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Abstract

The paper deals with a lot sizing problem with ill-known demands modeled by fuzzy
intervals whose membership functions are possibility distributions for the values of the
uncertain demands. Optimization criteria, in the setting of possibility theory, that lead
to choose robust production plans under fuzzy demands are given. Some algorithms
for determining optimal robust production plans with respect to the proposed criteria,
and for evaluating production plans are provided. Some computational experiments are
presented.
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1 Introduction

Nowadays, companies do not compete as independent entities but as a part of collaborative
supply chains. Uncertainty in demands creates a risk in a supply chain as backordering,
obsolete inventory due to the bullwhip effect [1]. To reduce this risk two different approaches
exist that are considered here. The first approach consists in a collaboration between the
customer and the supplier and the second one consists in an integration of uncertainty into a
planning process.

The collaborative processes mainly aim to reduce a risk in a supply chain [2]. This is
done by enforcing a coordination in a supply chain. Two approaches can be applied: vertical
and horizontal. The vertical approach is a centralized decision making that synchronizes a
supply chain (the most common way to coordinate within companies). The horizontal one
refers to the collaborative planning, in which a supply chain can be seen as a chain, where ac-
tors are independent entities [3]. The industrial collaborative planning has been standardized

∗The second author of the paper was partially supported by Polish Committee for Scientific Research, grant
N N206 492938.
†Corresponding author

1

ar
X

iv
:1

21
0.

53
86

v1
  [

cs
.O

H
] 

 1
9 

O
ct

 2
01

2



for implementing a cooperation between retailers and manufactures. This process is called
Collaborative Planning, Forecasting and Replenishment (CPFR) [4]. More precisely, the col-
laborative processes are usually characterized by a set of point-to-point (customer/supplier)
relationships with a partial information sharing [2, 5]. In the collaborative supply chain, a
procurement plan is built and propagated through a supply chain. Namely, the procurement
plan is composed of three horizons: freezing, flexible and free ones [2]. Quantities in the
freezing horizon are crisp and can not be modified, quantities in the flexible horizon are in-
tervals and can be modified under constraints imposed by a previous procurement plan. In
the free horizon quantities can be modified without constraints. Another way to reduce a
risk in a supply chain is to integrate the uncertainty in a planning process. In the literature,
three different sources of uncertainty are distinguished (see [6] for a review): demand, process
and supply. These uncertainties are due to difficulties to access to available historical data
allowing to determine a probability distribution.

In this paper, we focus on the collaborative supply chain (a supply chain, where actors
are independents entities) under uncertain demands. In most companies today, especially
in aeronautic companies, actors use the Manufacturing Resource Planning (MRPII) to plan
theirs production. MRPII is a planning control process composed of three processes (the pro-
duction process, the procurement process and the distribution process) and three levels [7]:
the strategic level (computing commercial and industrial plans), the tactical level (the Master
Production Scheduling (MPS) and the Material Requirement Planning (MRP)) and the oper-
ational level (a detailed scheduling and a shop floor control). MRPII have been also extended
to take into account: the imprecision on quantities of demands (MPS) [8], the imprecision on
quantities of demands and uncertain orders [9] (MRP) and the imprecision on quantities and
on dates of demands with uncertain order dates [10] (MRP).

In this paper, we wish to investigate the part of the MRPII process. Namely, the pro-
curement process in the tactical level in the collaborative context. Our purpose is to help the
decision maker of a procurement service to evaluate a performance of a given procurement
plan with ill-known gross requirements and to compute a procurement plan in a collaborative
supply chain (with and without supplier capacity sharing due to a procurement contract)
with ill-known gross requirements.

Several production planning problems have been adapted to the case of fuzzy demands:
economic order quantity [11, 12], multi-period planning [8, 9, 10, 13, 14, 15, 16, 17], and the
problem of supply chain planning (production distribution, centralized supply chain) [18, 19,
20, 21, 22, 23]. In the literature, there are two popular families of approaches for coping with
fuzzy parameters. In the first family, a defuzzification is first performed and then deterministic
optimization methods are used [20, 21]. In the second one, the objective is expressed in the
setting of possibility theory [24] and credibility theory [25]. We can distinguish: the possibilistic
programming (a fuzzy mathematical programming) in which a solution optimizing a criterion
based on the possibility measure is built [16, 17], the credibility measure based programming
in which the credibility measure is used to guaranty a service level (chance constraints on the
inventory level) [26] or the goal is to choose a solution that optimizes a criterion based on the
credibility measure [13] and a decision support based on the propagation of the uncertainty
to the inventory level and backordering level [8, 9, 10]. Here, we restrict our attention to
uncertainty propagation in MRP (the tactical level) [8, 9, 10] and we propose methods both for
evaluating a procurement plan in terms of costs under uncertain demands and for computing
a procurement plan which minimizes the impact of uncertainty on costs, since the approaches
proposed in the literature are not able to do this.
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Popular setting of problems for hedging against uncertainty of parameters is robust op-
timization [27]. In the robust optimization setting the uncertainty is modeled by specifying
a set of all possible realizations of the parameters called scenarios. No probability distribu-
tion in the scenario set is given. The value of each parameter may fall within a given closed
interval and the set of scenarios is the Cartesian product of these intervals. Then, in order
to choose a solution, two optimization criteria, called the min-max and the min-max regret,
can be adopted. Under the min-max criterion, we seek a solution that minimizes the largest
cost over all scenarios. Under the min-max regret criterion we wish to find a solution, which
minimizes the largest deviation from optimum over all scenarios.

In this paper, we are interested in computing a robust procurement plan (with and without
delivering capacity of the supplier sharing). The delivering capacity are composed of two
bounds: the lower one being the minimal accepted quantity that is sent to the customer
and the upper bound which is due to a production capacity of the supplier. Moreover the
customer accepts to have backordering but it is more penalized that inventory. This problem
is equivalent to the problem of production planning with backordering, more precisely to a
certain version of the lot sizing problem (see, e.g., [28, 29]), where: the procured quantities are
production quantities, a production plan; delivering constraints are production constraints,
capacity limits on production plans; and the gross requirements are demands. Thus, the
problem consists in finding a production plan that fulfills capacity limits and minimizes the
total cost of storage and backordering subject to the conditions of satisfying each demand. It
is efficiently solvable when the demands are precisely known (see, e.g., [30, 31, 32]). However,
the demands are seldom precisely known in advance and the uncertainty must be taken into
account.

In this paper, we consider the above problem with uncertain demands modeled by fuzzy
intervals. The membership function of a fuzzy interval is a possibility distribution describing,
for each value of the demand, the extent to which it is a possible value. In other words,
it means that the value of this demand belongs to a λ-cut of the fuzzy interval with the
degree of necessity (confidence) 1−λ. To evaluate a production plan, we assign to it, degrees
of possibility and necessity that its cost does not exceed a given threshold and a degree
of necessity that costs of the plan fall within a given fuzzy goal. In order to find “robust
solutions” under fuzzy demands, we apply two criteria. The first one consists in choosing a
production plan which maximizes the degree of necessity (certainty) that its cost does not
exceed a given threshold. The second criterion is weaker than the first one and consists in
choosing a plan with the maximum degree of necessity that costs of the plan fall within a given
fuzzy goal. A similar criterion has been proposed in [33] for discrete optimization problems
with fuzzy costs. We provide some methods for finding a robust production plan with respect
to the proposed criteria as well as for evaluating a given production plan under fuzzy-valued
demands which heavy rely on methods for finding a robust production plan, called optimal
robust production plan, in the problem of production planning under interval-valued demands
with the robust min-max criterion. Namely, it turns out that the considered fuzzy problems
can be reduced to examining a family of the interval problems with the min-max criterion.
Therefore, we generalize in this way the min-max criterion under the interval structure of
uncertainty to the fuzzy case.

The paper is organized as follows. In Section 2, we recall some notions of possibility
theory. In Section 3, we present a lot-size problem with backorders and precise demands. In
Section 4, we present our results. Namely, we investigate the interval case, that is the lot-size
problem with backorders in which uncertain demands are specified as closed intervals. We
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construct algorithms for finding an optimal robust production plan (a polynomial algorithm
for the case without capacity limits and an iterative algorithm for the case with capacity
limits) and for evaluating a given production plan (linear and mixed integer programing
methods, a pseudopolynomial algorithm). An experimental evidence of the efficiency of the
proposed algorithms is provided. In Section 5, we extend our results from the previous section
to the fuzzy case. We study the lot-size problem with backorders with uncertain demands
modeled by fuzzy intervals in a setting of possibility theory. We provide methods for seeking a
robust production plan with respect to two proposed criteria as well as for evaluating a given
production plan under fuzzy-valued demands (the methods heavily rely on the ones from the
interval case). The efficiency of the methods is confirmed experimentally.

2 Selected Notions of Possibility Theory

A fuzzy interval Ã is a fuzzy set in R whose membership function µ
Ã

is normal, quasi concave
and upper semicontinuous. Usually, it is assumed that the support of a fuzzy interval is
bounded. The main property of a fuzzy interval is the fact that all its λ-cuts, that is the
sets Ã[λ] = {x : µ

Ã
(x) ≥ λ}, λ ∈ (0, 1], are closed intervals. We will assume that Ã[0] is the

smallest closed set containing the support of Ã. So, every fuzzy interval Ã can be represented
as a family of closed intervals Ã[λ] = [a−[λ], a+[λ]], parametrized by the value of λ ∈ [0, 1]. In
many applications, the class of trapezoidal fuzzy intervals is used. A trapezoidal fuzzy interval,
denoted by a quadruple Ã = (a, b, c, d) and its membership function has the following form:

µ
Ã

(z) =



0 if z ≤ a,
z−a
b−a if a < z < b,

1 if b ≤ z ≤ c,
d−z
d−c if c < z < d,

0 if z ≥ d.

Its λ-cuts are simply [a+ λ(b− a), d− λ(d− c)] for λ ∈ [0, 1]. Notice that this representation
contains triangular fuzzy intervals (b = c).

Let us now recall the possibilistic interpretation of fuzzy intervals. Possibility theory [24]
is an approach to handle incomplete information and it relies on two dual measures: possi-
bility and necessity, which express plausibility and certainty of events. Both measures are
built from a possibility distribution. Let a fuzzy interval Ã be attached with a single-valued
variable a (uncertain real quantity). The membership function µ

Ã
is understood as a pos-

sibility distribution, πa = µ
Ã

, which describes the set of more or less plausible, mutually
exclusive values of the variable a. It can encode a family of probability functions [34]. In
particular, a degree of possibility can be viewed as the upper bound of a degree of proba-
bility [34]. The value of πa(v) represents the possibility degree of the assignment a = v, i.e.
Π(a = v) = πa(v) = µ

Ã
(v), where Π(a = v) is the possibility of the event that a will take

the value of v. In particular, πa(v) = 0 means that a = v is impossible and πa(v) > 0 means
that a = v is plausible. Equivalently, it means that the value of a belongs to a λ-cut Ã[λ]

with confidence (or degree of necessity) 1 − λ. A detailed interpretation of the possibility
distribution and some methods of obtaining it from the possessed knowledge are described
in [24, 35]. Let G̃ be a fuzzy interval. Then “a ∈ G̃” is a fuzzy event. The possibility of
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“a ∈ G̃”, denoted by Π(a ∈ G̃), is as follows [36]:

Π(a ∈ G̃) = sup
v∈R

min{πa(v), µ
G̃

(v)}. (1)

Π(a ∈ G̃) evaluates the extent to which “a ∈ G̃” is possibly true. The necessity of event
“a ∈ G̃”, denoted by N(a ∈ G̃), is as follows:

N(a ∈ G̃) = 1−Π(a 6∈ G̃) = 1− sup
v∈R

min{πa(v), 1− µ
G̃

(v)} (2)

= inf
v∈R

max{1− πa(v), µ
G̃

(v)},

where 1 − µ
G̃

is the membership function of the complement of the fuzzy set G̃. N(a ∈ G̃)

evaluates the extent to which “a ∈ G̃” is certainly true. Observe that if G is a classical set,
then Π(a ∈ G) = supv∈G πa(v) and N(a ∈ G) = 1− supv/∈G πa(v).

3 The Deterministic Problem

We are given T periods. For period t, t = 1, . . . , T , let dt be the demand in period t, dt ≥ 0
(here we assume that the demands are precise), xt the production amount in period t, xt ≥ 0,
lt, ut the production capacity limits on xt. Let X ⊆ RT+ be the set of feasible production
amounts. Two cases are distinguished, the case with no capacity limits X = {(x1, . . . , xT ) :
xt ≥ 0, t = 1, . . . , T} and the one with capacity limits X = {(x1, . . . , xT ) : lt ≤ xt ≤ ut, t =
1, . . . , T}. Set Dt =

∑t
i=1 di and Xt =

∑t
i=1 xi, Dt and Xt stand for the cumulative demand

up to period t and the production level up to period t, respectively. Obviously, Xt−1 ≤ Xt

and Dt−1 ≤ Dt, t = 2, . . . , T . The costs of carrying one unit of inventory from period t to
period t + 1 is given by cIt ≥ 0 and the costs of backordering one unit from period t + 1 to
period t is given by cBt ≥ 0. The nonnegative real function Lt(u, v) represents either the cost
of storing inventory from period t to period t + 1 or the cost of backordering quantity from
period t+1 to period t, namely Lt(Xt,Dt) = cIt (Xt−Dt) if Xt ≥ Dt; c

B
t (Dt−Xt) otherwise.

The function has the form Lt(Xt,Dt) = max{cIt (Xt −Dt), c
B
t (Dt −Xt)}.

Our production planning problem with the deterministic (precise) demands consists in
finding a feasible production plan xxx = (x1, . . . , xT ), xxx ∈ X, that minimizes the total cost of
storage and backordering subject to the conditions of satisfying each demand, namely

min
xxx∈X

F (xxx) = min
xxx∈X

T∑
t=1

Lt(Xt,Dt). (3)

Obviously, the problem (3) is a version of the classical dynamic lot-size problem with backo-
rders (see, e.g., [28, 29]). Without loss of generality, we can assume that an initial inventory I0

and an initial backorder B0 are equal to zero. Otherwise, one can append period 0 and assign
x0 = I0 and d0 = 0 with zero inventory cost if I0 > 0 or assign x0 = 0 and d0 = B0 with zero
backorder cost if B0 > 0.

In the case with no capacity limits problem (3) has a trivial optimal solution equal to
(d1, . . . , dT ). In the case with capacity limits, (3) can be formulated as the minimum cost
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flow problem (see, e.g., [37]):

min
T∑
t=1

(cIt It + cBt Bt)

s.t. Bt − It =
∑t

j=1(dj − xj), t = 1, . . . , T,

lt ≤ xt ≤ ut, t = 1, . . . , T,
Bt, It ≥ 0, t = 1, . . . , T.

(4)

Problem (4) can efficiently solved, for instance, by an algorithm presented in [32] that takes
into account a special structure of the underling network.

4 Robust Problem

Assume that demands dt, t = 1, . . . , T , in problem (3), are only known to belong to intervals
Dt = [d−t , d

+
t ], d−t ≥ 0. This means that we neither know the exact demands, nor can we

set them precisely. We assume that the demands are unrelated to one another and there is
no probability distribution in Dt, t = 1, . . . , T . A vector S = (d1, . . . , dT ), dt ∈ Dt, that
represents an assignment of demands dt to periods t, t = 1, . . . , T , is called a scenario. Thus
every scenario expresses a realization of the demands. We denote by Γ the set of all the
scenarios, i.e. Γ = [d−1 , d

+
1 ]× · · · × [d−T , d

+
T ]. Among the scenarios of Γ extreme scenarios can

be distinguished, that is the ones, which belong to {d−1 , d
+
1 }×· · ·×{d

−
T , d

+
T }, the set of extreme

scenarios is denoted by Γext. We denote by S+ (resp. S−) the extreme scenario in which all
the demands are set to their upper (resp. lower) bounds. The demand and the cumulative
demand in period t under scenario S are denoted by dt(S) ∈ Dt and Dt(S), respectively,
Dt(S) =

∑t
i=1 di(S). Clearly, for every S ∈ Γ it holds Dt−1(S) ≤ Dt(S), t = 2, . . . , T , and

Dt(S) ∈ [Dt(S
−),Dt(S

+)]. The function Lt(Xt,Dt(S)) = max{cIt (Xt −Dt(S)), cBt (Dt(S)−
Xt)}, represents either the cost of storing inventory from period t to period t+1 or the cost of
backordering quantity from period t+1 to period t under scenario S. Now F (xxx, S) denotes the
total cost of a production plan xxx ∈ X under scenario S, i.e. F (xxx, S) =

∑T
t=1 Lt(Xt,Dt(S)).

In order to choose a robust production plan, one of robust criteria, called the min-max
can be adopted (see, e.g. [27]). In the min-max version of problem (3), we seek a feasible
production plan with the minimum the worst total cost over all scenarios, that is

ROB : min
xxx∈X

A(xxx) = min
xxx∈X

max
S∈Γ

F (xxx, S) = min
xxx∈X

max
S∈Γ

T∑
t=1

Lt(Xt,Dt(S)).

In other words, we wish to find among all production plans the one that minimizes the
maximum production plan cost over all scenarios, that minimizes A(xxx), A(xxx) is the maximal
cost of production plan xxx. An optimal solution xxxr to the problem ROB is called optimal
robust production plan.

Let xxx ∈ X be a given production plan. A scenario So ∈ Γ that minimizes the total
cost F (xxx, S) of the production plan xxx is called optimistic scenario. A scenario Sw ∈ Γ that
maximizes the total cost F (xxx, S) of the production plan xxx is called the worst case scenario.

4.1 Evaluating Production Plan

In this section, we show how to evaluate a given production plan xxx∗ ∈ X. We first consider the
problem of determining the optimal interval, Fxxx∗ = [f−xxx∗ , f

+
xxx∗ ], containing possible values of
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costs of the production plan xxx∗ which can be rigorously defined as the following optimization
problems:

f−xxx∗ = min
S∈Γ

F (xxx∗, S), (5)

f+
xxx∗ = max

S∈Γ
F (xxx∗, S). (6)

It is easily seen that the problem of computing the optimal lower bound on costs of xxx∗

(5) is equivalent to the one of determining an optimistic scenario So for xxx∗, namely f−xxx∗ =
F (xxx∗, So) = minS∈Γ F (xxx∗, S). Similarly, the problem of computing the optimal upper bound
on costs of xxx∗ (6) is equivalent to the problem of determining a worst case scenario Sw for
xxx∗, i.e. f+

xxx∗ = A(xxx∗) = F (xxx∗, Sw) = maxS∈Γ F (xxx∗, S). Thus

Fxxx∗ = [f−xxx∗ , f
+
xxx∗ ] = [F (xxx∗, So), F (xxx∗, Sw)]. (7)

Using the optimal interval Fxxx∗ of possible values of costs of production plan xxx∗ allows
us to evaluate possibility and necessity that the cost of the plan does not exceed a given
threshold under uncertain demands modeled by intervals. Hence, in order to assert possibility
that the cost of the plan does not exceed a given threshold g, i.e. to assert whether there
exits a scenario S ∈ Γ for which F (xxx∗, S) ≤ g, it suffices to determine an optimistic scenario
So, the optimal lower bound f−xxx∗ = F (xxx∗, So) and evaluate f−xxx∗ ≤ g. If the inequality holds
then there exists a scenario; otherwise not. Similarly, evaluating necessity that the cost of
the plan does not exceed a given threshold g, i.e. asserting whether F (xxx∗, S) ≤ g for every
scenario S ∈ Γ, we only need to determine worst case scenario Sw, the optimal upper bound
f+
xxx∗ = F (xxx∗, Sw) and evaluate , f+

xxx∗ ≤ g. Thus, evaluating a production plan boils down to
computing its optimistic and worst case scenarios.

Let us consider the problem of computing an optimistic scenario for a given production
plan xxx∗ ∈ X, that is the problem (5). Its minimum is attained for some S ∈ Γ, since F (xxx, S)
is a continuous function on the bounded closed set Γ. Problem (5) can be formulated as a
linear programming problem:

f−xxx∗ = min
∑T

t=1(cIt It + cBt Bt)

s.t. Bt − It =
∑t

j=1(sj − x∗j ), t = 1, . . . , T,

st ∈ [d−t , d
+
t ], t = 1, . . . , T,

Bt, It ≥ 0, t = 1, . . . , T.

(8)

If sot , B
o
t and Iot , t = 1, . . . , T , is an optimal solution to problem (8), then So = (so1, . . . , s

o
T ) is

an optimistic scenario for xxx∗ (an optimistic realization of uncertain demands) and Iot is storing
inventory amount from period t to period t+ 1 and Bo

t represents backordering amount from
period t+ 1 to period t under the optimistic scenario So. The problem (8) can be reduced to
the classical minimum cost flow problem and effectively solved by algorithms that take into
a special structure of the underling network (see, e.g., [32]). Hence, and fact that cIt , c

B
t ≥ 0

it follows that for t = 1, . . . , T one of Iot and Bo
t is zero.

Let us study the problem of computing a worst case scenario for a given production plan
xxx∗ ∈ X, that is the problem (6). Since F (xxx∗, S) is a continuous function on the bounded
closed set Γ, it attains maximum for some S ∈ Γ. The problem (6) can be formulated as a
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mixed integer programming problem (MIP):

f+
xxx∗ = max

∑T
t=1(cIt It + cBt Bt)

s.t. Bt − It =
∑t

j=1(sj − x∗j ), t = 1, . . . , T,

st ∈ [d−t , d
+
t ], t = 1, . . . , T,

Bt, It ≥ 0, t = 1, . . . , T,

It ≤ (1− δt)
∑t

j=1(x∗j − d
−
j ), t = 1, . . . , T,

Bt ≤ δt
∑t

j=1(d+
j − x∗j ), t = 1, . . . , T,

δt ∈ {0, 1}, t = 1, . . . , T.

(9)

Let swt , Bw
t , Iwt and δt, t = 1, . . . , T , be an optimal solution to problem (9). Then Sw =

(sw1 , . . . , s
w
T ) is a worst case scenario for xxx∗ (a pessimistic realization of uncertain demands)

and Iwt is storing inventory amount from period t to period t + 1 and Bw
t is backordering

amount from period t+1 to period t under the worst case scenario Sw. The last two constraints
model (9) and the binary variables δt ensure that storing inventory from period t to period t+1
and backordering from period t+ 1 to period t is not performed simultaneously (either It > 0
or Bt > 0). If δt = 1 then backordering is performed Bt > 0; otherwise storing inventory is
performed It > 0. Thus, the problem (6) turns out to be much harder than (5).

We now solve the problem (6) by means of dynamic programming. Let us present a result
which shows that determining a worst case scenario Sw can be restricted to the vertices of Γ,
that is to the set of extreme scenarios Γext. We prove the convexity of the cost function on Γ.

Proposition 1. Function F (xxx∗, S) is convex on Γ for any fixed production plan xxx∗ ∈ X.

Proof. Function cIt (X
∗
t−Dt(S)) and cBt (Dt(S)−X∗t ) are convex on Γ. Then so are max{cIt (X∗t−

Dt(S)), cBt (Dt(S)−X∗t )} and
∑T

t=1 max{cIt (X∗t −Dt(S)), cBt (Dt(S)−X∗t )}.

The following result allows us to reduce the set of scenarios Γ to the set of extreme
scenarios Γext.

Proposition 2. An optimal scenario for problem (6) (a worst case scenario) is an extreme
one.

Proof. Function F (xxx∗, S) attains its maximum in Γ. Since F (xxx∗, S) is convex (Proposition 1)
and Γ is the hyper-rectangle, an optimal scenario for problem (6) is an extreme one (see,
e.g., [38]).

Applying Proposition 2, we can rewrite problem (6) as:

f+
xxx∗ = A(xxx∗) = F (xxx∗, Sw) = max

S∈Γext

F (xxx∗, S). (10)

We are now ready to give a dynamic programming based algorithm for solving problem (10).
Let Dt be the set of feasible cumulative demand levels in period t, t = 1, . . . , T , i.e. Dt =
{Dt(S

−),Dt(S
−) + 1, . . . ,Dt(S

+)}, let Lt−1(D) be the maximal cost of a given production
plan xxx∗ over periods t, . . . , T , when the cumulative demand level up to period t − 1 is equal
to D, D ∈ Dt−1, Lt−1 : Dt−1 → R+. Set D0 = {0}. It is evident that:

LT (D) = 0 D ∈ DT , (11)

Lt−1(D) = max

{
Lt(X

∗
t ,D + d−t ) + Lt(D + d−t )

Lt(X
∗
t ,D + d+

t ) + Lt(D + d+
t )

}
D ∈ Dt−1, (12)

t = T, . . . , 1.
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The maximal cost of production plan xxx∗ over period 1, . . . , T is equal to L0(0), L0(0) = f+
xxx∗ ,

which is computed according to the backward recursion (11) and (12). The corresponding
to xxx∗ worst case scenario Sw can be determined by a forward recursion technique. It is
sufficient to store for each D ∈ Dt−1 the value for which the maximum in (12) is attained,
that is either D + d−t or D + d+

t . The running time of the dynamic programming based
algorithm is O(T · DT ), which is pseudo-polynomial. We have thus proved the following
theorem.

Theorem 1. There is an algorithm for computing the maximal cost of a given production
plan xxx∗ and its a worst case scenario Sw, which runs in O(T ·DT ).

Since finding a worst case scenario requires taking into account only extreme demand
scenarios (see Proposition 2), the running time of the above algorithm may be additionally
refined by reducing the cardinalities of sets Dt, t = 1, . . . , T , in (11) and (12). Note that we
need only consider cumulative demand levels D which can be obtained by summing instanti-
ated demands, at their lower or upper bounds, in the periods up to t. Namely, D ∈ Dt if and
only if D =

∑t
k=1 dk, where dk ∈ {d−k , d

+
k }. Hence, each reduced set of possible cumulative

demand levels Dt has form {D1
t , . . . ,D

l
t}. Of course, l is bound by Dt(S

+). An idea of the
improved dynamic programming based algorithm can be outlined as follows:
Step 1 (reducing sets Dt): built a directed acyclic network composed of node that is associated
with D0 = {0} and T layers that are associated with the reduced sets of possible cumulative
demand levels Dt = {D1

t , . . . ,D
l
t}, t = 1, . . . , T . The t-th layer is composed of nodes corre-

sponding to cumulative demand levels D, D ∈ Dt. The arc between Du
t−1 and Dv

t exists if
and only if either Dv

t = Du
t−1 + d−t or Dv

t = Du
t−1 + d+

t . Observe that, except for nodes from
the last layer, each node in the network has exactly two outgoing arcs. An example of the
constructed network is presented in Figure 1.
Step 2: compute the maximal cost of production plan xxx∗ over period 1, . . . , T according to the
backward recursion (11) and (12) in the constructed network with the layers corresponding
to reduced sets Dt and store for each D ∈ Dt−1 the value D ∈ Dt for which the maximum in
(12) is attained.
Step 3: determine a worst case scenario for production plan xxx∗ by performing a simple forward
recursion in the constructed network using the stored (in Step 2) values for which the maxima
in (12) are attained.

The network in Step 1 can be built in O(T ·maxt=1,...,T |Dt|) time. The running time of
Step 2 is the same time as Step 1. Step 3 can be done in O(T ) time. Hence, the overall running
time of the improved algorithm is O(T ·maxt=1,...,T |Dt|). It is easily seen that maxt=1,...,T |Dt|
is upper bounded by DT (S+) and at the worst case maxt=1,...,T |Dt| = DT (S+).

Furthermore, the running time can be reduced if d+
1 − d

−
1 = · · · = d+

T − d
−
T = h. Then

we find Dt = {Dt(S
−),Dt(S

−) + h, . . . ,Dt(S
−) + th}, t = 1, . . . , T . Now the running time is

O(T 2), which is polynomial.

4.2 Solving the Robust Problem

Let us consider the problem ROB with no capacity limits, i.e. the problem with the set
X = {(x1, . . . , xT ) : xt ≥ 0, t = 1, . . . , T}. In this case, we make the assumption: the costs of
carrying one unit of inventory from period t to period t+ 1 for every t = 1, . . . , T are equal,
we denote it by cI and the costs of backordering one unit from period t + 1 to period t for
every t = 1, . . . , T are equal, we denote it by cB. Note that function F (xxx, S) is continuous on

9
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Figure 1: An example of the constructed network in Step 1.

X and Γ, Γ is a closed bounded set, and so A(xxx) is well defined continuous function on X (see,
e.g., [39, Theorem 1.4]). We show that an optimal robust production plan x̂xx = (x̂1, . . . , x̂T ),
i.e. x̂xx = arg minxxx∈XA(xxx), exists and can be computed by the following formulae:

X̂1 := cBD1(S+)+cID1(S−)
cB+cI

, x̂1 := X̂1

X̂t := cBDt(S+)+cIDt(S−)
cB+cI

, x̂t := X̂t − X̂t−1, t ≥ 2.
(13)

An algorithm for determining a production plan x̂xx according to (13) can be implemented in
O(T ) time. Before we show that x̂xx is optimal to problem ROB (an optimal robust production
plan) with no capacity limits we prove the following proposition.

Proposition 3. Let x̂xx be a plan computed according to (13). Then x̂xx is feasible and S− and
S+ are the worst case scenarios for plan x̂xx, i.e. A(x̂xx) = F (x̂xx, S−) = F (x̂xx, S+).

Proof. See Appendix A.

We are now ready to prove that x̂xx is an optimal robust production plan.

Theorem 2. A production plan determined by formulae (13) is an optimal one for prob-
lem ROB with no capacity limits.

Proof. See Appendix A.

Note that if an initial backorder B0 or an initial inventory I0 are not equal to zero then
one can modify the interval demand D1 as follows: D1 := [d−1 + B0, d

+
1 + B0] if B0 > 0 or

D1 := [d−1 −I0, d
+
1 −I0] if 0 < I0 ≤ d−1 , and apply formulae (13) to determine an optimal robust

production plan for problem ROB with the modified demand. If I0 > d−1 then one appends
period 0, as it has been described in Section 3, and applies an algorithm (Algorithm 1) for
the case with capacity limits, lt = 0, ut = M , t = 1, . . . , T , where M is a large number.

Let us turn to the problem ROB with capacity limits, i.e. the problem with the set
X = {(x1, . . . , xT ) : lt ≤ xt ≤ ut, t = 1, . . . , T}. Notice Γ is a bounded closed set. Function
F (xxx, S) is continuous on X and Γ and hence A(xxx) is continuous function on X (see, e.g., [39,

10



Theorem 1.4]). From this and the fact X is a bounded closed set it follows that A(xxx) attains
its minimum on X.

We now construct an iterative algorithm for solving problem ROB based on on iterative
relaxation scheme for min-max problems proposed in [40]. Similar methods were developed
for min-max regret linear programming problems with an interval objective function [41, 42].
Let us consider the problem (RX-ROB) being a relaxation of problem ROB that consists in
replacing a given scenario set Γ with a discrete scenario set Γdis = {S1, . . . , SK}, Γdis ⊆ Γ:

RX-ROB: a∗ = min a
s.t. a ≥ F (xxx, Sk) ∀Sk ∈ Γdis,

xxx ∈ X,
(14)

where Sk = (skt )
T
t=1. The constraint a ≥ F (xxx, Sk), called scenario cut, is associated with

exactly one scenario Sk ∈ Γdis. Since Γdis ⊆ Γ, the maximal cost a∗ of an optimal solution
xxx∗ of problem RX-ROB over discrete scenario set Γdis is a lower bound on the maximal cost
of an optimal robust production plan xxxr for problem ROB, i.e. a∗ ≤ A(xxxr). Note that the
scenario cut, a ≥ F (xxx, Sk), associated with Sk is not a linear constraint. One can linearize
the cut by replacing it in RX-ROB with the following T + 1 constraints and 2T new decision
variables:

a ≥
∑T

t=1(cIt I
Sk

t + cBt B
Sk

t ),

BSk

t − IS
k

t =
∑t

j=1(skj − xj), t = 1, . . . , T,

BSk

t , IS
k

t ≥ 0, t = 1, . . . , T.

Our algorithm (Algorithm 1) starts with zero lower bound on the maximal cost of an
optimal robust production plan xxxr, LB = 0, a candidate xxx∗ ∈ X for an optimal solution for
ROB and empty discrete scenario set, Γdis = ∅. At each iteration, a worst case scenario
Sw for xxx∗ is computed by applying the method (9) or the dynamic programming based
algorithm presented in Section 4.1. Clearly, A(xxx∗) = F (xxx∗, Sw) is an upper bound on A(xxxr),
A(xxxr) ≤ A(xxx∗). If a termination criterion is fulfilled (usually (A(xxx∗)−LB)/LB ≤ ε if LB > 1;
A(xxx∗)− LB ≤ ε otherwise, ε > 0 is a given tolerance) then algorithm stops with production
plan xxx∗, which is an approximation of an optimal robust production plan. Otherwise the
worst case scenario Sw = (swt )Tt=1 is added to Γdis, the corresponding to Sw scenario cut is
appended to problem RX-ROB. Next the updated linear programming problem RX-ROB is
solved to obtain a better candidate xxx∗ for an optimal solution for ROB and new lower bound
LB = a∗. Since set Γdis is updated during the course of the algorithm, the computed values
of lower bounds are nondecreasing sequence of their values. Then new iteration is started.

In order to choose a good initial production plan xxx∗ ∈ X in Algorithm 1, we suggest
to solve the classical production planning problem (3) with capacity limits (the model (4))
under the midpoint demand scenario Sm, i.e. dt(S

m) = (d−t + d+
t )/2, t = 1, . . . , T and take

an optimal production plan under the midpoint scenario as an initial production plan.

Theorem 3. Algorithm 1 terminates in a finite number of steps for any given ε > 0.

Proof. See Appendix A.

Note that if an initial inventory I0 or an initial backorder B0 are not equal to zero then
one appends period 0, as it has been described in Section 3, and applies Algorithm 1 for T +1
periods.

11



Algorithm 1: Solving problem ROB.

Input: Interval demands Dt = [d−t , d
+
t ], costs cIt , c

B
t , t = 1, . . . T , initial production

plan xxx∗ ∈ X, a convergence tolerance parameter ε > 0.
Output: A production plan x̂xxr, an approximation of an optimal robust production

plan, and its worst case scenario Sw.
Step 0. k := 0, LB := 0, Γdis := ∅.
Step 1. xxxk := xxx∗.
Step 2. Compute a worst case scenario Sw for xxxk by applying the method (9) or the
dynamic programming based algorithm presented in Section 4.1.
Step 3. ∆ := F (xxxk, Sw)− LB. If LB > 1 then ∆ := ∆/LB.
If ∆ ≤ ε then output xxxk, Sw and STOP.
Step 4. k := k + 1.
Step 5. Sk := Sw, Γdis := Γdis ∪ {Sk} and append scenario cut a ≥ F (xxx, Sk) to
problem RX-ROB.
Step 6. Compute an optimal solution (xxx∗, a∗) for RX-ROB, LB := a∗, and go to
Step 1.

Let us illustrate, by the following example, that solving problem ROB leads to a robust
production plan. We are given 5 periods with the production capacity limits on a production
plan: l1 = 40, u1 = 50, l2 = 30, u2 = 40, l3 = 30, u3 = 40, l4 = 10, u4 = 35 and l5 = 10,
u5 = 35. The costs of carrying one unit of inventory from period t to period t + 1, cIt ,
for every t = 1, . . . , 5 equal 1 and the costs of backordering one unit from period t + 1 to
period t, cBt , for every t = 1, . . . , 5 equal 5. The knowledge about demands in each period
is represented by the intervals: D1 = [30, 45], D2 = [5, 15], D3 = [10, 30], D4 = [20, 40] and
D5 = [20, 40]. The scenario set Γ (states of the world) is Γ = [30, 45] × [5, 15] × [10, 30] ×
[20, 40] × [20, 40] (see Figure 2). The execution of Algorithm 1 gives a production plan:
xopt

1 = 40, xopt
2 = 30, xopt

3 = 30, xopt
4 = 27.9167, xopt

5 = 10 with the total cost of 215.833
(xxxopt is an approximation of an optimal robust production plan with convergence tolerance
parameter ε = 0.0001, the maximal cost of xxxopt is no more than 0.01% from optimality).
The worst case scenario Sw ∈ Γ is d1(Sw) = 30, d2(Sw) = 5, d3(Sw) = 10, d4(Sw) = 20,
d5(Sw) = 20 and maxS∈Γ F (xxxopt, S) = F (xxxopt, Sw) = 215.833 (see Figure 2). This means that
total costs of production plan xxxopt do not exceed the value of 215.833 over the set of scenarios.
Moreover, the plan xxxopt has the best worst performance, i.e. it minimizes the total cost over
the all scenarios. Additionally, making use of the methods presented in Section 4.1, one gets
complete information about all possible values of costs of the production plan xxxopt over the
set of scenarios Γ, by determining the optimal interval Fxxxopt = [f−xxxopt , f

+
xxxopt ] that contains

these values (see (7)). This interval equals [40, 215.833]. A popular approach for solving a
problem with uncertain parameters modeled by the classical intervals is taking the midpoints
of the intervals (the average values of the possible parameter values) and solving the problem
with these deterministic parameters. In our example, the midpoint scenario has the form
d1(Smid) = 37.5, d2(Smid) = 10, d3(Smid) = 20, d4(Smid) = 30, d5(Smid) = 30. An algorithm
for the problem with the midpoint demands (see Section 3) returns an optimal production
plan: xmid

1 = 40, xmid
2 = 30, xopt

3 = 30, xmid
4 = 10, xmid

5 = 17.5 with the total cost of 70. But,
if scenario d1(Sw) = 45, d2(Sw) = 15, d3(Sw) = 30, d4(Sw) = 40, d5(Sw) = 40 (a worst case
scenario for xxxmid) occurs then the cost will be equal to 357.5 (maxS∈Γ F (xxxmid, S) = 357.5).
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Figure 2: The computed production plan xxxopt in the illustrative example.

Table 1: Summary of the data and results of the illustrative example

data† results
capacity interval robust plan plan plan

limits demands plan under Smid under S+ under S−

t lt ut Dt xoptt dt(S
w) xmid

t dt(S
w) x+t dt(S

w) x−t dt(S
w)

1 40 50 [30,45] 40 30 40 45 45 30 40 45
2 30 40 [5,15] 30 5 30 15 30 5 30 15
3 30 40 [10,30] 30 10 30 30 30 10 30 30
4 10 35 [20,40] 27.9167 20 10 40 30 20 10 40
5 10 35 [20,40] 10 20 17.5 40 35 20 10 40
†cIt = 1, cBt = 5, t = 1, . . . , 5 the worst costs for plans: xxxopt, xxxmid, xxx+, xxx−

F (xxxopt, Sw) F (xxxmid, Sw) F (xxx+, Sw) F (xxx−, Sw)
215.833 357.5 270 395

Note that 357.5 � 215.833. Similar situation is for two extreme scenarios S+ and S−, the
scenarios in which all the demands are set to their upper bounds and the lower bounds,
respectively. Again running an algorithm for the crisp problem with the demands under
scenario S+ and S−, we obtain optimal solutions: x+

1 = 45, x+
2 = 30, x+

3 = 30, x+
4 = 30,

x+
5 = 35 with the total cost of 35 under S+ and x−1 = 40, x−2 = 30, x−3 = 30, x−4 = 10,
x−5 = 10, under S−, with the total cost of 180. It turns out that if scenario d1(Sw) = 30,
d2(Sw) = 5, d3(Sw) = 10, d4(Sw) = 20, d5(Sw) = 20, Sw ∈ Γ, (a worst case scenario for xxx+)
occurs then the cost of xxx+ will be equal to 270. Similarly, if d1(Sw) = 45, d2(Sw) = 15,
d3(Sw) = 30, d4(Sw) = 40, d5(Sw) = 40, Sw ∈ Γ, (a worst case scenario for xxx−) occurs then
the cost of xxx− will be equal to 395. The summary of the input and output data of the above
illustrative example is shown in Table 1. Accordingly, we have no doubts that the computed
plan xxxopt with respect to the min-max criterion (problem ROB) is a robust one.

In order to check the efficiency of Algorithm 1, we performed some computational tests.
For every T = 100, 200, . . . , 1000, ten instances of the problem ROB with capacity lim-
its were generated. In every instance, inventory costs were randomly chosen from the set
{1, 2, . . . , 10}, backorder costs were randomly chosen from the set {20, 21, . . . , 50}, the de-
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Table 2: Minimal, average and maximal computation times in seconds

T 100 200 300 400 500 600 700 800 900 1000
min 0.25 0.63 0.96 2.04 2.64 23.55 9.64 24.54 61.26 41.44
avg 0.39 0.84 5.68 9.18 11.47 61.44 72.20 180.78 282.20 372.58

max 0.65 1.05 13.40 20.47 21.78 147.32 188.36 328.61 573.26 893.01

mands and the production capacities were randomly generated intervals [X,Y ], where X is
an integer-valued random variable uniformly distributed in {0, 1, . . . , 99} and Y is an integer-
valued random variable uniformly distributed in {100, 101, . . . , 199}. To solve the generated
instances, we used IBM ILOG CPLEX 12.2 library (parallel using up 2 threads) [43] and
a computer equipped with Intel Core 2 Duo 2.5 GHz. In Table 2, minimal, average and
maximal computation times in seconds, required to find approximations of optimal robust
production plans with convergence tolerance parameter ε = 0.0001, are presented. Thus, the
maximal costs of the computed production plans are no more than 0.01% from optimality.
All computations finished in a few iterations and about 98% of the total running time was
spent on computing worst case scenarios by MIP model (9). We also implemented and ran
the improved dynamic programming based algorithm for computing worst case scenarios pre-
sented in Section 4.1, but it turned out that solving MIP model for determining worst case
scenarios was much faster than computing them by the dynamic programming algorithm. As
we can see from the obtained results, Algorithm 1 allows us to solve quite large problems
having up to 1000 periods in reasonable time.

5 Fuzzy Problem

In this section, we apply a more elaborate approach to model uncertain demands. Namely,
the uncertain demands, in problem (3), are modeled by fuzzy intervals D̃t, t = 1, . . . , T .
Here, a membership function of D̃t is regarded as a possibility distribution for the values of
the unknown demand dt (see Section 2). The possibility degree of the assignment dt = s is
Π(dt = s) = πdt(s) = µ

D̃t
(s). Let S = (st)

T
t=1 be a scenario that represents a state of the

world where dt = st, for t = 1, . . . , T . It is assumed that the demands are unrelated one
to each other. Hence, the possibility distributions associated with the demands induce the
following possibility distribution over all scenarios in S ∈ RT (see [44]):

π(S) = Π((d1 = s1) ∧ · · · ∧ (dT = sT )) = min
t=1,...,T

Π(dt = st) = min
t=1,...,T

µ
D̃t

(st). (15)

The value of π(S) stands for the possibility of the event that scenario S ∈ RT will occur. We
have thus extended scenario set Γ given by the intervals (see Section 4) to the fuzzy case and
now Γ̃ is a fuzzy set of scenarios with membership function µ

Γ̃
(S) = π(S), S ∈ RT . We see

at once that the λ-cuts of Γ̃ for every λ ∈ (0, 1] fulfill the following equality:

Γ̃[λ] = {S : π(S) ≥ λ} = [d
−[λ]
1 , d

+[λ]
1 ]× · · · × [d

−[λ]
T , d

+[λ]
T ],

which is from (15) and the definition of λ-cut. We also define Γ̃[0] = [d
−[0]
1 , d

+[0]
1 ] × · · · ×

[d
−[0]
T , d

+[0]
T ]. Notice that Γ̃λ, λ ∈ [0, 1], is the classical scenario set containing all scenarios

whose possibility of occurrence is not less than λ.
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5.1 Evaluating Production Plan

In order to choose a reasonable production plan under fuzziness, we first show how to evaluate
a given production plan xxx ∈ X. Notice that a cost of production plan xxx is unknown quantity,
denoted by fxxx, since demands are unknown and modeled by fuzzy intervals in the setting of
possibility theory. Thus, the unknown cost fxxx falls within fuzzy interval F̃xxx, called fuzzy cost
of plan xxx, whose membership function µ

F̃xxx
is a possibility distribution for the values of fuzzy

variable fxxx (unknown cost of xxx), π
F̃xxx

= µ
F̃xxx

, defined as follows:

µ
F̃xxx

(v) = Π(fxxx = v) = sup
{S: F (xxx,S)=v}

π(S), v ∈ R. (16)

Making use of (16), we can define degrees of possibility and necessity that a cost of a given
plan xxx ∈ X does not exceed a given threshold g:

Π(fxxx ≤ g) = sup
v≤g

π
F̃xxx

(v) = sup
{S: F (xxx,S)≤g}

π(S), (17)

N(fxxx ≤ g) = 1−Π(fxxx > g) = 1− sup
v>g

π
F̃xxx

(v) = 1− sup
{S: F (xxx,S)>g}

π(S). (18)

It is easily seen that Π(fxxx ≤ g) = λ means that there exists a scenario S such that π(S) = λ
in which the cost of plan xxx does not exceed threshold g, F (xxx, S) ≤ g. N(fxxx ≤ g) = 1 − λ
means that for all scenarios S such that π(S) > λ, costs of plan xxx under these scenarios do
not exceed g.

We now consider the problem of computing the degrees (17) and (18) of a given plan xxx.

Write F̃
[λ]
xxx = [f

−[λ]
xxx , f

+[λ]
xxx ]. Note that the interval F̃

[λ]
xxx (λ-cut of the fuzzy cost) is the optimal

interval of possible costs of xxx (see (7)) in problem ROB under interval scenario set Γ̃[λ]. Hence
there exists a link between the interval and the fuzzy cases:

Π(fxxx ≤ g) = sup{λ ∈ [0, 1] : f
−[λ]
xxx ≤ g}, (19)

N(fxxx ≤ g) = 1− inf{λ ∈ [0, 1] : f
+[λ]
xxx ≤ g}. (20)

From equations (19) and (20), we obtain methods for computing the degrees. So, in order to
compute Π(fxxx ≤ g) (resp. N(fxxx ≤ g)) we need to find the largest (resp. smallest) value of
λ such that there exits a scenario S ∈ Γ̃[λ] for which F (xxx, S) ≤ g (resp. for every scenario
S ∈ Γ̃[λ] inequality F (xxx, S) ≤ g holds), which is equivalent to determine an optimistic scenario
So ∈ Γ̃[λ] (resp. a worst case scenario Sw ∈ Γ̃[λ]) for xxx by solving (8) (resp. (9)) and evaluating

F (xxx, So) ≤ g (resp. F (xxx, Sw) ≤ g). Notice f
−[λ]
xxx = F (xxx, So) (resp. f

+[λ]
xxx = F (xxx, Sw)). Since

f
−[λ]
xxx (resp. f

+[λ]
xxx ) is nondecreasing (resp. nonincreasing) function of λ, we can apply a binary

search technique on λ ∈ [0, 1].
The fuzzy cost of production plan xxx (the possibility distribution for costs of xxx), F̃xxx can be

determined approximately, if necessary, via the use of λ-cuts. Namely, the optimal intervals of

possible costs of F̃
[λ]
xxx = [f

−[λ]
xxx , f

+[λ]
xxx ] under Γ̃[λ] are computed for suitably chosen λ-cuts. Then

fuzzy cost F̃xxx is reconstructed from their λ-cuts. This approach makes sense since intervals

F̃
[λ]
xxx are nested.

5.2 Fuzzy Robust Problem

We now propose two criteria of choosing a robust solution in the fuzzy-valued problem (3).
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We are given a threshold g, and we would like to find a production plan which maximizes
the degree of certainty (necessity) that its cost does not exceed threshold g. Thus, we would
like to solve the following problem:

max
xxx∈X

N(fxxx ≤ g). (21)

There are no doubts that an optimal production plan computed according to (21) is a robust
one, since with the highest degree of certainty costs of the plan over scenarios will not exceed
threshold g. By (20), it is easy to check that problem (21) is equivalent to the following
mathematical programming problem:

min λ

s.t. f
+[λ]
xxx ≤ g,
λ ∈ [0, 1],
xxx ∈ X.

(22)

If λ∗ is the optimal objective and xxx∗ is an optimal solution for problem (22) then N(fxxx∗ ≤ g) =
1− λ∗ and xxx∗ is an optimal production plan for (21). If (22) is infeasible then N(fxxx ≤ g) = 0
for all xxx ∈ X.

We now present a more general criterion of choosing a robust production plan than (21).
Namely, suppose that a decision maker knows her/his preferences about a cost of a production
plan fxxx and expresses it by a fuzzy goal G̃, which is a fuzzy interval with a bounded support
and a nonincreasing upper semicontinuous membership function µ

G̃
: R → [0, 1] such that

µ
G̃

(v) = 1 for v ∈ [0, g]. The value of µ
G̃

(fxxx) is the extent to which cost fxxx of xxx satisfies the

decision maker. Now the requirement “fxxx ≤ g” is replaced softer one, i.e. “fxxx ∈ G̃”. So,
by (2) and (16) the necessity that event “fxxx ∈ G̃” holds can be expressed as follows:

N(fxxx ∈ G̃) = 1−Π(fxxx 6∈ G̃) (23)

= 1− sup
v∈R

min{πfxxx(v), 1− µ
G̃

(v)}

= 1− sup
S

min{π(S), 1− µ
G̃

(F (xxx, S))}.

Thus, if N(fxxx ∈ G̃) = 1 − λ means that for all scenarios S such that π(S) > λ, the degree
that costs of plan xxx fall within fuzzy goal G̃, is not less than 1 − λ. Note that N(fxxx ∈ G̃) is
more general and weaker than N(fxxx ≤ g). If µ

G̃
(v) = 0 for v > g then they are the same.

Moreover, N(fxxx ≤ g) ≤ N(fxxx ∈ G̃).
Let us give the second criterion of choosing a robust plan. We are given a fuzzy goal G̃,

and we wish to find a production plan which maximizes the necessity degree that costs of the
plan fall within fuzzy goal G̃. Thus we need to solve the following optimization problem,

max
xxx∈X

N(fxxx ∈ G̃). (24)

We check at once that problem (24) is equivalent to the following mathematical programming
problem, which is from (20) and (23):

min λ

s.t. f
+[λ]
xxx ≤ g+[1−λ],
λ ∈ [0, 1],
xxx ∈ X.

(25)
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If (xxx∗, λ∗) is an optimal solution for problem (25), then N(fxxx∗ ∈ G̃) = 1 − λ∗. If (25) is
infeasible then N(fxxx ∈ G̃) = 0 for all xxx ∈ X.

An algorithm for solving problem (25) (resp. (22)) is based on the standard binary search

technique in [0, 1] (the interval of possible values of λ) which follows from the fact that f
+[λ]
xxx

is nonincreasing and g+[1−λ] (resp. g) is nondecreasing function of λ. We call the algorithm
the binary search based algorithm. To find an optimal (x∗, λ∗), x∗ ∈ X, λ∗ ∈ [0, 1], with a
given error tolerance ξ > 0, we seek at each iteration, for a fixed λ, a plan xxx ∈ X satisfying

f
+[λ]
xxx ≤ g+[1−λ] (resp. f

+[λ]
xxx ≤ g), which boils down to seeking an optimal robust production

plan xxxr and its worst case scenario under scenario set Γ̃[λ], i.e. to solving problem ROB (see

Section 4). Note that f
+[λ]
xxx = A(xxx) and also that f

+[λ]
xxx ≤ g+[1−λ] (resp. f

+[λ]
xxx ≤ g) holds

for some xxx ∈ X if and only if it holds for an optimal robust production plan under Γ̃[λ].
Thus, at each iteration, we use either formulae (13) for the case without capacity limits or
Algorithm 1 for the case with capacity limits. If the length of determined interval of possible
values of λ is less than ξ, then an optimal robust production plan xxxr for a fixed λ, (xxxr, λ),
is an approximation of an optimal solution for problem (25) (resp. (22)) with precision ξ.
The running time of the above algorithm is O(I(T ) log ξ−1) time, where ξ > 0 is a given
error tolerance and I(|T |) is time required for finding an optimal robust production plan and
its worst case scenario under interval scenario set Γ̃[λ] (the running time of either (13) or
Algorithm 1).

We now show, by the following illustrative example, that determining a production plan
maximizing the necessity degree that costs of the plan fall within fuzzy goal G̃ (problem (24))
is a robust one under uncertain demands modeled by fuzzy intervals. We are given 5 periods
with the production capacity limits on a production plan: l1 = 40, u1 = 50, l2 = 30, u2 = 40,
l3 = 30, u3 = 40, l4 = 10, u4 = 35 and l5 = 10, u5 = 35 and the same the costs of carrying
one unit of inventory from period t to period t + 1, cIt = 1, t = 1, . . . , 5, and the same the
costs of backordering one unit from period t+1 to period t ,cBt = 5, t = 1, . . . , 5. The demand
uncertainty in each period is represented by the triangular fuzzy intervals: D̃1 = (30, 37.5, 45),
D̃2 = (5, 10, 15), D̃3 = (10, 20, 30), D̃4 = (20, 30, 40) and D̃5 = (20, 30, 40), regarded as
possibility distributions for the values of the unknown demands. The fuzzy set of scenarios
has the membership function: µ

Γ̃
(S) = π(S) = mint=1,...,5 µD̃t

(st), S ∈ R5. The fuzzy

goal G̃ is trapezoidal fuzzy interval G̃ = (0, 0, 195.83, 215.42), where 195.833 is the maximal
cost of an optimal robust production plan for the problem ROB without capacity limits
(an ideal supplier) and under the supports (the interval demands) of the fuzzy demands,

i.e. D̃
[0]
t , t = 1, . . . 5. Thus, a production plan with the cost less than 195.833 is totally

accepted and with the cost greater than 215.42 is not at all accepted. The binary search
based algorithm outputs a production plan (with ξ = 0.01 and ε = 0.0001 for Algorithm 1):
xopt

1 = 40, xopt
2 = 30, xopt

3 = 30, xopt
4 = 25.3776, xopt

5 = 10, that maximizes the necessity

degree that costs of the plan fall within fuzzy goal G̃, N(fxxxopt ∈ G̃) = 1 − λ = 0.883.
This means that for all scenarios S whose possibility of occurrence is greater than 0.117,
π(S) > λ = 0.117, the degree of necessity (the degree of certainty) that total costs of plan xxxopt

fall within fuzzy goal G̃, is not less than 0.883. Furthermore, we are sure that the total
costs of the plan do not exceed 196.986 (the total cost at λ-cut equal to 0.117) for every
scenario S such that π(S) > 0.117. We now apply existing approaches to our example. We
first consider methods based on a defuzzification which take into account only one scenario
resulting from a defuzzification of fuzzy parameters (demands) – see, e.g., [20, 21]. Applying,
for instance, the index of Yager [45], we get crisp demands: d1(SY) = 37.5, d2(SY) = 10,

17



Table 3: Summary of the data and results of the illustrative example

data† results
capacity interval robust plan plan

limits demands plan (index of Yager) (Bellman-Zadeh)

t lt ut D̃t xoptt xYt xBZ
t

1 40 50 (30,37.5,45) 40 40 40
2 30 40 (5,10,15) 30 30 30
3 30 40 (10,20,30) 30 30 30
4 10 35 (20,30,40) 25.3776 10 10
5 10 35 (20,30,40) 10 17.5 17.5
†cIt = 1, cBt = 5, t = 1, . . . , 5 the worst costs under S such that π(S) > 0.117 for

G̃ = (0, 0, 195.83, 215.42) xxxopt xxxY xxxBZ

196.986 313.262 313.262

N(fxxxopt ∈ G̃) N(fxxxY ∈ G̃) N(fxxxBZ ∈ G̃)
0.883 0.593 0.593

d3(SY) = 20, d4(SY) = 30, d5(SY) = 30. An algorithm for the crisp dynamic lot-size problem
with these demands (see Section 3) returns an optimal production plan: xY

1 = 40, xY
2 = 30,

xY
3 = 30, xY

4 = 10, xY
5 = 17.5 with the total cost of 70. However, the cost of xxxY may

be even 313.262 for scenarios S such that π(S) > 0.117, and so 313.262 � 196.986. The
necessity degree that costs of xxxY fall within G̃ equals 0.593, N(fxxxY ∈ G̃) = 0.593, which gives
N(fxxxY ∈ G̃) < N(fxxxopt ∈ G̃). Let us examine a possibilistic programming (a mathematical
programming with fuzzy parameters), where solution concepts are based on the Bellman-
Zadeh approach [46] - see, e.g., [16, 17]. In this way, the assertion of the form “fxxx ∈ G̃”,
where fxxx is a cost of production plan xxx, is treated as a fuzzy constraint and values of the
membership function µ

G̃
stand for degrees of satisfaction of this constraint - the fuzzy goal.

In other words, the assertion induces Π(fxxx ∈ G̃). The joint possibility distribution generated
by the fuzzy goal as well as constraints with fuzzy demands is the minimum of the possibility
of satisfaction of the fuzzy goal and the possibility of feasibility of the constraints and thus
an optimal production plan is a plan, denoted by xxxBZ, that maximizes the possibility degree
of satisfaction both goal and the constraints. A trivial verification shows that for production
plan xxxY with the total cost of 70, the possibility degree of satisfaction the goal as well as
the constraints is equal to 1 in our fuzzy problem under consideration - in problem (3) with
triangular fuzzy demands D̃t, t = 1, . . . , 5, and so xxxBZ = xxxY. However, as we have seen above,
this plan is not a robust one. The summary of the data and results of the example is given
in Table 3.

In order to evaluate the efficiency of the binary search based algorithm, we show some re-
sults of computational experiments. For every number of periods T = 100, 200, . . . , 1000, ten
instances of the problem (24) with capacity limits were generated. In every instance, inventory
costs were randomly chosen from the set {1, 2, . . . , 10}, backorder costs were randomly chosen
from the set {20, 21, . . . , 50}, the production capacities were randomly generated intervals
[X,Y ], where X is an integer-valued random variable uniformly distributed in {0, 1, . . . , 99}
and Y is an integer-valued random variable uniformly distributed in {100, 101, . . . , 199}, the
demands are triangular fuzzy intervals with the supports equal to [0, 199] and the modal
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Table 4: Average computation times in seconds

β
T 0.00 · c 0.25 · c 0.50 · c 0.75 · c 1.00 · c

100 0.96 0.92 0.88 0.83 0.92
200 2.36 2.29 2.26 2.11 2.10
300 7.22 6.93 6.81 6.76 6.86
400 14.68 14.67 14.55 14.57 14.55
500 27.51 27.06 26.60 26.69 26.64
600 46.73 46.85 46.72 46.38 46.49
700 111.72 109.70 109.41 109.71 109.43
800 223.22 217.24 217.89 217.65 217.85
900 243.51 243.28 243.87 244.75 245.21

1000 417.78 416.86 416.14 414.14 415.80

values equal to Z, where Z is an integer-valued random variable uniformly distributed in
{0, 1, . . . , 199}, the fuzzy goal G̃ was modeled as a trapezoidal fuzzy interval G̃ = (0, 0, c, d),
where c was chosen as the maximal cost of an optimal robust production plan for the prob-
lem ROB without capacity limits and under the interval demands being the supports of
the generated triangular fuzzy demands. The values of d were equal to c + β, for β ∈
{0.00 · c, 0.25 · c, 0.50 · c, 0.75 · c, 1.00 · c} and the error tolerance ξ = 0.01. We used IBM
ILOG CPLEX 12.2 library (parallel using up 2 threads) [43] and a computer equipped with
Intel Core 2 Duo 2.5 GHz to solve the generated instances. In Table 4 average computation
times in seconds are presented. As we can see from the obtained results, the binary search
based algorithm, which calls Algorithm 1 at each iteration with convergence tolerance param-
eter ε = 0.0001, can solve efficiently the problem (24), with capacity limits, having up to 1000
periods.

6 Conclusion

In this paper, we have proposed methods to compute a robust procurement plan in the
collaborative supply chain, where the customer uses a version of MRP with ill-known demands
to plan a production. This problem is a certain version of the lot sizing problem with ill-
known demands modeled by fuzzy intervals, whose membership functions are regarded as
possibility distributions for the values of the unknown demands. We have introduced, in this
setting, the degrees of possibility and necessity that the cost of a plan does not exceed a
given threshold and a degree of necessity that costs of a plan fall within a given fuzzy goal,
which allows us to evaluate a given production plan. Moreover, we have provided methods
for computing these degrees. For finding robust production plans under fuzzy demands,
we have proposed two criteria: the first one consists in choosing a production plan which
maximizes the degree of necessity that its cost does not exceed a given threshold, the second
criterion is softer than the first one and consists in choosing a plan with the maximum degree
of necessity that costs of the plan fall within a given fuzzy goal. We have constructed the
algorithms for determining optimal robust production plans with respect to the criteria and
confirmed their efficiency experimentally. The criteria are a generalization, to the fuzzy case,
of the known from literature the min-max criterion. Consequently, we have shown in the

19



paper that there exists a link between interval uncertainty with the min-max criterion and
possibilistic uncertainty with the necessity based criteria. It turns out that the evaluation of
a production plan and choosing a plan in the fuzzy-valued problem are not harder than in the
interval-valued case. The difficulty of solving the fuzzy problems lies in the interval case, since
it is reduced to solving a small number of interval problems. Therefore, we have discussed
first the interval-valued case. In this case, we have considered the problem of determining
the optimal interval of possible costs of a production plan, which allowed us to evaluate the
plan. Determining the optimal bounds of the interval boils down to computing optimistic
and worst case scenarios. We have proposed linear programing based method for computing
an optimistic scenario and mixed integer programing and dynamic programming methods for
computing a worst case scenario. We have also identified a polynomial solvable case. For
computing an optimal robust production plan, we have provided a polynomial algorithm and
iterative one for the cases: with no capacity limits and with capacity limits, respectively. Then
we have extended the methods introduced for the interval-valued problem to the fuzzy-valued
one.

There is still an open question concerning the complexity status of computing a worst case
scenario of a given production plan. The problem is pseudopolynomially solvable and poly-
nomially solvable under certain assumptions and seems to be a core of most of the problems
considered in the paper. These assumptions are nearly realistic and make possible extension
of our approach to the case where a procurement plan is given for a family of product. In
other words, when the sum of quantities procured has to respect supplier capacity constraints
which are computed from a previous procurement plan. This problem is equivalent to the
multi-item capacitated lot sizing problem. The fact that the complexity status is still open
creates the possibility to find a polynomial algorithm and to extend our approach to the
multi-item, multi-level capacitated lot sizing problem without the assumptions. So, it is an
interesting topic of further research.

A Appendix

Proposition 3. It is easily seen that X̂t ∈ [Dt(S
−),Dt(S

+)], cI(X̂t−Dt(S
−)) = cB(Dt(S

+)−
X̂t), t = 1, . . . , T , and x̂1 ≥ 0. Since Dt−1(S−) ≤ Dt(S

−) and Dt−1(S+) ≤ Dt(S
+),

t ≥ 2, (13) shows that x̂t ≥ 0, t ≥ 2. Hence Lt(X̂t,Dt(S
−)) = cI(X̂t − Dt(S

−)) and
Lt(X̂t,Dt(S

+)) = cB(Dt(S
+) − X̂t), t = 1, . . . , T , and so F (x̂xx, S−) = F (x̂xx, S+). Let S be

any scenario, S ∈ Γ. Therefore, F (x̂xx, S) =
∑T

t=1 max{cI(X̂t − Dt(S)), cB(Dt(S) − X̂t)} ≤∑T
t=1 max{cI(X̂t−Dt(S

−)), cB(Dt(S
+)−X̂t)} =

∑T
t=1 Lt(X̂t,Dt(S

−)) =
∑T

t=1 Lt(X̂t,Dt(S
+))

= F (x̂xx, S−) = F (x̂xx, S+).

Theorem 2. We show that A(xxx) ≥ A(x̂xx) for every xxx ∈ X. Consider any xxx
′ ∈ X. Let us modify

xxx
′

in the following way:

X
′′
t =


Dt(S

−) if X
′
t < Dt(S

−),

X
′
t if Dt(S

−) ≤ X
′
t ≤ Dt(S

+), t = 1, . . . , T ,

Dt(S
+) if X

′
t > Dt(S

+).

Now X
′′
t ∈ [Dt(S

−),Dt(S
+)]. From the feasibility of xxx

′
, it follows that X

′
t−1 ≤ X

′
t, t ≥ 2.

Hence and Dt−1(S−) ≤ Dt(S
−) and Dt−1(S+) ≤ Dt(S

+), t ≥ 2, we obtain X
′′
t−1 ≤ X

′′
t , t ≥ 2
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and, in consequence xxx
′′ ∈ X. Furthermore, it is easy to check that A(xxx

′
) ≥ A(xxx

′′
). By the

definition of A(xxx
′′
), we have A(xxx

′′
) ≥ max{F (xxx

′′
, S−), F (xxx

′′
, S+)}. We now only need to show

that max{F (xxx
′′
, S−), F (xxx

′′
, S+)} ≥ F (x̂xx, S−) = F (x̂xx, S+).

Let us focus on a production plan x̂xx (determined by formulae (13)). Notice that function
F (xxx, S−) =

∑T
t=1 c

I(Xt−Dt(S
−)) (resp. F (xxx, S+) =

∑T
t=1 c

B(Dt(S
+)−Xt)) are the sum of

linear and increasing (resp. decreasing) functions with respect to Xt, c
I(Xt −Dt(S

−)) ≥ 0
(resp. cB(Dt(S

+) − Xt) ≥ 0) for Xt ∈ [Dt(S
−),Dt(S

+)], t = 1, . . . , T . Hence, for each
t = 1, . . . , T there exists the intersection point in interval [Dt(S

−),Dt(S
+)]. It is easy to check

that X̂t ∈ [Dt(S
−),Dt(S

+)] and cI(X̂t−Dt(S
−)) = cB(Dt(S

+)−X̂t), t = 1, . . . , T . Therefore,
the points X̂t, t = 1, . . . , T , are the intersection ones and max{F (xxx

′′
, S−), F (xxx

′′
, S+)} ≥

F (x̂xx, S−) = F (x̂xx, S+). Proposition 3 shows that F (x̂xx, S−) = F (x̂xx, S+) = A(x̂xx) and we thus
get A(xxx

′
) ≥ A(xxx

′′
) ≥ A(x̂xx).

Theorem 3. The proof is almost the same as those given in [47, Theorem 2.5] and [40, The-
orem 3]. We will denote by {(xxxk, ak)} the sequence of optimal solution (xxx∗, a∗) computed in
consecutive iterations in Step 6 of Algorithm 1, k stands for the k-th iteration. By picking
a subsequence, if necessary, the sequence {(xxxk, ak)} converges to point (x̂xx, â), x̂xx ∈ X, which
follows from the fact that sequence {xxxk} belong to the bounded and closet set X ⊆ RT+ (X is
a compact set) and {ak} is a nondecreasing sequence bounded above. Similar considerations
apply to the sequence {Sk} of worst case scenarios determined in Step 2 of Algorithm 1.
The set Γ is a closed and bounded (compact) and hence {Sk} converges to Ŝ ∈ Γ. Since
scenario cuts are appended to problem RX-ROB, the inequality ak+1 ≥ F (xxxk+1, Sk) holds.
By continuity of F , we have

â ≥ F (x̂xx, Ŝ). (26)

Let us define the set Sw(xxx) of worst case scenarios for xxx ∈ X, i.e. Sw(xxx) = {Sw |Sw =
arg maxS∈Γ F (xxx, S)}, which is the point-to-set mapping. The set Sw(xxx) is nonempty for
every for xxx ∈ X. By [39, Theorem 1.5], Sw is upper semicontinuous at x̂xx and so Ŝ ∈ Sw(x̂xx).
Therefore

A(x̂xx) = max
S∈Γ

F (x̂xx, S) = F (x̂xx, Ŝ). (27)

Combining (26) and (27), we obtain â ≥ A(x̂xx). By [39, Lemma 1.2] A is upper semicontinuous,
which yields

A(xxxk) = F (xxxk, Sk) ≤ ak + ε, for some sufficiently large k.

This implies that the termination criterion in Step 3 of Algorithm 1 will be fulfilled in a finite
number of iterations.
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