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Abstract. In the paper, we define the notion of a state BCK-algebra and a state-morphism BCK-
algebra extending the language of BCK-algebras by adding a unary operator which models probabilistic
reasoning. We present a relation between state operators and state-morphism operators and measures
and states on BCK-algebras, respectively. We study subdirectly irreducible state (morphism) BCK-
algebras. We introduce the concept of an adjoint pair in BCK-algebras and show that there is a one-
to-one correspondence between adjoint pairs and state-morphism operators. In addition, we show the
generators of quasivarieties of state-morphism BCK-algebras.

1. Introduction

In 1966, Imai and Iseki [18, 19] introduced two classes of abstract algebras: BCK-algebras and BCI-
algebras. These algebras have been intensively studied by many authors. For a comprehensive overview
on BCK-algebras, we recommend the book [22]. It is known that the class of BCK-algebras is a proper
subclass of the class of BCI-algebras. MV-algebras were introduced by Chang in [6], in order to show that
 Lukasiewicz logic is complete with respect to evaluations of propositional variables in the real unit interval
[0, 1]. It is well known that the class of MV-algebras is a proper subclass of the class of BCK-algebras.
Therefore, both BCK-algebras and MV-algebras are important for the study of fuzzy logic.

In [24], Mundici introduced a state on MV-algebras as averaging the truth value in  Lukasiewicz logic.
States constitute measures on their associated MV-algebras which generalize the usual probability mea-
sures on Boolean algebras. Kroupa [20] and Panti [26] have recently shown that every state on an
MV-algebra can be presented as a usual Lebesgue integral over an appropriate space. Kühr and Mundici
[21] studied states via de Finetti’s notion of a coherent state with motivation in Dutch book making.
Their method is applicable to other structures besides MV-algebras. Measures on pseudo BCK-algebras
were studied in [7].

Since MV-algebras with state are not universal algebras, they do not automatically induce an asser-
tional logic. Recently, Flaminio and Montagna in [15, 16] presented an algebraizable logic using a prob-
abilistic approach, and its equivalent algebraic semantics is precisely the variety of state MV-algebras.
We recall that a state MV-algebra is an MV-algebra whose language is extended by adding an operator,
µ (also called an internal state), whose properties are inspired by ones of states. Analogues of extremal
states are state-morphism operators, introduced in [8, 9], where by definition, a state-morphism is an
idempotent endomorphism on an MV-algebra.
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State MV-algebras generalize, for example, Hájek’s approach, [17], to fuzzy logic with modality Pr
(interpreted as probably) which has the following semantic interpretation: The probability of an event a
is presented as the truth value of Pr(a). On the other hand, if s is a state, then s(a) is interpreted as the
average appearance of the many valued event a.

In [15, 16], the authors found a relation between states on MV-algebras and state MV-algebras. In
[8, 9], some results about characterizations of subdirectly irreducible state-morphism MV-algebras, simple,
semisimple, and local state MV-algebras were shown. In [10], the authors study the variety of state-
morphism MV-algebras together with a characterization of subdirectly irreducible state MV-algebras, and
some interesting characterizations of some varieties of state-morphism MV-algebras were given. These
results were generalized in [14, 13, 3].

In the present paper, we concentrate to the study of state BCK-algebras and state-morphism BCK-
algebras. We show their basic properties and we characterize quasivarieties of state-morphism BCK-
algebras and their generators. We present that the generator of a quasivariety of state-morphism BCK-
algebras consists of diagonal state-morphism BCK-algebras. The goal of the present paper is to extend
the study of state MV-algebras to state BCK-algebras. We note that in contrast to MV-algebras, in this
case we have to deal with quasivarieties because the class of BCK-algebras forms a quasivariety and not
a variety.

We note that a state-morphism BCK-algebra is a special case of algebras with a distinguished idem-
potent endomorphism and such algebras are not new: experts working in various areas (ranging from
computer science, Baxter algebras, set theory, category theory and homotopy theory, see e.g. [28, 1, 27])
have considered such structures with a fixed endomorphism.

The paper is organized as follows. Section 2 gathers the elements of BCK-algebras. In Section 3, we
introduce the concept of a state BCK-algebra and we study its properties. Then we verify a subdirectly
irreducible state BCK-algebra and we characterize this structure. We show that if X is a bounded
commutative BCK-algebra, then (X,µ) is a state (morphism) MV-algebra if and only if (X,µ) is a state
(morphism) BCK-algebra such that µ(1) = 1. In Section 4, we study state-morphism BCK-algebras
and state ideals. Some relations between congruence relations on state-morphism BCK-algebras and
state ideals are also obtained. Then we introduce the concept of an adjoint pair in a BCK-algebra and
describe a relation between state-morphism operators and adjoint pairs in BCK-algebras. Finally, Section
5 gives results on generators of quasivarieties of state-morphism BCK-algebras, and we present two open
problems.

2. Preliminaries

In the section, we gather some basic notions relevant to BCK-algebras and MV-algebras which will
need in the next sections.

We say that an MV-algebra is an algebra (M,⊕,′ , 0) of type (2, 1, 0), where (M,⊕, 0) is a commutative
monoid with neutral element 0 and for all x, y ∈ M :

(i) x′′ = x;
(ii) x⊕ 1 = 1, where 1 = 0′;

(iii) x⊕ (x⊕ y′)′ = y ⊕ (y ⊕ x′)′.

In any MV-algebra (M,⊕,′ , 0), we can define the following further operations:

x⊙ y = (x′ ⊕ y′)′, x⊖ y = (x′ ⊕ y)′.

A state MV-algebra is a pair (M,σ) such that (M,⊕,′ , 0) is an MV-algebra and σ is a unary operation
on M satisfying:

(1) σ(1) = 1;
(2) σ(x′) = σ(x)′;
(3) σ(x⊕ y) = σ(x) ⊕ σ(y ⊖ (x⊙ y));
(4) σ(σ(x) ⊕ σ(y)) = σ(x) ⊕ σ(y).
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In [8], Di Nola and Dvurečenskij have introduced a state-morphism operator on an MV-algebra
(M,⊕,′ , 0) as an MV-homomorphism σ : M → M such that σ2 = σ and the pair (M,σ) is said to
be a state-morphism MV-algebra. They have proved that the class of state-morphism MV-algebras is a
proper subclass of state MV-algebras.

Definition 2.1. [18, 19] A BCK-algebra is an algebra (X, ∗, 0) of type (2, 0) satisfying the following
conditions:

(BCK1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0;
(BCK2) x ∗ 0 = x;
(BCK3) x ∗ y = 0 and y ∗ x = 0 imply y = x;
(BCK4) 0 ∗ x = 0.

A BCK-algebra X is called non-trivial if X 6= {0}. If X is a BCK-algebra, then the relation ≤ defined
by x ≤ y ⇔ x ∗ y = 0, x, y ∈ X , is a partial order on X . In addition, for all x, y, z ∈ X, the following
hold:

(BCK5) x ∗ x = 0;
(BCK6) (x ∗ y) ∗ z = (x ∗ z) ∗ y;
(BCK7) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x;
(BCK8) x ∗ (x ∗ (x ∗ y)) = x ∗ y;
(BCK9) (x ∗ y) ∗ (x ∗ z) ≤ z ∗ y and (y ∗ x) ∗ (z ∗ x) ≤ y ∗ z.

In a BCK-algebra X , we define x ∗ y0 = x and x ∗ yn = (x ∗ yn−1) ∗ y for any integer n ≥ 1 and
all x, y ∈ X. A BCK-algebra (X, ∗, 0) is called bounded if (X,≤) has the greatest element, where ≤ is
the above defined partially order relation. Let use denote by 1 the greatest element of X (if it exits).
In bounded BCK-algebras, we usually write Nx instead of 1 ∗ x. A BCK-algebra (X, ∗, 0) is called a
commutative BCK-algebra if x ∗ (x ∗ y) = y ∗ (y ∗ x) for all x, y ∈ X . Each commutative BCK-algebra
is a lover semilattice and x ∧ y = x ∗ (x ∗ y) for all x, y ∈ X (see [22]). Let (X, ∗, 0) and (Y, ∗, 0) be two
BCK-algebras. A map f : X → Y is called a homomorphism if f(a ∗ b) = f(a) ∗ f(b) for all a, b ∈ X .
Then f(0) = 0 (since f(0) = f(0 ∗ 0) = f(0) ∗ f(0) = 0).

A non-empty subset I of a BCK-algebra X is called an ideal if (1) 0 ∈ I, (2) y ∗ x ∈ I and x ∈ I imply
that y ∈ I for all x, y ∈ X . We denote by I(X), the set of all ideals of X . An ideal I of a BCK-algebra
X is called proper if I 6= X . Suppose that (X, ∗, 0) and (Y, ∗, 0) are two BCK-algebras and f : X → Y
is a homomorphism, then Ker(f) = f−1({0}) is an ideal of X . Let use denote by 〈S〉 the least ideal of
X containing S, where S is a subset of a BCK-algebra X. It is called the ideal generated by S. If S is a
subset of more BCK-algebras, we will use 〈S〉X to specify a concrete BCK-algebra X. Instead of 〈{a}〉
we will write rather 〈a〉, where a ∈ X.

Theorem 2.2. [29] Let S be a subset of a BCK-algebra (X, ∗, 0). Then

〈S〉 = {x ∈ X | (· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0 for some n ∈ N and some a1, . . . , an ∈ S ∪ {0}}.

Moreover, if I is an ideal of X, then

〈I ∪ S〉 = {x ∈ X | (· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an ∈ I for some n ∈ N and some a1, . . . , an ∈ S}.

Let I be an ideal of a BCK-algebra (X, ∗, 0). Then the relation θI , defined by (x, y) ∈ θI if and only if
x∗y, y ∗x ∈ I, is a congruence relation on X . Let us denote by x/I or [x] the set {y ∈ X | (x, y) ∈ θI} for
all x ∈ X . Then (X/I, ∗, 0/I) is a BCK-algebra, when X/I := {x/I | x ∈ X} and x/I ∗ y/I := (x ∗ y)/I
for all x, y ∈ X (see [22]).

An ideal I of a BCK-algebra (X, ∗, 0) is called commutative if x ∗ y ∈ I implies that x ∗ (y ∗ (y ∗x)) ∈ I
for all x, y ∈ X . If I is a commutative ideal, the BCK-algebra X/I is a commutative BCK-algebra [29,
Thm 2.5.6].

Theorem 2.3. Let (X, ∗, 0) be a BCK-algebra and θ be a congruence relation on X. Then [0]θ is an
ideal of X. Moreover, if I = [0]θ, then θI = θ.
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Proof. See [29, Prop 1.5.9, Prop. 1.5.11, Cor. 1.5.12]. �

Definition 2.4. [2, 29] Let I be a proper ideal of a BCK-algebra (X, ∗, 0). Then I is called a

• prime ideal if 〈x〉 ∩ 〈y〉 ⊆ I implies x ∈ I or y ∈ I for all x, y ∈ X ;
• maximal ideal if 〈I ∪ {x}〉 = X for all x ∈ X − I.

We use Max(X) and Spec(X) to denote the set of all maximal and prime ideals of X , respectively. In
each BCK-algebra X , Max(X) ⊆ Spec(X) (see [2, Thm 3.7]). A BCK-algebra (X, ∗, 0) is called simple if
it has only two ideals and it is called semisimple if Rad(X) :=

⋂

Max(X) = {0}.

Definition 2.5. [29] A BCK-algebra (X, ∗, 0) is positive implicative if (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for all
x, y, z ∈ X .

If X = [0, a) or X = [0, a], where a ∈ R, or X = [0,∞), we define the binary operation ∗R on X by
x ∗R y = max{0, x− y}. Then (X, ∗R, 0) is a commutative BCK-algebra (see [22]).

Definition 2.6. [12] Let (X, ∗, 0) be a BCK-algebra and m : X → [0,∞] be a map such that, for all
x, y ∈ [0, 1],

(i) if m(x ∗ y) = m(x) −m(y), whenever y ≤ x, then m is said to be a measure;
(ii) if 1 ∈ X and m is a measure with m(1) = 1, then m is said to be a state;

(iii) if m(x ∗ y) = max{0,m(x) −m(y)}, then m is said to be a measure-morphism;
(iv) if 1 ∈ X and m is a measure-morphism with m(1) = 1, then m is said to be a state-morphism.

3. State BCK-algebras

In the section, the concept of left and right state BCK-algebras is defined as a generalization of state
MV-algebras, and its properties are studied. We introduce state ideals and congruence relations of right
or left state BCK-algebras, and relations between them are obtained. Finally, we characterize subdirectly
irreducible state BCK-algebras.

From now on, in this paper, (X, ∗, 0) or simply X is a BCK-algebra, unless otherwise specified.

Definition 3.1. A map µ : X → X is called a left (right) state operator on X if it satisfies the following
conditions:

(S0) x ∗ y = 0 implies µ(x) ∗ µ(y) = 0;
(S1) µ(x ∗ y) = µ(x) ∗ µ(x ∗ (x ∗ y)) (µ(x ∗ y) = µ(x) ∗ µ(y ∗ (y ∗ x)));
(S2) µ(µ(x) ∗ µ(y)) = µ(x) ∗ µ(y).

A left (right) state BCK-algebra is a pair (X,µ), where X is a BCK-algebra and µ is a left (right) state
operator on X .

Clearly, if X is a commutative BCK-algebra, then µ is a right state operator on X if and only if it
is a left state operator. In the next proposition, we describe the basic properties of left (right) state
operators.

Proposition 3.2. Let (X,µ) be a left (right) state BCK-algebra. Then, for any x, y, x1, . . . , xn ∈ X,

(i) µ(0) = 0 and µ(µ(x)) = µ(x).
(ii) µ(x) ∗ µ(y) ≤ µ(x ∗ y). More generally,

(· · · ((µ(x) ∗ µ(x1)) ∗ µ(x2)) ∗ · · · ) ∗ µ(xn) ≤ µ((· · · ((x ∗ x1) ∗ x2) ∗ · · · ) ∗ xn).

(iii) Ker(µ) := µ−1({0}) is an ideal of X.
(iv) µ(X) := {µ(x) | x ∈ X} is a subalgebra of X.
(v) Ker(µ) ∩ Im(µ) = {0}.

Proof. We prove this theorem only for a left state BCK-algebra. The proof for a right state BCK-algebra
is similar.

(i) By (BCK4) and (BCK8), we have µ(0) = µ(0∗0) = µ(0)∗µ(0∗ (0∗0)) = µ(0)∗µ(0) = 0. Moreover,
by (S2) and (BCK2), we have µ(µ(x)) = µ(µ(x) ∗ 0) = µ(µ(x) ∗ µ(0)) = µ(x) ∗ µ(0) = µ(x).
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(ii) Let x, y ∈ X . Since x ∗ (x ∗ y) ≤ y, then µ(x ∗ (x ∗ y)) ≤ µ(y), and so by (BCK7), we get that
µ(x) ∗ µ(y) ≤ µ(x) ∗ µ(x ∗ (x ∗ y)) = µ(x ∗ y). The proof of the second part follows from (BCK7).

(iii) By (i), 0 ∈ Ker(µ). Let y ∗ x, x ∈ Ker(µ), where x, y ∈ X . Then µ(x) = µ(y ∗ x) = 0. It follows
from (ii) that µ(y) = µ(y) ∗ 0 = µ(y) ∗ µ(x) ≤ µ(y ∗ x) = 0, hence y ∈ Ker(µ). Thus, Ker(µ) is an ideal
of X .

(iv) By (i), 0 ∈ µ(X). Let a, b ∈ X . Then by (S2), µ(µ(a)∗µ(a)) = µ(a)∗µ(b) and so µ(a)∗µ(b) ∈ µ(X).
Therefore, µ(X) is a subalgebra of X .

(v) It is evident. �

In Theorem 3.3, we attempt to find a relation between measures and states on BCK-algebras and state
BCK-algebras.

Theorem 3.3. Let a ∈ [0, 1], X = ([0, a), ∗R, 0) and (X,µ) be a left state BCK-algebra. Then µ : X →
[0, 1] is a measure.

In addition, if X = ([0, 1], ∗R, 0) and (X,µ) is a left state BCK-algebra such that µ(1) = 1, then
µ : X → [0, 1] is a state-morphism.

Proof. Let x, y ∈ X such that y ≤ x. For simplicity, we will write ∗ = ∗R. Then µ(x ∗ y) = µ(x) ∗ µ(x ∗
(x ∗ y)). Since X = ([0, a), ∗R, 0) is a commutative BCK-algebra, then x ∗ (x ∗ y) = y ∗ (y ∗ x) = y ∗ 0 = y
and so µ(x ∗ y) = µ(x) ∗ µ(x ∗ (x ∗ y)) = µ(x) ∗ µ(y). Therefore, µ : X → [0, 1] is a measure.

Now, assume that X = ([0, 1], ∗R, 0) and (X,µ) is a left state BCK-algebra. Let x, y ∈ X . Then
µ(x ∗ y) = µ(x) ∗ µ(x ∗ (x ∗ y)). Since X is linearly ordered, we have two cases. If x ≤ y, then
µ(x ∗ y) = µ(0) = 0 and by Proposition 3.2(iv), µ(x) ∗ µ(y) = 0 and so µ(x ∗ y) = µ(x) ∗ µ(y). If y ≤ x,
then x ∗ (x ∗ y) = y (since ([0, 1], ∗R, 0) is a commutative BCK-algebra) and so µ(x ∗ y) = µ(x) ∗ µ(y).
Therefore, µ : X → [0, 1] is a state-morphism. �

Proposition 3.4. Let (X,µ) be a right state BCK-algebra. Then

(i) y ≤ x implies µ(x ∗ y) = µ(x) ∗ µ(y) for all x, y ∈ X.
(ii) µ−1({0}) is a commutative ideal of X. Moreover, the map µ : X/Ker(µ) → X/Ker(µ) defined by

µ(x/Ker(µ)) = µ(x)/Ker(µ) is both a right and left state operator on X/Ker(µ).
(iii) (X,µ) is a left state BCK-algebra.

Proof. (i) Let x, y ∈ X such that y ≤ x. Then µ(x∗y) = µ(x)∗µ(y∗(y∗x)) = µ(x)∗µ(y∗0) = µ(x)∗µ(y).
(ii) By Proposition 3.3(i), 0 ∈ µ−1({0}). Let x, y ∗ x ∈ µ−1({0}). Then µ(x) = µ(y ∗ x) = 0 and so

µ(y) ∗ µ(x ∗ (x ∗ y)) = 0. Since µ(x ∗ (x ∗ y)) ≤ µ(x) = 0, then µ(y) = 0. Hence, µ−1({0}) is an ideal of
X . Now, let x ∗ y ∈ µ−1({0}). Since y ∗ (y ∗ x) ≤ x, by (i), we have

0 = µ(x ∗ y) = µ(x) ∗ µ(y ∗ (y ∗ x)) = µ(x ∗ (y ∗ (y ∗ x))),

which concludes that x ∗ (y ∗ (y ∗ x)) ∈ µ−1({0}). Thus, µ−1({0}) is a commutative ideal of X .
It is easy to show that µ, defined by µ(x/Ker(µ)) := µ(x)/Ker(µ), (x ∈ X), is a right state operator

on X/Ker(µ). In fact, if x/Ker(µ) = y/Ker(µ), then x ∗ y, y ∗ x ∈ Ker(µ) and so µ(x ∗ y) = µ(y ∗ x) = 0.
Hence by Proposition 3.2(ii), µ(x) ∗ µ(y) = µ(y) ∗ µ(x) = 0 and so µ(x) = µ(y). Thus, µ is well defined.
Since Ker(µ) is a commutative ideal of X , then X/Ker(µ) is a commutative BCK-algebra, hence µ is also
a left state operator on X/Ker(µ).

(iii) Let x, y ∈ X . By (ii), Ker(µ) is a commutative ideal of X and so by [29, Thm 2.5.6], X/Ker(µ) is
a commutative BCK-algebra. Hence, (x ∗ (x ∗ y))/Ker(µ) = (y ∗ (y ∗x))/Ker(µ). Similarly to the proof of
(ii), we obtain that µ(x∗(x∗y)) = µ(y∗(y∗x)) and so µ(x)∗µ(x∗(x∗y)) = µ(x)∗µ(y∗(y∗x)) = µ(x∗y).
Therefore, (X,µ) is a left state BCK-algebra. �

Corollary 3.5. Let µ : X → X be a map. Then (X,µ) is a right state BCK-algebra if and only if (X,µ)
is a left state BCK-algebra and Ker(µ) is a commutative ideal of X.

Proof. Suppose that (X,µ) is a right state BCK-algebra. Then by Proposition 3.4, (X,µ) is a left state
and Ker(µ) is a commutative ideal. Conversely, let (X,µ) be a left state BCK-algebra and let Ker(µ)
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be a commutative ideal of X . Then for all x, y ∈ X , (x ∗ (x ∗ y))/Ker(µ) = (y ∗ (y ∗ x))/Ker(µ), and
similar to the proof of Proposition 3.4(ii), we have µ(x ∗ (x ∗ y)) = µ(y ∗ (y ∗ x)), hence µ is a right state
operator. �

By Proposition 3.4(iii), every right state BCK-algebra is a left state BCK-algebra. In the following
example, we show that the converse statement is not true, in general. We present a left state operator µ
on a BCK-algebra X which is not a right state operator because Ker(µ) is not a commutative ideal of X.

Example 3.6. Let X = {0, 1, 2, 3}. Define a binary operation ∗ by the following table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 2 0 0
3 3 3 3 0

Then (X, ∗, 0) is a positive implicative BCK-algebra (P )B4−1−4 from [22] which is a chain (0 ≤ 1 ≤ 2 ≤ 3).
Let µ : X → X be defined by µ(0) = µ(1) = 0 and µ(2) = µ(3) = 2. We claim that µ is a left state
operator on X . Clearly, it is a well defined and order preserving map. Let x, y ∈ X .

(1) If x ≤ y, then we have µ(x ∗ y) = µ(0) = 0 and µ(x) ∗ µ(x ∗ (x ∗ y)) = µ(x) ∗ µ(x) = 0.
(2) If y < x, then by definition of ∗, µ(x ∗ y) = µ(x). Also, µ(x) ∗ µ(x ∗ (x ∗ y)) = µ(x) ∗ µ(x ∗ x) =

µ(x) ∗ µ(0) = µ(x).
(3) It can be easily shown that µ(x) ∗ µ(y) = µ(µ(x) ∗ µ(y)).
From (1)–(3), we conclude that µ is a left state operator on X . But Ker(µ) is not a commutative ideal

of X because 2 ∗ 3 ∈ Ker(µ), but 2 ∗ (3 ∗ (3 ∗ 2)) = 2 ∗ (3 ∗ 3) = 2 ∗ 0 = 2 /∈ Ker(µ). Hence, µ is not a right
state operator on X.

Let X be a set, we denote by IdX : X → X the identity on X. It also provides an example of a left
state operator which is not necessarily a right state operator.

In each BCK-algebra X , IdX is a left state operator. In fact, IdX(x)∗IdX(x∗(x∗y)) = x∗(x∗(x∗y)) =
x ∗ y. On the other hand, IdX is a right state operator iff X is a commutative BCK-algebra. So it can
be easily obtained that, X is a commutative BCK-algebra if and only if each left state operator on X is
a right state operator.

By Proposition 3.4, each right state BCK-algebra is a left state BCK-algebra. So in the remainder
of this paper, we will consider only left BCK-algebras. Moreover, we write simply a state BCK-algebra
instead of a left state BCK-algebra.

Definition 3.7. Let (X,µ) be a state BCK-algebra. An ideal I of a BCK-algebra X is called a state
ideal if µ(I) ⊆ I. If T is a subset of X , then 〈T 〉s is the least state ideal of X containing T . A state ideal
I is said to be a maximal state ideal if 〈I ∪ {x}〉s = X for each x ∈ X − I. We denote by MaxS(X,µ) the
set of all maximal state ideals of (X,µ).

Proposition 3.8. Let I be a state ideal of a state BCK-algebra (X,µ) and a ∈ X. Then

〈I ∪ {a}〉s = {x ∈ X | (x ∗ an) ∗ µ(a)m ∈ I for some m,n ∈ N}.

Proof. Set A = {x ∈ X | (x ∗ an) ∗ µ(a)m ∈ I for some m,n ∈ N}. Clearly, I ∪ {a} ⊆ A. Moreover, if
J is a state ideal of (X,µ) containing I and a, then by Theorem 2.2, A ⊆ J . It suffices to show that
A is a state ideal. Let x, y ∗ x ∈ A. Then there are m,n, s, t ∈ N such that (x ∗ an) ∗ µ(a)m ∈ I and
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((y ∗ x) ∗ as) ∗ µ(a)t ∈ I.

(((y ∗ an+s) ∗ µ(a)m+t) ∗ ((x ∗ an) ∗ µ(a)m)) ∗ (((y ∗ x) ∗ as) ∗ µ(a)t)

≤ (((y ∗ an+s) ∗ µ(a)t) ∗ (x ∗ an)) ∗ (((y ∗ x) ∗ as) ∗ µ(a)t), by (BCK9)

= (((y ∗ an+s) ∗ (x ∗ an)) ∗ µ(a)t) ∗ (((y ∗ x) ∗ as) ∗ µ(a)t), by (BCK6)

≤ (((y ∗ as) ∗ x) ∗ µ(a)t) ∗ (((y ∗ x) ∗ as) ∗ µ(a)t), by (BCK9)

= (((y ∗ x) ∗ as) ∗ µ(a)t) ∗ (((y ∗ x) ∗ as) ∗ µ(a)t), by (BCK6)

= 0 ∈ I.

Since (x∗an)∗µ(a)m, ((y∗x)∗as)∗µ(a)t ∈ I and I is an ideal of X , then we get (y∗an+s)∗µ(a)m+t ∈ I
and so y ∈ A. Hence, A is an ideal. Now, let x be an arbitrary element of A. Then there exist m,n ∈ N

such that (x∗an)∗µ(a)m ∈ I. Since I is a state ideal, then µ((x∗an)∗µ(a)m) ∈ I and so by Proposition
3.2(ii), µ(x) ∗ µ(a)n+m = (µ(x) ∗ µ(a)n) ∗ µ(a)m = (µ(x) ∗ µ(a)n) ∗ µ(µ(a))m ∈ I. Thus, µ(x) ∈ A.
Therefore, A is a state ideal of (X,µ). �

Note that, if (X,µ) is a state BCK-algebra, then {0} and X are state ideals of (X,µ) and so by
Proposition 3.8, J = {x ∈ X | (x ∗ an) ∗ µ(a)m = 0 for some m,n ∈ N} is a state ideal of X for any
a ∈ X . Similarly, we can construct other state ideals of (X,µ).

Corollary 3.9. A state ideal I of a state BCK-algebra (X,µ) is a maximal state ideal if and only if
{x ∈ X | (x ∗ an) ∗ µ(a)m ∈ I for some m,n ∈ N} = X for all a ∈ X − I.

Proof. The proof is a straightforward corollary of Proposition 3.8. �

By [2, Thm 3.7], we know that if M is a maximal ideal of X , then I ∩ J ⊆ M implies that I ⊆ M or
J ⊆ M for all I, J ∈ I(X). In the next theorem, we show that if M is a maximal state ideal of a state
BCK-algebra (X,µ), then I ∩J ⊆ M implies that I ⊆ M or J ⊆ M for all state ideals I and J of (X,µ).

Theorem 3.10. Let M be a maximal state ideal of a state BCK-algebra (X,µ). For for all state ideals
I and J of (X,µ), we have I ∩ J ⊆ M implies that I ⊆ M or J ⊆ M.

Proof. Let I and J be two state ideals of (X,µ) such that I ∩ J ⊆ M . Suppose that there are x ∈
I − M and y ∈ J − M . Then by Corollary 3.9, X = 〈M ∪ {x}〉s = 〈M ∪ {y}〉s. On the other
hand, if a ∈ 〈M ∪ {x}〉s ∩ 〈M ∪ {y}〉s, then by Proposition 3.8, there exist m,n, s, t ∈ N such that
(a ∗ xn) ∗ µ(x)m = m1 ∈ M and (a ∗ ys) ∗ µ(y)t = m2 ∈ M and so by (BCK2), (BCK4), (BCK6) and
Proposition 3.8, we get (a ∗ m1) ∗ m2 ∈ I ∩ J ⊆ M (since I and J are state ideals, x ∈ I, y ∈ J and
(((a∗m1)∗m2)∗x

n)∗µ(x)m = 0 ∗m2 = 0, (((a∗m1)∗m2)∗ y
s)∗µ(y)t = 0 ∗m1 = 0). Since m1,m2 ∈ M

and M is an ideal of X , then we have a ∈ M and so X = 〈M ∪ {x}〉s ∩ 〈M ∪ {y}〉s ⊆ M , which is a
contradiction. Therefore, I ⊆ M or J ⊆ M . �

In Theorem 3.11, we show a one-to-one relationship between congruence relations of a state BCK-
algebra (X,µ) and state ideals of (X,µ). We denote by SI(X) and Con(X,µ) the set of state ideals and
the set of congruences, respectively, on a state BCK-algebra (X,µ).

Theorem 3.11. Let (X,µ) be a state BCK-algebra.

(i) If θ is a congruence relation of (X,µ), then [0]θ = {x ∈ X | (x, 0) ∈ θ} is a state ideal of (X,µ).
(ii) If I is a state ideal of (X,µ), then θI = {(x, y) ∈ X×X | x∗y, y ∗x ∈ I} is a congruence relation

on (X,µ).
(iii) There is a bijection between the set of all congruence relations of (X,µ), Con(X,µ), and the set

SI(X,µ) of all state ideals of (X,µ).

Proof. (i) Let θ be a congruence relation of (X,µ). Then by Theorem 2.3, [0]θ is an ideal of X . It suffices
to show that [0]θ is a state ideal. Let x ∈ [0]θ. Then (x, 0) ∈ θ. Since θ is a congruence relation of (X,µ),
then (µ(x), µ(0)) ∈ θ and so by Proposition 3.2(i), (µ(x), 0) ∈ θ. Hence, µ(x) ∈ [0]θ. That is, [0]θ is a
state ideal.
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(ii) Let I be a state ideal of X . Then θI is a congruence relation on a BCK-algebra X . Let (x, y) ∈ θI .
Then x ∗ y, y ∗ x ∈ I and so by Proposition 3.2(ii), µ(x) ∗ µ(y) ≤ µ(x ∗ y) ∈ I. Thus, µ(x) ∗ µ(y) ∈ I. In
a similar way, µ(y) ∗ µ(x) ∈ I, hence (µ(x), µ(y)) ∈ θI , so θI is a congruence relation of (X,µ).

(iii) We define a map f : SI(X,µ) → Con(X,µ) by f(I) = θI . Then it can be easily shown that f is a
bijection map and its inverse is the map g : Con(X,µ) → SI(X,µ), which is defined by g(θ) = [0]θ. �

Definition 3.12. [4] An algebra A of type F is a subdirect product of an indexed family {Ai}i∈I of
algebras of type F if

• A is a subalgebra of Πi∈IAi,
• πi(A) = Ai for any i ∈ I, where πi : Πi∈IAi → Ai is a natural projection map.

A one-to-one homomorphism α : A → Πi∈IAi is called a subdirect embedding if α(A) is a subdirect
product of the family {Ai}i∈I . An algebra A of type F is called subdirectly irreducible if, for every
subdirect embedding α : A → Πi∈IAi, there exists i ∈ I such that πi ◦ α : A → Ai is an isomorphism.

Remark 3.13. If I and J are two ideals of X such that I ⊆ J , then clearly, θI ⊆ θJ . Let (X,µ)
be subdirectly irreducible. Then by [4, Thm II.8.4], the set Con(X,µ) − ∆ has a least element, where
∆ = {(x, x) | x ∈ X} and ∇ = X × X . Suppose that θ is the least element of Con(X,µ) − ∆. Then
by Theorem 3.11, there exists a state ideal of (X,µ) such that θ = θI (so I is a non-zero ideal of X).
It follows that I is the least non-zero state ideal of (X,µ). By Theorem 3.11 and [4, Thm II.8.4], we
conclude that (X,µ) is subdirectly irreducible if and only if SI(X,µ) − {0} has the least element.

In Theorem 3.14 and Theorem 3.15, we present characterizations of subdirectly irreducible state BCK-
algebras. First, we show that if (X,µ) is subdirectly irreducible, then the conditions (i) or (ii) of Theorem
3.14 hold. Then we prove that if (X,µ) satisfies the condition (i) or (ii) in Theorem 3.14, then (X,µ) must
be subdirectly irreducible. We note that in the next theorem, we take an element a in the subalgebra
µ(X) of a BCK-algebra X, therefore, 〈a〉X will denote the ideal of X generated by the element a.

Theorem 3.14. Let (X,µ) be a subdirectly irreducible state BCK-algebra.

(i) If Ker(µ) = {0}, then µ(X) is a subdirectly irreducible subalgebra of X.
(ii) If Ker(µ) 6= {0}, then Ker(µ) is a subdirectly irreducible subalgebra of X and Ker(µ)∩〈a〉X 6= {0}

for each non-zero element a of µ(X).

Proof. (i) Let (X,µ) be subdirectly irreducible and Ker(µ) = {0}. By Remark 3.13, the set of all non-zero
state ideals of (X,µ) has the least element, I say. If I ∩ µ(X) = {0}, then by µ(I) ⊆ I ∩ µ(X) (since I is
a state ideal), we conclude that µ(x) = 0 for all x ∈ I. Thus, I ⊆ Ker(µ) = {0}, which is a contradiction.
So, I ∩ µ(X) 6= {0}. Now, we show that I ∩ µ(X) is the least non-zero ideal of µ(X). Suppose that J is
an ideal of µ(X).

(1) Let 〈J〉X be the ideal of X generated by J, and choose an arbitrary element x ∈ 〈J〉X . Then by
Theorem 2.2, there exist b1, . . . , bn ∈ J such that (· · · ((x ∗ b1) ∗ b2) ∗ · · · ) ∗ bn = 0 and so by Proposition
3.2(i) and (ii), we get

(· · · ((µ(x) ∗ µ(b1)) ∗ µ(b2)) ∗ · · · ) ∗ µ(bn) ≤ µ((· · · ((x ∗ b1) ∗ b2) ∗ · · · ) ∗ bn) = 0.

Since µ2 = µ and b1, . . . , bn ∈ J ⊆ µ(X), we get (· · · ((µ(x) ∗ b1) ∗ b2) ∗ · · · ) ∗ bn = 0, hence µ(x) ∈ J .
Thus, 〈J〉X is a state ideal of (X,µ).

(2) Clearly, J = 〈J〉X ∩ µ(X).
By (1), we get that I ⊆ 〈J〉X and so by (2), I ∩µ(X) ⊆ 〈J〉X ∩µ(X) = J . Hence, I ∩µ(X) is the least

non-zero ideal of µ(X). Therefore, by [4, Thm II.8.4], we conclude that µ(X) is a subdirectly irreducible
subalgebra of X .

(ii) Let µ(X) 6= {0}. Again, let I be the least non-zero state ideal of the subdirectly irreducible
state BCK-algebra (X,µ). Since X is a BCK-algebra, then every ideal of X, in particular Ker(µ), is a
subalgebra of X . Clearly, Ker(µ) is a state ideal of (X,µ) and so I ⊆ Ker(µ). We show that I is the
least non-zero ideal of Ker(µ). Let J be a non-zero ideal of Ker(µ). Then µ(J) ⊆ µ(Ker(µ)) = {0} ⊆ J .
For any x, y ∈ X , if y ∗x, x ∈ J , then by Proposition 3.2(ii), 0 = µ(y ∗x) ≥ µ(y) ∗µ(x) = µ(y) ∗ 0 = µ(y).
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Thus, y ∈ Ker(µ), so y ∈ J (since J is an ideal of Ker(µ)). It follows that J is a state ideal of X and so
I ⊆ J . Hence by [4, Thm II.8.4], Ker(µ) is subdirectly irreducible.

Now, let a be a non-zero element of µ(X) and let 〈a〉X be the ideal generated by a in X . Then
a = µ(a). Take an arbitrary element u ∈ 〈a〉X . By Theorem 2.2, there exists n ∈ N such that 0 = u ∗ an,
and by by Proposition 3.2(ii), 0 = µ(0) = µ(u ∗ an) = µ(x) ∗ (µ(a))n = µ(u) ∗ an. Thus, µ(u) ∈ 〈a〉X and
µ(〈a〉X) ⊆ 〈a〉X . This implies, 〈a〉X is a non-zero state interval of (X,µ) and, consequently, I ⊆ 〈a〉X .
Since also I ⊆ Ker(µ), we have {0} 6= I ⊆ Ker(µ) ∩ 〈a〉X . �

Theorem 3.15. Let (X,µ) be a state BCK-algebra. If it satisfies the condition (i) or (ii) in Theorem
3.14, then (X,µ) is subdirectly irreducible.

Proof. First, we assume that Ker(µ) = {0} and µ(X) is a subdirectly irreducible subalgebra of X . Since
µ(X) is subdirectly irreducible, then by [4, Thm II.8.4],

⋂

(I(µ(X)) − {0}) is a non-zero ideal of µ(X).
From I(µ(X)) = {I ∩ µ(X) | I ∈ I(X)}, it follows that

⋂

({I ∩ µ(X) | I ∈ I(X)} − {0}) is non-zero, so
⋂

(I(X) − {0}) 6= {0}. Hence, the intersection of all non-zero state ideals of (X,µ) is a non-zero ideal of
X (clearly it is a state ideal), whence by Remark 3.13, (X,µ) is subdirectly irreducible.

Now, let Ker(µ) 6= {0} and let Ker(µ) be a subdirectly irreducible subalgebra of X . Let I be the least
non-zero ideal of Ker(µ). Clearly, I is a state ideal (since µ(I) = {0}). We claim, for any non-zero state
ideal H of (X,µ), we have I ⊆ H. Suppose that H is a non-zero state ideal of (X,µ). Then µ(H) ⊆ H .
If µ(H) = {0}, then H ⊆ Ker(µ) and so I ⊆ H . Otherwise, there exists a ∈ µ(H) − {0}. It follows that
{0} 6= Ker(µ)∩ 〈a〉X ⊆ Ker(µ)∩H and so I ⊆ H ∩Ker(µ) ⊆ H . Thus, I is the least non-zero state ideal
of (X,µ). Therefore, (X,µ) is subdirectly irreducible. �

In the final theorem of this section, we find a relation between state operators in BCK-algebras and
MV-algebras. It is well known, if (X, ∗, 0) is a bounded commutative BCK-algebra, then (X,⊕,′ , 0) is
an MV-algebra, where x ⊕ y = N(Nx ∗ y) and x′ = Nx for all x, y ∈ X (see [23]). Note that in each
bounded BCK-algebra X , we have N(Nx) = x.

Theorem 3.16. Let (X, ∗, 0) be a bounded commutative BCK-algebra and µ be a left state BCK operator
on X such that µ(1) = 1. Then (X,µ) is a state MV-algebra. The converse is also true.

Proof. Let x, y ∈ X . Then µ(x′) = µ(1 ∗ x) = µ(1) ∗ µ(x ∗ (x ∗ 1)) = 1 ∗ µ(x) = µ(x)′. Then

µ(x) ⊕ µ(y ⊖ (x⊙ y)) = µ(x) ⊕ µ((y′ ⊕ (x⊙ y))′)

= µ(x) ⊕ µ(y ∗ (x⊙ y))

= µ(x) ⊕ µ(y ∗ (y ⊙ x))

= µ(x) ⊕ µ(y ∗ (y′ ⊕ x′)′)

= µ(x) ⊕ µ(y ∗ (y ∗ x′))

= (µ(x)′ ∗ µ(y ∗ (y ∗Nx)))′

= (µ(Nx) ∗ µ(y ∗ (y ∗Nx)))′

= µ(Nx ∗ y)′, since X is commutative and µ is a left state operator

= µ(N(Nx ∗ y))

= µ(x⊕ y),

so that, (X,µ) is a state MV-algebra. Conversely, consider the MV-algebra (X,⊕,′ , 0). If (X, σ) is a
state MV-algebra, then we can easily show that σ : X → X is a left state operator on a BCK-algebra
(X, ∗, 0), where x ∗ y := x⊙ y′, x, y ∈ X. In fact, it follows from the following identity on X :

(y′ ⊕ (x′ ⊙ y))′ = y ∗ (x′ ⊙ y) = y ∗ (y′′ ⊙ x′) = y ∗ (y′ ⊕ x)′ = y ∗ (y ∗ x).

�
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4. State-morphism BCK-algebras

In the section, we introduce and study state-morphism BCK-algebras which is an important subfamily
of the family of state BCK-algebras.

Definition 4.1. Let (X, ∗, 0) be a BCK-algebra. A homomorphism µ : X → X is called a state-morphism
operator if µ2 = µ, where µ2 = µ ◦ µ, and the pair (X,µ) is called a state-morphism BCK-algebra.

By (BCK8), every state-morphism BCK-algebra is a (left) state BCK-algebra. We note that not
every state-morphism operator is also a right state operator. For example, IdX is both a state-morphism
operator and a left state operator, but it is a right state operator iff X is a commutative BCK-algebra.

Example 4.2. (i) For each BCK-algebra X , the identity map IdX : X → X and the zero operator
OX(x) = 0, x ∈ X, are state-morphism operators.

(ii) Let x be an element of X such that a∗x = a∗x2 for all a ∈ X . Define αx : X → X by αx(a) = a∗x
for all a ∈ X . First, we show that αx is a homomorphism. By (BCK4), 0 ∗ x = 0 for all x ∈ X . Let
a, b ∈ X . Then by (BCK6), we have (b ∗ x) ∗ b = (b ∗ b) ∗ x = 0 ∗ x = 0, so b ∗ x ≤ b. Using (BCK6) and
(BCK7), we obtain that (a ∗ b) ∗ x = (a ∗ x) ∗ b ≤ (a ∗ x) ∗ (b ∗ x). On the other hand, by (BCK1) and
(BCK6), (a ∗ x) ∗ (b ∗ x) = (a ∗ x2) ∗ (b ∗ x) ≤ (a ∗ x) ∗ b = (a ∗ b) ∗ x. Hence, αx is a homomorphism.
Therefore,

αx(αx(a)) = (a ∗ x) ∗ x = a ∗ x = αx(a),

so that, αx is a state-morphism operator on X . For example, if x = 0, then α0 = IdX . In particular, if
X is a positive implicative BCK-algebra, then by [29, Thm 3.1.1], for all a, x ∈ X , we have a ∗ x2 = a ∗ x
and so, αx is a state-morphism operator on X for all x ∈ X .

(iii) Every state operator µ on a linearly ordered commutative BCK-algebra X is a state-morphism
operator. Indeed, if x ≤ y, then x∗y = 0 and by Proposition 3.2, we have 0 ≤ µ(x)∗µ(y) ≤ µ(x∗y) = µ(0).
If y ≤ x, by the definition of a state operator, we have µ(x ∗ y) = µ(x) ∗ µ(x ∗ (x ∗ y)) = µ(x) ∗ µ(y). The
both cases entail µ is an endomorphism of the BCK-algebra X.

(iv) Every right state operator µ on a linearly ordered commutative BCK-algebra X is a state-morphism
operator. Indeed, by Proposition 3.4(iii), µ is a left state operator, too. Take x, y ∈ X . Since X is a
chain, then x ∗ y = 0 or y ∗ x = 0.

If x∗y = 0, then by Proposition 3.2(ii), 0 ≤ µ(x)∗µ(y) ≤ µ(x∗y) = µ(0) = 0. So, µ(x)∗µ(y) = µ(x∗y).
If y ∗ x = 0, then from Proposition 3.4 we have µ(x ∗ y) = µ(x) ∗ µ(y). Consequently, µ is a homomor-

phism, and µ is a state-morphism operator on X.

Example 3.6 shows that if µ is a left state operator on a linearly ordered BCK-algebra, then µ is not
necessarily a state-morphism operator on X. Indeed, we have µ(3∗2) = µ(3) = 2 6= 0 = 2∗2 = µ(3)∗µ(2).
Thus µ is not a state morphism operator.

As a consequence of Corollary 3.16, we have by [8], that there are also bounded commutative BCK-
algebras X having state operators which are not state-morphism operators.

Definition 4.3. Let (X,µ) be a state-morphism BCK-algebra. An ideal I of a BCK-algebra X is called
a state ideal if µ(I) ⊆ I. If T is a subset of X , then 〈T 〉s is the least state ideal of X containing T .

It can be easily shown that, if (X,µ) is a state BCK-algebra, then Ker(µ) is a state ideal of X . Clearly,
the intersection of every arbitrary family of state ideals of X is a state ideal. So,

〈T 〉s =
⋂

{I | T ⊆ I, I is a state ideal of (X,µ)}.

Proposition 4.4. Let I be an ideal of a state-morphism BCK-algebra (X,µ). Then

〈I〉s = {a ∈ X | (· · · ((a ∗ µ(x1)) ∗ µ(x2)) ∗ · · · ) ∗ µ(xn) ∈ I, ∃n ∈ N, ∃x1, x2, . . . , xn ∈ I}.

Proof. Let J = 〈I〉s = {a ∈ X | (· · · ((a ∗µ(x1)) ∗µ(x2)) ∗ · · · ) ∗µ(xn) ∈ I, ∃n ∈ N, ∃x1, x2, . . . , xn ∈
I}. Then clearly, I ⊆ J (since 0 ∈ I and µ(0) = 0). First, we show that J is a state ideal of X . Let
a, b ∗ a ∈ J for some a, b ∈ X . Then there exist m,n ∈ N and x1, . . . , xn, y1, . . . , ym ∈ X such that
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(· · · ((a ∗ µ(x1)) ∗ µ(x2)) ∗ · · · ) ∗ µ(xn) ∈ I and (· · · (((b ∗ a) ∗ µ(y1)) ∗ µ(y2)) ∗ · · · ) ∗ µ(ym) = y ∈ I. By
(BCK5) and (BCK6), we have

(· · · (((b ∗ y) ∗ µ(y1)) ∗ µ(y2)) ∗ · · · ) ∗ µ(ym) ≤ a

and so by (BCK7),

(· · · (((· · · (((b∗y)∗µ(y1))∗µ(y2))∗· · · )∗µ(ym))∗µ(x1))∗· · · )∗µ(xn) ≤ (· · · ((a∗µ(x1))∗µ(x2))∗· · · )∗µ(xn) ∈ I.

Since y ∈ I and I is an ideal of X , then by (BCK6),

(· · · (((· · · ((b ∗ µ(y1)) ∗ µ(y2)) ∗ · · · ) ∗ µ(ym)) ∗ µ(x1)) ∗ · · · ) ∗ µ(xn) ∈ I

and so b ∈ J . It follows that J is an ideal of X . Moreover, if c ∈ J , then there exist n ∈ N and
z1, . . . , zn ∈ X such that (· · · ((c ∗ µ(z1)) ∗ µ(z2)) ∗ · · · ) ∗ µ(zn) = z ∈ I. Hence, by (BCK5) and (BCK6),
we get that ((· · · ((µ(c) ∗ µ(z1)) ∗ µ(z2)) ∗ · · · ) ∗ µ(zn)) ∗ µ(z) = µ(0) = 0 ∈ I. Also, z1, . . . , zn, z ∈ I, so
by definition of J , µ(c) ∈ J . Thus, µ(J) ⊆ J and so J is a state ideal of X containing I. Clearly, if K
is a state ideal of X containing I, then J ⊆ K. Therefore, J is the least state ideal of X containing I.
That is J = 〈I〉s. �

Proposition 4.5. Let (X,µ) be a state-morphism BCK-algebra. Then the following hold:

(i) Ker(µ) = {x ∗ µ(x) | x ∈ X} = {µ(x) ∗ x | x ∈ X}.
(ii) X = 〈Ker(µ) ∪ Im(µ)〉.

Proof. (i) Since µ2 = µ and µ is a homomorphism, we have {x ∗ µ(x) | x ∈ X} ⊆ Ker(µ). Also, for each
x ∈ Ker(µ), x = x ∗ 0 = x ∗ µ(x) ∈ {x ∗ µ(x) | x ∈ X}, so Ker(µ) = {x ∗ µ(x) | x ∈ X}. In a similar way,
we can show that Ker(µ) = {µ(x) ∗ x | x ∈ X}.

(ii) Let x ∈ X . By (i), x ∗ µ(x) ∈ Ker(µ). Since µ(x) ∈ Im(µ), then by Theorem 2.2, we get that
x ∈ 〈Ker(µ) ∪ Im(µ)〉. Therefore, X = 〈Ker(µ) ∪ Im(µ)〉. �

Let X be a bounded BCK-algebra and m : X → [0, 1] be a state-morphism. Since m(1) = 1 and
m is an order preserving map, then m(X) ⊆ [0, 1]. Therefore, m is a homomorphism from the BCK-
algebra X to the BCK-algebra ([0, 1], ∗R, 0). Hence, X/Ker(m) and m(X) are isomorphic. By [12, Thm
2.9], Ker(m) is a commutative ideal of X and so X/Ker(m) is a bounded commutative BCK-algebra.
Since ([0, 1], ∗R, 0) is a simple BCK-algebra and m(X) is a subalgebra of it, then m(X) is simple, so
X/Ker(m) is simple, too. It follows that Ker(m) is a maximal commutative ideal of X . Therefore,
(X/Ker(m),⊕,′ , 0/Ker(m)) is an MV-algebra, where x/Ker(m) ⊕ y/Ker(m) = N(Nx ∗ y)/Ker(m) and
(x/Ker(m))′ = Nx/Ker(m) for all x, y ∈ X . It can be easily shown that the map f : X/Ker(m) → [0, 1]
defined by f(x/Ker(m)) = m(x) is an MV-homomorphism and X/Ker(m) is a simple MV-algebra (since
I is a BCK-ideal of X/Ker(m) if and only if I is an MV-ideal of X/Ker(m)). By [25, Thm 1.1], there
exists a unique one-to-one MV-homomorphism τ : X/Ker(m) → [0, 1]. Thus, f = τ . By summing
up the above results, we get that m = τ ◦ πKer(m), where πKer(m) : X → X/Ker(m) is the canonical
epimorphism. Conversely, let X be a bounded BCK-algebra such that X has at least one commutative
ideal, I say. Then there exists a maximal ideal M of X such that I ⊆ M . In fact, M is a maximal
element of the set {H | H is an ideal of X containing I, 1 /∈ H}. Since I is a commutative ideal and
I ⊆ M , then by [29, Thm 2.5.2], M is a commutative ideal and so X/M is a bounded commutative
simple BCK-algebra. It follows that (X/M,⊕,′ , 0) is a simple MV-algebra. By [25, Thm 1.1], there
exists a unique MV-homomorphism, τM : (X/M,⊕,′ , 0) → ([0, 1],⊕,′ , 0). Clearly, τM : X/M → [0, 1] is
a BCK-homomorphism and so τM ◦ πM : X → [0, 1] is a state-morphism, where πM : X → X/M is the
canonical epimorphism.

Now, let X be a bounded BCK-algebra and µ : X → X be a state-morphism operator on X such
that Ker(µ) is a commutative ideal of X . Then X/Ker(µ) is a bounded commutative BCK-algebra.
Thus, µ(X) is an MV-algebra (since µ(X) ∼= X/Ker(µ)). Suppose that H is a maximal ideal of the
MV-algebra µ(X) and πH : µ(X) → µ(X)/H is the canonical epimorphism. Then µ(X)/H is a simple
MV-algebra and so by [25, Thm 1.1], there is a unique MV-homomorphism τH : µ(X)/H → [0, 1].
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Clearly, τH ◦ πH ◦ µ : X → [0, 1] is a measure-morphism. Moreover, if µ(1) = 1, then τH ◦ πH ◦ µ is a
state-morphism.

Remark 4.6. Let µ be a state-morphism operator on X such that Ker(µ) = {0}. Then for all x ∈ X ,
x ∗ µ(x), µ(x) ∗ x ∈ Ker(µ) = {0} and so by (BCK3), µ(x) = x. Therefore, µ = IdX .

Corollary 4.7. If X is a simple BCK-algebra, then IdX and OX are all state-morphism operators of X.

Proof. Let X be a simple BCK-algebra and µ : X → X be a state-morphism operator on X . Then
Ker(µ) = {0} or Ker(µ) = X . Hence by Remark 4.6, µ = IdX or µ(x) = 0 for all x ∈ X . �

Definition 4.8. A state ideal I of a state-morphism BCK-algebra (X,µ) is called a prime state ideal of
(X,µ) if, given state ideals A,B of (X,µ), A ∩B ⊆ I implies that A ⊆ I or B ⊆ I.

Theorem 4.9. Let (X,µ) be a subdirectly irreducible state-morphism BCK-algebra. Then Ker(µ) is a
prime state ideal.

Proof. Let I and J be two state ideals of (X,µ) such that I ∩ J ⊆ Ker(µ). Define φ : X/Ker(µ) →
µ(X)/I×µ(X)/J , by φ(x/Ker(µ)) = (x/I, x/J) for all x ∈ X . For each x, y ∈ X , if x/Ker(µ) = y/Ker(µ),
then x ∗ y, y ∗ x ∈ Ker(µ) and so µ(x) ∗ µ(y) = µ(x ∗ y) = 0 = µ(y ∗ x) = µ(y) ∗ µ(x). Hence by
(BCK3), µ(x) = µ(y). Therefore, φ is a well defined homomorphism. Thus, for each x, y ∈ X , if
φ(x/Ker(µ)) = φ(y/Ker(µ)), then (µ(x)/I, µ(x)/J) = (µ(y)/I, µ(y)/J), so that µ(x) ∗µ(y), µ(y) ∗µ(x) ∈
I ∩ J . Hence, µ(x) ∗ µ(y), µ(y) ∗ µ(x) ∈ Ker(µ). It follows that x/Ker(µ) = y/Ker(µ), which implies
that φ is one-to-one. Clearly, π1 ◦ φ(X/Ker(µ)) = µ(X)/I, and π2 ◦ φ(X/Ker(µ)) = µ(X)/J , where
π1 : µ(X)/I × µ(X)/J → µ(X)/I and π2 : µ(X)/I × µ(X)/J → µ(X)/J are natural projection maps.
Since X/Ker(µ) and µ(X) are isomorphic, then by Theorem 3.14(ii), X/Ker(µ) is a subdirectly irreducible
BCK-algebra and so π1 ◦ φ : X/Ker(µ) → µ(X)/I or π2 ◦ φ : X/Ker(µ) → µ(X)/J is an isomorphism.
Without lost of generality, we can assume that π1◦φ is an isomorphism. For any x ∈ I, π1(φ(x/Ker(µ))) =
π1(µ(x)/I, µ(x)/J) = µ(x)/I. Since I is a state ideal, then µ(x) ∈ I and hence µ(x)/I = 0/I. It follows
that x/Ker(µ) = 0/Ker(µ) (since π1 ◦ φ is an isomorphism) and x ∈ Ker(µ). Therefore, I ⊆ Ker(µ) and
so Ker(µ) is a prime ideal of X . �

Now, let us to consider a commutative subdirectly irreducible state morphism BCK-algebra (X,µ)
satisfying the identity (x ∗ y) ∧ (y ∗ x) = 0.

Proposition 4.10. Let (X,µ) be a subdirectly irreducible state-morphism BCK-algebra such that X is
commutative and (x ∗ y) ∧ (y ∗ x) = 0 for all x, y ∈ X. Then the following statements conditions hold:

(i) For all x ∈ X, either x ≤ µ(x) or µ(x) ≤ x.
(ii) µ(X) is a chain.

Proof. (i) Since (X,µ) is subdirectly irreducible, then by Theorem 3.14, Ker(µ) = {0} or Ker(µ) 6= {0}
and it is a subdirectly irreducible subalgebra of X . If Ker(µ) = {0}, then by Remark 4.6, µ(x) = x for
all x ∈ X . Let Ker(µ) 6= {0}. Since (x ∗ y) ∧ (y ∗ x) = 0 for all x, y ∈ X , then by Theorem 3.14 and [29,
Thm 2.3.12], Ker(X) must be a chain. Let x ∈ X . By Proposition 4.5, x ∗ µ(x), µ(x) ∗ x ∈ Ker(µ) and
so (x ∗ µ(x)) ∧ (µ(x) ∗ x) = 0 implies that x ∗ µ(x) = 0 or µ(x) ∗ x = 0. Therefore, x ≤ µ(x) or µ(x) ≤ x.

(ii) By the first isomorphism theorem, X/Ker(µ) ∼= µ(X). Since X is a commutative BCK-algebra
and it satisfies the identity (x ∗ y) ∧ (y ∗ x) = 0, then by [22, Thm II.8.13] and Theorem 4.9, X/Ker(µ)
is a chain. Hence, µ(X) is a chain. �

Note that if (X, ∗, 0) is a BCK-algebra such that (X,≤) is a lattice, it is called a BCK-lattice. Then
by [29, Thm 2.2.6], X satisfies the identity (x ∗ y) ∧ (y ∗ x) = 0.

Definition 4.11. A pair (A, I) is called an adjoint pair of a BCK-algebra X , if I is an ideal of X and
A is a subalgebra of X satisfying the following conditions:

(Ap1) A ∩ I = {0} and 〈A ∪ I〉 = X ;
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(Ap2) for each x ∈ X , there exists an element ax ∈ A such that (x, ax) ∈ θI (we say that ax is a
component of x in A with respect to I).

By Proposition 4.5(iii) and (iv), we conclude that if µ is a state-morphism operator on X , then
(µ(X),Ker(µ)) satisfies (Ap1). In Theorem 4.14, a relation between state-morphism operators and adjoint
pairs in any BCK-algebras will be found.

Proposition 4.12. Let (A, I) be an adjoint pair of X. Then, for all x ∈ X, ax is unique.

Proof. Let x ∈ X and a, b ∈ A be two components of x in A. Then (x, a), (x, b) ∈ θI and so (a, b) ∈ θI .
Hence, a∗b, b∗a ∈ I. Also, a∗b, b∗a ∈ A (since A is a subalgebra of X), so by (Ap1), a∗b, b∗a ∈ I∩A = {0}.
Thus, by (BCK3), a = b. Therefore, ax is the only component of x in A with respect to I. �

Let µ and ν be two state-morphism operators on X such that Ker(µ) = Ker(ν) and Im(µ) = Im(ν).
For any x ∈ X , we have x∗µ(x), µ(x)∗x ∈ Ker(µ) = Ker(ν) and so ν(x∗µ(x)) = 0 = ν(µ(x)∗x). Since ν
is a homomorphism and µ(x) ∈ Im(µ) = Im(ν), then ν(µ(x)) = µ(x) and so ν(x)∗µ(x) = 0 = µ(x)∗ν(x).
From (BCK3), we obtain that ν(x) = µ(x) for all x ∈ X . Therefore, µ = ν. In Remark 4.13, we show
that, there are state-morphism operators µ and ν on a BCK-algebra X such that Ker(µ) = Ker(ν), but
µ 6= ν.

Remark 4.13. Suppose that I is a maximal ideal of X such that |X/I| = 2 and 2 ≤ |X − I|. Let a and
b be two distinct elements of X − I. Define µa : X → X and µb : X → X by

µa(x) =

{

0 if x ∈ I,
a if x ∈ X − I.

µb(x) =

{

0 if x ∈ I,
b if x ∈ X − I.

(1) If x, y ∈ I, then x ∗ y ∈ I, so µa(x ∗ y) = 0 = µa(x) ∗ µb(y).
(2) If x ∈ I and y ∈ X − I, then x ∗ y ≤ x and hence x ∗ y ∈ I. It follows that µa(x ∗ y) = 0 =

0 ∗ µa(y) = µa(x) ∗ µb(y),
(3) If x ∈ X − I and y ∈ I, then x ∗ y ∈ X − I (since I is an ideal and x ∗ y ∈ I implies x ∈ I) and so

µa(x ∗ y) = a = µa(x) ∗ 0 = µa(x) ∗ µa(y),
(4) If x, y ∈ X − I, then by assumption, x/I = y/I (since |x/I| = 2), so x ∗ y ∈ I. Thus, µa(x ∗ y) =

0 = a ∗ a = µa(x) ∗ µa(y).
By (1)-(4), we obtain that µa is a homomorphism. If x ∈ I, then µa(µa(x)) = µa(x) = 0. Also, if

x ∈ X − I, then µa(µa(x)) = µa(a) = a = µa(x) (since a ∈ X − I), so µa is a state-morphism operator.
In a similar way, we can show that µb is a state-morphism operator. Clearly, Ker(µa) = I = Ker(µb),
but µa 6= µb.

Note that if X is a non-trivial positive implicative BCK-algebra and I is a maximal ideal of X , then
X/I is a simple positive implicative BCK-algebra and so by [29, Cor 3.1.7], |X/I| = 2. It follows that if
2 ≤ |X − I|, then X satisfies the conditions in Remark 4.13.

Theorem 4.14. There is a one-to-one correspondence between adjoint pairs of X and state-morphism
operators on X.

Proof. Let µ : X → X be a state-morphism operator on X . We show that (µ(X),Ker(µ)) is an adjoint
pair of X . By Proposition 4.5(iii) and (iv), (Ap1) holds. Let A = µ(X) and x be an element of X . Then
µ(x) ∈ A and clearly, x ∗ µ(x), µ(x) ∗ x ∈ Ker(µ) (since µ2 = µ). Hence, (x, µ(x)) ∈ θI . That is, for each
x ∈ X , µ(x) is a component of x in A and so (Ap2) holds. Therefore, (µ(X),Ker(µ)) is an adjoint pair
of X .

Conversely, let (A, I) be an adjoint pair of X . Define µI,A : X → X , by µI,A(x) = ax for all
x ∈ X . By Proposition 4.12, µI,A is well defined. Let x, y ∈ X . Then (x, ax) ∈ θI and (y, ay) ∈ θI
and so (x ∗ y, ax ∗ ay) ∈ θI . By ax ∗ ay ∈ A, we conclude that ax ∗ ay is a component of x ∗ y in
A, hence by Proposition 4.12, µI,A(x ∗ y) = ax∗y = ax ∗ ay = µI,A(x) ∗ µI,A(y). Thus, µI,A is a
homomorphism. Moreover, for any a ∈ A, a ∗ a = 0 ∈ I and hence µI,A(a) = aa = a. It follows that
µI,A(µI,A(x)) = µI,A(x) for all x ∈ X . Therefore, µI,A is a state-morphism operator on X . Let us
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denote by Ad(X) and SM(X) the set of all adjoint pairs and the set of all state-morphism operators
on X , respectively. Define f : Ad(X) → SM(X), by f(A, I) = µI,A and g : SM(X) → Ad(X) by
g(µ) = (µ(X),Ker(µ)). Since Ker(µI,A) = I and Im(µI,A) = A for all (A, I) ∈ Ad(X), then by the
paragraph just after Proposition 4.12, we conclude that f ◦ g = IdSM(X) and g ◦ f = IdAd(X). �

In the sequel, we want to construct a state BCK-algebra from a state-morphism. Let m : X → [0, 1]
be a state-morphism. Then m is a homomorphism from X into the BCK-algebra ([0, 1], ∗R, 0) and so
X/Ker(m) ∼= m(X). Let B = m(X) and C = Ker(m). Then B and C are BCK-algebras. Consider the
BCK-algebra B × C. Let A = {(b, 0)|b ∈ B} and I = {(0, c)|c ∈ C}. Then I is an ideal of B × C and A
is a subalgebra of B × C. Also,

(1) A ∩ I = ∅.
(2) For each (x, y) ∈ B × C, we have ((x, y) ∗ (x, 0)) ∗ (0, y) = (0, 0), hence by Theorem 2.2, (x, y) ∈

〈A ∪ I〉. It follows that B × C = 〈A ∪ I〉.
(3) For each (x, y) ∈ B × C, we have (x, y) ∗ (x, 0) = (0, y) ∈ I and (x, 0) ∗ (x, y) = (0, 0) ∈ I. Thus,

(x, y)/I = (x, 0)/I.
So by Theorem 4.14, the map µ : B × C → B × C defined by µ(x, y) = (x, 0) is a state-morphism

operator on B × C. Clearly, Ker(µ) = I and Im(µ) = A. Note that if mµ : B × C → [0, 1] is the state-
morphism induced by µ (see the paragraph before Remark 4.6), then (B × C)/Ker(mµ) ∼= B ∼= Im(m)
and Ker(mµ) = C ∼= Ker(m).

Definition 4.15. Let I be an ideal of X and πI : X → X/I be the canonical projection. Then I is
called a retract ideal if there exists a homomorphism f : X/I → X such that πI ◦ f = IdX/I (the identity
map on X/I).

Theorem 4.16. An ideal I of X is a retract ideal if and only if there exists a subalgebra A of X such
that (A, I) forms an adjoint pair.

Proof. Let I be a retract ideal of X . Then there exists a homomorphism f : X/I → X such that
πI ◦ f = IdX/I . Put A = f(X/I). Since f is a homomorphism, then A is a subalgebra of X . Let
x ∈ I ∩ A. Then there exists a ∈ X such that f(a/I) = x, so a/I = πI ◦ f(a/I) = πI(x) = x/I. From
x ∈ I, we get that a ∈ I and a/I = 0/I, whence x = f(0/I) = 0. Now, let x ∈ X . Then f(x/I) = a
for some a ∈ A. It follows that x/I = πI ◦ f(x/I) = πI(a) = a/I, which implies that x ∗ a ∈ I.
Hence, a ∈ 〈A ∪ I〉 and a is a component of x in A with respect to I. Therefore, (A, I) is an adjoint
pair of X . Conversely, let (A, I) be an adjoint pair of X . Define f : X/I → X by f(x/I) = ax for
all x ∈ X (see Definition 4.11). If x/I = y/I for some x, y ∈ X , then (x, y) ∈ θI and (x, ax) ∈ θI ,
which yields ax is a component of y in A. By Proposition 4.12, we get that ay = ax. Thus, f is well
defined. In a similar way, we can show that f is a homomorphism. It follows from (x, ax) ∈ θI that
πI ◦ f(x/I) = πI(ax) = ax/I = x/I. Therefore, I is a retract ideal of X . �

Corollary 4.17. There is a one-to-one correspondence between retract ideals and state-morphism oper-
ators of X.

Proof. The proof is a straightforward consequence of Theorem 4.14 and 4.16. �

Definition 4.18. [4, Def II.8.8] A state BCK-algebra (X,µ) is called

• simple if Con(X,µ) = {∆,∇}.
• semisimple if the intersection of all maximal congruence relations of (X,µ) is ∆.

By Theorem 3.11, we conclude that (X,µ) is simple if and only if it has exactly, two state ideals ({0}
and X) and it is semisimple if and only if the intersection of all maximal state ideals of (X,µ) is the zero
ideal.

Theorem 4.19. Let (X,µ) be a state-morphism BCK-algebra. Then the following hold:

(i) µ(X) is a simple (semisimple) subalgebra of X if and only if Ker(µ) ∈ Max(X) (Rad(X) ⊆
Ker(µ)).
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(ii) (X,µ) is a simple state-morphism BCK-algebra if and only if X is a simple BCK-algebra.
(iii) If µ(X) is a semisimple subalgebra of X, then the intersection of all maximal state ideals of (X,µ)

is a subset of Ker(µ).
(iv) If X is a non-trivial bounded BCK-algebra such that µ(1) = 1 and (X,µ) is a semisimple state

BCK-algebra, then µ is the identity map.

Proof. (i) Let (X,µ) be a state-morphism BCK-algebra. Then by the first isomorphism theorem, X/Ker(µ)
and µ(X) are isomorphic (as BCK-algebras), whence the proof of (i) is straightforward.

(ii) Let (X,µ) be a simple state-morphism BCK-algebra. By Proposition 3.2(iii), Ker(µ) is a state
ideal of (X,µ) and so Ker(µ) = {0} or Ker(µ) = X . By Corollary 4.7, we obtain that µ = IdX or
µ(x) = 0 for all x ∈ X . However, each ideal of X is a state ideal, so by assumption, X must have exactly
two ideals. That is, X is a simple BCK-algebra. The proof of the converse is clear. In fact, any simple
BCK-algebra X , has exactly two ideals, X and {0}, which are state ideals.

(iii) Let µ(X) be a semisimple subalgebra of X . Since X/Ker(µ) ∼= µ(X), we get that Rad(X/µ(X)) =
{0/µ(X)} and so

⋂

{I/Ker(µ) | Ker(µ) ⊆ I ∈ MaxS(X)} = {0/Ker(µ)}, which implies that
⋂

{I |
Ker(µ) ⊆ I ∈ MaxS(X)} ⊆ Ker(µ). Let H be a maximal ideal of X containing Ker(µ). Since µ(x) ∗ x ∈
Ker(µ), for each x ∈ H , then we have µ(x) ∗ x ∈ H, and so µ(x) ∈ H for all x ∈ X . Thus, H is a state
ideal of (X,µ). By summing up the above results, we have

⋂

{I | I is a state ideal of (X,µ)} ⊆
⋂

{I | Ker(µ) ⊆ I ∈ MaxS(X)} ⊆ Ker(µ).

(iv) Let I be a maximal state ideal of X . Then we define ν : X/I → X/I by ν(x/I) = µ(x)/I for
all x ∈ X . If x/I = y/I for some x, y ∈ X , then x ∗ y, y ∗ x ∈ I. By assumption, µ(x) ∗ µ(y) ∈ I
and µ(y) ∗ µ(x) ∈ I, hence µ(x)/I = µ(y)/I, which implies that ν(x/I) = ν(y/I). Clearly, ν is a state
operator on the BCK-algebra X/I. Since I is a maximal ideal, then X/I is a simple BCK-algebra,
so by Corollary 4.7, ν = IdX/I or ν = 0. If ν = 0, then µ(x) ∈ I for all x ∈ X . It follows that
1 ∈ I, which is a contradiction. So, ν(x/I) = x/I for all x ∈ X . Hence, µ(x) ∗ x, x ∗ µ(x) ∈ I for all
x ∈ X . Since I is an arbitrary maximal state ideal of (X,µ), then by Proposition 4.2, we conclude that
Ker(µ) ⊆

⋂

{I | I ∈ MaxS(X)}. Now, let (X,µ) be semisimple. Then
⋂

{I | I ∈ MaxS(X)} = {0} and
so, Ker(µ) = {0}. By Corollary 4.6, µ = IdX . �

Now we show a relation between state-morphism MV-algebras and state-morphism BCK-algebras.

Theorem 4.20. Let (X, ∗, 0) be a bounded commutative BCK-algebra and µ : X → X be a state-
morphism operator such that µ(1) = 1. Then (X,µ) is a state-morphism MV-algebra.

Proof. Let x, y ∈ X . Then µ(x′) = µ(1 ∗ x) = µ(1) ∗ µ(x) = 1 ∗ µ(x) = µ(x)′. Also,

µ(x⊕ y) = µ(N(Nx ∗ y)) = 1 ∗ µ(Nx ∗ y) = 1 ∗ (µ(Nx) ∗ µ(y)) = 1 ∗ ((1 ∗ µ(x)) ∗ µ(y)) = µ(x) ⊕ µ(y)

so, µ(x) is a homomorphism of MV-algebras. Since µ2 = µ, then µ is a state-morphism operator on the
MV-algebra (X,⊕,′ , 0). That is, (X,µ) is a state-morphism MV-algebra. �

5. Generators of State-Morphism BCK-algebras

Let SMBCK be the quasivariety of state-morphism BCK-algebras. We note that the system of BCK-
algebras is not a variety because it is not closed under homomorphic images, [22, Thm VI.4.1]. On
the other side, the system of commutative BCK-algebras or of quasi-commutative BCK-algebra forms
a variety, [22, Thm I.5.2, Thm I.9.2]. Since by [22, Thm I.9.4], every finite BCK-algebra is quasi-
commutative, we can define the variety generated by a system of finite BCK-algebras.

Let (X, ∗, 0) be a BCK-algebra and on the direct product BCK-algebra X ×X we define a mapping
µX : X ×X → X ×X by µX(x, y) = (x, x), (x, y) ∈ X ×X. Then µX is a state-morphism on the BCK-
algebra X ×X and the state-morphism BCK-algebra D(X) := (X ×X,µX) is a said to be a diagonal
state-morphism BCK-algebra. In the same way we can define also ν : X×X → X×X by ν(x, y) = (y, y),
(x, y) ∈ X × X, and (X × X, ν) is again a state-morphism BCK-algebra which is isomorphic to D(X)
under the isomorphism h(x, y) = (y, x), (x, y) ∈ X ×X. For example, if X = [0, 1] is the MV-algebra of
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the real interval, then it generates the variety of MV-algebras (as well as the quasivariety of MV-algebras),
and by [13, Thm 5.4], D([0, 1]) generates the variety of state-morphism MV-algebras.

Given a quasivariety of BCK-algebras V , let Vµ denote the class of state-morphism BCK-algebras
(X,µ) such that X ∈ V . Then Vµ is a quasivariety, too.

As usual, given a class K of algebras of the same type, I(K), H(K), S(K), P(K), and PR(K) will denote
the class of isomorphic images, of homomorphic images, of subalgebras, of direct products of algebras
and of reduced products from K, respectively. Moreover, let QV(K) and V(K) denote the quasivariety
and the variety, respectively, generated by K. We recall that a quasivariety is closed under isomorphic
images, subalgebras, reduced products and containing the one-element algebras, see [4, Def V.2.24], and
a variety is closed under homomorphic images, subalgebras and products.

Using methods from [13, Sec 5], which can be easily modified for state-morphism BCK-algebras instead
of state-morphism MV-algebras, we can prove the following two lemmas and theorem on generators for
a case when we have a variety of BCK-algebras as well as for a more general case - for quasivarieties of
BCK-algebras; for reader’s convenience, we present outlines of theirs proofs.

First we start with proofs concerning the case when a family of BCK-algebras belongs to some variety
of BCK-algebras.

Lemma 5.1. (1) Let K be a class of BCK-algebras belonging to some variety of BCK-algebras. Then
V(D(K)) ⊆ V(K)µ.
(2) Let V be any variety of BCK-algebras. Then Vµ = ISD(V).

Proof. (1) We have to prove that every BCK-reduct of a state-morphism BCK-algebra in V(D(K)) is in
V(K). Let K0 be the class of all BCK-reducts of algebras in D(K). Let X ∈ K, then D(X) ∈ D(K).
Then the BCK-reduct of D(X) is X ×X , and since X is a homomorphic image (under the projection
map) of X × X , K0 ⊆ P(K) and K ⊆ H(K0). Hence, K0 and K generate the same variety. Moreover,
BCK-reducts of subalgebras (homomorphic images, direct products respectively) of algebras from D(K)
are subalgebras (homomorphic images, direct products, respectively) of the corresponding BCK-reducts.
Therefore, the BCK-reduct of any algebra in V(D(K)) is in HSP(K0) = HSP(K) = V(K).

(2) Let (X,µ) ∈ Vµ. The map Φ : a 7→ (µ(a), a) is an embedding of (X,µ) into D(X). Moreover,
Φ(µ(a)) = (µ(µ(a)), µ(a)) = (µ(a), µ(a)) = µX((µ(a), a)) = µX(Φ(a)). Hence, Φ is an injective homo-
morphism of state-morphism BCK-algebras, and (X,µ) ∈ ISD(V). Conversely, the BCK-reduct of any
algebra in D(V) is in V , and hence the BCK-reduct of any member of ISD(V) is in IS(V) = V . Hence, any
member of ISD(V) is in Vµ. �

Lemma 5.2. Let K be a class of BCK-algebras. Then:
(1) DH(K) ⊆ HD(K).
(2) DS(K) ⊆ ISD(K).
(3) DP(K) ⊆ IPD(K).
(4) V(D(K)) = ISD(V(K)).

Proof. (1) Let D(C) ∈ DH(K). Then there are X ∈ K and a BCK-homomorphism h from X onto C. Let,
for all a, b ∈ X , h∗(a, b) = (h(a), h(b)). We claim that h∗ is a homomorphism from the diagonal state-
morphism BCK-algebra D(X) onto D(C). That h∗ is a BCK-homomorphism is clear. We verify that h∗

is compatible with µX . We have h∗(µX(a, b)) = h∗(a, a) = (h(a), h(a)) = µC(h(a), h(b)) = µC(h∗(a, b)).
Finally, since h is onto, given (c, d) ∈ C ×C, there are a, b ∈ X such that h(a) = c and h(b) = d. Hence,
h∗(a, b) = (c, d), h∗ is onto, and D(C) ∈ HD(K).

(2) It is trivial.
(3) Let X =

∏

i∈I Xi ∈ P(K), where each Xi is in K. We assert the map

Φ :
(

(ai : i ∈ I), (bi : i ∈ I)
)

7→
(

(ai, bi
)

: i ∈ I)
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is an isomorphism of state-morphism BCK-algebras from D(X) onto
∏

i∈I D(Xi). Indeed, it is clear that
Φ is a BCK-isomorphism. Moreover, denoting the state-morphism of

∏

i∈I D(Xi) by µ∗, we get:

Φ
(

µX

(

(ai : i ∈ I), (bi : i ∈ I)
))

= Φ
(

(ai : i ∈ I), (ai : i ∈ I)
)

=

=
(

(ai, ai) : i ∈ I
)

=
(

µXi
(ai, bi) : i ∈ I

)

= µ∗
(

Φ
(

(ai : i ∈ I), (bi : i ∈ I)
))

,

and whence Φ is an isomorphism of state-morphism BCK-algebras.
(4) By (1), (2) and (3), DV(K) = DHSP(K) ⊆ HSPD(K) = V(D(K)), and hence ISDV(K) ⊆ ISV(D(K)) =

V(D(K)). Conversely, by Lemma 5.1(1), V(D(K)) ⊆ V(K)µ, and by Lemma 5.1(2), V(K)µ = ISDV(K).
This proves the claim. �

Theorem 5.3. If a system K of BCK-algebras generates a variety V of BCK-algebras, then D(K) gen-
erates the variety Vµ of state-morphism BCK-algebras.

Proof. By Lemma 5.2(4), V(D(K)) = ISD(V(K)). Moreover, by Lemma 5.1(2), V(K)µ = ISDV(K). Hence,
V(D(K)) = V(K)µ. �

Let [0, 1] be the real interval. We endow it with the BCK-structure as before: s ∗R t = max{0, s− t},
s, t ∈ [0, 1]. We denote by [0, 1]BCK := ([0, 1], ∗R, 0) and it is a bounded commutative BCK-algebra. If,
for bounded commutative BCK-algebras, we define a state-morphism operator µ as a homomorphism of
bounded commutative BCK-algebras µ : X → X such that µ ◦ µ = µ andµ(1) = 1, we can obtain the
following result.

Corollary 5.4. Let V be the variety of bounded commutative BCK-algebras, and let VBCK be the variety
of all bounded commutative state-morphism BCK-algebras. Then VBCK = V(D([0, 1]BCK)).

Proof. We can repeat the proofs of Lemmas 5.1–5.2 and Theorem 5.3 also for state-morphism operators
on bounded commutative BCK-algebras. We have VBCK = Vµ. By [23], the variety of bounded BCK-
algebras is categorically equivalent to the variety of MV-algebras. Since the MV-algebra [0, 1] generates
the variety of MV-algebras, we have that the BCK-algebra [0, 1]BCK generates the variety of bounded
commutative BCK-algebras. Then by Theorem 5.3, we have VBCK = V(D([0, 1]BCK)). �

Corollary 5.5. There is uncountably many subvarieties of the variety VBCK of bounded commutative
BCK-algebras with a state-morphism.

Proof. By [13, Thm 7.11], the variety of state-morphism MV-algebras is uncountable. Because the variety
of bounded commutative BCK-algebras is categorically equivalent to the variety of MV-algebras, [23], we
have the statement in question. �

Now we present some analogous general results concerning quasivarieties. The proofs follow the similar
ideas just used for varieties.

Lemma 5.6. (1) Let K be a class of BCK-algebras. Then QV(D(K)) ⊆ QV(K)µ.
(2) Let V be any quasivariety of BCK-algebras. Then Vµ = ISD(V).

Proof. (1) We have to prove that every BCK-reduct of a state-morphism BCK-algebra in QV(K) is in
QV(K).

Let K0 be the class of all BCK-reducts of algebras in D(K). Let X ∈ K, and let {0} be the one-element
BCK-algebra which is a subalgebra of X. Then D(X) ∈ D(K). The BCK-reduct of D(X) is X ×X , and
since X is isomorphic to the BCK-algebra {0}×X, which is a subalgebra of X×X, we have X ∈ IS(K0).
Thus K0 ⊆ P(K) and K ⊆ IS(K0). By [4, Thm 2.23, 2.25], we have QV(K0) = ISPR(K0) ⊆ ISPRP(K) ⊆
ISIPR(K) ⊆ IISPR(K) = ISPR(K) = QV(K). Similarly, QV(K) = ISPR(K) ⊆ ISPRIS(K0) ⊆ ISIPRS(K0) ⊆
ISISPR(K0) ⊆ IISSPR(K0) = ISPR(K0) = QV(K0). Hence, K and K0 generates the same quasivariety.

Moreover, BCK-reducts of subalgebras (isomorphic images, reduced products, respectively) of algebras
from D(K) are subalgebras (isomorphic images, reduced products, respectively) of the corresponding
BCK-reducts. Therefore, the BCK-reduct of any algebra in QV(D(K)) is in QV(K0) = QV(K) = QV(K),
which proves (1).
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(2) Let (X,µ) ∈ Vµ. The map Φ : a 7→ (µ(a), a) is an embedding of (X,µ) into D(X). Moreover,
Φ(µ(a)) = (µ(µ(a)), µ(a)) = (µ(a), µ(a)) = µX((µ(a), a)) = µX(Φ(a)). Hence, Φ is an injective homo-
morphism of state-morphism BCK-algebras, and (X,µ) ∈ ISD(V). Conversely, let X ∈ V . Then the
BCK-reduct of D(X) is X ×X, and X×X is isomorphic with the reduced product (X ×X)/F, where F
is the one-element filter F = {1, 2} of the set I = {1, 2}. Hence, X ×X is in V , and the BCK-reduct of
any algebra in D(V) is in V , whence the BCK-reduct of any member of ISD(V) is in IS(V) = V . Therefore,
any member of ISD(V) is in Vµ. �

Lemma 5.7. Let K be a class of BCK-algebras. Then:
(1) DI(K) ⊆ ID(K).
(2) DS(K) ⊆ ISD(K).
(3) DPR(K) ⊆ IPRD(K).
(4) QV(D(K)) = ISD(QV(K)).

Proof. (1) Let D(C) ∈ DI(K). Then there are X ∈ K and an isomorphism h from X onto C. Let, for
all a, b ∈ X , h∗(a, b) = (h(a), h(b)). We claim that h∗ is an isomorphism from D(X) onto D(C). That
h∗ is an isomorphism of BCK-algebras is clear. We verify that h∗ is compatible with µX . We have
h∗(µX(a, b)) = h∗(a, a) = (h(a), h(a)) = µC(h(a), h(b)) = µC(h∗(a, b)). Finally, since h is onto, given
(c, d) ∈ C × C, there are a, b ∈ X such that h(a) = c and h(b) = d. Hence, h∗(a, b) = (c, d), h∗ is onto,
and D(C) ∈ ID(K).

(2) It is trivial.
(3) Let X =

∏

i∈I Xi/F ∈ PR(K), where each Xi is in K, and F is a filter over I. We claim the map

Φ :
(

(ai : i ∈ I)/F, (bi : i ∈ I)/F
)

7→
(

(ai, bi
)

: i ∈ I)/F

is an isomorphism from D(X) onto
∏

i∈I D(Xi)/F . Indeed, it is clear that Φ is a BCK-isomorphism: let
(

(ai, bi
)

: i ∈ I)/F =
(

(a′i, b
′

i

)

: i ∈ I)/F. Then Jai = a′iK ∩ Jbi = b′iK = J(ai, bi) = (a′i, b
′

i)K ∈ F, so that

Jai = a′iK, Jbi = b′iK ∈ F and hence
(

(ai, bi
)

: i ∈ I)/F =
(

(a′i, bi
)

: i ∈ I)/F. Moreover, denoting the
state-morphism of

∏

i∈I D(Xi) by µ∗, we get:

Φ
(

µX

(

(ai : i ∈ I)/F, (bi : i ∈ I)/F
))

= Φ
(

(ai : i ∈ I)/F, (ai : i ∈ I)
)

/F =

=
(

(ai, ai) : i ∈ I
)

/F =
(

µXi
(ai, bi) : i ∈ I

)

= µ∗
(

Φ
(

(ai : i ∈ I)/F, (bi : i ∈ I)/F
))

,

and hence, Φ is a state-morphism isomorphism.
(4) By (1), (2) and (3), DQV(K) = DISPR(K) ⊆ IISIPRD(K) ⊆ IIISPRD(K) = ISPRD(K) = QV(D(K)),

and hence, ISDQV(K) ⊆ ISQV(D(K)) = QV(D(K)). Conversely, by Lemma 5.6(1), QV(D(K)) ⊆ QV(K)µ,
and by Lemma 5.6(2), QV(K)µ = ISDQV(K). This proves the claim. �

Finally, we present the main result of the section about generators of quasivarieties of state-morphism
BCK-algebras which is an analogue of Theorem 5.3.

Theorem 5.8. If a system K of BCK-algebras generates a quasivariety V of BCK-algebras, then D(K)
generates the quasivariety Vµ of state-morphism BCK-algebras.

Proof. By Lemma 5.7(4), QV(D(K)) = ISD(QV(K)). Moreover, by Lemma 5.6(2), QV(K)µ = ISD(QV(K)).
Hence, QV(D(K)) = QV(K)µ. �

Since the interval [0, 1] generates the class MV of MV-algebras as both a variety and a quasivariety,
due to the categorical equivalence of MV-algebras and bounded commutative BCK-algebras, [23], by
Theorem 5.8 and Corollary 5.4, we have the following corollary.

Corollary 5.9. If [0, 1]BCK = ([0, 1], ∗R, 0) is the bounded commutative BCK-algebra of the real interval
[0, 1], then D([0, 1]BCK) generates both as the variety and as the quasivariety of state-morphism BCK-
algebras whose BCK-reduct is a bounded commutative BCK-algebra. In other words, V(D([0, 1]BCK)) =
VBCK = QV(D([0, 1]BCK)).
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Finally, we formulate two open problems.

Problem 1. Describe some interesting generators of the quasivariety of state BCK-algebras.

We note that we do not know yet any interesting generator for the variety of state MV-algebras.
(2) If X is a subdirectly irreducible BCK-algebra, then the diagonal state-morphism BCK-algebra

D(X) is subdirectly irreducible. Similarly, if X is linearly ordered and subdirectly irreducible, then
(X, IdX) is subdirectly irreducible. If X is an MV-algebra, the third category of subdirectly irreducible
state-morphism MV-alegbra (X,µ) is the case when X has a unique maximal ideal. Inspired by that, we
formulate the second open problem:

Problem 2. Characterize (bounded) subdirectly irreducible state-morphism BCK-algebras as it was done
in [8, 11, 13].
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