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Abstract

In this paper we analyze the notion of family of aggregation operators (FAO), also refereed to
as extended aggregation functions (EAF ), i.e., a set of aggregation operators defined in the unit
interval which aggregate several input values into a single output value. In particular, we address
the key issue of the relationship that should hold between the operators in a family in order to
understand they properly define a consistent FAO. We focus on the idea of strict stability of a
family of aggregation operators in order to propose an operative notion of consistency between
operators of such a family. In this way, robustness of the aggregation process can be guaranteed.
Some strict stability definitions for FAOs are proposed, leading to a classification of the main
aggregation operators in terms of the properties they satisfy. Furthermore, we apply this approach
to analyze the stability of some families of aggregation operators based on weights.
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1. Introduction.

Aggregation of information appears in a natural way in all kinds of knowledge based systems (see,
e.g., [2, 6, 11]). Usually, the aggregation-fusion process produces a reduction in the dimension of
the original data, a need whenever the decision maker can not manage the excessive complexity of
a problem. The main aim of such aggregation is to simplify information. Without loss of generality
we can say that an aggregation operator is basically defined as a real function An that, from n data
items x1,. . . ,xn in [0, 1] ⊆ [+∞,−∞], produces an aggregated value An(x1, . . . , xn) in [0,1] [4].

Nevertheless, some information can frequently get lost or deleted, and even added. In these
cases, a data cardinality change occurs, and each time it happens a different aggregation operator
Am has to be used to aggregate the new collection of m elements. This rather simple issue, known
as the dimensionality problem, has however at least two deep implications.

In first place, instead of just a single operator, to effectively solve the aggregation problem,
it is rather needed to count with a family of operators, which enables to aggregate collections of
items with different dimension. This has led to the current standard definition [4, 15] of a family
of aggregation operators (FAO) as a set {An : [0, 1]n → [0, 1], n ∈ N}, providing instructions on
how to aggregate collections of items of any dimension n. This sequence of aggregation functions
{An}n∈N is also called extended aggregation functions (EAF ) by other authors [5, 15].

In second place, the aggregation process as a whole has to possess some kind of consistency
despite the inevitable cardinality changes. This is, the operators that compose a FAO have to be
somehow related, so the aggregation process remains the same throughout the possible changes in
the dimension n of the data. For example, it would seem quite strange to propose a FAO using
the minimum for n = 2, the arithmetic mean for n = 3, the geometric mean for n = 4 and the
median for n = 5. And though it could seem that a formal approach could solve this problem by
demanding a conceptual unity through a mathematical formula, it should be noted that this last
example allows a trivial compact mathematical formulation. Therefore, it seems logical to study
properties giving sense to the sequences A(2), A(3), A(4), . . . , because otherwise we may have only
a bunch of disconnected operators.

However, note that the current definition of a FAO does not demand any additional property
regarding this last point. In this sense, many properties have been studied in relation to single
aggregation operators An, such as continuity, commutativity, monotonicity and associativity, just
to mention a few. In contrast, few efforts have been dedicated to study the relations between these
operators as members of a family of aggregation functions. As it has been pointed out in some
previous works (see for example [1, 7–9, 12]), most commonly assumed properties (e.g. continuity)
represent desirable characteristics related to each aggregation function An, but they do not provide
any condition regarding the consistency of the FAO as a whole. In this sense, no relation is being
imposed among the members of a given family of operators.

Thus, as it is shown in [12], a debate about the importance of considering FAOs as a consis-
tent whole is a necessary to-do task. For example, the recursive rules in [8, 9] suggest a notion
of consistency based on the construction of aggregation operators in a sequential way. The key
idea of recursiveness is that, in order to be consistent, an aggregation rule should be based upon
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an iterative application of binary operators taking advantage of previous aggregations. This idea
is also studied in [1, 12], in which the recursive rules are generalized in a more flexible way. In
addition the concept of operativity of a FAO is defined and analyzed in [17, 18], trying to capture
the notion of consistency from a computational point of view.

Nevertheless, the notion of consistency, in the above-exposed sense of a necessary relation be-
tween the members of a FAO, is perhaps too wide. Many facets have to be taken into account. For
example, consistency is indeed a more general concept than that of recursiveness, since some non-
recursive operators, like the median, fulfil such idea of consistency. Hence, it seems more plausible
and convenient, at least as a first step, to define properties expressing such a notion from different
perspectives, allowing different kinds of consistency instead of pursuing a single definition of such
general notion of consistency.

Particularly, in this paper we study a notion of consistency based on the robustness of the aggre-
gation process. In this sense, we introduce the property of strict stability for a family of aggregation
functions extending the self identity property defined in [24]. Such strict stability property tries to
force a family to have a stable/continuous definition, in the sense that an operator defined for n
items should not differ too much of an operator of the same family defined for n−1 elements, when
the last-added n-th item of information is the aggregation of the previous n − 1 ones. Therefore,
this property gives us some restrictions to be considered in order to maintain the logical consistency
of operators of a given family, in such a way that the robustness of the aggregation process when a
data cardinality change occurs is guaranteed.

In the second section of this paper, the concept of strict stability is formalized, and different
possible levels of strict stability for a family of aggregation operators are considered. In the third
section, we study the strict stability level of some standard families of operators. In the fourth
section, we analyze the weights of the weighted mean FAO, with the aim of giving conditions
that guarantee the robustness of an aggregation process based on weighted operators. On the fifth
section, the convergence of some FAOs in terms of the stability of its behavior is represented by
means of additional computational experiments. Finally, this paper is concluded with some final
comments.

2. Strict stability of a family of aggregation operators.

As pointed out in [4], stability of any mathematical model for engineering/applied problems means,
roughly speaking, that ”small input errors” does not gives us ”big output errors”. The stability
property for an aggregation function An is defined in a similar way to a Lipschitz condition, in the
sense that small changes in the vector x should not produce big changes in An(x).

Therefore, stability is a concept that has been already studied in the framework of aggregation
operators. For example, in [2], a definition of p − stability for a family of aggregation operators
{An}n∈N was proposed. A FAO is considered p-stable if all the operators that define such a family
are p-stable.
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In this way, if we take a FAO using the maximum if n is even, and the minimum if n is odd,
then we would get a p-stable FAO since these two functions are p-stable. But clearly an aggregation
process with this definition is not robust. In our opinion, this definition of stability can not guar-
antee a stable behavior in terms of the outputs of the aggregation process when cardinality changes
are possible. In other words, it can not guarantee the existence of a unifying concept linking the
members of a family of aggregation operators.

Similarly, in [15] it is shown that the aggregation functions of a family can be related by means of
certain grouping properties. However, again it is assumed that a FAO fulfills a property if ∀ n ∈ N
the n− ary function fulfills such a property.

The notion of strict stability of a family of aggregation operators proposed here is also in-
spired in continuity, though our approach focuses in the cardinality of the data rather than in
the data itself. In this way, we shall be able to assure some robustness in the result of the ag-
gregation process. Particularly, let An(x1, . . . , xn) be the aggregated value of the n-dimensional
data x1, . . . , xn. Now, let us suppose that a new element xn+1 has to be aggregated. If xn+1

is close to the aggregation result An(x1, . . . , xn) of the previous n-dimensional data x1, . . . , xn,
then the result of aggregating these n + 1 elements should not differ too much with the re-
sult of aggregating such n items. Following the idea of stability for any mathematical tool, if
|xn+1−An(x1, . . . , xn)| is small, then |An+1(x1, . . . , xn, xn+1)−An(x1, . . . , xn)| should be also small.
Thus, given a stable family, it should be reasonable to assume that if |xn+1 −An(x1, . . . , xn)| = 0,
then |An+1(x1, . . . , xn, xn+1) − An(x1, . . . , xn)| should be also zero. Therefore, our approach is
obviously partially gathered in the self − identity definition given in [24].

Definition 2.1. (Yager 1997). Let {An : [0, 1]n → [0, 1], n ∈ N} be a family of aggregation op-
erators. Then, it is said that the family {An} satisfy the self-identity property if, ∀n ∈ N and
∀x1, . . . , xn ∈ [0, 1], the following holds:

An(x1, x2, ...xn−1, An−1(x1, x2..., xn−1)) = An−1(x1, x2, ..., xn−1)

Let us observe that self-identity is close to the stability idea in the sense that if the new item
that has to be aggregated coincides with the aggregation value of the previous data, then the new
result should not change. Nevertheless, in the self-identity definition it is implicitly imposed the
fact that the information has to be aggregated in some order, specifically from left to right, so we
have to put the last data in the n− th position of the aggregation function.

It is important to note that if the family {An}n∈N is not symmetric (i.e. there exist a n for
which the aggregation operator An is not symmetric), then the position of the new data is relevant
in the final output of the aggregation process.

For example, let us analyze self-identity in the backward inductive extension {Abn}n∈N and for-
ward inductive extension {Afn}n∈N [4] of any binary aggregation operator, defined for n > 2 as Abn =
L2 (x1, L2(. . . , L2(xn−1, xn) . . .) for n > 2 , andAfn = L2 (. . . , (L2(L2(x1, x2), x3)), . . . , xn) for n >
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2 , where L2 is a binary aggregation operator, i.e. L2 : [0, 1]2 → [0, 1].

It can be proven that the family of aggregation functions {Afn}n∈N satisfies self-identity if
L2 is idempotent, i.e., An(x, ..., x) = x, for all n ∈ N and x ∈ [0, 1] (see also [4]). Nev-
ertheless, the family {Abn}n∈N does not satisfy self-identity since the order in which this fam-
ily aggregates the information is inverse (i.e. from right to left). In our opinion, the family
Abn = L2 (x1, L2(. . . , L2(xn−1, xn))) for n > 2 should be consistent in the sense of stability
when the information is aggregated from right to left. From this observation, we propose the
following definitions for stability, that extend the notion of self-identity both in the direction of
allowing its application to non-symmetric operators, as well as in the direction of allowing different
levels (strict, weak,. . . ) of fulfillment.

Definition 2.2. Let {An : [0, 1]n → [0, 1], n ∈ N} be a family of aggregation operators. Then, it is
said that:

1. {An}n∈N is a R-strictly stable family if

An(x1, x2, ..., xn−1, An−1(x1, x2..., xn−1)) = An−1(x1, x2, ..., xn−1)

holds ∀n ≥ 3 and ∀{xn}n∈N in [0, 1]

2. {An}n∈N is a L-strictly stable family if

An(An−1(x1, x2, ..., xn−1), x1, x2, ..., xn−1) = An−1(x1, x2, ..., xn−1)

holds ∀n ≥ 3 and ∀{xn}n∈N in [0, 1]

3. {An}n∈N is a LR-strictly stable family if both properties hold simultaneously.

Let us observe that in case the family {An}n∈N is symmetric (i.e. for all n, An is a symmetric
aggregation operator), then the three previous definitions are equivalent and coincide with the self-
identity property defined by Yager. Thus, those symmetric families that satisfy the self-identity
property, will be LR-strictly stable families. Among others, the following well-known FAOs belong
to this group: the minimum {Minn(x1, . . . , xn)}n∈N, the maximum {Maxn(x1, . . . , xn)}n∈N, the

median {Mdn}n∈N, the arithmetic mean {Mn(x1, . . . , xn) =
n∑
i=1

xi/n}n∈N, the geometric mean

{Gn(x1, . . . , xn) =
n∏
i=1

xi)
1/n}n∈N and the harmonic mean {Hn(x1, . . . , xn) = n/(

n∑
i=1

1/xi)}n∈N.

On the other hand, non-symmetric families, as for example the weighted mean family

Wn(x1, . . . , xn) =
n∑
i=1

wni · xi, n ∈ N,

present differences based on how its weights are built, as it will be discussed below. Also, as it
has been already pointed out, any family of binary idempotent operators with inductive forward
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extension {Af}n∈N satisfies R-strict stability, and any family of binary idempotent operators with
inductive backward extension {Ab}n∈N satisfies L-strict stability.

Although the previous definition presents a reasonable approach to the idea of consistency of a
FAO (i.e., from the point of view of its stability in front of cardinality changes), it is important to
note that not all consistent families are included in this definition. Let us consider for example the

family of product aggregation operators, defined as

{
Pn(x1, . . . , xn) =

n∏
i=1

(xi)

}
n∈N

. This family

defines an aggregation process that can be considered as consistent, but it does not satisfy any of
the three previous definitions. In this way the product FAO shows the existing differences between
the properties of recursion and stability, since it is a recursive operator but it is not a strictly stable
one. Similarly, some weighted mean based aggregation processes can be considered as consistent
though they do not fulfill the above definition either.

Therefore, in order to extend the proposed approach to other consistent FAOs, we propose the
following two definitions, that express relaxed versions of the same strict stability concept: in the
first one, strict stability is fulfilled in the limit, while in the second one, a weaker concept of stability
is reached by demanding the operators to be, in the limit, almost sure strictly stable.

Definition 2.3. Let {An : [0, 1]n → [0, 1], n ∈ N} be a family of aggregation operators. Then, it is
said that:

1. {An}n∈N is an asymptotically R-strictly stable family if

lim
n→+∞

∣∣An(x1, ...xn−1, An−1(x1, ..., xn−1))−An−1(x1, ..., xn−1)
∣∣ = 0

holds ∀{xn}n∈N in [0, 1].

2. {An}n∈N is an asymptotically L-strictly stable family if

lim
n→+∞

∣∣An(An−1(x1, ..., xn−1), x1, ..., xn−1)−An−1(x1, ..., xn−1)
∣∣ = 0

holds ∀{xn}n∈N in [0, 1].

3. {An}n∈N is an asymptotically strictly stable family if the two above properties simultaneously
hold.

In the previous definition, let us observe that we have a point-wise convergence of n-ary aggrega-
tion operators that has to be satisfied for any possible succession {xn}n∈N. Also, note that any FAO
that converges to a strictly stable FAO (and particularly any strictly stable FAO) is asymptotically
strictly stable. In order to illustrate this point, let us consider the case of the family {Wn, n ∈ N}
of weighted mean operators defined through a vector of weights wn = (wn1 , ..., w

n
n) ∈ [0, 1]n in such

a way that Wn(x1, ..., xn) =
n∑
i=1

wni xi, where
n∑
i=1

wni = 1 and (x1, ..., xn) ∈ [0, 1]n ∀n. Thus, if for

example the weights wn are given by
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wni =


1

(n+ 1)
if 1 ≤ i ≤ n− 1

2

(n+ 1)
if i = n

then the family {Wn}n∈N is L-strictly stable. However, it is not R-strictly stable: just choose
for n = 3 the data vector (x1, x2) = (0, 1), so it holds W2(0, 1) = 2/3 but W3(0, 1,W2(0, 1)) =
W3(0, 1, 2/3) = 7/12. Nevertheless, the family {Wn}n∈N is asymptotically R-strictly stable.

To see it, let us denote

difR(Wn,Wn−1) = Wn(x1, . . . , xn−1,Wn−1(x1, . . . , xn−1))−Wn−1(x1, . . . , xn−1).

Then, it holds that

difR(Wn,Wn−1) =
n−1∑
i=1

(wni − (1− wnn)wn−1i )xi =
n−2∑
i=1

1

n(n+ 1)
xi +

2− n
n(n+ 1)

xn−1

and thus

∣∣∣difR(Wn,Wn−1)
∣∣∣ ≤ n−2∑

i=1

∣∣∣ 1

n(n+ 1)
xi

∣∣∣+
∣∣∣ 2− n
n(n+ 1)

xn−1

∣∣∣ ≤ (n− 2)

n(n+ 1)
+

(n− 2)

n(n+ 1)
= 2

(n− 2)

n(n+ 1)

so it is
∣∣difR(Wn,Wn−1)

∣∣ −→n→∞
0, and therefore the family is stable in the limit. However, if the

weights are now given by, for example,

wni =


1

2(n− 1)
if 1 ≤ i ≤ n− 1

1

2
if i = n

then the resulting weighted mean FAO is L-strictly stable but not R-strictly stable, since in this
case it holds that

difR(Wn,Wn−1) =
n−1∑
i=1

(wni − (1− wnn)wn−1i )xi =
n−2∑
i=1

(2n− 6) · xi
(2n− 2)(4n− 8)

− (n− 3) · xn−1
4(n− 1)

and then by taking (x1, ..., xn−1) = (1, ...1, 0) it follows that difR(Wn,Wn−1)→ 1/4 when n tends
to infinity.

Therefore, the last definition properly extends the application range of the stability notion
proposed in this paper for consistent, non-strictly stable FAOs, covering some weighted mean
operators. However, again the product FAO {Pn}n∈N fails to fulfill this notion of consistency. For
example, if (x1, x2, . . . ) = (1/2, 1, 1, . . . ), then Pn−1 = 1/2, but
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Pn(x1, . . . , xn−1, Pn−1) = (Pn−1)2 = 1/4, ∀ n > 2,

so the product family is neither strictly stable nor asymptotically strictly stable. Nevertheless, since

difR(Pn, Pn−1) =
n−1∏
i=1

xi
n−1∏
i=1

xi −
n−1∏
i=1

xi =
n−1∏
i=1

xi

(
n−1∏
i=1

xi − 1

)
,

the product family fails to fulfill asymptotic strict stability just because of those successions {xn}n∈N
such that

n∏
i=1

xn −→
n→∞

c ∈ (0, 1), which implies that xn −→
n→∞

1 (but note that the opposite is not

true, since if ∃k / xk = 0 then
∞∏
n=1

xn = 0.

This leads to guess that those successions making the product FAO not to fulfill asymptotic
strict stability constitute a very reduced subset F of the set S of all successions in [0, 1]. In other
words, the chances of gathering a collection of data potentially leading to a non-stable behavior is
expected to be rather small.

In fact, such arguments can be formalized in terms of a probability measure. Let S = {{xn}n∈N :
xi ∈ [0, 1] ∀i} be the set of successions in [0, 1], and let {An}n∈N be a FAO involved in the
aggregation process of a succession sn = (x1, . . . , xn) ∈ S. Consider an experiment given by
”observe the stability of {An(sn)}n∈N”, or in the other words, ”observe the distance between
An(sn−1, An−1(sn−1)) and An−1(sn−1)” (for the case of the strict stability from the right). The
associated sample space E is given by the set of the possible strict stability levels of {An(sn)}n∈N.
Thus, if the cardinality of S tends to infinite, it is possible to obtain the probability of the event
”gathering a succession sn leading to a strictly stable behavior of {An}n∈N FAO”, i.e.

P[ lim
n→+∞

|An(sn−1, An−1(sn−1))−An−1(sn−1)| = 0 ] = 1.

In this way, if the value of the data items (X1, ..., Xn, ...) are assumed to be uniform U([0, 1])
independent random variables, then it is possible to introduce a probability measure over the set
of successions S through the conjoint probability distribution function:

P(a1 ≤ X1 ≤ b1, ..., an ≤ Xn ≤ bn, ...) =

∞∏
i=1

P(ai ≤ Xi ≤ bi) =

∞∏
i=1

(bi − ai),

where ai, bi ∈ [0, 1] ∀i. Thus, for example, the probability of a given succession {xn}n∈N is
clearly zero, and the probability of the set of all successions such that xi ∈ [0, 1/2] ∀i ≤ N
and xi ∈ [0, 1] ∀i > N , for a given N , is (1/2)N . Then it is possible to see that the set

F =

{
{xn}n∈N/

∞∏
n=1

xn −→
n→∞

c ∈ (0, 1)

}
in which the product FAO fails to be strictly stable has

probability zero.
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Effectively, as pointed above, F ⊂ S1 = {(xn)n∈N/xn → 1}. And note that, for each ε > 0, S1
can be partitioned into subsets Cn =

{
{xk}k∈N/

∣∣xk − 1
∣∣ < ε, ∀k ≥ n

}
, n ∈ N. Since Cn

⋂
Cm =

∅ if n 6= m, it then holds that

P(F ) ≤ P(S1) = P

(⋃
n∈N

Cn

)
=

∞∑
n=1

P(Cn) ≤
∞∑
n=1

∞∏
k=n

ε = 0,

and thus it can be said that the probability of the product FAO not being strictly stable is zero.

Therefore, the product FAO verifies the notion of stability in a weaker version, that can be
characterized in terms of almost sure convergence to a strictly stable FAO. This lead to introduce
the notion of almost sure strict stability.

Definition 2.4. Let {An : [0, 1]n → [0, 1], n ∈ N} be a family of aggregation operators. Then, we
will say that

1. {An}n∈N is an almost sure R-strictly stable family if

P[ lim
n→+∞

|An(x1, ..., xn−1, An−1(x1, ..., xn−1))−An−1(x1, ..., xn−1)| = 0 ] = 1,∀xi ∼ U(0, 1)

holds ∀{xn}n∈N in [0, 1].

2. {An}n∈N is an almost sure L-strictly stable family if

P[ lim
n→+∞

[ |An(An−1(x1, ..., xn−1), x1, ..., xn−1)−An−1(x1, ..., xn−1)| = 0 ] = 1,∀xi ∼ U(0, 1)

holds ∀{xn}n∈N in [0, 1].

3. {An}n∈N is an almost sure LR-strictly stable family if the above two conditions hold simulta-
neously.

For example, the product {Pn(x1, . . . , xn) =
∏n
i=1 xi}n∈N and the family of operators

{Qn(x1, . . . , xn) =
∏n
i=1 x

i
i}n∈N constitute almost sure strictly stable FAOs.

Since asymptotically strictly stable and almost sure asymptotically strictly stable FAOs con-
verge to strictly stable FAOs, and asymptotically strictly stable FAOs are particular cases of
almost sure asymptotically strictly stable FAOs, the following results are immediate:

Proposition 2.1. Let {An : [0, 1]n → [0, 1], n ∈ N} be a family of aggregation operators. Then:

1. If the family {An}n∈N satisfies the property of strict stability, then it also satisfies the property
of asymptotic strict stability.

2. If the family {An}n∈N satisfies the property of asymptotic strict stability, then it satisfies the
property of almost sure asymptotic strict stability.

Therefore, if a FAO is not almost sure asymptotically strictly stable, then it does not verify
any of the three levels of strict stability. In this case we will talk about an unstable FAO.
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Definition 2.5. Let {An : [0, 1]n → [0, 1], n ∈ N} be a family of aggregation operators. Then, we
will say that:

1. It fulfills the property of R-instability if the family is not almost sure asymptotically R-strict
stable, and it will be called R-unstable family.

2. It fulfills the property of L-instability if the family is not almost sure asymptotically L-strict
stable, and it will be called L-unstable family.

3. It fulfills the property of LR-instability if An satisfies the above two points, and it will be called
LR-unstable family.

Therefore, we can summarize the definitions in this section as follows: given a data collection
x1, ..., xn of arbitrary length n, such that xn = An−1(x1, ..., xn−1) for a FAO A = {An, n ∈ N},

1. If the aggregations of n and n− 1 items are equal, then A is strictly stable.

2. If the aggregations of n and n− 1 items converge, then A is asymptotically strictly stable.

3. If the aggregations of n and n− 1 items almost sure converge, then A is almost sure asymp-
totically strictly stable.

4. Finally, if the aggregations does not almost sure converge, then A is an unstable FAO.

Thus, it is then possible to differentiate the families of aggregation operators in relation to their
level of stability. In the next section, we carry out this task for some standard FAOs.

3. Analysis of the stability levels of some well-known families of aggregation operators.

In this section, the level of stability of some families of frequently used aggregation operators is
analyzed, in order to know in advance the level of robustness of the involved aggregation process.
In this way, no matter the cardinality of data, it is possible to specify the stability level of each
FAO, and therefore the global robustness of the associated aggregation process.

Let us analyze the stability level of some of the most used aggregation functions, starting from
the minimum family.

Proposition 3.1. The minimum operators family {Minn : [0, 1]n → [0, 1], n ∈ N} is a LR-strict
stable family.

Proof:

Minn(x1, ..., xn−1,Minn−1(x1, ..., xn−1)) = Minn(x1, ..., xn−1, x(1))

= x(1)

= Minn−1(x1, ..., xn−1)

10



Proposition 3.2. The maximum operators family {Maxn : [0, 1]n → [0, 1], n ∈ N} is a LR-strict
stable family.

Proof:

Maxn(x1, ..., xn−1,Maxn−1(x1, ..., xn−1)) = Maxn(x1, ..., xn−1, x(n−1))

= x(n−1)

= Maxn−1(x1, ..., xn−1)

Proposition 3.3. The median operators family {Mdn : [0, 1]n → [0, 1], n ∈ N} is a LR-strict stable
family.

Proof:

If n− 1 is odd:

Mdn(x1, ..., xn−1,Mdn−1(x1, ..., xn−1)) = Mdn

(
x1, ..., xn−1, x(n+1

2 )

)
= x(n+1

2 )

= Mdn−1(x1, ..., xn−1)

If n− 1 is even:

Mdn(x1, ..., xn−1,Mdn−1(x1, ..., xn−1)) = Mdn

(
x1, ..., xn−1,

x(n
2 ) + x(n

2 +1)

2

)
=

x(n
2 ) + x(n

2 +1)

2
= Mdn−1(x1, ..., xn−1)

Proposition 3.4. The mean operators family {Mn : [0, 1]n → [0, 1], n ∈ N} is a LR-strict stable
family.

Proof:

Mn(x1, ..., xn−1,Mn−1(x1, ..., xn−1)) =
1

n

(
n−1∑
i=1

xi +
1

n− 1

n−1∑
i=1

xi

)

=
1

n

 (n− 1)
n−1∑
i=1

xi +
n−1∑
i=1

xi

n− 1


=

1

n(n− 1)

(
n−1∑
i=1

xi(n− 1 + 1)

)
= Mn−1(x1, ..., xn−1)

11



Proposition 3.5. The geometric mean operators family {Gn : [0, 1]n → [0, 1], n ∈ N} is a LR-strict
stable family.

Proof:

Gn(x1, ..., xn−1, Gn−1(x1, ..., xn−1)) =

n−1∏
i=1

xi

(
n−1∏
i=1

xi

) 1
n−1


1
n

=

(n−1∏
i=1

xi

) n
n−1

 1
n

= Gn−1(x1, ..., xn−1)

Proposition 3.6. The harmonic mean operators family {Hn : [0, 1]n → [0, 1], n ∈ N} is a LR-strict
stable family.

Proof:

Hn(x1, ..., xn−1, Hn−1(x1, ..., xn−1)) =
n

n−1∑
i=1

1
xi

+ 1
n−1

n−1∑
i=1

1
xi

=
n

n−1∑
i=1

1
xi

+

n−1∑
i=1

1
xi

n−1

=
n(n− 1)

(n− 1)
n−1∑
i=1

1
xi

+
n−1∑
i=1

1
xi

=
n(n− 1)

n
n−1∑
i=1

1
xi

= Hn−1(x1, ..., xn−1)

Proposition 3.7. The family of binary idempotent operators with inductive extension forward
{Afn : [0, 1]n → [0, 1], n ∈ N} is a R-strict stable family.

Proof:

Afn(x1, ..., xn−1, A
f
n−1(x1, ..., xn−1)) = A2(..(A2(A2(x1, x2)..), xn−1), Afn−1)

= A2(Afn−1, A
f
n−1)

= Afn−1(x1, ..., xn−1)
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This last equation only holds if A2 is a binary idempotent operator. In general, {Afn}n∈N is not
a L-strict stable family. Let us consider, for example, the L-strict condition, for n = 3:

Af3 (Af2 (x1, x2), x1, x2)

should coincide with Af2 (x1, x2), but

Af3 (Af2 (x1, x2), x1, x2) = A2 (A2(A2(x1, x2), x1), x2),

which in general is not equal to A2(x1, x2).

Proposition 3.8. The family of binary idempotent operators with inductive extension backward
{Abn : [0, 1]n → [0, 1], n ∈ N} is a L-strict stable family.

Proof:

Abn(Abn−1, x2, ..., xn) = A2(Abn−1, A2(..., A2(xn−2, xn−1)))

= A2(Afn−1, A
b
n−1)

= Abn−1(x1, ..., xn−1)

This last equation only holds if A2 is a binary idempotent operator. With a similar analysis we
can conclude that, in general, the family {Abn}n∈N is not a R-strictly stable family.

The stability of the product aggregation operator family {Pn}n∈N was analyzed in the previous
section in order to introduce Definition 2.5. In particular, it was shown that {Pn}n∈N is neither
a strictly stable family nor an asymptotically strictly stable family, but it indeed is an almost sure
asymptotically strictly stable family. In a similar way, it can be proven that the family {Qn}n∈N is
an almost sure asymptotically strictly stable family but not an asymptotically strictly stable family.

Proposition 3.9. The weighted mean FAOs {Wn}n∈N are unstable families in general (i.e., mean-
while no further restrictions are imposed on their weights).

Proof:

In Section 2 a family of weights was defined in such a way that the correspondent weighted
mean FAO shows a non-stable behavior. Now we show with an example that, in general (i.e. if
no further restrictions over the weights are considered), the Weighted Mean is not an almost sure
asymptotically strictly stable FAO, or equivalently that such a family is unstable.

Let us consider the weights given by

wni =


1

2(n− 2)
if 1 < i < n

1/4 if i = 1

1/4 if i = n

13



Note that
n∑
i=1

wni = 1 ∀n. Thus,

difR(Wn,Wn−1) =
n−1∑
i=1

(
wni − (1− wnn)wn−1i

)
xi =

1

16
x1 +

n−2∑
i=2

n− 6

8n2 − 40n+ 48
xi−

3n− 2

16n− 32
xn−1

Assuming that all values of x2,...,xn−1 are being generated by independent random uniform U [0, 1]

variables, in the limit we have that
n−2
lim
i=2

n− 6

8n2 − 40n+ 48
xi ∈ [0, 1/8] and

3n− 2

16n− 32
xn−1 ∈ [0, 3/16].

Therefore, if for instance it is ε = 0.01, and assuming n big enough, it then follows that

∣∣∣difR(Wn,Wn−1)
∣∣∣ ≥ 1

16

∣∣x1 − 3xn−1
∣∣ > ε = 0.01

holds if and only if it is either 1 ≥ x1 > 3xn−1 + 0.16 or 0 ≤ x1 < 3xn−1 − 0.16. As any value
xn−1 ∈ [0, 1] leads to an interval with positive length for x1, in terms of the probability measure
introduced in Section 2 it follows that

P
({

(xn)n∈N ⊂ [0, 1] / lim
n→∞

∣∣∣difR(Wn,Wn−1)
∣∣∣ > 0.01

})
> 0,

and thus this weighted mean FAO is not almost sure asymptotically R-strictly stable. Also, since it is

difL(Wn,Wn−1) =
n−1∑
i=1

(
wni+1 − (1− wn1 )wn−1i

)
xi =

2− 3n

16n− 32
x1+

n−2∑
i=2

n− 6

8n2 − 40n+ 48
xi+

1

16
xn−1,

a similar reasoning can be carried out in order to conclude that {Wn}n∈N is not almost sure asymp-
totically L-strictly stable. Therefore, the weighted mean FAO is unstable in general.

In the following result we analyze the stability of the family of OWA operators {On : [0, 1]n →
[0, 1], n ∈ N}, where On is an OWA operator function.

Proposition 3.10. The OWA operators family {On : [0, 1]n → [0, 1], n ∈ N} is unstable FAOs in
general (i.e., meanwhile no further restrictions are imposed on their weights).

Proof:

In order to prove that {On}n∈N is an unstable FAOs, let us consider the family {IAn}n∈N
defined as

IAn(x1, . . . , xn) =

{
Max(x1, . . . , xn) if n is odd

Min(x1, . . . , xn) if n is even

14



The previous family can be viewed as a particular case of OWA family by taking the weights
wn = (1, 0, 0, ...) if n is odd and wn = (0, ..., 0, 1) if n is even. To prove that {IAn}n is unstable, we
will see that given ε > 0, it is possible to find a family of successions Rε with positive probability,
such that for any (xn)n ∈ Rε, there exist n0 ≥ 2 with

∣∣IAn(x1, . . . , xn−1, IAn−1(x1, . . . , xn−1))− IAn−1(x1, . . . , xn−1)
∣∣ ≥ ε if n ≥ n0.

Effectively, given ε ∈ (0, 1), let

Rε =

{
(xn)n∈N , x1 ∈

[
0,

1

2
− ε

2

]
, x2 ∈

[
1

2
+
ε

2
, 1

]
, xk ∈ [0, 1] ∀k ≥ 3

}

be the set of successions in which the first element belongs to

[
0,

1

2
− ε

2

]
, the second element belongs

to

[
1

2
+
ε

2
, 1

]
, and no more constraints are imposed.

Now, it is easy to see that P (Rε) =

(
1

2
− ε

2

)2

> 0 and also that for any (xn)n ∈ Rε, it is∣∣IAn(x1, . . . , xn−1, IAn−1(x1, . . . , xn−1))− IAn−1(x1, . . . , xn−1)
∣∣ ≥ ε if n ≥ 2,

so the family {IAn}n∈N, which can be viewed as a particular case of OWA operator, is unstable,
and thus the proposition is proved.

Another important family of aggregation operators is that known as the projection opera-
tors family. Although different definitions could be made for a projection operator, we follow
the definition proposed in [4, 5]. Given an axis i, the projection operator over the axis i is de-
fined as P in(x1, . . . , xn) = xi. Thus, the family of the projection operators can be defined as
{P in n ∈ N / i ≤ n}, and it is possible to see that when i = 1 such a family is L and R strictly
stable. But for i ≥ 2 the family of projection operators is R strictly stable and L unstable.

Another possibility is to define the family of projection operators family as {P in n ∈ N / i ≤ n},
where now the projection changes depending on n. For example, i(n) = n, so P in(x1, . . . , xn) = xn
or i(n) = n − 1. Obviously, in this case stability will be strongly dependent on the stability of
the function i(n). For example, if i(n) = n, then the family is strictly stable. But if i(n) ={
n− k if n ≥ k
n otherwise

, then the corresponding family is L unstable.

We can therefore conclude that, in general, and due to the way projection works, only the
simplest families of projection operators {P 1

n , n ∈ N} and {Pnn , n ∈ N} are strictly stable
families.

Finally, to conclude this analysis, we show how the different levels of stability can be extended
to different transformations of the original FAO. To this aim, let us first introduce the following
notations and definitions.
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Definition 3.1. Let f : [0, 1] → A be a continuous and injective function, and let {φn : A →
A, n ∈ N} be a family of aggregation operators defined in the domain A. Then, the transformed

aggregation operator family {Mφn

f }n∈N is defined as:

Mφn

f (x1, . . . , xn) = f−1 (φn (f(x1), . . . , f(xn)))

Let us observe that if f is the identity function, then the transformation family coincides with the
original family. If {φn}n∈N is the mean or the weighted mean then Mφn

f is called quasi-arithmetic
mean or weighted quasi-arithmetic mean. The quasi-arithmetic mean functions are very important
in many aggregation analysis. Some well-known quasi-arithmetic aggregation families are: the
geometric mean (when f(x) = log(x)), the harmonic mean (when f(x) = 1/x) and the power
mean (when f(x) = xp), among others. It is important to remark that some of the aggregation
operators families defined in this paper (as for example {Pn}n∈N ), can not be transformed or
extended directly. For example if f(x) = 5x, then A = [0, 5], but we can not guarantee that for all
n ∈ N , Pn (f(x1), . . . , f(xn)) =

∏n
i=1 f(xi) belong to the interval [0, 5].

In the following proposition, we show that strict stability remains after transformation.

Proposition 3.11. Let {φn}n∈N and {Mφn

f }n∈N be a family of aggregation operators and its ex-
tension or transformed aggregation. Then:
{Mφn

f }n∈N is a R-strictly stable family if and only if {φn}n∈N is a R-strictly stable family in the
A domain.

Proof:
Taking into account that M

φn+1

f

(
x1, . . . , xn,M

φn

f (x1, . . . , xn)
)

can be rewritten as

f−1 (φn+1(f(x1), . . . , f(xn), φn(f(x1), . . . , f(xn))) ,

strict stability condition for {Mφn

f }n∈N can be formulated as

f−1 (φn+1(f(x1), . . . , f(xn), φn(f(x1), . . . , f(xn)))) = f−1 (φn(f(x1), . . . , f(xn))) .

Hence, since f is a continuous and injective function, such a condition holds if and only if {φn}n
is an strictly stable family in A. And thus, the proposition holds.

Proposition 3.12. Let {φn, n ∈ N} and {Mφn

f , n ∈ N} be a family of aggregation operators and
its extension or transformed aggregation. Then:
{Mφn

f , n ∈ N} is a L-strictly stable family if and only if {φn, n ∈ N} is a L-strictly stable
family in the A domain.

Proof: Similar to the proof of the previous proposition.

We obviously can put both results together.

Proposition 3.13. Let {φn, n ∈ N} and {Mφn

f , n ∈ N} be a family of aggregation operators and
its extension or transformed aggregation. Then:
{Mφn

f , n ∈ N} is a strict stable family if and only if {φn, n ∈ N} is a strict stable family in
the A domain.
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Taking into account that the mean is a strict stable family in any domain A, and that the mean
of elements in A always belongs to A, strict stability can be guaranteed for any quasi-arithmetic
aggregation operator family.

Corolary 3.1. The quasi-arithmetic aggregation operators family is a strictly stable family.

Table 1: Level of stability of some families of aggregation operators.

Family of aggregation Strict Asymptotic strict Almost sure strict Instability

operators {An}n∈N stability stability stability

Minn = Min(x1, . . . , xn) R, L R, L R, L –

Maxn = Max(x1, . . . , xn) R, L R, L R, L –

Mdn = Md(x1, . . . , xn) R, L R, L R, L –

Mn =
∑n

i=1
xi
n

R, L R, L R, L –

Gn = (
∏n

i=1 xi)
1/n R, L R, L R, L –

Hn = n∑n
i=1 1/xi

R, L R, L R, L –

Qn =
∏n

i=1 x
i
i – – R, L –

Pn =
∏n

i=1 xi – – R, L –

Af
n = Af

n(x1, . . . , xn) R R R L

Ab
n = Ab

n(x1, . . . , xn) L L L R

Wn =
n∑

i=1

xi · wi - – – R, L

On =
n∑

i=1

x(i) · wi – – – R, L

Note: R and L indicate the fulfilment of a level of stability from the right and from the left, respectively.

Note: No restrictions are imposed on the weights of the weighted FAOs.

Table1 summarizes the previous analysis, showing the stability level of some of the most used
families of aggregation operators: the minimum and maximum operators, the median, as well as the
arithmetic, harmonic and geometric meansconstitute strictly stable FAOs. Recursive extensions of
binary idempotent operators only satisfy R-strict stability if the inductive extension is forward, and
they satisfy L-strict stability if the inductive extension is backward. Both the product {Pn}n∈N and
the geometric product {Qn}n∈N FAOs are almost sure strictly stable. Finally, since it is possible
to choose the weights wn in such a way that the resulting FAO does not fulfill any of the previous
stability levels, those FAOs based on weights, as the weighted mean or the OWA families, are
considered unstable in general.

However, in the next section we will look at these weighted FAOs more in detail, establishing
conditions under which the weights produce a strict stable family or an asymptotically strictly
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stable family. Therefore, despite the whole family of weighted FAOs is regarded as unstable, it is
possible to state whether a specific weighted FAO involves or not a robust aggregation process, i.e.
whether such a FAO fulfills each one of the stability levels introduced in this paper.

4. Analyzing the weights to guarantee stability of the weighted mean.

In the previous section it was proven that the weighted mean aggregation family {Wn}n∈N is in
general unstable, at least meanwhile no conditions are imposed on the weights. In this section some
conditions on these weights are analyzed in order to guarantee different levels of stability for the
weighted mean FAO. Recall that, in a weighted mean, the weights associated to the elements being
aggregated represent the importance of each one of these elements in the aggregation process. For
this reason, the weighted mean surely is one of the most relevant and used aggregation operators
in many different areas (e.g. statistics, knowledge representation problems, fuzzy logic, multiple
criteria decision making, group decision making, etc.), and one of the most studied problems in all
these areas is how to determine these importance weights.

Recall that, for any data cardinality n, the weights are usually assumed to form a vector wn =

(wn1 , ..., w
n
n) ∈ [0, 1]n, such that

n∑
i=1

wni = 1. The corresponding weighted mean operator is then

given by Wn(x1, . . . , xn) =
n∑
i=1

xi · wni .

It is important to stress that our aim is not to propose a new method to determine these weights,
which will depend on each particular problem under consideration, but simply to specify the rela-
tionships that should exist between two vectors of weights of dimension r and s in order to produce
a consistent aggregation process.

In order to illustrate our point, let us introduce the following example. Suppose a multi-criteria
decision problem having four criteria C1, C2, C3, C4. A jury, after some deliberations, evaluates the
different alternatives on the four criteria and then uses a weighted mean operator as aggregation
rule. Our objective is not to decide how the vector of weights w4 = (w4

1, w
4
2, w

4
3, w

4
4) should be,

but to guarantee some stability or consistence in the aggregation process. For example, it would
seem rather inconsistent to choose w4 = (1/4, 1/4, 1/4, 1/4) if we have the four mentioned criteria,
but also choosing w3 = (0.8, 0.2, 0) in case the criteria C4 is discarded. From the point of view
of consistency, this jury would not be stable. Our objective is then to determine the relation that
should exist between weights of different dimension in order to guarantee a consistent aggregation
process.

For example, given the usual sequence of weights wni = vi
n∑

i=1
vi

,∀i ∈ N, vi ∈ R+, the corresponding

family of weighted means {Wn}n∈N is a R-strictly stable family However, if the L-strict stability of
the same family is analyzed, it is easy to realize that {Wn}n∈N is not a L-strictly stable family.

In this section, we give necessary and sufficient conditions to guarantee strict stability and
asymptotic stability of a weighted mean FAO.
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Note that for a generic weighted mean FAO {Wn}n∈N with weights wn, n ∈ N, the R-strict
stability property can be restated as

0 = difR(Wn,Wn−1) =
n−1∑
i=1

(wni − (1− wnn)wn−1i )xi

for all data collection (x1, . . . , xn) ∈ [0, 1]n. Similarly, if

difL(Wn,Wn−1) = Wn(Wn−1(x1, . . . , xn−1), x1, . . . , xn−1)−Wn−1(x1, . . . , xn−1),

Analogously, L-strict stability is equivalent to

0 = difL(Wn,Wn−1) =
n−1∑
i=1

(wni+1 − (1− wn1 )wn−1i )xi

for all data collection (x1, . . . , xn) ∈ [0, 1]n. This leads to propose the following propositions:

Proposition 4.1. Let wn = (wn1 , ..., w
n
n) ∈ [0, 1]n, n ∈ N, be a sequence of weights of a weighted

mean family {Wn}n∈N such that
n∑
i=1

wni = 1 holds ∀n ≥ 2. Then, the family {Wn}n∈N is a R-strict

stable family if and only if the sequence of weights satisfies wni = (1− wnn) · (wn−1i ) ∀n ∈ N.

Proof:

Direct from previous considerations.

Corolary 4.1. The weighted quasi-arithmetic aggregation operators family is a R-strict stable fam-
ily if and only if the sequence of weights satisfies wni = (1− wnn) · (wn−1i ) ∀n ∈ N.

Remark 1. Let us observe that, if the family {Wn}n∈N is a R-strict stable family, then any vector
of weights wr = (wr1, . . . , w

r
r) can be built from a given ws, where r ≤ s. For example, if w5 =

(1/5, . . . , 1/5), then we have that wr = (1/r, . . . , 1/r) for any r ≤ 5. Also, for any r > 5, it has to
be wr = (w,w,w,w,w,wr6, . . . , w

r
r) to guarantee R-strict stability (i.e. the five first items have to

be equal).
On the contrary, let also us observe that, if the family {Wn}n∈N is a L-strict stable family, then

any vector of weights wr = (wr1, . . . , w
r
r) can be built from a given ws, where r ≤ s. For example, if

w5 = (0.3, 0.2, 0.1, 0, 0.4), then we have that w4 = ( 0.2
0.7 ,

0.1
0.7 ,

0
0.7 ,

0.4
0.7 ), w3 = ( 0.1

0.5 , 0,
0.4
0.5 ), w2 = (0, 1).

Proposition 4.2. Let wn = (wn1 , ..., w
n
n) ∈ [0, 1]n, n ∈ N, be a sequence of weights of the weighted

mean family {Wn}n∈N such that
n∑
i=1

wni = 1 holds ∀n ≥ 2. Then, the family {Wn}n is a L-strict

stable family if and only if the sequence of weights satisfies wni+1 = (1− wn1 ) · (wn−1i ) ∀n ∈ N.
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Proof:

Direct from previous considerations.

Corolary 4.2. The weighted quasi-arithmetic aggregation operators family is a L-strict stable fam-
ily if and only if the sequence of weights satisfies wni+1 = (1− wn1 ) · (wn−1i ) ∀n ∈ N.

Remark 2. Let us observe again that, if the family {Wn}n∈N is a L-strict stable family, then it is
possible to build a vector of weights wr = (wr1, . . . , w

r
r) whenever a vector of weights ws is known,

where r ≤ s. For example if w5 = (1/5, . . . , 1/5), then we have that wr = (1/r, . . . , 1/r) for any
r ≤ 5. Also, for any r > 5, if L-strict stability is assumed then wr = (wr1, . . . , w

r
r−6, w, w,w,w,w)

(i.e. the last 5 items have to be equal).

Previously, we studied some conditions that the weights in the weighted mean family should
fulfill in order to satisfy the strict stability property. Now, let us study some sufficient conditions
that guarantee the asymptotically strict stability property. Thus, since xi ∈ [0, 1], note that, for all
n ∈ N,

∣∣∣difR(Wn,Wn−1)
∣∣∣ =

∣∣∣ n−1∑
i=1

(
wni − (1− wnn)wn−1i

)
xi

∣∣∣ ≤ z(n) · g(n) ≤ (n− 1) · g(n),

where z(n) = ]{i = 1, ..., n−1 / wni −(1−wnn)wn−1i 6= 0} and g(n) = Maxi<n{wni −(1−wnn) wn−1i }.
Therefore, if ∀i the successions wni − (1−wnn) wn−1i tend to zero with n, it is enough to impose the
condition lim

n→+∞
g(n) · z(n) = 0 in order to guarantee asymptotic R-strict stability of the resulting

weighted mean FAO. A similar reasoning could be carried out in the case of asymptotic L-strict
stability.

This leads to the following results:

Proposition 4.3. Let wn = (wn1 , ..., w
n
n) ∈ [0, 1]n, n ∈ N be a sequence of weights of the weighted

mean FAO {Wn}n∈N such that
n∑
i=1

wni = 1 holds ∀n. Then, the family {Wn}n∈N is asymptotically

R-strictly stable if:

lim
n→+∞

(
wni − (1− wnn)wn−1i

)
= 0, ∀ 1 ≤ i ≤ n− 1 and lim

n→+∞
g(n) · z(n) = 0 .

Proof:

Direct from previous considerations.
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Proposition 4.4. Let wn = (wn1 , ..., w
n
n) ∈ [0, 1]n, n ∈ N be a sequence of weights of the weighted

mean FAO {Wn, n ∈ N} such that
n∑
i=1

wni = 1 holds ∀n. Then, the family {Wn}n is asymptotically

L-strictly stable if:

lim
n→+∞

(
wni+1 − (1− wnn)wn−1i

)
= 0, ∀ 1 ≤ i ≤ n− 1 and lim

n→+∞
g(n) · z(n) = 0 .

Proof:

Direct from previous considerations.

5. Simulation results

In this section some simulations are carried out to study the behavior of different FAOs from an
empiric point of view. Particularly, the convergence speed of some non-strictly stable families is
studied, allowing to identify the minimum size of the data sequence that guarantees the stability
of the aggregation process for a certain tolerance level.

In the following simulation exercises, the difference

∣∣∣difR(An, An−1)
∣∣∣ =

∣∣∣An(x1, ...xn−1, An−1(x1, .., xn−1))−An−1(x1, .., xn−1)
∣∣∣

is calculated for 1.000 sequences (x1, . . . , xn−1) of independent random U [0, 1] variables, and for
the following sizes of the data sequences: {10, 20, 30, ..., 50000}. In order to study the behavior of
these differences as n increases, the maximum value of

∣∣difR(An, An−1)
∣∣ is computed for each n.

Then, it is studied the fulfilment of P[ lim
n→+∞

∣∣difR(An, An−1)
∣∣ = 0 ] < ε, for each n and tolerance

levels ε given by {10−1, 10−2, 10−3, ..., 10−30}.

Let us start by the product FAO. Figure 1 shows that the aggregated values of the sequences of
n and n−1 items are more and more similar as n increases, where it can see a zero in the maximum
difference |An − An−1| for any sequence greater than 20 in size. Regarding the convergence from
the right of the product FAO, in Table 2 it can be seen that the convergence speed is quite high,
in such a way that a sequence of data with size n = 100 is enough to guarantee stable outputs for
any tolerance level. Figure 2 depicts the results in Table 2.
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Table 2: Simulation outputs of P[ lim
n→+∞

∣∣difR(Pn, Pn−1)
∣∣ < Tolerance] for the product FAO.

Size of the Tolerance levels

sequences 10−1 10−2 10−3 10−4 10−5 10−10 10−15 10−20 10−25 10−30

10 1.000 0.979 0.867 0.53 0.327 0.002 0.000 0.000 0.000 0.000
20 1.000 1.000 1.000 0.998 0.978 0.239 0.005 0.000 0.000 0.000
30 1.000 1.000 1.000 1.000 1.000 0.906 0.216 0.004 0.000 0.000
40 1.000 1.000 1.000 1.000 1.000 1.000 0.797 0.181 0.010 0.000
50 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.693 0.134 0.004
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.965 0.585 0.121
70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.934 0.492
80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.888
90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.989
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Figure 1: Stability of the product FAO as n increases.

Note: The graph was made for values of n lower than 50 to better observe the depicted behavior.

Now, let us focus on the weighted mean FAO. As shown in Section 3, stability for this FAO is
strongly dependent on the weights chosen, and thus in general it is an unstable FAO. Particularly,
some examples of a asymptotic R-strictly stable and an unstable weighted mean families were pre-
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Figure 2: Speed of convergence of the product FAO

sented. Next, a similar simulation process as with the product FAO will be carried out for these
examples.

Therefore, consider the weighted mean family {Wn(x1, ..., xn) =
n∑
i=1

wni xi}n∈N, having weights

wn ∈ [0, 1]n defined by

wni =


1

(n+ 1)
if 1 ≤ i ≤ n− 1

2

(n+ 1)
if i = n

As pointed out in Section 2, this family is asymptotically R-strict stable, so it has to satisfy

lim
n→+∞

∣∣∣difR(Wn,Wn−1)
∣∣∣ = 0.
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Table 3: Simulation outputs of P[ lim
n→+∞

∣∣difR(Wn,Wn−1)
∣∣ < Tolerance] for an asymptotic R-strict stable

weighted mean FAO.

Size of the Tolerance levels

sequences 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

10 1.000 0.289 0.029 0.003 0.000 0.000 0.000 0.000
20 1.000 0.478 0.064 0.004 0.000 0.000 0.000 0.000
30 1.000 0.673 0.067 0.008 0.000 0.000 0.000 0.000
40 1.000 0.875 0.081 0.003 0.001 0.000 0.000 0.000
50 1.000 0.992 0.109 0.017 0.002 0.000 0.000 0.000
60 1.000 1.000 0.123 0.015 0.001 0.000 0.000 0.000
70 1.000 1.000 0.135 0.017 0.001 0.000 0.000 0.000
80 1.000 1.000 0.166 0.008 0.001 0.000 0.000 0.000
90 1.000 1.000 0.196 0.021 0.003 0.000 0.000 0.000
100 1.000 1.000 0.172 0.011 0.000 0.000 0.000 0.000
300 1.000 1.000 0.600 0.054 0.004 0.000 0.000 0.000
500 1.000 1.000 0.990 0.092 0.009 0.002 0.000 0.000
1000 1.000 1.000 1.000 0.207 0.016 0.001 0.000 0.000
2000 1.000 1.000 1.000 0.403 0.043 0.003 0.000 0.000
4000 1.00 1.000 1.000 0.802 0.067 0.007 0.000 0.000
6000 1.000 1.000 1.000 1.000 0.122 0.007 0.003 0.000
8000 1.000 1.000 1.000 1.000 0.144 0.015 0.001 0.000
10000 1.000 1.000 1.000 1.000 0.220 0.019 0.001 0.000
12000 1.000 1.000 1.000 1.000 0.266 0.034 0.004 0.000
14000 1.000 1.000 1.000 1.000 0.265 0.031 0.001 0.000
18000 1.000 1.000 1.000 1.000 0.354 0.044 0.002 0.000
20000 1.000 1.000 1.000 1.000 0.389 0.036 0.003 0.000
25000 1.000 1.000 1.000 1.000 0.483 0.063 0.006 0.000
30000 1.000 1.000 1.000 1.000 0.603 0.067 0.010 0.000
35000 1.000 1.000 1.000 1.000 0.728 0.076 0.005 0.000
40000 1.000 1.000 1.000 1.000 0.821 0.087 0.003 0.000
45000 1.000 1.000 1.000 1.000 0.887 0.093 0.009 0.000
50000 1.000 1.000 1.000 1.000 1.00 0.099 0.008 0.000

Note: If we consider the three last columns’ tolerance levels, the sequence respectively converges for data sizes

2x106, 2x107 and 2x108.

Figure 3 shows that the aggregated values of the sequences of n and n− 1 items are more and
more similar as n increases, but with a convergence speed lower than that of the product family, as
also shown in Figure 4 and Table 3. In this case, data sequences with size n = 100 produce stable
aggregation results whenever a tolerance level not lower than 10−3 is taken.
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Figure 3: Stability of a weighted mean FAO in which its weights are defined by

wn
i =

1

(n + 1)
si 1 ≤ i ≤ n− 1 y wn

i =
2

(n + 1)
si i = n.

Finally, the following outputs show the behavior of the weighted mean FAO having weights

uni =


1

2(n− 2)
if 1 < i < n

1/4 if i = 1

1/4 if i = n

As proven in Section 4, this weighted mean FAO is unstable. Therefore, it holds that

P[ lim
n→+∞

∣∣∣difR(Wn,Wn−1)
∣∣∣ = 0] < 1.

Figure 5 clearly shows this behavior, since the aggregation results of n and n− 1 items do not
converge when n increases. Also, note that the probability of being stable does not converge to 1,
as it can be seen in Table 4.
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Figure 4: Speed of convergence of a weighted mean FAO in which its weights are defined by

wn
i =

1

(n + 1)
si 1 ≤ i ≤ n− 1 y wn

i =
2

(n + 1)
si i = n.

6. Conclusions and final remarks

The classical definition of an aggregation family does not impose any relation among its elements,
and meanwhile such a relation does not exist it should not be properly understood as a family,
but just as a bunch of n-ary operators. Aggregation operators within a family must be deeply
related, following some building procedure throughout the aggregation process. Since it is clear
that we should not define a family of aggregation operators {An}n∈N in which each operator can
be randomly chosen, the aggregation process demands a conceptual unit idea. With this objective
we have presented here three properties that pursue a possible approach for consistency.

Few authors have studied the relationships that should exist between the different aggregation
functions that compose a family of aggregation operators (at least beyond demanding properties
such as continuity or derivability for each isolated aggregation function). The approach of this paper
is linked to the notions of stability and robustness in an information aggregation process. Within
such a process, if a new item of information is added and it corroborates our current knowledge (i.e.
if it coincides with the aggregation of the information we had up to that moment), then the updated
aggregation should not be far from our previous knowledge. Close to this idea, Yager [24] proposed
the property of self-identity, that reflects a part of the stability notion presented in this paper.
However, Yager’s idea required more technical development, as it was only defined in one direction
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Figure 5: Stability of an unstable weighted mean FAO as n increases.

(from left to right) and no weaker conditions were analyzed. For this reason, three stability levels
(strict, asymptotically strict and almost sure asymptotically strict) have been defined in this paper,
also taking into account that, in each level, information can be aggregated from left to right or from
right to left (as in the common queues and stacks). In this way we have generalized and expanded
the seminal work of Yager [24]. Moreover, the stability levels of some relevant aggregation operators
have been analyzed.

It is also important to remark that in [24], the self-identity property was analyzed adding
associativity as a constraint. It is possible to demand this property together with self-identity in
order to guarantee some consistency in an aggregation family, but as pointed in [12], associativity
can be viewed as a necessary restriction only once we accept that our aggregation process should
be based upon a unique binary operator. Such an assumption is not so obvious even in the crisp
case, and it is difficult to accept in a more general framework. In this paper we have not imposed
associativity, since there are too many situations (see for example the recursive rules introduced in
[1, 8, 9]) in which different binary aggregation operators are introduced depending on the cardinality
of the data n, always maintaining some degree of consistency in the aggregation process.

Obviously, this work leaves also many open questions. For example, in this paper we have
obtained necessary and sufficient conditions to guarantee strict stability of a weighted mean family,
as well as sufficient conditions for asymptotic stability. How to extend these conditions in order to
also include almost sure asymptotic strict stability of the weighted mean is a question that should
be addressed. An analysis of the stability of OWA operators, in any of its levels and in relation
with the conditions that have to be imposed over the weights, is another question that remains
open for the future. In particular, we should address the case in which the weights are generated
by a quantifier, leading to a somehow consistent aggregation process.
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Table 4: Simulation output of P[ lim
n→+∞

∣∣difR(Wn,Wn−1)
∣∣ < Tolerance] for an unstable weighted mean FAO.

Size of the Tolerance levels

sequences 10−1 10−2 10−3 10−4 10−5

10 1.000 0.157 0.012 0.002 0.000
20 0.986 0.123 0.006 0.001 0.000
30 0.978 0.133 0.009 0.000 0.000
40 0.965 0.120 0.015 0.000 0.000
50 0.957 0.117 0.012 0.001 0.000
60 0.960 0.117 0.014 0.000 0.000
70 0.959 0.123 0.008 0.001 0.000
80 0.971 0.121 0.014 0.003 0.000
90 0.965 0.121 0.015 0.003 0.000
100 0.950 0.109 0.009 0.000 0.000
300 0.956 0.101 0.007 0.002 0.000
500 0.935 0.097 0.014 0.001 0.000
1000 0.956 0.110 0.014 0.002 0.000
2000 0.953 0.137 0.006 0.001 0.000
4000 0.924 0.121 0.007 0.001 0.000
6000 0.947 0.105 0.008 0.000 0.000
8000 0.938 0.109 0.015 0.000 0.000
10000 0.941 0.109 0.013 0.001 0.000
12000 0.948 0.100 0.014 0.001 0.000
14000 0.962 0.115 0.008 0.000 0.000
18000 0.953 0.108 0.009 0.002 0.000
20000 0.953 0.103 0.005 0.001 0.000
25000 0.947 0.110 0.013 0.000 0.000
30000 0.958 0.098 0.013 0.003 0.000
35000 0.952 0.113 0.007 0.001 0.000
40000 0.961 0.099 0.013 0.000 0.000
45000 0.951 0.120 0.010 0.001 0.000
50000 0.943 0.123 0.009 0.002 0.000

Moreover, in this paper it has been assumed that each new item of information to be aggregated
coincides with the aggregation of the n− 1 previous items (i.e. xn = An−1(x1, . . . , xn−1)). Based
on this assumption, the similarity between An−1 and An has been then analyzed in order to define
the different stability levels. Relaxing such an assumption would lead to a more general approach
to the problem, linked to Lipschitz or analogous inequalities, and should enable us to analyze in
what situations a xn close to An−1(x1, . . . , xn−1) produces similar aggregation values.

Another issue that should be considered is the stability speed of the aggregation processes.
Though our three stability levels give a theoretical idea of the relative consistence of the operators,
the speed of convergence constitutes another relevant aspect in practice. For example, as shown in
Section 5, though some weighted mean families are asymptotically stable and the product family
is almost sure asymptotically stable, the speed of convergence in both processes is clearly different,
in favor of the second one as it is shown in Tables 2 and 3.

28



Acknowledgment

This research has been partially supported by the Government of Spain, grant TIN2009-07901.

Bibliography

[1] A. Amo, J. Montero, E. Molina. Representation of consistent recursive rules. European Journal
of Operational Research, 130, 29-53, 2001.

[2] G. Beliakov, A. Pradera, T. Calvo. Aggregation Functions, a Guide to Practitioners. Springer-
Verlag, Berlin. 2007.

[3] H. Bustince, E. Barrenechea, J. Fernandez, M. Pagola, J. Montero, C. Guerra. Contrast of a
fuzzy relation. Information Sciences, 180(8), 1326-1344, 2010.

[4] T. Calvo, A. Kolesarova, M. Kolesárová, R. Mesiar. Aggregation operators, properties, classes
and construction methods. In T. Calvo et al. (Eds.): Aggregation Operators New trends ans
Aplications. Physica-Verlag, Heidelberg, 3-104, 2002.

[5] T. Calvo, G. Mayor, J. Torrens, J. Suñer, M. Mas and M. Carbonell. Generation of weighting
triangles associated with aggregation fuctions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 8(4),417-451, 2000.

[6] C.H. Carlsson, R. Fuller. Fuzzy reasoning in decision making and optimization. Heidelberg,
Springfield-Verlag, 2002.

[7] V. Cutello, J. Montero. Hierarchical aggregation of OWA operators: basic measures and related
computational problems. International Journal of Uncertainty, Fuzziness and Knowledge-based
systems, 3, 17-26, 1995.

[8] V. Cutello, J. Montero. Recursive families of OWA operators. Proceedings FUZZ-IEEE Con-
ference. IEEE Press, Piscataway, 1137-1141, 1994.

[9] V. Cutello, J. Montero. Recursive connective rules. International Journal of Intelligent Systems
14, 3-20, 1999.

[10] D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk, H. Prade. Terminological difficulties in fuzzy
set theory - the case of intuitionistic fuzzy sets. Fuzzy Sets and Systems 156, 485-491, 2005.

[11] L.W. Fung, K.S. Fu. An axiomatic approach to rational decision making in a fuzzy environment.
In: L.A. Zadeh et at. (Eds.): Fuzzy Sets and their Applications to Cognitive and Decision
Processes. Academic Press, New York, 227-256, 1975.
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