STATE BCK-ALGEBRAS AND STATE-MORPHISM BCK-ALGEBRAS

R. A. BORZOOEI¹, A. DVUREČENSKIJ^{2,3}, AND O. ZAHIRI¹

¹ Department of Mathematics, Shahid Beheshti University, G. C., Tehran, Iran

² Mathematical Institute, Slovak Academy of Sciences,

Štefánikova 49, SK-814 73 Bratislava, Slovakia

³ Depart. Algebra Geom., Palacký Univer.

17. listopadu 12, CZ-771 46 Olomouc, Czech Republic

E-mail: borzooei@sbu.ac.ir dvurecen@mat.savba.sk om.zahiri@gmail.com

Dedicated to Prof. Ján Jakubík on the occasion of his 90th birthday

ABSTRACT. In the paper, we define the notion of a state BCK-algebra and a state-morphism BCKalgebra extending the language of BCK-algebras by adding a unary operator which models probabilistic reasoning. We present a relation between state operators and state-morphism operators and measures and states on BCK-algebras, respectively. We study subdirectly irreducible state (morphism) BCKalgebras. We introduce the concept of an adjoint pair in BCK-algebras and show that there is a oneto-one correspondence between adjoint pairs and state-morphism operators. In addition, we show the generators of quasivarieties of state-morphism BCK-algebras.

1. INTRODUCTION

In 1966, Imai and Iseki [18, 19] introduced two classes of abstract algebras: BCK-algebras and BCIalgebras. These algebras have been intensively studied by many authors. For a comprehensive overview on BCK-algebras, we recommend the book [22]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. MV-algebras were introduced by Chang in [6], in order to show that Lukasiewicz logic is complete with respect to evaluations of propositional variables in the real unit interval [0, 1]. It is well known that the class of MV-algebras is a proper subclass of the class of BCK-algebras. Therefore, both BCK-algebras and MV-algebras are important for the study of fuzzy logic.

In [24], Mundici introduced a *state* on MV-algebras as averaging the truth value in Lukasiewicz logic. States constitute measures on their associated MV-algebras which generalize the usual probability measures on Boolean algebras. Kroupa [20] and Panti [26] have recently shown that every state on an MV-algebra can be presented as a usual Lebesgue integral over an appropriate space. Kühr and Mundici [21] studied states via de Finetti's notion of a coherent state with motivation in Dutch book making. Their method is applicable to other structures besides MV-algebras. Measures on pseudo BCK-algebras were studied in [7].

Since MV-algebras with state are not universal algebras, they do not automatically induce an assertional logic. Recently, Flaminio and Montagna in [15, 16] presented an algebraizable logic using a probabilistic approach, and its equivalent algebraic semantics is precisely the variety of state MV-algebras. We recall that a *state MV-algebra* is an MV-algebra whose language is extended by adding an operator, μ (also called an *internal state*), whose properties are inspired by ones of states. Analogues of extremal states are *state-morphism operators*, introduced in [8, 9], where by definition, a state-morphism is an idempotent endomorphism on an MV-algebra.

 $^{^1\!\}mathrm{Keywords}:$ state-morphism operator, left state operator, right state operator, BCK-algebra, state BCK-algebra, state-morphism BCK-algebra, quasivariety, generator

AMS classification: 06D35, 03G12, 03G25, 03B50, 28E15

The paper has been supported by Slovak Research and Development Agency under the contract APVV-0178-11, the grant VEGA No. 2/0059/12 SAV and by CZ.1.07/2.3.00/20.0051.

State MV-algebras generalize, for example, Hájek's approach, [17], to fuzzy logic with modality Pr (interpreted as *probably*) which has the following semantic interpretation: The probability of an event a is presented as the truth value of Pr(a). On the other hand, if s is a state, then s(a) is interpreted as the average appearance of the many valued event a.

In [15, 16], the authors found a relation between states on MV-algebras and state MV-algebras. In [8, 9], some results about characterizations of subdirectly irreducible state-morphism MV-algebras, simple, semisimple, and local state MV-algebras were shown. In [10], the authors study the variety of state-morphism MV-algebras together with a characterization of subdirectly irreducible state MV-algebras, and some interesting characterizations of some varieties of state-morphism MV-algebras were given. These results were generalized in [14, 13, 3].

In the present paper, we concentrate to the study of state BCK-algebras and state-morphism BCKalgebras. We show their basic properties and we characterize quasivarieties of state-morphism BCKalgebras and their generators. We present that the generator of a quasivariety of state-morphism BCKalgebras consists of diagonal state-morphism BCK-algebras. The goal of the present paper is to extend the study of state MV-algebras to state BCK-algebras. We note that in contrast to MV-algebras, in this case we have to deal with quasivarieties because the class of BCK-algebras forms a quasivariety and not a variety.

We note that a state-morphism BCK-algebra is a special case of algebras with a distinguished idempotent endomorphism and such algebras are not new: experts working in various areas (ranging from computer science, Baxter algebras, set theory, category theory and homotopy theory, see e.g. [28, 1, 27]) have considered such structures with a fixed endomorphism.

The paper is organized as follows. Section 2 gathers the elements of BCK-algebras. In Section 3, we introduce the concept of a state BCK-algebra and we study its properties. Then we verify a subdirectly irreducible state BCK-algebra and we characterize this structure. We show that if X is a bounded commutative BCK-algebra, then (X, μ) is a state (morphism) MV-algebra if and only if (X, μ) is a state (morphism) BCK-algebra such that $\mu(1) = 1$. In Section 4, we study state-morphism BCK-algebras and state ideals. Some relations between congruence relations on state-morphism BCK-algebra and describe a relation between state-morphism operators and adjoint pair in a BCK-algebra. Finally, Section 5 gives results on generators of quasivarieties of state-morphism BCK-algebras, and we present two open problems.

2. Preliminaries

In the section, we gather some basic notions relevant to BCK-algebras and MV-algebras which will need in the next sections.

We say that an MV-algebra is an algebra $(M, \oplus, ', 0)$ of type (2, 1, 0), where $(M, \oplus, 0)$ is a commutative monoid with neutral element 0 and for all $x, y \in M$:

(i)
$$x'' = x;$$

(ii) $x \oplus 1 = 1$, where 1 = 0';

(iii) $x \oplus (x \oplus y')' = y \oplus (y \oplus x')'.$

In any MV-algebra $(M, \oplus, ', 0)$, we can define the following further operations:

$$x \odot y = (x' \oplus y')', \quad x \ominus y = (x' \oplus y)'.$$

A state *MV*-algebra is a pair (M, σ) such that $(M, \oplus, ', 0)$ is an MV-algebra and σ is a unary operation on M satisfying:

(1) $\sigma(1) = 1;$ (2) $\sigma(x') = \sigma(x)';$ (3) $\sigma(x \oplus y) = \sigma(x) \oplus \sigma(y \oplus (x \odot y));$ (4) $\sigma(\sigma(x) \oplus \sigma(y)) = \sigma(x) \oplus \sigma(y).$ In [8], Di Nola and Dvurečenskij have introduced a *state-morphism operator* on an MV-algebra $(M, \oplus, ', 0)$ as an MV-homomorphism $\sigma : M \to M$ such that $\sigma^2 = \sigma$ and the pair (M, σ) is said to be a *state-morphism* MV-algebra. They have proved that the class of state-morphism MV-algebras is a proper subclass of state MV-algebras.

Definition 2.1. [18, 19] A *BCK-algebra* is an algebra (X, *, 0) of type (2, 0) satisfying the following conditions:

(BCK1) ((x * y) * (x * z)) * (z * y) = 0;

 $(BCK2) \ x * 0 = x;$

(BCK3) x * y = 0 and y * x = 0 imply y = x;

(BCK4) 0 * x = 0.

A BCK-algebra X is called *non-trivial* if $X \neq \{0\}$. If X is a BCK-algebra, then the relation \leq defined by $x \leq y \Leftrightarrow x * y = 0, x, y \in X$, is a partial order on X. In addition, for all $x, y, z \in X$, the following hold:

(BCK5) x * x = 0; (BCK6) (x * y) * z = (x * z) * y; (BCK7) $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x$; (BCK8) x * (x * (x * y)) = x * y; (BCK9) $(x * y) * (x * z) \le z * y$ and $(y * x) * (z * x) \le y * z$.

In a BCK-algebra X, we define $x * y^0 = x$ and $x * y^n = (x * y^{n-1}) * y$ for any integer $n \ge 1$ and all $x, y \in X$. A BCK-algebra (X, *, 0) is called *bounded* if (X, \le) has the greatest element, where \le is the above defined partially order relation. Let use denote by 1 the greatest element of X (if it exits). In bounded BCK-algebras, we usually write Nx instead of 1 * x. A BCK-algebra (X, *, 0) is called a *commutative* BCK-algebra if x * (x * y) = y * (y * x) for all $x, y \in X$. Each commutative BCK-algebra is a lover semilattice and $x \land y = x * (x * y)$ for all $x, y \in X$ (see [22]). Let (X, *, 0) and (Y, *, 0) be two BCK-algebras. A map $f : X \to Y$ is called a *homomorphism* if f(a * b) = f(a) * f(b) for all $a, b \in X$. Then f(0) = 0 (since f(0) = f(0 * 0) = f(0) * f(0) = 0).

A non-empty subset I of a BCK-algebra X is called an *ideal* if $(1) \ 0 \in I$, $(2) \ y * x \in I$ and $x \in I$ imply that $y \in I$ for all $x, y \in X$. We denote by I(X), the set of all ideals of X. An ideal I of a BCK-algebra X is called *proper* if $I \neq X$. Suppose that (X, *, 0) and (Y, *, 0) are two BCK-algebras and $f : X \to Y$ is a homomorphism, then $\operatorname{Ker}(f) = f^{-1}(\{0\})$ is an ideal of X. Let use denote by $\langle S \rangle$ the least ideal of X containing S, where S is a subset of a BCK-algebra X. It is called the ideal generated by S. If S is a subset of more BCK-algebras, we will use $\langle S \rangle_X$ to specify a concrete BCK-algebra X. Instead of $\langle \{a\} \rangle$ we will write rather $\langle a \rangle$, where $a \in X$.

Theorem 2.2. [29] Let S be a subset of a BCK-algebra (X, *, 0). Then

$$\langle S \rangle = \{ x \in X \mid (\cdots ((x * a_1) * a_2) * \cdots) * a_n = 0 \text{ for some } n \in \mathbb{N} \text{ and some } a_1, \ldots, a_n \in S \cup \{0\} \}.$$

Moreover, if I is an ideal of X, then

 $\langle I \cup S \rangle = \{ x \in X \mid (\cdots ((x * a_1) * a_2) * \cdots) * a_n \in I \text{ for some } n \in \mathbb{N} \text{ and some } a_1, \dots, a_n \in S \}.$

Let *I* be an ideal of a BCK-algebra (X, *, 0). Then the relation θ_I , defined by $(x, y) \in \theta_I$ if and only if $x * y, y * x \in I$, is a congruence relation on *X*. Let us denote by x/I or [x] the set $\{y \in X \mid (x, y) \in \theta_I\}$ for all $x \in X$. Then (X/I, *, 0/I) is a BCK-algebra, when $X/I := \{x/I \mid x \in X\}$ and x/I * y/I := (x * y)/I for all $x, y \in X$ (see [22]).

An ideal I of a BCK-algebra (X, *, 0) is called *commutative* if $x * y \in I$ implies that $x * (y * (y * x)) \in I$ for all $x, y \in X$. If I is a commutative ideal, the BCK-algebra X/I is a commutative BCK-algebra [29, Thm 2.5.6].

Theorem 2.3. Let (X, *, 0) be a BCK-algebra and θ be a congruence relation on X. Then $[0]_{\theta}$ is an ideal of X. Moreover, if $I = [0]_{\theta}$, then $\theta_I = \theta$.

Proof. See [29, Prop 1.5.9, Prop. 1.5.11, Cor. 1.5.12].

Definition 2.4. [2, 29] Let I be a proper ideal of a BCK-algebra (X, *, 0). Then I is called a

- prime ideal if $\langle x \rangle \cap \langle y \rangle \subseteq I$ implies $x \in I$ or $y \in I$ for all $x, y \in X$;
- maximal ideal if $\langle I \cup \{x\} \rangle = X$ for all $x \in X I$.

We use Max(X) and Spec(X) to denote the set of all maximal and prime ideals of X, respectively. In each BCK-algebra X, $Max(X) \subseteq Spec(X)$ (see [2, Thm 3.7]). A BCK-algebra (X, *, 0) is called *simple* if it has only two ideals and it is called *semisimple* if $Rad(X) := \bigcap Max(X) = \{0\}$.

Definition 2.5. [29] A BCK-algebra (X, *, 0) is *positive implicative* if (x * y) * z = (x * z) * (y * z) for all $x, y, z \in X$.

If X = [0, a) or X = [0, a], where $a \in \mathbb{R}$, or $X = [0, \infty)$, we define the binary operation $*_{\mathbb{R}}$ on X by $x *_{\mathbb{R}} y = \max\{0, x - y\}$. Then $(X, *_{\mathbb{R}}, 0)$ is a commutative BCK-algebra (see [22]).

Definition 2.6. [12] Let (X, *, 0) be a BCK-algebra and $m : X \to [0, \infty]$ be a map such that, for all $x, y \in [0, 1]$,

- (i) if m(x * y) = m(x) m(y), whenever $y \le x$, then m is said to be a measure;
- (ii) if $1 \in X$ and m is a measure with m(1) = 1, then m is said to be a state;
- (iii) if $m(x * y) = \max\{0, m(x) m(y)\}$, then m is said to be a measure-morphism;
- (iv) if $1 \in X$ and m is a measure-morphism with m(1) = 1, then m is said to be a state-morphism.

3. State BCK-algebras

In the section, the concept of left and right state BCK-algebras is defined as a generalization of state MV-algebras, and its properties are studied. We introduce state ideals and congruence relations of right or left state BCK-algebras, and relations between them are obtained. Finally, we characterize subdirectly irreducible state BCK-algebras.

From now on, in this paper, (X, *, 0) or simply X is a BCK-algebra, unless otherwise specified.

Definition 3.1. A map $\mu : X \to X$ is called a *left (right) state operator* on X if it satisfies the following conditions:

- (S0) x * y = 0 implies $\mu(x) * \mu(y) = 0$;
- (S1) $\mu(x * y) = \mu(x) * \mu(x * (x * y)) \quad (\mu(x * y) = \mu(x) * \mu(y * (y * x)));$
- (S2) $\mu(\mu(x) * \mu(y)) = \mu(x) * \mu(y).$

A left (right) state BCK-algebra is a pair (X, μ) , where X is a BCK-algebra and μ is a left (right) state operator on X.

Clearly, if X is a commutative BCK-algebra, then μ is a right state operator on X if and only if it is a left state operator. In the next proposition, we describe the basic properties of left (right) state operators.

Proposition 3.2. Let (X, μ) be a left (right) state BCK-algebra. Then, for any $x, y, x_1, \ldots, x_n \in X$,

- (i) $\mu(0) = 0$ and $\mu(\mu(x)) = \mu(x)$.
- (ii) $\mu(x) * \mu(y) \le \mu(x * y)$. More generally,

 $(\cdots ((\mu(x) * \mu(x_1)) * \mu(x_2)) * \cdots) * \mu(x_n) \le \mu((\cdots ((x * x_1) * x_2) * \cdots) * x_n).$

- (iii) $\text{Ker}(\mu) := \mu^{-1}(\{0\})$ is an ideal of X.
- (iv) $\mu(X) := \{\mu(x) \mid x \in X\}$ is a subalgebra of X.
- (v) $\text{Ker}(\mu) \cap \text{Im}(\mu) = \{0\}.$

Proof. We prove this theorem only for a left state BCK-algebra. The proof for a right state BCK-algebra is similar.

(i) By (BCK4) and (BCK8), we have $\mu(0) = \mu(0*0) = \mu(0)*\mu(0*(0*0)) = \mu(0)*\mu(0) = 0$. Moreover, by (S2) and (BCK2), we have $\mu(\mu(x)) = \mu(\mu(x)*0) = \mu(\mu(x)*\mu(0)) = \mu(x)*\mu(0) = \mu(x)$.

(ii) Let $x, y \in X$. Since $x * (x * y) \le y$, then $\mu(x * (x * y)) \le \mu(y)$, and so by (BCK7), we get that $\mu(x) * \mu(y) \le \mu(x) * \mu(x * (x * y)) = \mu(x * y)$. The proof of the second part follows from (BCK7).

(iii) By (i), $0 \in \text{Ker}(\mu)$. Let $y * x, x \in \text{Ker}(\mu)$, where $x, y \in X$. Then $\mu(x) = \mu(y * x) = 0$. It follows from (ii) that $\mu(y) = \mu(y) * 0 = \mu(y) * \mu(x) \le \mu(y * x) = 0$, hence $y \in \text{Ker}(\mu)$. Thus, $\text{Ker}(\mu)$ is an ideal of X.

(iv) By (i), $0 \in \mu(X)$. Let $a, b \in X$. Then by (S2), $\mu(\mu(a)*\mu(a)) = \mu(a)*\mu(b)$ and so $\mu(a)*\mu(b) \in \mu(X)$. Therefore, $\mu(X)$ is a subalgebra of X.

(v) It is evident.

In Theorem 3.3, we attempt to find a relation between measures and states on BCK-algebras and state BCK-algebras.

Theorem 3.3. Let $a \in [0,1]$, $X = ([0,a), *_{\mathbb{R}}, 0)$ and (X, μ) be a left state BCK-algebra. Then $\mu : X \to [0,1]$ is a measure.

In addition, if $X = ([0,1], *_{\mathbb{R}}, 0)$ and (X, μ) is a left state BCK-algebra such that $\mu(1) = 1$, then $\mu : X \to [0,1]$ is a state-morphism.

Proof. Let $x, y \in X$ such that $y \leq x$. For simplicity, we will write $* = *_{\mathbb{R}}$. Then $\mu(x * y) = \mu(x) * \mu(x * (x * y))$. Since $X = ([0, a), *_{\mathbb{R}}, 0)$ is a commutative BCK-algebra, then x * (x * y) = y * (y * x) = y * 0 = y and so $\mu(x * y) = \mu(x) * \mu(x * (x * y)) = \mu(x) * \mu(y)$. Therefore, $\mu : X \to [0, 1]$ is a measure.

Now, assume that $X = ([0,1], *_{\mathbb{R}}, 0)$ and (X, μ) is a left state BCK-algebra. Let $x, y \in X$. Then $\mu(x * y) = \mu(x) * \mu(x * (x * y))$. Since X is linearly ordered, we have two cases. If $x \leq y$, then $\mu(x * y) = \mu(0) = 0$ and by Proposition 3.2(iv), $\mu(x) * \mu(y) = 0$ and so $\mu(x * y) = \mu(x) * \mu(y)$. If $y \leq x$, then x * (x * y) = y (since $([0,1], *_{\mathbb{R}}, 0)$ is a commutative BCK-algebra) and so $\mu(x * y) = \mu(x) * \mu(y)$. Therefore, $\mu : X \to [0,1]$ is a state-morphism.

Proposition 3.4. Let (X, μ) be a right state BCK-algebra. Then

- (i) $y \le x$ implies $\mu(x * y) = \mu(x) * \mu(y)$ for all $x, y \in X$.
- (ii) $\mu^{-1}(\{0\})$ is a commutative ideal of X. Moreover, the map $\overline{\mu} : X/\operatorname{Ker}(\mu) \to X/\operatorname{Ker}(\mu)$ defined by $\overline{\mu}(x/\operatorname{Ker}(\mu)) = \mu(x)/\operatorname{Ker}(\mu)$ is both a right and left state operator on $X/\operatorname{Ker}(\mu)$.
- (iii) (X, μ) is a left state BCK-algebra.

Proof. (i) Let x, y ∈ X such that y ≤ x. Then µ(x*y) = µ(x)*µ(y*(y*x)) = µ(x)*µ(y*0) = µ(x)*µ(y).
(ii) By Proposition 3.3(i), 0 ∈ µ⁻¹({0}). Let x, y * x ∈ µ⁻¹({0}). Then µ(x) = µ(y * x) = 0 and so µ(y) * µ(x * (x * y)) = 0. Since µ(x * (x * y)) ≤ µ(x) = 0, then µ(y) = 0. Hence, µ⁻¹({0}) is an ideal of X. Now, let x * y ∈ µ⁻¹({0}). Since y * (y * x) ≤ x, by (i), we have

$$0 = \mu(x * y) = \mu(x) * \mu(y * (y * x)) = \mu(x * (y * (y * x))),$$

which concludes that $x * (y * (y * x)) \in \mu^{-1}(\{0\})$. Thus, $\mu^{-1}(\{0\})$ is a commutative ideal of X.

It is easy to show that $\overline{\mu}$, defined by $\overline{\mu}(x/\operatorname{Ker}(\mu)) := \mu(x)/\operatorname{Ker}(\mu)$, $(x \in X)$, is a right state operator on $X/\operatorname{Ker}(\mu)$. In fact, if $x/\operatorname{Ker}(\mu) = y/\operatorname{Ker}(\mu)$, then $x * y, y * x \in \operatorname{Ker}(\mu)$ and so $\mu(x * y) = \mu(y * x) = 0$. Hence by Proposition 3.2(ii), $\mu(x) * \mu(y) = \mu(y) * \mu(x) = 0$ and so $\mu(x) = \mu(y)$. Thus, $\overline{\mu}$ is well defined. Since $\operatorname{Ker}(\mu)$ is a commutative ideal of X, then $X/\operatorname{Ker}(\mu)$ is a commutative BCK-algebra, hence $\overline{\mu}$ is also a left state operator on $X/\operatorname{Ker}(\mu)$.

(iii) Let $x, y \in X$. By (ii), Ker(μ) is a commutative ideal of X and so by [29, Thm 2.5.6], $X/\text{Ker}(\mu)$ is a commutative BCK-algebra. Hence, $(x * (x * y))/\text{Ker}(\mu) = (y * (y * x))/\text{Ker}(\mu)$. Similarly to the proof of (ii), we obtain that $\mu(x * (x * y)) = \mu(y * (y * x))$ and so $\mu(x) * \mu(x * (x * y)) = \mu(x) * \mu(y * (y * x)) = \mu(x * y)$. Therefore, (X, μ) is a left state BCK-algebra.

Corollary 3.5. Let $\mu : X \to X$ be a map. Then (X, μ) is a right state BCK-algebra if and only if (X, μ) is a left state BCK-algebra and Ker (μ) is a commutative ideal of X.

Proof. Suppose that (X, μ) is a right state BCK-algebra. Then by Proposition 3.4, (X, μ) is a left state and Ker (μ) is a commutative ideal. Conversely, let (X, μ) be a left state BCK-algebra and let Ker (μ)

be a commutative ideal of X. Then for all $x, y \in X$, $(x * (x * y))/\text{Ker}(\mu) = (y * (y * x))/\text{Ker}(\mu)$, and similar to the proof of Proposition 3.4(ii), we have $\mu(x * (x * y)) = \mu(y * (y * x))$, hence μ is a right state operator.

By Proposition 3.4(iii), every right state BCK-algebra is a left state BCK-algebra. In the following example, we show that the converse statement is not true, in general. We present a left state operator μ on a BCK-algebra X which is not a right state operator because Ker(μ) is not a commutative ideal of X.

Example 3.6. Let $X = \{0, 1, 2, 3\}$. Define a binary operation * by the following table:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	2	0	0
3	3	3	3	0

Then (X, *, 0) is a positive implicative BCK-algebra $(P)B_{4-1-4}$ from [22] which is a chain $(0 \le 1 \le 2 \le 3)$. Let $\mu : X \to X$ be defined by $\mu(0) = \mu(1) = 0$ and $\mu(2) = \mu(3) = 2$. We claim that μ is a left state operator on X. Clearly, it is a well defined and order preserving map. Let $x, y \in X$.

(1) If $x \le y$, then we have $\mu(x * y) = \mu(0) = 0$ and $\mu(x) * \mu(x * (x * y)) = \mu(x) * \mu(x) = 0$.

(2) If y < x, then by definition of *, $\mu(x * y) = \mu(x)$. Also, $\mu(x) * \mu(x * (x * y)) = \mu(x) * \mu(x * x) = \mu(x) * \mu(0) = \mu(x)$.

(3) It can be easily shown that $\mu(x) * \mu(y) = \mu(\mu(x) * \mu(y))$.

From (1)–(3), we conclude that μ is a left state operator on X. But $\operatorname{Ker}(\mu)$ is not a commutative ideal of X because $2 * 3 \in \operatorname{Ker}(\mu)$, but $2 * (3 * (3 * 2)) = 2 * (3 * 3) = 2 * 0 = 2 \notin \operatorname{Ker}(\mu)$. Hence, μ is not a right state operator on X.

Let X be a set, we denote by $Id_X : X \to X$ the identity on X. It also provides an example of a left state operator which is not necessarily a right state operator.

In each BCK-algebra X, Id_X is a left state operator. In fact, $Id_X(x)*Id_X(x*(x*y)) = x*(x*(x*y)) = x*y$. On the other hand, Id_X is a right state operator iff X is a commutative BCK-algebra. So it can be easily obtained that, X is a commutative BCK-algebra if and only if each left state operator on X is a right state operator.

By Proposition 3.4, each right state BCK-algebra is a left state BCK-algebra. So in the remainder of this paper, we will consider only left BCK-algebras. Moreover, we write simply a state BCK-algebra instead of a left state BCK-algebra.

Definition 3.7. Let (X, μ) be a state BCK-algebra. An ideal I of a BCK-algebra X is called a *state ideal* if $\mu(I) \subseteq I$. If T is a subset of X, then $\langle T \rangle_s$ is the least state ideal of X containing T. A state ideal I is said to be a *maximal state ideal* if $\langle I \cup \{x\} \rangle_s = X$ for each $x \in X - I$. We denote by $MaxS(X, \mu)$ the set of all maximal state ideals of (X, μ) .

Proposition 3.8. Let I be a state ideal of a state BCK-algebra (X, μ) and $a \in X$. Then

$$\langle I \cup \{a\} \rangle_s = \{x \in X \mid (x * a^n) * \mu(a)^m \in I \text{ for some } m, n \in \mathbb{N}\}.$$

Proof. Set $A = \{x \in X \mid (x * a^n) * \mu(a)^m \in I \text{ for some } m, n \in \mathbb{N}\}$. Clearly, $I \cup \{a\} \subseteq A$. Moreover, if J is a state ideal of (X, μ) containing I and a, then by Theorem 2.2, $A \subseteq J$. It suffices to show that A is a state ideal. Let $x, y * x \in A$. Then there are $m, n, s, t \in \mathbb{N}$ such that $(x * a^n) * \mu(a)^m \in I$ and

$$\begin{aligned} ((y*x)*a^{s})*\mu(a)^{t} \in I. \\ (((y*a^{n+s})*\mu(a)^{m+t}) &* ((x*a^{n})*\mu(a)^{m}))*(((y*x)*a^{s})*\mu(a)^{t}) \\ &\leq (((y*a^{n+s})*\mu(a)^{t})*(x*a^{n}))*(((y*x)*a^{s})*\mu(a)^{t}), \text{ by (BCK9)} \\ &= (((y*a^{n+s})*(x*a^{n}))*\mu(a)^{t})*(((y*x)*a^{s})*\mu(a)^{t}), \text{ by (BCK6)} \\ &\leq (((y*a^{s})*x)*\mu(a)^{t})*(((y*x)*a^{s})*\mu(a)^{t}), \text{ by (BCK9)} \\ &= (((y*x)*a^{s})*\mu(a)^{t})*(((y*x)*a^{s})*\mu(a)^{t}), \text{ by (BCK6)} \\ &= 0 \in I. \end{aligned}$$

Since $(x*a^n)*\mu(a)^m$, $((y*x)*a^s)*\mu(a)^t \in I$ and I is an ideal of X, then we get $(y*a^{n+s})*\mu(a)^{m+t} \in I$ and so $y \in A$. Hence, A is an ideal. Now, let x be an arbitrary element of A. Then there exist $m, n \in \mathbb{N}$ such that $(x*a^n)*\mu(a)^m \in I$. Since I is a state ideal, then $\mu((x*a^n)*\mu(a)^m) \in I$ and so by Proposition 3.2(ii), $\mu(x)*\mu(a)^{n+m} = (\mu(x)*\mu(a)^n)*\mu(a)^m = (\mu(x)*\mu(a)^n)*\mu(\mu(a))^m \in I$. Thus, $\mu(x) \in A$. Therefore, A is a state ideal of (X, μ) .

Note that, if (X, μ) is a state BCK-algebra, then $\{0\}$ and X are state ideals of (X, μ) and so by Proposition 3.8, $J = \{x \in X \mid (x * a^n) * \mu(a)^m = 0 \text{ for some } m, n \in \mathbb{N}\}$ is a state ideal of X for any $a \in X$. Similarly, we can construct other state ideals of (X, μ) .

Corollary 3.9. A state ideal I of a state BCK-algebra (X, μ) is a maximal state ideal if and only if $\{x \in X \mid (x * a^n) * \mu(a)^m \in I \text{ for some } m, n \in \mathbb{N}\} = X \text{ for all } a \in X - I.$

Proof. The proof is a straightforward corollary of Proposition 3.8.

By [2, Thm 3.7], we know that if M is a maximal ideal of X, then $I \cap J \subseteq M$ implies that $I \subseteq M$ or $J \subseteq M$ for all $I, J \in I(X)$. In the next theorem, we show that if M is a maximal state ideal of a state BCK-algebra (X, μ) , then $I \cap J \subseteq M$ implies that $I \subseteq M$ or $J \subseteq M$ for all state ideals I and J of (X, μ) .

Theorem 3.10. Let M be a maximal state ideal of a state BCK-algebra (X, μ) . For for all state ideals I and J of (X, μ) , we have $I \cap J \subseteq M$ implies that $I \subseteq M$ or $J \subseteq M$.

Proof. Let I and J be two state ideals of (X, μ) such that $I \cap J \subseteq M$. Suppose that there are $x \in I - M$ and $y \in J - M$. Then by Corollary 3.9, $X = \langle M \cup \{x\} \rangle_s = \langle M \cup \{y\} \rangle_s$. On the other hand, if $a \in \langle M \cup \{x\} \rangle_s \cap \langle M \cup \{y\} \rangle_s$, then by Proposition 3.8, there exist $m, n, s, t \in \mathbb{N}$ such that $(a * x^n) * \mu(x)^m = m_1 \in M$ and $(a * y^s) * \mu(y)^t = m_2 \in M$ and so by (BCK2), (BCK4), (BCK6) and Proposition 3.8, we get $(a * m_1) * m_2 \in I \cap J \subseteq M$ (since I and J are state ideals, $x \in I$, $y \in J$ and $(((a * m_1) * m_2) * x^n) * \mu(x)^m = 0 * m_2 = 0$, $(((a * m_1) * m_2) * y^s) * \mu(y)^t = 0 * m_1 = 0$. Since $m_1, m_2 \in M$ and M is an ideal of X, then we have $a \in M$ and so $X = \langle M \cup \{x\} \rangle_s \cap \langle M \cup \{y\} \rangle_s \subseteq M$, which is a contradiction. Therefore, $I \subseteq M$ or $J \subseteq M$.

In Theorem 3.11, we show a one-to-one relationship between congruence relations of a state BCKalgebra (X, μ) and state ideals of (X, μ) . We denote by SI(X) and Con (X, μ) the set of state ideals and the set of congruences, respectively, on a state BCK-algebra (X, μ) .

Theorem 3.11. Let (X, μ) be a state BCK-algebra.

- (i) If θ is a congruence relation of (X, μ) , then $[0]_{\theta} = \{x \in X \mid (x, 0) \in \theta\}$ is a state ideal of (X, μ) .
- (ii) If I is a state ideal of (X, μ) , then $\theta_I = \{(x, y) \in X \times X \mid x * y, y * x \in I\}$ is a congruence relation on (X, μ) .
- (iii) There is a bijection between the set of all congruence relations of (X, μ) , $Con(X, \mu)$, and the set $SI(X, \mu)$ of all state ideals of (X, μ) .

Proof. (i) Let θ be a congruence relation of (X, μ) . Then by Theorem 2.3, $[0]_{\theta}$ is an ideal of X. It suffices to show that $[0]_{\theta}$ is a state ideal. Let $x \in [0]_{\theta}$. Then $(x, 0) \in \theta$. Since θ is a congruence relation of (X, μ) , then $(\mu(x), \mu(0)) \in \theta$ and so by Proposition 3.2(i), $(\mu(x), 0) \in \theta$. Hence, $\mu(x) \in [0]_{\theta}$. That is, $[0]_{\theta}$ is a state ideal.

(ii) Let I be a state ideal of X. Then θ_I is a congruence relation on a BCK-algebra X. Let $(x, y) \in \theta_I$. Then $x * y, y * x \in I$ and so by Proposition 3.2(ii), $\mu(x) * \mu(y) \leq \mu(x * y) \in I$. Thus, $\mu(x) * \mu(y) \in I$. In a similar way, $\mu(y) * \mu(x) \in I$, hence $(\mu(x), \mu(y)) \in \theta_I$, so θ_I is a congruence relation of (X, μ) .

(iii) We define a map $f : SI(X, \mu) \to Con(X, \mu)$ by $f(I) = \theta_I$. Then it can be easily shown that f is a bijection map and its inverse is the map $g : Con(X, \mu) \to SI(X, \mu)$, which is defined by $g(\theta) = [0]_{\theta}$. \Box

Definition 3.12. [4] An algebra A of type F is a subdirect product of an indexed family $\{A_i\}_{i \in I}$ of algebras of type F if

- A is a subalgebra of $\prod_{i \in I} A_i$,
- $\pi_i(A) = A_i$ for any $i \in I$, where $\pi_i : \prod_{i \in I} A_i \to A_i$ is a natural projection map.

A one-to-one homomorphism $\alpha : A \to \prod_{i \in I} A_i$ is called a *subdirect embedding* if $\alpha(A)$ is a subdirect product of the family $\{A_i\}_{i \in I}$. An algebra A of type F is called *subdirectly irreducible* if, for every subdirect embedding $\alpha : A \to \prod_{i \in I} A_i$, there exists $i \in I$ such that $\pi_i \circ \alpha : A \to A_i$ is an isomorphism.

Remark 3.13. If *I* and *J* are two ideals of *X* such that $I \subseteq J$, then clearly, $\theta_I \subseteq \theta_J$. Let (X, μ) be subdirectly irreducible. Then by [4, Thm II.8.4], the set $\operatorname{Con}(X, \mu) - \Delta$ has a least element, where $\Delta = \{(x, x) \mid x \in X\}$ and $\nabla = X \times X$. Suppose that θ is the least element of $\operatorname{Con}(X, \mu) - \Delta$. Then by Theorem 3.11, there exists a state ideal of (X, μ) such that $\theta = \theta_I$ (so *I* is a non-zero ideal of *X*). It follows that *I* is the least non-zero state ideal of (X, μ) . By Theorem 3.11 and [4, Thm II.8.4], we conclude that (X, μ) is subdirectly irreducible if and only if $\operatorname{SI}(X, \mu) - \{0\}$ has the least element.

In Theorem 3.14 and Theorem 3.15, we present characterizations of subdirectly irreducible state BCKalgebras. First, we show that if (X, μ) is subdirectly irreducible, then the conditions (i) or (ii) of Theorem 3.14 hold. Then we prove that if (X, μ) satisfies the condition (i) or (ii) in Theorem 3.14, then (X, μ) must be subdirectly irreducible. We note that in the next theorem, we take an element a in the subalgebra $\mu(X)$ of a BCK-algebra X, therefore, $\langle a \rangle_X$ will denote the ideal of X generated by the element a.

Theorem 3.14. Let (X, μ) be a subdirectly irreducible state BCK-algebra.

- (i) If $\operatorname{Ker}(\mu) = \{0\}$, then $\mu(X)$ is a subdirectly irreducible subalgebra of X.
- (ii) If $\operatorname{Ker}(\mu) \neq \{0\}$, then $\operatorname{Ker}(\mu)$ is a subdirectly irreducible subalgebra of X and $\operatorname{Ker}(\mu) \cap \langle a \rangle_X \neq \{0\}$ for each non-zero element a of $\mu(X)$.

Proof. (i) Let (X, μ) be subdirectly irreducible and $\operatorname{Ker}(\mu) = \{0\}$. By Remark 3.13, the set of all non-zero state ideals of (X, μ) has the least element, I say. If $I \cap \mu(X) = \{0\}$, then by $\mu(I) \subseteq I \cap \mu(X)$ (since I is a state ideal), we conclude that $\mu(x) = 0$ for all $x \in I$. Thus, $I \subseteq \operatorname{Ker}(\mu) = \{0\}$, which is a contradiction. So, $I \cap \mu(X) \neq \{0\}$. Now, we show that $I \cap \mu(X)$ is the least non-zero ideal of $\mu(X)$. Suppose that J is an ideal of $\mu(X)$.

(1) Let $\langle J \rangle_X$ be the ideal of X generated by J, and choose an arbitrary element $x \in \langle J \rangle_X$. Then by Theorem 2.2, there exist $b_1, \ldots, b_n \in J$ such that $(\cdots ((x * b_1) * b_2) * \cdots) * b_n = 0$ and so by Proposition 3.2(i) and (ii), we get

$$(\cdots ((\mu(x) * \mu(b_1)) * \mu(b_2)) * \cdots) * \mu(b_n) \le \mu((\cdots ((x * b_1) * b_2) * \cdots) * b_n) = 0.$$

Since $\mu^2 = \mu$ and $b_1, \ldots, b_n \in J \subseteq \mu(X)$, we get $(\cdots ((\mu(x) * b_1) * b_2) * \cdots) * b_n = 0$, hence $\mu(x) \in J$. Thus, $\langle J \rangle_X$ is a state ideal of (X, μ) .

(2) Clearly, $J = \langle J \rangle_X \cap \mu(X)$.

By (1), we get that $I \subseteq \langle J \rangle_X$ and so by (2), $I \cap \mu(X) \subseteq \langle J \rangle_X \cap \mu(X) = J$. Hence, $I \cap \mu(X)$ is the least non-zero ideal of $\mu(X)$. Therefore, by [4, Thm II.8.4], we conclude that $\mu(X)$ is a subdirectly irreducible subalgebra of X.

(ii) Let $\mu(X) \neq \{0\}$. Again, let *I* be the least non-zero state ideal of the subdirectly irreducible state BCK-algebra (X, μ) . Since *X* is a BCK-algebra, then every ideal of *X*, in particular Ker (μ) , is a subalgebra of *X*. Clearly, Ker (μ) is a state ideal of (X, μ) and so $I \subseteq \text{Ker}(\mu)$. We show that *I* is the least non-zero ideal of Ker (μ) . Let *J* be a non-zero ideal of Ker (μ) . Then $\mu(J) \subseteq \mu(\text{Ker}(\mu)) = \{0\} \subseteq J$. For any $x, y \in X$, if $y * x, x \in J$, then by Proposition 3.2(ii), $0 = \mu(y * x) \ge \mu(y) * \mu(x) = \mu(y) * 0 = \mu(y)$. Thus, $y \in \text{Ker}(\mu)$, so $y \in J$ (since J is an ideal of $\text{Ker}(\mu)$). It follows that J is a state ideal of X and so $I \subseteq J$. Hence by [4, Thm II.8.4], $\text{Ker}(\mu)$ is subdirectly irreducible.

Now, let a be a non-zero element of $\mu(X)$ and let $\langle a \rangle_X$ be the ideal generated by a in X. Then $a = \mu(a)$. Take an arbitrary element $u \in \langle a \rangle_X$. By Theorem 2.2, there exists $n \in \mathbb{N}$ such that $0 = u * a^n$, and by by Proposition 3.2(ii), $0 = \mu(0) = \mu(u * a^n) = \mu(x) * (\mu(a))^n = \mu(u) * a^n$. Thus, $\mu(u) \in \langle a \rangle_X$ and $\mu(\langle a \rangle_X) \subseteq \langle a \rangle_X$. This implies, $\langle a \rangle_X$ is a non-zero state interval of (X, μ) and, consequently, $I \subseteq \langle a \rangle_X$. Since also $I \subseteq \operatorname{Ker}(\mu)$, we have $\{0\} \neq I \subseteq \operatorname{Ker}(\mu) \cap \langle a \rangle_X$.

Theorem 3.15. Let (X, μ) be a state BCK-algebra. If it satisfies the condition (i) or (ii) in Theorem 3.14, then (X, μ) is subdirectly irreducible.

Proof. First, we assume that $\operatorname{Ker}(\mu) = \{0\}$ and $\mu(X)$ is a subdirectly irreducible subalgebra of X. Since $\mu(X)$ is subdirectly irreducible, then by [4, Thm II.8.4], $\bigcap(I(\mu(X)) - \{0\})$ is a non-zero ideal of $\mu(X)$. From $I(\mu(X)) = \{I \cap \mu(X) \mid I \in I(X)\}$, it follows that $\bigcap(\{I \cap \mu(X) \mid I \in I(X)\} - \{0\})$ is non-zero, so $\bigcap(I(X) - \{0\}) \neq \{0\}$. Hence, the intersection of all non-zero state ideals of (X, μ) is a non-zero ideal of X (clearly it is a state ideal), whence by Remark 3.13, (X, μ) is subdirectly irreducible.

Now, let $\operatorname{Ker}(\mu) \neq \{0\}$ and let $\operatorname{Ker}(\mu)$ be a subdirectly irreducible subalgebra of X. Let I be the least non-zero ideal of $\operatorname{Ker}(\mu)$. Clearly, I is a state ideal (since $\mu(I) = \{0\}$). We claim, for any non-zero state ideal H of (X, μ) , we have $I \subseteq H$. Suppose that H is a non-zero state ideal of (X, μ) . Then $\mu(H) \subseteq H$. If $\mu(H) = \{0\}$, then $H \subseteq \operatorname{Ker}(\mu)$ and so $I \subseteq H$. Otherwise, there exists $a \in \mu(H) - \{0\}$. It follows that $\{0\} \neq \operatorname{Ker}(\mu) \cap \langle a \rangle_X \subseteq \operatorname{Ker}(\mu) \cap H$ and so $I \subseteq H \cap \operatorname{Ker}(\mu) \subseteq H$. Thus, I is the least non-zero state ideal of (X, μ) . Therefore, (X, μ) is subdirectly irreducible. \Box

In the final theorem of this section, we find a relation between state operators in BCK-algebras and MV-algebras. It is well known, if (X, *, 0) is a bounded commutative BCK-algebra, then $(X, \oplus, ', 0)$ is an MV-algebra, where $x \oplus y = N(Nx * y)$ and x' = Nx for all $x, y \in X$ (see [23]). Note that in each bounded BCK-algebra X, we have N(Nx) = x.

Theorem 3.16. Let (X, *, 0) be a bounded commutative BCK-algebra and μ be a left state BCK operator on X such that $\mu(1) = 1$. Then (X, μ) is a state MV-algebra. The converse is also true.

Proof. Let $x, y \in X$. Then $\mu(x') = \mu(1 * x) = \mu(1) * \mu(x * (x * 1)) = 1 * \mu(x) = \mu(x)'$. Then

$$\begin{split} \mu(x) \oplus \mu(y \ominus (x \odot y)) &= \mu(x) \oplus \mu((y' \oplus (x \odot y))') \\ &= \mu(x) \oplus \mu(y * (x \odot y)) \\ &= \mu(x) \oplus \mu(y * (y \odot x)) \\ &= \mu(x) \oplus \mu(y * (y' \oplus x')') \\ &= \mu(x) \oplus \mu(y * (y * x')) \\ &= (\mu(x)' * \mu(y * (y * Nx)))' \\ &= (\mu(Nx) * \mu(y * (y * Nx)))' \\ &= \mu(Nx * y)', \text{ since } X \text{ is commutative and } \mu \text{ is a left state operator} \\ &= \mu(N(Nx * y)) \\ &= \mu(x \oplus y), \end{split}$$

so that, (X, μ) is a state MV-algebra. Conversely, consider the MV-algebra $(X, \oplus, ', 0)$. If (X, σ) is a state MV-algebra, then we can easily show that $\sigma : X \to X$ is a left state operator on a BCK-algebra (X, *, 0), where $x * y := x \odot y', x, y \in X$. In fact, it follows from the following identity on X:

$$(y' \oplus (x' \odot y))' = y * (x' \odot y) = y * (y'' \odot x') = y * (y' \oplus x)' = y * (y * x).$$

R. A. BORZOOEI, A. DVUREČENSKIJ, O.ZAHIRI

4. STATE-MORPHISM BCK-ALGEBRAS

In the section, we introduce and study state-morphism BCK-algebras which is an important subfamily of the family of state BCK-algebras.

Definition 4.1. Let (X, *, 0) be a BCK-algebra. A homomorphism $\mu : X \to X$ is called a *state-morphism* operator if $\mu^2 = \mu$, where $\mu^2 = \mu \circ \mu$, and the pair (X, μ) is called a *state-morphism* BCK-algebra.

By (BCK8), every state-morphism BCK-algebra is a (left) state BCK-algebra. We note that not every state-morphism operator is also a right state operator. For example, Id_X is both a state-morphism operator and a left state operator, but it is a right state operator iff X is a commutative BCK-algebra.

Example 4.2. (i) For each BCK-algebra X, the identity map $Id_X : X \to X$ and the zero operator $O_X(x) = 0, x \in X$, are state-morphism operators.

(ii) Let x be an element of X such that $a * x = a * x^2$ for all $a \in X$. Define $\alpha_x : X \to X$ by $\alpha_x(a) = a * x$ for all $a \in X$. First, we show that α_x is a homomorphism. By (BCK4), 0 * x = 0 for all $x \in X$. Let $a, b \in X$. Then by (BCK6), we have (b * x) * b = (b * b) * x = 0 * x = 0, so $b * x \le b$. Using (BCK6) and (BCK7), we obtain that $(a * b) * x = (a * x) * b \le (a * x) * (b * x)$. On the other hand, by (BCK1) and (BCK6), $(a * x) * (b * x) = (a * x^2) * (b * x) \le (a * x) * b = (a * b) * x$. Hence, α_x is a homomorphism. Therefore,

$$\alpha_x(\alpha_x(a)) = (a * x) * x = a * x = \alpha_x(a),$$

so that, α_x is a state-morphism operator on X. For example, if x = 0, then $\alpha_0 = \text{Id}_X$. In particular, if X is a positive implicative BCK-algebra, then by [29, Thm 3.1.1], for all $a, x \in X$, we have $a * x^2 = a * x$ and so, α_x is a state-morphism operator on X for all $x \in X$.

(iii) Every state operator μ on a linearly ordered commutative BCK-algebra X is a state-morphism operator. Indeed, if $x \leq y$, then x * y = 0 and by Proposition 3.2, we have $0 \leq \mu(x) * \mu(y) \leq \mu(x * y) = \mu(0)$. If $y \leq x$, by the definition of a state operator, we have $\mu(x * y) = \mu(x) * \mu(x * (x * y)) = \mu(x) * \mu(y)$. The both cases entail μ is an endomorphism of the BCK-algebra X.

(iv) Every right state operator μ on a linearly ordered commutative BCK-algebra X is a state-morphism operator. Indeed, by Proposition 3.4(iii), μ is a left state operator, too. Take $x, y \in X$. Since X is a chain, then x * y = 0 or y * x = 0.

If x * y = 0, then by Proposition 3.2(ii), $0 \le \mu(x) * \mu(y) \le \mu(x * y) = \mu(0) = 0$. So, $\mu(x) * \mu(y) = \mu(x * y)$. If y * x = 0, then from Proposition 3.4 we have $\mu(x * y) = \mu(x) * \mu(y)$. Consequently, μ is a homomorphism, and μ is a state-morphism operator on X.

Example 3.6 shows that if μ is a left state operator on a linearly ordered BCK-algebra, then μ is not necessarily a state-morphism operator on X. Indeed, we have $\mu(3*2) = \mu(3) = 2 \neq 0 = 2*2 = \mu(3)*\mu(2)$. Thus μ is not a state morphism operator.

As a consequence of Corollary 3.16, we have by [8], that there are also bounded commutative BCKalgebras X having state operators which are not state-morphism operators.

Definition 4.3. Let (X, μ) be a state-morphism BCK-algebra. An ideal I of a BCK-algebra X is called a *state ideal* if $\mu(I) \subseteq I$. If T is a subset of X, then $\langle T \rangle_s$ is the least state ideal of X containing T.

It can be easily shown that, if (X, μ) is a state BCK-algebra, then $\text{Ker}(\mu)$ is a state ideal of X. Clearly, the intersection of every arbitrary family of state ideals of X is a state ideal. So,

$$\langle T \rangle_s = \bigcap \{ I \mid T \subseteq I, \ I \text{ is a state ideal of } (X, \mu) \}$$

Proposition 4.4. Let I be an ideal of a state-morphism BCK-algebra (X, μ) . Then

$$\langle I \rangle_s = \{ a \in X \mid (\cdots ((a * \mu(x_1)) * \mu(x_2)) * \cdots) * \mu(x_n) \in I, \exists n \in \mathbb{N}, \exists x_1, x_2, \dots, x_n \in I \}.$$

Proof. Let $J = \langle I \rangle_s = \{a \in X \mid (\cdots ((a * \mu(x_1)) * \mu(x_2)) * \cdots) * \mu(x_n) \in I, \exists n \in \mathbb{N}, \exists x_1, x_2, \dots, x_n \in I\}$. Then clearly, $I \subseteq J$ (since $0 \in I$ and $\mu(0) = 0$). First, we show that J is a state ideal of X. Let $a, b * a \in J$ for some $a, b \in X$. Then there exist $m, n \in \mathbb{N}$ and $x_1, \dots, x_n, y_1, \dots, y_m \in X$ such that

 $(\cdots ((a * \mu(x_1)) * \mu(x_2)) * \cdots) * \mu(x_n) \in I$ and $(\cdots (((b * a) * \mu(y_1)) * \mu(y_2)) * \cdots) * \mu(y_m) = y \in I$. By (BCK5) and (BCK6), we have

$$(\cdots(((b*y)*\mu(y_1))*\mu(y_2))*\cdots)*\mu(y_m) \le a$$

and so by (BCK7),

 $(\cdots (((\cdots (((b*y)*\mu(y_1))*\mu(y_2))*\cdots)*\mu(y_m))*\mu(x_1))*\cdots)*\mu(x_n) \le (\cdots ((a*\mu(x_1))*\mu(x_2))*\cdots)*\mu(x_n) \in I.$ Since $y \in I$ and I is an ideal of X, then by (BCK6),

$$(\cdots (((\cdots ((b * \mu(y_1)) * \mu(y_2)) * \cdots) * \mu(y_m)) * \mu(x_1)) * \cdots) * \mu(x_n) \in I$$

and so $b \in J$. It follows that J is an ideal of X. Moreover, if $c \in J$, then there exist $n \in \mathbb{N}$ and $z_1, \ldots, z_n \in X$ such that $(\cdots((c * \mu(z_1)) * \mu(z_2)) * \cdots) * \mu(z_n) = z \in I$. Hence, by (BCK5) and (BCK6), we get that $((\cdots((\mu(c) * \mu(z_1)) * \mu(z_2)) * \cdots) * \mu(z_n)) * \mu(z) = \mu(0) = 0 \in I$. Also, $z_1, \ldots, z_n, z \in I$, so by definition of J, $\mu(c) \in J$. Thus, $\mu(J) \subseteq J$ and so J is a state ideal of X containing I. Clearly, if K is a state ideal of X containing I, then $J \subseteq K$. Therefore, J is the least state ideal of X containing I. That is $J = \langle I \rangle_s$.

Proposition 4.5. Let (X, μ) be a state-morphism BCK-algebra. Then the following hold:

- (i) $\operatorname{Ker}(\mu) = \{x * \mu(x) \mid x \in X\} = \{\mu(x) * x \mid x \in X\}.$
- (ii) $X = \langle \operatorname{Ker}(\mu) \cup \operatorname{Im}(\mu) \rangle.$

Proof. (i) Since $\mu^2 = \mu$ and μ is a homomorphism, we have $\{x * \mu(x) \mid x \in X\} \subseteq \text{Ker}(\mu)$. Also, for each $x \in \text{Ker}(\mu), x = x * 0 = x * \mu(x) \in \{x * \mu(x) \mid x \in X\}$, so $\text{Ker}(\mu) = \{x * \mu(x) \mid x \in X\}$. In a similar way, we can show that $\text{Ker}(\mu) = \{\mu(x) * x \mid x \in X\}$.

(ii) Let $x \in X$. By (i), $x * \mu(x) \in \text{Ker}(\mu)$. Since $\mu(x) \in \text{Im}(\mu)$, then by Theorem 2.2, we get that $x \in \langle \text{Ker}(\mu) \cup \text{Im}(\mu) \rangle$. Therefore, $X = \langle \text{Ker}(\mu) \cup \text{Im}(\mu) \rangle$.

Let X be a bounded BCK-algebra and $m: X \to [0,1]$ be a state-morphism. Since m(1) = 1 and m is an order preserving map, then $m(X) \subseteq [0,1]$. Therefore, m is a homomorphism from the BCKalgebra X to the BCK-algebra ([0, 1], $*_{\mathbb{R}}$, 0). Hence, X/Ker(m) and m(X) are isomorphic. By [12, Thm 2.9], $\operatorname{Ker}(m)$ is a commutative ideal of X and so $X/\operatorname{Ker}(m)$ is a bounded commutative BCK-algebra. Since $([0,1], *_{\mathbb{R}}, 0)$ is a simple BCK-algebra and m(X) is a subalgebra of it, then m(X) is simple, so X/Ker(m) is simple, too. It follows that Ker(m) is a maximal commutative ideal of X. Therefore, $(X/\operatorname{Ker}(m), \oplus, ', 0/\operatorname{Ker}(m))$ is an MV-algebra, where $x/\operatorname{Ker}(m) \oplus y/\operatorname{Ker}(m) = N(Nx * y)/\operatorname{Ker}(m)$ and $(x/\operatorname{Ker}(m))' = Nx/\operatorname{Ker}(m)$ for all $x, y \in X$. It can be easily shown that the map $f: X/\operatorname{Ker}(m) \to [0,1]$ defined by f(x/Ker(m)) = m(x) is an MV-homomorphism and X/Ker(m) is a simple MV-algebra (since I is a BCK-ideal of X/Ker(m) if and only if I is an MV-ideal of X/Ker(m)). By [25, Thm 1.1], there exists a unique one-to-one MV-homomorphism $\tau : X/\text{Ker}(m) \to [0,1]$. Thus, $f = \tau$. By summing up the above results, we get that $m = \tau \circ \pi_{\text{Ker}(m)}$, where $\pi_{\text{Ker}(m)} : X \to X/\text{Ker}(m)$ is the canonical epimorphism. Conversely, let X be a bounded BCK-algebra such that X has at least one commutative ideal, I say. Then there exists a maximal ideal M of X such that $I \subseteq M$. In fact, M is a maximal element of the set $\{H \mid H \text{ is an ideal of } X \text{ containing } I, 1 \notin H\}$. Since I is a commutative ideal and $I \subseteq M$, then by [29, Thm 2.5.2], M is a commutative ideal and so X/M is a bounded commutative simple BCK-algebra. It follows that $(X/M, \oplus, ', 0)$ is a simple MV-algebra. By [25, Thm 1.1], there exists a unique MV-homomorphism, $\tau_M : (X/M, \oplus, ', 0) \to ([0, 1], \oplus, ', 0)$. Clearly, $\tau_M : X/M \to [0, 1]$ is a BCK-homomorphism and so $\tau_M \circ \pi_M : X \to [0,1]$ is a state-morphism, where $\pi_M : X \to X/M$ is the canonical epimorphism.

Now, let X be a bounded BCK-algebra and $\mu : X \to X$ be a state-morphism operator on X such that Ker(μ) is a commutative ideal of X. Then $X/\text{Ker}(\mu)$ is a bounded commutative BCK-algebra. Thus, $\mu(X)$ is an MV-algebra (since $\mu(X) \cong X/\text{Ker}(\mu)$). Suppose that H is a maximal ideal of the MV-algebra $\mu(X)$ and $\pi_H : \mu(X) \to \mu(X)/H$ is the canonical epimorphism. Then $\mu(X)/H$ is a simple MV-algebra and so by [25, Thm 1.1], there is a unique MV-homomorphism $\tau_H : \mu(X)/H \to [0, 1]$. Clearly, $\tau_H \circ \pi_H \circ \mu : X \to [0, 1]$ is a measure-morphism. Moreover, if $\mu(1) = 1$, then $\tau_H \circ \pi_H \circ \mu$ is a state-morphism.

Remark 4.6. Let μ be a state-morphism operator on X such that $\text{Ker}(\mu) = \{0\}$. Then for all $x \in X$, $x * \mu(x), \mu(x) * x \in \text{Ker}(\mu) = \{0\}$ and so by (BCK3), $\mu(x) = x$. Therefore, $\mu = \text{Id}_X$.

Corollary 4.7. If X is a simple BCK-algebra, then Id_X and O_X are all state-morphism operators of X.

Proof. Let X be a simple BCK-algebra and $\mu : X \to X$ be a state-morphism operator on X. Then $\operatorname{Ker}(\mu) = \{0\}$ or $\operatorname{Ker}(\mu) = X$. Hence by Remark 4.6, $\mu = \operatorname{Id}_X$ or $\mu(x) = 0$ for all $x \in X$.

Definition 4.8. A state ideal I of a state-morphism BCK-algebra (X, μ) is called a *prime state ideal* of (X, μ) if, given state ideals A, B of $(X, \mu), A \cap B \subseteq I$ implies that $A \subseteq I$ or $B \subseteq I$.

Theorem 4.9. Let (X, μ) be a subdirectly irreducible state-morphism BCK-algebra. Then $\text{Ker}(\mu)$ is a prime state ideal.

Proof. Let I and J be two state ideals of (X, μ) such that $I \cap J \subseteq \operatorname{Ker}(\mu)$. Define $\phi : X/\operatorname{Ker}(\mu) \to \mu(X)/I \times \mu(X)/J$, by $\phi(x/\operatorname{Ker}(\mu)) = (x/I, x/J)$ for all $x \in X$. For each $x, y \in X$, if $x/\operatorname{Ker}(\mu) = y/\operatorname{Ker}(\mu)$, then $x * y, y * x \in \operatorname{Ker}(\mu)$ and so $\mu(x) * \mu(y) = \mu(x * y) = 0 = \mu(y * x) = \mu(y) * \mu(x)$. Hence by (BCK3), $\mu(x) = \mu(y)$. Therefore, ϕ is a well defined homomorphism. Thus, for each $x, y \in X$, if $\phi(x/\operatorname{Ker}(\mu)) = \phi(y/\operatorname{Ker}(\mu))$, then $(\mu(x)/I, \mu(x)/J) = (\mu(y)/I, \mu(y)/J)$, so that $\mu(x) * \mu(y), \mu(y) * \mu(x) \in I \cap J$. Hence, $\mu(x) * \mu(y), \mu(y) * \mu(x) \in \operatorname{Ker}(\mu)$. It follows that $x/\operatorname{Ker}(\mu) = y/\operatorname{Ker}(\mu)$, which implies that ϕ is one-to-one. Clearly, $\pi_1 \circ \phi(X/\operatorname{Ker}(\mu)) = \mu(X)/I$, and $\pi_2 \circ \phi(X/\operatorname{Ker}(\mu)) = \mu(X)/J$, where $\pi_1 : \mu(X)/I \times \mu(X)/J \to \mu(X)/I$ and $\pi_2 : \mu(X)/I \times \mu(X)/J \to \mu(X)/J$ are natural projection maps. Since $X/\operatorname{Ker}(\mu)$ and $\mu(X)$ are isomorphic, then by Theorem 3.14(ii), $X/\operatorname{Ker}(\mu)$ is a subdirectly irreducible BCK-algebra and so $\pi_1 \circ \phi : X/\operatorname{Ker}(\mu) \to \mu(X)/I$ or $\pi_2 \circ \phi : X/\operatorname{Ker}(\mu) \to \mu(X)/J$ is an isomorphism. Without lost of generality, we can assume that $\pi_1 \circ \phi$ is an isomorphism. For any $x \in I$, $\pi_1(\phi(x/\operatorname{Ker}(\mu))) = \pi_1(\mu(x)/I, \mu(x)/J) = \mu(x)/I$. Since I is a state ideal, then $\mu(x) \in I$ and hence $\mu(x)/I = 0/I$. It follows that $x/\operatorname{Ker}(\mu) = 0/\operatorname{Ker}(\mu)$ (since $\pi_1 \circ \phi$ is an isomorphism) and $x \in \operatorname{Ker}(\mu)$. Therefore, $I \subseteq \operatorname{Ker}(\mu)$ and so $\operatorname{Ker}(\mu)$ is a prime ideal of X.

Now, let us to consider a commutative subdirectly irreducible state morphism BCK-algebra (X, μ) satisfying the identity $(x * y) \land (y * x) = 0$.

Proposition 4.10. Let (X, μ) be a subdirectly irreducible state-morphism BCK-algebra such that X is commutative and $(x * y) \land (y * x) = 0$ for all $x, y \in X$. Then the following statements conditions hold:

- (i) For all $x \in X$, either $x \leq \mu(x)$ or $\mu(x) \leq x$.
- (ii) $\mu(X)$ is a chain.

Proof. (i) Since (X, μ) is subdirectly irreducible, then by Theorem 3.14, $\operatorname{Ker}(\mu) = \{0\}$ or $\operatorname{Ker}(\mu) \neq \{0\}$ and it is a subdirectly irreducible subalgebra of X. If $\operatorname{Ker}(\mu) = \{0\}$, then by Remark 4.6, $\mu(x) = x$ for all $x \in X$. Let $\operatorname{Ker}(\mu) \neq \{0\}$. Since $(x * y) \land (y * x) = 0$ for all $x, y \in X$, then by Theorem 3.14 and [29, Thm 2.3.12], $\operatorname{Ker}(X)$ must be a chain. Let $x \in X$. By Proposition 4.5, $x * \mu(x), \mu(x) * x \in \operatorname{Ker}(\mu)$ and so $(x * \mu(x)) \land (\mu(x) * x) = 0$ implies that $x * \mu(x) = 0$ or $\mu(x) * x = 0$. Therefore, $x \leq \mu(x)$ or $\mu(x) \leq x$.

(ii) By the first isomorphism theorem, $X/\text{Ker}(\mu) \cong \mu(X)$. Since X is a commutative BCK-algebra and it satisfies the identity $(x * y) \land (y * x) = 0$, then by [22, Thm II.8.13] and Theorem 4.9, $X/\text{Ker}(\mu)$ is a chain. Hence, $\mu(X)$ is a chain.

Note that if (X, *, 0) is a BCK-algebra such that (X, \leq) is a lattice, it is called a *BCK-lattice*. Then by [29, Thm 2.2.6], X satisfies the identity $(x * y) \land (y * x) = 0$.

Definition 4.11. A pair (A, I) is called an *adjoint pair* of a BCK-algebra X, if I is an ideal of X and A is a subalgebra of X satisfying the following conditions:

(Ap1) $A \cap I = \{0\}$ and $\langle A \cup I \rangle = X$;

(Ap2) for each $x \in X$, there exists an element $a_x \in A$ such that $(x, a_x) \in \theta_I$ (we say that a_x is a *component* of x in A with respect to I).

By Proposition 4.5(iii) and (iv), we conclude that if μ is a state-morphism operator on X, then $(\mu(X), \text{Ker}(\mu))$ satisfies (Ap1). In Theorem 4.14, a relation between state-morphism operators and adjoint pairs in any BCK-algebras will be found.

Proposition 4.12. Let (A, I) be an adjoint pair of X. Then, for all $x \in X$, a_x is unique.

Proof. Let $x \in X$ and $a, b \in A$ be two components of x in A. Then $(x, a), (x, b) \in \theta_I$ and so $(a, b) \in \theta_I$. Hence, $a*b, b*a \in I$. Also, $a*b, b*a \in A$ (since A is a subalgebra of X), so by (Ap1), $a*b, b*a \in I \cap A = \{0\}$. Thus, by (BCK3), a = b. Therefore, a_x is the only component of x in A with respect to I.

Let μ and ν be two state-morphism operators on X such that $\operatorname{Ker}(\mu) = \operatorname{Ker}(\nu)$ and $\operatorname{Im}(\mu) = \operatorname{Im}(\nu)$. For any $x \in X$, we have $x * \mu(x), \mu(x) * x \in \operatorname{Ker}(\mu) = \operatorname{Ker}(\nu)$ and so $\nu(x * \mu(x)) = 0 = \nu(\mu(x) * x)$. Since ν is a homomorphism and $\mu(x) \in \operatorname{Im}(\mu) = \operatorname{Im}(\nu)$, then $\nu(\mu(x)) = \mu(x)$ and so $\nu(x) * \mu(x) = 0 = \mu(x) * \nu(x)$. From (BCK3), we obtain that $\nu(x) = \mu(x)$ for all $x \in X$. Therefore, $\mu = \nu$. In Remark 4.13, we show that, there are state-morphism operators μ and ν on a BCK-algebra X such that $\operatorname{Ker}(\mu) = \operatorname{Ker}(\nu)$, but $\mu \neq \nu$.

Remark 4.13. Suppose that I is a maximal ideal of X such that |X/I| = 2 and $2 \le |X - I|$. Let a and b be two distinct elements of X - I. Define $\mu_a : X \to X$ and $\mu_b : X \to X$ by

$$\mu_a(x) = \begin{cases} 0 & \text{if } x \in I, \\ a & \text{if } x \in X - I. \end{cases} \qquad \mu_b(x) = \begin{cases} 0 & \text{if } x \in I, \\ b & \text{if } x \in X - I \end{cases}$$

(1) If $x, y \in I$, then $x * y \in I$, so $\mu_a(x * y) = 0 = \mu_a(x) * \mu_b(y)$.

(2) If $x \in I$ and $y \in X - I$, then $x * y \leq x$ and hence $x * y \in I$. It follows that $\mu_a(x * y) = 0 = 0 * \mu_a(y) = \mu_a(x) * \mu_b(y)$,

(3) If $x \in X - I$ and $y \in I$, then $x * y \in X - I$ (since I is an ideal and $x * y \in I$ implies $x \in I$) and so $\mu_a(x * y) = a = \mu_a(x) * 0 = \mu_a(x) * \mu_a(y)$,

(4) If $x, y \in X - I$, then by assumption, x/I = y/I (since |x/I| = 2), so $x * y \in I$. Thus, $\mu_a(x * y) = 0 = a * a = \mu_a(x) * \mu_a(y)$.

By (1)-(4), we obtain that μ_a is a homomorphism. If $x \in I$, then $\mu_a(\mu_a(x)) = \mu_a(x) = 0$. Also, if $x \in X - I$, then $\mu_a(\mu_a(x)) = \mu_a(a) = a = \mu_a(x)$ (since $a \in X - I$), so μ_a is a state-morphism operator. In a similar way, we can show that μ_b is a state-morphism operator. Clearly, $\operatorname{Ker}(\mu_a) = I = \operatorname{Ker}(\mu_b)$, but $\mu_a \neq \mu_b$.

Note that if X is a non-trivial positive implicative BCK-algebra and I is a maximal ideal of X, then X/I is a simple positive implicative BCK-algebra and so by [29, Cor 3.1.7], |X/I| = 2. It follows that if $2 \leq |X - I|$, then X satisfies the conditions in Remark 4.13.

Theorem 4.14. There is a one-to-one correspondence between adjoint pairs of X and state-morphism operators on X.

Proof. Let $\mu : X \to X$ be a state-morphism operator on X. We show that $(\mu(X), \operatorname{Ker}(\mu))$ is an adjoint pair of X. By Proposition 4.5(iii) and (iv), (Ap1) holds. Let $A = \mu(X)$ and x be an element of X. Then $\mu(x) \in A$ and clearly, $x * \mu(x), \mu(x) * x \in \operatorname{Ker}(\mu)$ (since $\mu^2 = \mu$). Hence, $(x, \mu(x)) \in \theta_I$. That is, for each $x \in X, \mu(x)$ is a component of x in A and so (Ap2) holds. Therefore, $(\mu(X), \operatorname{Ker}(\mu))$ is an adjoint pair of X.

Conversely, let (A, I) be an adjoint pair of X. Define $\mu_{I,A} : X \to X$, by $\mu_{I,A}(x) = a_x$ for all $x \in X$. By Proposition 4.12, $\mu_{I,A}$ is well defined. Let $x, y \in X$. Then $(x, a_x) \in \theta_I$ and $(y, a_y) \in \theta_I$ and so $(x * y, a_x * a_y) \in \theta_I$. By $a_x * a_y \in A$, we conclude that $a_x * a_y$ is a component of x * y in A, hence by Proposition 4.12, $\mu_{I,A}(x * y) = a_{x*y} = a_x * a_y = \mu_{I,A}(x) * \mu_{I,A}(y)$. Thus, $\mu_{I,A}$ is a homomorphism. Moreover, for any $a \in A$, $a * a = 0 \in I$ and hence $\mu_{I,A}(a) = a_a = a$. It follows that $\mu_{I,A}(\mu_{I,A}(x)) = \mu_{I,A}(x)$ for all $x \in X$. Therefore, $\mu_{I,A}$ is a state-morphism operator on X. Let us

denote by $\operatorname{Ad}(X)$ and $\operatorname{SM}(X)$ the set of all adjoint pairs and the set of all state-morphism operators on X, respectively. Define $f : \operatorname{Ad}(X) \to \operatorname{SM}(X)$, by $f(A, I) = \mu_{I,A}$ and $g : \operatorname{SM}(X) \to \operatorname{Ad}(X)$ by $g(\mu) = (\mu(X), \operatorname{Ker}(\mu))$. Since $\operatorname{Ker}(\mu_{I,A}) = I$ and $\operatorname{Im}(\mu_{I,A}) = A$ for all $(A, I) \in \operatorname{Ad}(X)$, then by the paragraph just after Proposition 4.12, we conclude that $f \circ g = \operatorname{Id}_{\operatorname{SM}(X)}$ and $g \circ f = \operatorname{Id}_{\operatorname{Ad}(X)}$. \Box

In the sequel, we want to construct a state BCK-algebra from a state-morphism. Let $m : X \to [0, 1]$ be a state-morphism. Then m is a homomorphism from X into the BCK-algebra $([0, 1], *_{\mathbb{R}}, 0)$ and so $X/\operatorname{Ker}(m) \cong m(X)$. Let B = m(X) and $C = \operatorname{Ker}(m)$. Then B and C are BCK-algebras. Consider the BCK-algebra $B \times C$. Let $A = \{(b, 0) | b \in B\}$ and $I = \{(0, c) | c \in C\}$. Then I is an ideal of $B \times C$ and A is a subalgebra of $B \times C$. Also,

(1) $A \cap I = \emptyset$.

(2) For each $(x, y) \in B \times C$, we have ((x, y) * (x, 0)) * (0, y) = (0, 0), hence by Theorem 2.2, $(x, y) \in \langle A \cup I \rangle$. It follows that $B \times C = \langle A \cup I \rangle$.

(3) For each $(x, y) \in B \times C$, we have $(x, y) * (x, 0) = (0, y) \in I$ and $(x, 0) * (x, y) = (0, 0) \in I$. Thus, (x, y)/I = (x, 0)/I.

So by Theorem 4.14, the map $\mu : B \times C \to B \times C$ defined by $\mu(x, y) = (x, 0)$ is a state-morphism operator on $B \times C$. Clearly, $\operatorname{Ker}(\mu) = I$ and $\operatorname{Im}(\mu) = A$. Note that if $m_{\mu} : B \times C \to [0, 1]$ is the statemorphism induced by μ (see the paragraph before Remark 4.6), then $(B \times C)/\operatorname{Ker}(m_{\mu}) \cong B \cong \operatorname{Im}(m)$ and $\operatorname{Ker}(m_{\mu}) = C \cong \operatorname{Ker}(m)$.

Definition 4.15. Let I be an ideal of X and $\pi_I : X \to X/I$ be the canonical projection. Then I is called a *retract* ideal if there exists a homomorphism $f : X/I \to X$ such that $\pi_I \circ f = \operatorname{Id}_{X/I}$ (the identity map on X/I).

Theorem 4.16. An ideal I of X is a retract ideal if and only if there exists a subalgebra A of X such that (A, I) forms an adjoint pair.

Proof. Let I be a retract ideal of X. Then there exists a homomorphism $f: X/I \to X$ such that $\pi_I \circ f = \operatorname{Id}_{X/I}$. Put A = f(X/I). Since f is a homomorphism, then A is a subalgebra of X. Let $x \in I \cap A$. Then there exists $a \in X$ such that f(a/I) = x, so $a/I = \pi_I \circ f(a/I) = \pi_I(x) = x/I$. From $x \in I$, we get that $a \in I$ and a/I = 0/I, whence x = f(0/I) = 0. Now, let $x \in X$. Then f(x/I) = a for some $a \in A$. It follows that $x/I = \pi_I \circ f(x/I) = \pi_I(a) = a/I$, which implies that $x * a \in I$. Hence, $a \in \langle A \cup I \rangle$ and a is a component of x in A with respect to I. Therefore, (A, I) is an adjoint pair of X. Conversely, let (A, I) be an adjoint pair of X. Define $f: X/I \to X$ by $f(x/I) = a_x$ for all $x \in X$ (see Definition 4.11). If x/I = y/I for some $x, y \in X$, then $(x, y) \in \theta_I$ and $(x, a_x) \in \theta_I$, which yields a_x is a component of y in A. By Proposition 4.12, we get that $a_y = a_x$. Thus, f is well defined. In a similar way, we can show that f is a homomorphism. It follows from $(x, a_x) \in \theta_I$ that $\pi_I \circ f(x/I) = \pi_I(a_x) = a_x/I = x/I$. Therefore, I is a retract ideal of X.

Corollary 4.17. There is a one-to-one correspondence between retract ideals and state-morphism operators of X.

Proof. The proof is a straightforward consequence of Theorem 4.14 and 4.16.

Definition 4.18. [4, Def II.8.8] A state BCK-algebra (X, μ) is called

- simple if $Con(X, \mu) = \{\Delta, \nabla\}.$
- semisimple if the intersection of all maximal congruence relations of (X, μ) is Δ .

By Theorem 3.11, we conclude that (X, μ) is simple if and only if it has exactly, two state ideals ({0} and X) and it is semisimple if and only if the intersection of all maximal state ideals of (X, μ) is the zero ideal.

Theorem 4.19. Let (X, μ) be a state-morphism BCK-algebra. Then the following hold:

(i) $\mu(X)$ is a simple (semisimple) subalgebra of X if and only if $\text{Ker}(\mu) \in \text{Max}(X)$ ($\text{Rad}(X) \subseteq \text{Ker}(\mu)$).

- (ii) (X,μ) is a simple state-morphism BCK-algebra if and only if X is a simple BCK-algebra.
- (iii) If $\mu(X)$ is a semisimple subalgebra of X, then the intersection of all maximal state ideals of (X, μ) is a subset of Ker (μ) .
- (iv) If X is a non-trivial bounded BCK-algebra such that $\mu(1) = 1$ and (X, μ) is a semisimple state BCK-algebra, then μ is the identity map.

Proof. (i) Let (X, μ) be a state-morphism BCK-algebra. Then by the first isomorphism theorem, $X/\text{Ker}(\mu)$ and $\mu(X)$ are isomorphic (as BCK-algebras), whence the proof of (i) is straightforward.

(ii) Let (X, μ) be a simple state-morphism BCK-algebra. By Proposition 3.2(iii), Ker (μ) is a state ideal of (X, μ) and so Ker $(\mu) = \{0\}$ or Ker $(\mu) = X$. By Corollary 4.7, we obtain that $\mu = \operatorname{Id}_X$ or $\mu(x) = 0$ for all $x \in X$. However, each ideal of X is a state ideal, so by assumption, X must have exactly two ideals. That is, X is a simple BCK-algebra. The proof of the converse is clear. In fact, any simple BCK-algebra X, has exactly two ideals, X and $\{0\}$, which are state ideals.

(iii) Let $\mu(X)$ be a semisimple subalgebra of X. Since $X/\operatorname{Ker}(\mu) \cong \mu(X)$, we get that $\operatorname{Rad}(X/\mu(X)) = \{0/\mu(X)\}$ and so $\bigcap\{I/\operatorname{Ker}(\mu) \mid \operatorname{Ker}(\mu) \subseteq I \in \operatorname{MaxS}(X)\} = \{0/\operatorname{Ker}(\mu)\}$, which implies that $\bigcap\{I \mid \operatorname{Ker}(\mu) \subseteq I \in \operatorname{MaxS}(X)\} \subseteq \operatorname{Ker}(\mu)$. Let H be a maximal ideal of X containing $\operatorname{Ker}(\mu)$. Since $\mu(x) * x \in \operatorname{Ker}(\mu)$, for each $x \in H$, then we have $\mu(x) * x \in H$, and so $\mu(x) \in H$ for all $x \in X$. Thus, H is a state ideal of (X, μ) . By summing up the above results, we have

$$\{I \mid I \text{ is a state ideal of } (X,\mu)\} \subseteq \{I \mid \operatorname{Ker}(\mu) \subseteq I \in \operatorname{MaxS}(X)\} \subseteq \operatorname{Ker}(\mu)$$

(iv) Let I be a maximal state ideal of X. Then we define $\nu : X/I \to X/I$ by $\nu(x/I) = \mu(x)/I$ for all $x \in X$. If x/I = y/I for some $x, y \in X$, then $x * y, y * x \in I$. By assumption, $\mu(x) * \mu(y) \in I$ and $\mu(y) * \mu(x) \in I$, hence $\mu(x)/I = \mu(y)/I$, which implies that $\nu(x/I) = \nu(y/I)$. Clearly, ν is a state operator on the BCK-algebra X/I. Since I is a maximal ideal, then X/I is a simple BCK-algebra, so by Corollary 4.7, $\nu = \operatorname{Id}_{X/I}$ or $\nu = 0$. If $\nu = 0$, then $\mu(x) \in I$ for all $x \in X$. It follows that $1 \in I$, which is a contradiction. So, $\nu(x/I) = x/I$ for all $x \in X$. Hence, $\mu(x) * x, x * \mu(x) \in I$ for all $x \in X$. Since I is an arbitrary maximal state ideal of (X, μ) , then by Proposition 4.2, we conclude that $\operatorname{Ker}(\mu) \subseteq \bigcap\{I \mid I \in \operatorname{MaxS}(X)\}$. Now, let (X, μ) be semisimple. Then $\bigcap\{I \mid I \in \operatorname{MaxS}(X)\} = \{0\}$ and so, $\operatorname{Ker}(\mu) = \{0\}$. By Corollary 4.6, $\mu = \operatorname{Id}_X$.

Now we show a relation between state-morphism MV-algebras and state-morphism BCK-algebras.

Theorem 4.20. Let (X, *, 0) be a bounded commutative BCK-algebra and $\mu : X \to X$ be a statemorphism operator such that $\mu(1) = 1$. Then (X, μ) is a state-morphism MV-algebra.

Proof. Let $x, y \in X$. Then $\mu(x') = \mu(1 * x) = \mu(1) * \mu(x) = 1 * \mu(x) = \mu(x)'$. Also,

$$\mu(x \oplus y) = \mu(N(Nx * y)) = 1 * \mu(Nx * y) = 1 * (\mu(Nx) * \mu(y)) = 1 * ((1 * \mu(x)) * \mu(y)) = \mu(x) \oplus \mu(y)$$

so, $\mu(x)$ is a homomorphism of MV-algebras. Since $\mu^2 = \mu$, then μ is a state-morphism operator on the MV-algebra $(X, \oplus, ', 0)$. That is, (X, μ) is a state-morphism MV-algebra.

5. Generators of State-Morphism BCK-algebras

Let SMBCK be the quasivariety of state-morphism BCK-algebras. We note that the system of BCKalgebras is not a variety because it is not closed under homomorphic images, [22, Thm VI.4.1]. On the other side, the system of commutative BCK-algebras or of quasi-commutative BCK-algebra forms a variety, [22, Thm I.5.2, Thm I.9.2]. Since by [22, Thm I.9.4], every finite BCK-algebra is quasicommutative, we can define the variety generated by a system of finite BCK-algebras.

Let (X, *, 0) be a BCK-algebra and on the direct product BCK-algebra $X \times X$ we define a mapping $\mu_X : X \times X \to X \times X$ by $\mu_X(x, y) = (x, x), (x, y) \in X \times X$. Then μ_X is a state-morphism on the BCK-algebra $X \times X$ and the state-morphism BCK-algebra $D(X) := (X \times X, \mu_X)$ is a said to be a *diagonal state-morphism BCK-algebra*. In the same way we can define also $\nu : X \times X \to X \times X$ by $\nu(x, y) = (y, y), (x, y) \in X \times X$, and $(X \times X, \nu)$ is again a state-morphism BCK-algebra which is isomorphic to D(X) under the isomorphism $h(x, y) = (y, x), (x, y) \in X \times X$. For example, if X = [0, 1] is the MV-algebra of

the real interval, then it generates the variety of MV-algebras (as well as the quasivariety of MV-algebras), and by [13, Thm 5.4], D([0, 1]) generates the variety of state-morphism MV-algebras.

Given a quasivariety of BCK-algebras \mathcal{V} , let \mathcal{V}_{μ} denote the class of state-morphism BCK-algebras (X, μ) such that $X \in \mathcal{V}$. Then \mathcal{V}_{μ} is a quasivariety, too.

As usual, given a class \mathcal{K} of algebras of the same type, $I(\mathcal{K})$, $H(\mathcal{K})$, $S(\mathcal{K})$, $P(\mathcal{K})$, and $P_R(\mathcal{K})$ will denote the class of isomorphic images, of homomorphic images, of subalgebras, of direct products of algebras and of reduced products from \mathcal{K} , respectively. Moreover, let $Q_V(\mathcal{K})$ and $V(\mathcal{K})$ denote the quasivariety and the variety, respectively, generated by \mathcal{K} . We recall that a quasivariety is closed under isomorphic images, subalgebras, reduced products and containing the one-element algebras, see [4, Def V.2.24], and a variety is closed under homomorphic images, subalgebras and products.

Using methods from [13, Sec 5], which can be easily modified for state-morphism BCK-algebras instead of state-morphism MV-algebras, we can prove the following two lemmas and theorem on generators for a case when we have a variety of BCK-algebras as well as for a more general case - for quasivarieties of BCK-algebras; for reader's convenience, we present outlines of theirs proofs.

First we start with proofs concerning the case when a family of BCK-algebras belongs to some variety of BCK-algebras.

Lemma 5.1. (1) Let \mathcal{K} be a class of BCK-algebras belonging to some variety of BCK-algebras. Then $V(D(\mathcal{K})) \subseteq V(\mathcal{K})_{\mu}$.

(2) Let \mathcal{V} be any variety of BCK-algebras. Then $\mathcal{V}_{\mu} = \mathsf{ISD}(\mathcal{V})$.

Proof. (1) We have to prove that every BCK-reduct of a state-morphism BCK-algebra in $V(D(\mathcal{K}))$ is in $V(\mathcal{K})$. Let \mathcal{K}_0 be the class of all BCK-reducts of algebras in $D(\mathcal{K})$. Let $X \in \mathcal{K}$, then $D(X) \in D(\mathcal{K})$. Then the BCK-reduct of D(X) is $X \times X$, and since X is a homomorphic image (under the projection map) of $X \times X$, $\mathcal{K}_0 \subseteq P(\mathcal{K})$ and $\mathcal{K} \subseteq H(\mathcal{K}_0)$. Hence, \mathcal{K}_0 and \mathcal{K} generate the same variety. Moreover, BCK-reducts of subalgebras (homomorphic images, direct products respectively) of algebras from $D(\mathcal{K})$ are subalgebras (homomorphic images, direct products, respectively) of the corresponding BCK-reducts. Therefore, the BCK-reduct of any algebra in $V(D(\mathcal{K}))$ is in $HSP(\mathcal{K}_0) = HSP(\mathcal{K}) = V(\mathcal{K})$.

(2) Let $(X, \mu) \in \mathcal{V}_{\mu}$. The map $\Phi : a \mapsto (\mu(a), a)$ is an embedding of (X, μ) into D(X). Moreover, $\Phi(\mu(a)) = (\mu(\mu(a)), \mu(a)) = (\mu(a), \mu(a)) = \mu_X((\mu(a), a)) = \mu_X(\Phi(a))$. Hence, Φ is an injective homomorphism of state-morphism BCK-algebras, and $(X, \mu) \in \mathsf{ISD}(\mathcal{V})$. Conversely, the BCK-reduct of any algebra in $\mathsf{D}(\mathcal{V})$ is in \mathcal{V} , and hence the BCK-reduct of any member of $\mathsf{ISD}(\mathcal{V})$ is in $\mathsf{IS}(\mathcal{V}) = \mathcal{V}$. Hence, any member of $\mathsf{ISD}(\mathcal{V})$ is in \mathcal{V}_{μ} .

Lemma 5.2. Let \mathcal{K} be a class of BCK-algebras. Then: (1) $\mathsf{DH}(\mathcal{K}) \subseteq \mathsf{HD}(\mathcal{K})$. (2) $\mathsf{DS}(\mathcal{K}) \subseteq \mathsf{ISD}(\mathcal{K})$. (3) $\mathsf{DP}(\mathcal{K}) \subseteq \mathsf{IPD}(\mathcal{K})$. (4) $\mathsf{V}(\mathsf{D}(\mathcal{K})) = \mathsf{ISD}(\mathsf{V}(\mathcal{K}))$.

Proof. (1) Let $D(C) \in \mathsf{DH}(\mathcal{K})$. Then there are $X \in \mathcal{K}$ and a BCK-homomorphism h from X onto C. Let, for all $a, b \in X$, $h^*(a, b) = (h(a), h(b))$. We claim that h^* is a homomorphism from the diagonal statemorphism BCK-algebra D(X) onto D(C). That h^* is a BCK-homomorphism is clear. We verify that h^* is compatible with μ_X . We have $h^*(\mu_X(a, b)) = h^*(a, a) = (h(a), h(a)) = \mu_C(h(a), h(b)) = \mu_C(h^*(a, b))$. Finally, since h is onto, given $(c, d) \in C \times C$, there are $a, b \in X$ such that h(a) = c and h(b) = d. Hence, $h^*(a, b) = (c, d), h^*$ is onto, and $D(C) \in \mathsf{HD}(\mathcal{K})$.

(2) It is trivial.

(3) Let $X = \prod_{i \in I} X_i \in \mathsf{P}(\mathcal{K})$, where each X_i is in \mathcal{K} . We assert the map

$$\Phi: \left((a_i : i \in I), (b_i : i \in I) \right) \mapsto \left((a_i, b_i) : i \in I \right)$$

is an isomorphism of state-morphism BCK-algebras from D(X) onto $\prod_{i \in I} D(X_i)$. Indeed, it is clear that Φ is a BCK-isomorphism. Moreover, denoting the state-morphism of $\prod_{i \in I} D(X_i)$ by μ^* , we get:

$$\Phi\bigl(\mu_X\bigl((a_i:i\in I),(b_i:i\in I)\bigr)\bigr) = \Phi\bigl((a_i:i\in I),(a_i:i\in I)\bigr) =$$

$$= ((a_i, a_i) : i \in I) = (\mu_{X_i}(a_i, b_i) : i \in I) = \mu^* (\Phi((a_i : i \in I), (b_i : i \in I))),$$

and whence Φ is an isomorphism of state-morphism BCK-algebras.

(4) By (1), (2) and (3), $\mathsf{DV}(\mathcal{K}) = \mathsf{DHSP}(\mathcal{K}) \subseteq \mathsf{HSPD}(\mathcal{K}) = \mathsf{V}(\mathsf{D}(\mathcal{K}))$, and hence $\mathsf{ISDV}(\mathcal{K}) \subseteq \mathsf{ISV}(\mathsf{D}(\mathcal{K})) = \mathsf{V}(\mathsf{D}(\mathcal{K}))$. Conversely, by Lemma 5.1(1), $\mathsf{V}(\mathsf{D}(\mathcal{K})) \subseteq \mathsf{V}(\mathcal{K})_{\mu}$, and by Lemma 5.1(2), $\mathsf{V}(\mathcal{K})_{\mu} = \mathsf{ISDV}(\mathcal{K})$. This proves the claim.

Theorem 5.3. If a system \mathcal{K} of BCK-algebras generates a variety \mathcal{V} of BCK-algebras, then $D(\mathcal{K})$ generates the variety \mathcal{V}_{μ} of state-morphism BCK-algebras.

Proof. By Lemma 5.2(4), $V(D(\mathcal{K})) = ISD(V(\mathcal{K}))$. Moreover, by Lemma 5.1(2), $V(\mathcal{K})_{\mu} = ISDV(\mathcal{K})$. Hence, $V(D(\mathcal{K})) = V(\mathcal{K})_{\mu}$.

Let [0,1] be the real interval. We endow it with the BCK-structure as before: $s *_{\mathbb{R}} t = \max\{0, s - t\}$, $s, t \in [0,1]$. We denote by $[0,1]_{BCK} := ([0,1], *_{\mathbb{R}}, 0)$ and it is a bounded commutative BCK-algebra. If, for bounded commutative BCK-algebras, we define a state-morphism operator μ as a homomorphism of bounded commutative BCK-algebras $\mu : X \to X$ such that $\mu \circ \mu = \mu$ and $\mu(1) = 1$, we can obtain the following result.

Corollary 5.4. Let \mathcal{V} be the variety of bounded commutative BCK-algebras, and let \mathcal{V}_{BCK} be the variety of all bounded commutative state-morphism BCK-algebras. Then $\mathcal{V}_{BCK} = \mathsf{V}(D([0,1]_{BCK}))$.

Proof. We can repeat the proofs of Lemmas 5.1–5.2 and Theorem 5.3 also for state-morphism operators on bounded commutative BCK-algebras. We have $\mathcal{V}_{BCK} = \mathcal{V}_{\mu}$. By [23], the variety of bounded BCK-algebras is categorically equivalent to the variety of MV-algebras. Since the MV-algebra [0, 1] generates the variety of MV-algebras, we have that the BCK-algebra $[0, 1]_{BCK}$ generates the variety of bounded commutative BCK-algebras. Then by Theorem 5.3, we have $\mathcal{V}_{BCK} = \mathsf{V}(D([0, 1]_{BCK}))$.

Corollary 5.5. There is uncountably many subvarieties of the variety \mathcal{V}_{BCK} of bounded commutative BCK-algebras with a state-morphism.

Proof. By [13, Thm 7.11], the variety of state-morphism MV-algebras is uncountable. Because the variety of bounded commutative BCK-algebras is categorically equivalent to the variety of MV-algebras, [23], we have the statement in question. \Box

Now we present some analogous general results concerning quasivarieties. The proofs follow the similar ideas just used for varieties.

Lemma 5.6. (1) Let \mathcal{K} be a class of BCK-algebras. Then $Q_V(D(\mathcal{K})) \subseteq Q_V(\mathcal{K})_{\mu}$. (2) Let \mathcal{V} be any quasivariety of BCK-algebras. Then $\mathcal{V}_{\mu} = \mathsf{ISD}(\mathcal{V})$.

Proof. (1) We have to prove that every BCK-reduct of a state-morphism BCK-algebra in $Q_V(\mathcal{K})$ is in $Q_V(\mathcal{K})$.

Let \mathcal{K}_0 be the class of all BCK-reducts of algebras in $\mathsf{D}(\mathcal{K})$. Let $X \in \mathcal{K}$, and let $\{0\}$ be the one-element BCK-algebra which is a subalgebra of X. Then $D(X) \in \mathsf{D}(\mathcal{K})$. The BCK-reduct of D(X) is $X \times X$, and since X is isomorphic to the BCK-algebra $\{0\} \times X$, which is a subalgebra of $X \times X$, we have $X \in \mathsf{IS}(\mathcal{K}_0)$. Thus $\mathcal{K}_0 \subseteq \mathsf{P}(\mathcal{K})$ and $\mathcal{K} \subseteq \mathsf{IS}(\mathcal{K}_0)$. By [4, Thm 2.23, 2.25], we have $\mathsf{Q}_V(\mathcal{K}_0) = \mathsf{ISP}_R(\mathcal{K}_0) \subseteq \mathsf{ISP}_R(\mathcal{K}) \subseteq$ $\mathsf{ISIP}_R(\mathcal{K}) \subseteq \mathsf{IISP}_R(\mathcal{K}) = \mathsf{ISP}_R(\mathcal{K}) = \mathsf{Q}_V(\mathcal{K})$. Similarly, $\mathsf{Q}_V(\mathcal{K}) = \mathsf{ISP}_R(\mathcal{K}) \subseteq \mathsf{ISP}_R\mathsf{IS}(\mathcal{K}_0) \subseteq \mathsf{ISIP}_R(\mathcal{K}_0) \subseteq \mathsf{ISP}_R(\mathcal{K}_0) = \mathsf{ISP}_R(\mathcal{K}_0) = \mathsf{Q}_V(\mathcal{K}_0)$. Hence, \mathcal{K} and \mathcal{K}_0 generates the same quasivariety.

Moreover, BCK-reducts of subalgebras (isomorphic images, reduced products, respectively) of algebras from $D(\mathcal{K})$ are subalgebras (isomorphic images, reduced products, respectively) of the corresponding BCK-reducts. Therefore, the BCK-reduct of any algebra in $Q_V(D(\mathcal{K}))$ is in $Q_V(\mathcal{K}_0) = Q_V(\mathcal{K}) = Q_V(\mathcal{K})$, which proves (1).

(2) Let $(X, \mu) \in \mathcal{V}_{\mu}$. The map $\Phi : a \mapsto (\mu(a), a)$ is an embedding of (X, μ) into D(X). Moreover, $\Phi(\mu(a)) = (\mu(\mu(a)), \mu(a)) = (\mu(a), \mu(a)) = \mu_X((\mu(a), a)) = \mu_X(\Phi(a))$. Hence, Φ is an injective homomorphism of state-morphism BCK-algebras, and $(X, \mu) \in \mathsf{ISD}(\mathcal{V})$. Conversely, let $X \in \mathcal{V}$. Then the BCK-reduct of D(X) is $X \times X$, and $X \times X$ is isomorphic with the reduced product $(X \times X)/F$, where Fis the one-element filter $F = \{1, 2\}$ of the set $I = \{1, 2\}$. Hence, $X \times X$ is in \mathcal{V} , and the BCK-reduct of any algebra in $\mathsf{D}(\mathcal{V})$ is in \mathcal{V} , whence the BCK-reduct of any member of $\mathsf{ISD}(\mathcal{V})$ is in $\mathsf{IS}(\mathcal{V}) = \mathcal{V}$. Therefore, any member of $\mathsf{ISD}(\mathcal{V})$ is in \mathcal{V}_{μ} .

Lemma 5.7. Let \mathcal{K} be a class of BCK-algebras. Then:

 $\begin{array}{l} (1) \ \mathsf{DI}(\mathcal{K}) \subseteq \mathsf{ID}(\mathcal{K}). \\ (2) \ \mathsf{DS}(\mathcal{K}) \subseteq \mathsf{ISD}(\mathcal{K}). \\ (3) \ \mathsf{DP}_{\mathsf{R}}(\mathcal{K}) \subseteq \mathsf{IP}_{\mathsf{R}}\mathsf{D}(\mathcal{K}). \\ (4) \ \mathsf{Q}_{\mathsf{V}}(\mathsf{D}(\mathcal{K})) = \mathsf{ISD}(\mathsf{Q}_{\mathsf{V}}(\mathcal{K})). \end{array}$

Proof. (1) Let $D(C) \in \mathsf{DI}(\mathcal{K})$. Then there are $X \in \mathcal{K}$ and an isomorphism h from X onto C. Let, for all $a, b \in X$, $h^*(a, b) = (h(a), h(b))$. We claim that h^* is an isomorphism from D(X) onto D(C). That h^* is an isomorphism of BCK-algebras is clear. We verify that h^* is compatible with μ_X . We have $h^*(\mu_X(a, b)) = h^*(a, a) = (h(a), h(a)) = \mu_C(h(a), h(b)) = \mu_C(h^*(a, b))$. Finally, since h is onto, given $(c, d) \in C \times C$, there are $a, b \in X$ such that h(a) = c and h(b) = d. Hence, $h^*(a, b) = (c, d)$, h^* is onto, and $D(C) \in \mathsf{ID}(\mathcal{K})$.

(2) It is trivial.

(3) Let $X = \prod_{i \in I} X_i / F \in \mathsf{P}_{\mathsf{R}}(\mathcal{K})$, where each X_i is in \mathcal{K} , and F is a filter over I. We claim the map

 $\Phi: \left((a_i : i \in I) / F, (b_i : i \in I) / F \right) \mapsto \left((a_i, b_i) : i \in I \right) / F$

is an isomorphism from D(X) onto $\prod_{i \in I} D(X_i)/F$. Indeed, it is clear that Φ is a BCK-isomorphism: let $((a_i, b_i) : i \in I)/F = ((a'_i, b'_i) : i \in I)/F$. Then $[\![a_i = a'_i]\!] \cap [\![b_i = b'_i]\!] = [\![(a_i, b_i) = (a'_i, b'_i)]\!] \in F$, so that $[\![a_i = a'_i]\!], [\![b_i = b'_i]\!] \in F$ and hence $((a_i, b_i) : i \in I)/F = ((a'_i, b_i) : i \in I)/F$. Moreover, denoting the state-morphism of $\prod_{i \in I} D(X_i)$ by μ^* , we get:

$$\Phi(\mu_X((a_i:i\in I)/F,(b_i:i\in I)/F)) = \Phi((a_i:i\in I)/F,(a_i:i\in I))/F = \\ = ((a_i,a_i):i\in I)/F = (\mu_{X_i}(a_i,b_i):i\in I) = \mu^*(\Phi((a_i:i\in I)/F,(b_i:i\in I)/F)),$$

and hence, Φ is a state-morphism isomorphism.

(4) By (1), (2) and (3), $\mathsf{DQ}_{\mathsf{V}}(\mathcal{K}) = \mathsf{DISP}_{\mathsf{R}}(\mathcal{K}) \subseteq \mathsf{IISP}_{\mathsf{R}}\mathsf{D}(\mathcal{K}) \subseteq \mathsf{ISP}_{\mathsf{R}}\mathsf{D}(\mathcal{K}) = \mathsf{Q}_{\mathsf{V}}(\mathsf{D}(\mathcal{K})),$ and hence, $\mathsf{ISDQ}_{\mathsf{V}}(\mathcal{K}) \subseteq \mathsf{ISQ}_{\mathsf{V}}(\mathsf{D}(\mathcal{K})) = \mathsf{Q}_{\mathsf{V}}(\mathsf{D}(\mathcal{K})).$ Conversely, by Lemma 5.6(1), $\mathsf{Q}_{\mathsf{V}}(\mathsf{D}(\mathcal{K})) \subseteq \mathsf{Q}_{\mathsf{V}}(\mathcal{K})_{\mu},$ and by Lemma 5.6(2), $\mathsf{Q}_{\mathsf{V}}(\mathcal{K})_{\mu} = \mathsf{ISDQ}_{\mathsf{V}}(\mathcal{K}).$ This proves the claim.

Finally, we present the main result of the section about generators of quasivarieties of state-morphism BCK-algebras which is an analogue of Theorem 5.3.

Theorem 5.8. If a system \mathcal{K} of BCK-algebras generates a quasivariety \mathcal{V} of BCK-algebras, then $D(\mathcal{K})$ generates the quasivariety \mathcal{V}_{μ} of state-morphism BCK-algebras.

Proof. By Lemma 5.7(4), $Q_V(D(\mathcal{K})) = ISD(Q_V(\mathcal{K}))$. Moreover, by Lemma 5.6(2), $Q_V(\mathcal{K})_\mu = ISD(Q_V(\mathcal{K}))$. Hence, $Q_V(D(\mathcal{K})) = Q_V(\mathcal{K})_\mu$.

Since the interval [0, 1] generates the class \mathcal{MV} of MV-algebras as both a variety and a quasivariety, due to the categorical equivalence of MV-algebras and bounded commutative BCK-algebras, [23], by Theorem 5.8 and Corollary 5.4, we have the following corollary.

Corollary 5.9. If $[0,1]_{BCK} = ([0,1], *_{\mathbb{R}}, 0)$ is the bounded commutative BCK-algebra of the real interval [0,1], then $D([0,1]_{BCK})$ generates both as the variety and as the quasivariety of state-morphism BCK-algebras whose BCK-reduct is a bounded commutative BCK-algebra. In other words, $V(D([0,1]_{BCK})) = \mathcal{V}_{BCK} = Q_V(D([0,1]_{BCK})).$

Finally, we formulate two open problems.

Problem 1. Describe some interesting generators of the quasivariety of state BCK-algebras.

We note that we do not know yet any interesting generator for the variety of state MV-algebras.

(2) If X is a subdirectly irreducible BCK-algebra, then the diagonal state-morphism BCK-algebra D(X) is subdirectly irreducible. Similarly, if X is linearly ordered and subdirectly irreducible, then (X, Id_X) is subdirectly irreducible. If X is an MV-algebra, the third category of subdirectly irreducible state-morphism MV-algebra (X, μ) is the case when X has a unique maximal ideal. Inspired by that, we formulate the second open problem:

Problem 2. Characterize (bounded) subdirectly irreducible state-morphism BCK-algebras as it was done in [8, 11, 13].

References

- [1] M. Aguiar, W. Moreira, Combinatorics of the free Baxter algebra, Electron. J. Combin. 13 (2006), R 17, 38 pp.
- [2] R. A. Borzooei, O. Zahiri, Prime ideals in BCI-algebras and BCK-algebras, Ann. Univer. Craiova 32 (2012), 299–309.
 [3] M. Botur, A. Dvurečenskij, State-morphism algebras general approach, Fuzzy Sets and Systems 218 (2013), 90–102.
- DOI: http://dx.doi.org/10.1016/j.fs.2012.08.013
- [4] S. Burris, H. P. Sankappanavar, "A Course in Universal Algebra", Springer-Verlag, New York, 1981.
- [5] M. Botur, A. Dvurečenskij, State-morphism algebras-General approach, Fuzzy Sets and Systems 218 (2013), 90–102.
- [6] C. C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490.
- [7] L. C. Ciungu, A. Dvurečenskij, Measures, states and de Finetti maps on pseudo-BCK algebras, Fuzzy Sets and Systems 161 (2010), 2870–2896. DOI:10.1016/j.fss.2010.03.017
- [8] A. Di Nola, A. Dvurečenskij, State-morphism MV-algebras, Ann. Pure Appl. Logic. 161 (2009), 161–173.
- [9] A. Di Nola, A. Dvurečenskij, On some classes of state-morphism MV-algebras, Math. Slovaca 59 (2009), 517–534.
- [10] A. Di Nola, A. Dvurečenskij, A. Lettieri, On varieties of MV-algebras with internal states, Internat. J. Approx. Reason. 51 (2010), 680–694. DOI: 10.1016/j.ijar.2010.01.017
- [11] A. Di Nola, A. Dvurečenskij, A. Lettieri, Erratum "State-morphism MV-algebras" [Ann. Pure Appl. Logic 161 (2009) 161-173], Ann. Pure Appl. Logic 161 (2010), 1605–1607. DOI 10.1016/j.apal.2010.06.004
- [12] A. Dvurečenskij, Measures and states on BCK-algebras, Sem. Mat. Fis. Univ. Modena 47 (1999), 511–528.
- [13] A. Dvurečenskij, T. Kowalski, F. Montagna, State morphism MV-algebras, Inter. J. Approx. Reasoning 52 (2011), 1215–1228. DOI: 10.1016/j.ijar.2011.07.003
- [14] A. Dvurečenskij, J. Rachůnek, D. Šalounová, State operators on generalizations of fuzzy structures, Fuzzy Sets and Systems 187 (2012), 58–76. DOI: 10.1016/j.fss.2011.05.023
- [15] T. Flamino, F. Montagna, An algebraic approach to states on MV-algebras, In: M. Štěpnička, V. Novak, U. Bodenhofer (Eds.), Proceedings of EUSFLAT07 2 (2007), pp. 201–206.
- [16] T. Flaminio and F. Montagna, MV-algebras with internal states and probabilistic fuzzy logics, Inter. J. Approx. Reasoning, 50 (2009), 138–152.
- [17] P. Hájek, "Metamathematics of Fuzzy Logic", Kluwer Academic Publishers, Dordrecht 1998.
- [18] Y. Imai, K. Iseki, On axiom system of propositional calculi, XIV, Japan Acad. 42 (1966), 19–22.
- [19] K. Iseki, An algebra related with a propositional calculus, Japan Acad. 42 (1966), 26–29.
- [20] T. Kroupa, Every state on semisimple MV-algebra is integral, Fuzzy Sets and Systems 157 (2006), 2771–2782.
- [21] J. Kühr, D. Mundici, De Finetti theorem and Borel states in [0,1]-valued algebraic logic, Inter. J. Approx. Reasoning, 46 (2007), 605–616.
- [22] J. Meng, Y. B. Jun, "BCK-algebras", Kyung Moon Sa Co., Seoul, 1994.
- [23] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japonica, 31, (1986), 889–894.
- [24] D. Mundici, Averaging the truth-value in Lukasiewicz logic, Studia Logica 55 (1995), 113–127.
- [25] D. Mundici, Tensor product and the Loomis-Sikorski theorem for MV-algebras, Advance Appl. Math. 22 (1999), 227– 248.
- [26] G. Panti, Invariant measures in free MV-algebras, Comm. Algebra 36 (2008), 2849–2861.
- [27] O. M. Schnürer, Homotopy categories and idempotent completeness, weight structures and weight complex functors, arXiv:1107.1227v1
- [28] S. Vickers, Entailment systems for stably locally compact locales, Theoret. Comput. Sci. 316 (2004), 259–296. DOI:10.1016/j.tcs.2004.01.033
- [29] H. Yisheng, "BCI-algebra", Science Press, China, 2006.