

[20] M. Ćirić, J. Ignjatović, S. Bogdanović, Fuzzy equivalence relations and their equivalence classes, Fuzzy Sets and Systems 158
(2007) 1295–1313.

[21] M. Ćirić, J. Ignjatović, N. Damljanović, M. Bašić, Bisimulations for fuzzy automata, submitted to Fuzzy Sets and Systems.

[22] M. Ćirić, J. Ignjatović, I. Jančić, N. Damljanović, Algorithms for computing the greatest simulations and bisimulations between
fuzzy automata, submitted to Fuzzy Sets and Systems.

[23] M. Ćirić, A. Stamenković, J. Ignjatović, T. Petković, Factorization of fuzzy automata, In: E. Csuhaj-Varju, Z. Ésik (eds.), FCT
2007, Lecture Notes in Computer Science 4639 (2007) 213–225.

[24] M. Ćirić, A. Stamenković, J. Ignjatović, T. Petković, Fuzzy relation equations and reduction of fuzzy automata, Journal of
Computer and System Sciences 76 (2010) 609–633.

[25] B. De Baets, H. De Meyer, On the existence and construction of T-transitive closures, Information Sciences 152 (2003) 167–179.
[26] M. Droste, T. Stüber, H. Vogler, Weighted finite automata over strong bimonoids, Information Sciences 180 (2010) 156–166.
[27] M. Droste, H. Vogler, Kleene and Büchi results for weighted automata and multi-valued logics over arbitrary bounded lattices,

in: Y. Gao et al. (Eds.),560 DLT 2010, Lecture Notes in Computer Science, 6224, 2010, pp. 160–172.
[28] D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, 1980.
[29] S. Eilenberg, Automata, Languages and Machines, vol. A, Academic Press, New York, 1974.
[30] V. M. Glushkov, The abstract theory of automata, Russian Mathematical Surveys 16 (1961) 1–53.
[31] M. M. Gupta, G. N. Saridis, B. R. Gaines, Fuzzy Automata and Decision Processes, North-Holland, New York, 1977.
[32] L. H. Haines, On free monoids partially ordered by embedding, Journal of Combinatorial Theory 6 (1969) 94–98.
[33] G. Higman, Ordering with divisibility in abstract algebras, Proceedings of the London Mathematical Society 3 (1952) 326–336.
[34] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Language and Computation, Addison-Wesley, Reading, MASS,

1979.
[35] J. Ignjatović, M. Ćirić, Formal power series and regular operations on fuzzy languages, Information Sciences 180 (2010)

1104–1120.
[36] J. Ignjatović, M. Ćirić, S. Bogdanović, Determinization of fuzzy automata with membership values in complete residuated

lattices, Information Sciences 178 (2008) 164–180.
[37] J. Ignjatović, M. Ćirić, S. Bogdanović, Fuzzy homomorphisms of algebras, Fuzzy Sets and Systems 160 (2009) 2345–2365.

[38] J. Ignjatović, M. Ćirić, S. Bogdanović, On the greatest solutions to certain systems of fuzzy relation inequalities and equations,
Fuzzy Sets and Systems 161 (2010) 3081–3113.

[39] J. Ignjatović, M. Ćirić, S. Bogdanović, T. Petković, Myhill-Nerode type theory for fuzzy languages and automata, Fuzzy Sets
and Systems 161 (2010) 1288-1324.

[40] L. Ilie, S. Yu, Constructing NFAs by optimal use of positions in regular expressions, In: A. Apostolico, M. Takeda (eds.), CPM
2002, Springer, Berlin, Lecture Notes in Computer Science 2373 (2002) 279–288.

[41] L. Ilie, S. Yu, Algorithms for computing small NFAs, In: K. Diks et al. (eds): MFCS 2002, Lecture Notes in Computer Science
2420 (2002) 328–340.

[42] L. Ilie, S. Yu, Follow automata, Information and Computation 186 (2003) 140-162.
[43] L. Ilie, S. Yu, Reducing NFAs by invariant equivalences, Theoretical Computer Science 306 (2003) 373–390.
[44] L. Ilie, G. Navarro, S. Yu, On NFA reductions, In: J. Karhumäki et al. (eds): Theory is Forever, Lecture Notes in Computer

Science 3113 (2004) 112–124.
[45] L. Ilie, R. Solis-Oba, S. Yu, Reducing the size of NFAs by using equivalences and preorders, In: A. Apostolico, M. Crochemore,

K. Park (eds): CPM 2005, Lecture Notes in Computer Science 3537 (2005) 310–321.

[46] Z. Jančić, J. Ignjatović, M. Ćirić, An improved algorithm for determinization of weighted and fuzzy automata, Information
Sciences 181 (2011) 1358–1368.

[47] S. Konstantinidis, N. Santean, S. Yu, Fuzzification of rational and recognizable sets, Fundamenta Informaticae 76 (2007) 413–447.
[48] O. Kupferman, Y. Lustig, Lattice automata, in: Proceedings of VWCAI2007, Lecture Notes in Computer Science 4349 (2007)

pp. 199–213.
[49] D. Kuske, Schützenberger’s theorem on formal power series follows from Kleene’s theorem, Theoretical Computer Science,

401 (2008) 243–248.
[50] E. T. Lee, L. A. Zadeh, Note on fuzzy languages, Information Sciences 1 (1969) 421–434.
[51] H. Lei, Y. M. Li, Minimization of states in automata theory based on finite lattice-ordered monoids, Information Sciences 177

25

(2007) 1413–1421.
[52] P. Li, Y. M. Li, Algebraic properties of LA-languages, Information Sciences 176 (2006) 3232–3255.
[53] Y. M. Li, Lattice valued finite automata and their languages, In: 8th World Multiconference on Systemics, Cybernetics and

Informatics: SCI2004, Orlando, USA (2004) 18–21.
[54] Y. M. Li, Finite automata theory with membership values in lattices, Information Sciences 181 (2011) 1003–1017.
[55] Y. M. Li, W. Pedrycz, Fuzzy finite automata and fuzzy regular expressions with membership values in lattice-ordered monoids,

Fuzzy sets and Systems 156 (2005) 68–92.
[56] Y. M. Li, W. Pedrycz, Minimization of lattice finite automata and its application to the decomposition of lattice languages,

Fuzzy Sets and Systems 158 (2007) 1423–1436.
[57] Z. Li, P. Li, Y. M. Li, The relationships among several types of fuzzy automata, Information Sciences 176 (2006) 2208–2226.
[58] S. Lombardy, J. Sakarovitch, Derivations of rational expressions with multiplicity, In: K. Diks, W. Ritter (eds.) MFCS 2002,

Springer, Heidelberg, Lecture Notes in Computer Science 2420 (2002) 471-482.
[59] D. S. Malik, J. N. Mordeson, M. K. Sen, Minimization of fuzzy finite automata, Information Sciences 113 (1999) 323–330.
[60] J. N. Mordeson, D. S. Malik, Fuzzy Automata and Languages: Theory and Applications, Chapman & Hall/CRC, Boca Raton,

London, 2002.
[61] R. McNaughton, H. Yamada, Regular expressions and state graphs for automata, IEEE Transactions on Electronic computers

9 (1) (1960) 39–47.
[62] J. N. Mordeson, D. S. Malik, Fuzzy Automata and Languages: Theory and Applications, Chapman & Hall/CRC, Boca Raton,

London, 2002.
[63] K. Peeva, Finite L-fuzzy acceptors, regular L-fuzzy grammars and syntactic pattern recognition, International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems 12 (2004) 89–104.
[64] K. Peeva, Finite L-fuzzy machines, Fuzzy Sets and Systems 141 (2004) 415–437.
[65] K. Peeva, Y. Kyosev, Fuzzy Relational Calculus: Theory, Applications, and Software (with CD-ROM), in Series “Advances in

Fuzzy Systems – Applications and Theory”, Vol 22, World Scientific, 2004.
[66] K. Peeva, Z. Zahariev, Computing behavior of finite fuzzy machines – Algorithm and its application to reduction and mini-

mization, Information Sciences 178 (2008) 4152–4165.
[67] T. Petković, Congruences and homomorphisms of fuzzy automata, Fuzzy Sets and Systems 157 (2006) 444–458.
[68] D. W. Qiu, Automata theory based on completed residuated lattice-valued logic (I), Science in China, Ser. F, 44 (6) (2001)

419–429.
[69] D. W. Qiu, Automata theory based on completed residuated lattice-valued logic (II), Science in China, Ser. F, 45 (6) (2002)

442–452.
[70] D. W. Qiu, Characterizations of fuzzy finite automata, Fuzzy Sets and Systems 141 (2004) 391–414.
[71] D. W. Qiu, Pumping lemma in automata theory based on complete residuated lattice-valued logic: A note, Fuzzy Sets and

Systems 157 (2006) 2128–2138.
[72] M. P. Schützenberger, On the definition of a family of automata, Information and Control 4 (1961) 245–270.
[73] E. S. Santos, Maximin automata, Information and Control 12 (1968) 367–377.
[74] E. S. Santos, On reduction of maxmin machines, Journal of Mathematical Analysis and Applications 37 (1972) 677–686.
[75] E. S. Santos, Fuzzy automata and languages, Information Sciences 10 (1976) 193–197.
[76] J. Z. Shen, Fuzzy language on free monoid, Information Sciences 88 (1996) 149–168.
[77] L. Sheng, Y. M. Li, Regular grammars with truth values in lattice-ordered monoid and their languages, Soft Computing 10

(2006) 79–86.
[78] A. Stamenković, M. Ćirić, J. Ignjatović, Reduction of fuzzy automata by means of fuzzy quasi-orders, submitted to Information

Sciences.
[79] K. Thompson, Regular expression search algorithm, Communications of the ACM 11 (6) (1968) 419–422.
[80] W. Wechler, The Concept of Fuzziness in Automata and Language Theory, Akademie-Verlag, Berlin, 1978.
[81] W. G. Wee, On generalizations of adaptive algorithm and application of the fuzzy sets concept to pattern classification, Ph.D.

Thesis, Purdue University, June 1967.
[82] W. G. Wee, K. S. Fu, A formulation of fuzzy automata and its application as a model of learning systems, IEEE Transactions on

Systems, Man and Cybernetics 5 (1969) 215–223.
[83] L. H. Wu, D. W. Qiu, Automata theory based on complete residuated lattice-valued logic: Reduction and minimization, Fuzzy

Sets and Systems 161 (2010) 1635–1656.
[84] H. Xing, D. W. Qiu, Pumping lemma in context-free grammar theory based on complete residuated lattice-valued logic, Fuzzy

Sets and Systems 160 (2009) 1141–1151.
[85] H. Xing, D. W. Qiu, Automata theory based on complete residuated lattice-valued logic: A categorical approach, Fuzzy Sets

and Systems 160 (2009) 2416–2428.
[86] H. Xing, D. W. Qiu, F. C. Liu, Automata theory based on complete residuated lattice-valued logic: Pushdown automata, Fuzzy

Sets and Systems 160 (2009) 1125–1140.
[87] H. Xing, D. W. Qiu, F. C. Liu, Z. J. Fan, Equivalence in automata theory based on complete residuated lattice-valued logic,

Fuzzy Sets and Systems 158 (2007) 1407–1422.
[88] L. A. Zadeh, Fuzzy languages and their relation to human and machine intelligenc, Electron. Research Laboratory University

California, Berkley, CA, Technical Report ERL-M302, 1971.

26

	1 Introduction
	2 Preliminaries
	2.1 Lattice-ordered monoids
	2.2 Fuzzy regular expressions
	2.3 Fuzzy automata
	2.4 Position automata

	3 Fuzzy automata from fuzzy regular expressions: Basic construction
	4 Fuzzy automata from fuzzy regular expressions: Effective construction
	5 Fuzzy automata from fuzzy regular expressions: Reduced construction
	6 Reducing the size of position fuzzy automata by right invariant crisp equivalences
	7 Concluding remarks

