
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1016/j.fss.2014.03.005

http://hdl.handle.net/10251/50602

Elsevier

Pedraza Aguilera, T.; Rodríguez López, J.; Romaguera Bonilla, S. (2014). Convergence of
fuzzy sets with respect to the supremum metric. Fuzzy Sets and Systems. 245:83-100.
doi:10.1016/j.fss.2014.03.005.



CONVERGENCE OF FUZZY SETS WITH RESPECT TO THE

SUPREMUM METRIC

TATIANA PEDRAZA, JESÚS RODRÍGUEZ-LÓPEZ⋆,∗ AND SALVADOR ROMAGUERA∗

Abstract. We characterize the convergence of fuzzy sets in the supremum
metric given by the supremum of the Hausdorff distances of the α-cuts of the
fuzzy sets. We do it by dividing this metric into its lower and upper quasi-
pseudometric parts. This characterization is given in the more general context
with no assumption on the fuzzy sets. Furthermore, motivated from the theory
of Convex Analysis, we also provide some results about the behaviour of the
convergence in the supremum metric with respect to maximizers.
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1. Introduction

Throughout this paper we will use the letters N, R and I to denote the set of
positive integer numbers, the set of real numbers and the unit interval, respectively.
We also denote by de the usual Euclidean metric on R or on any of its subsets.
Furthermore, if (X, d) is a metric space we denote by Bd(x, ε) (resp. Bd(x, ε)) the
open ball (resp. the closed ball) with center x ∈ X and radius ε > 0. We also write
Bd(A, ε) = ∪a∈ABd(a, ε) whenever A is a nonempty subset of X.

The supremum metric has its origins in the theory of convergence of fuzzy sets
[10, 12, 13, 14, 15, 16, 17, 18, 22, 23, 26]. Recall that a fuzzy set f on a topological
space (X, τ), as originally defined by Zadeh, is a function f from X to the closed
unit interval I. The endograph or hypograph of f is the set of all the points below
its graph, i. e. endf = {(x, α) ∈ X × I : α ≤ f(x)} whereas the epigraph are all
the points over the graph, i. e. epif = {(x, α) ∈ X × I : f(x) ≤ α}. The superlevel
set of f at height α (or α-cut) is [f ]α = {x ∈ X : α ≤ f(x)} where 0 < α ≤ 1.

The support of f is [f ]0 = ∪0<α≤1[f ]α and its supported endograph or sendograph
is the endograph where the first coordinate is restricted to the support of f , i. e.
sendf = endf ∩ ([f ]0 × I).

Furthermore, we recall that

• the upper limit of f in a ∈ X is given by

f(a) = lim sup
x→a

f(x) = inf
V ∈N (a)

sup
x∈V

f(x);
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• the lower limit of f in a ∈ X is given by

f(a) = lim inf
x→a

f(x) = sup
V ∈N (a)

inf
x∈V

f(x),

where N (a) denotes the neighborhood filter of a.
Then a fuzzy set f is upper semicontinuous (resp. lower semicontinuous) at a if

f(a) = lim supx→a f(x) (resp. f(a) = lim infx→a f(x)), equivalently lim supx→a f(x) ≤
f(a) (resp. f(a) ≤ lim infx→a f(x)). We denote by USC(X) the family of all upper
semicontinuous fuzzy sets on X. Furthermore, f is continuous at a if and only if
lim supx→a f(x) = lim infx→a f(x).

We also notice that endf = endf (resp. epif = epif), where closure is taken in

τ × τ(de), so f is upper semicontinuous (resp. lower semicontinuous) if and only if
endf (resp. epif) is closed.

In the literature, we can find several convergences for fuzzy sets whose properties
and relationships have been studied by several authors [14, 17, 25]. One of the most
used is the convergence in the supremum metric. Recall that, given a metric space
(X, d), the supremum distance between two fuzzy sets f, g on X is defined as

d∞(f, g) = sup
0<α≤1

Hd([f ]α, [g]α)

where Hd is the Hausdorff extended pseudometric between subsets of X given by

Hd(A, B) = max {ed(A, B), ed(B, A)}

where

ed(A, B) =

{

supa∈A d(a, B) if A , ∅

0 if A = ∅

is the excess of A over B.

We also observe that

(1) Hd(A, B) = max {inf{ε > 0 : A ⊆ Bd(B, ε)}, inf{ε > 0 : B ⊆ Bd(A, ε)}} .

where we understand that the infimum is +∞ if no such ε exists.
The main purpose of this paper is to obtain a general characterization of d∞-

convergence in F(X) (the family of all fuzzy sets over X , i. e. all the [0, 1]-
valued functions defined on X). The antecedents of our approach may be found
in [14], where the authors gave a characterization of the d∞-convergence (or D-
convergence) of upper semicontinuous fuzzy sets f with nonempty compact support
and [f ]1 , ∅ (see Corollaries 3 and 6). Under these assumptions, several authors
have studied the relationship between this convergence and the hypo-convergence
(or Γ-convergence) [14], Hausdorff convergence of supported endographs (or H-
convergence) [20] and Hausdorff convergence of superlevel sets at a fixed height
(also named L-convergence or levelwise convergence) [17]. Nevertheless, we can-
not find results which do not impose conditions on the fuzzy sets. To achieve our
study, and as it is usual in hyperspace theory, we will split this metric in two
halves: the lower supremum (extended) quasi-pseudometric and the upper supre-
mum (extended) quasi-pseudometric. Then, we will study the relationship between
the convergences associated to these two (extended) quasi-pseudometrics and some
uniform convergences of certain functionals which will allow us to locate these con-
vergences in the lattice of convergence of functions. Finally, we will characterize
the aforementioned convergences by means of set-theoretic convergences.



CONVERGENCE OF FUZZY SETS WITH RESPECT TO THE SUPREMUM METRIC 3

Furthermore, since Γ-convergence is tied to Convex Analysis [2, 3, 4, 5, 6, 8,
21, 24], we study some questions of convergence in the supremum metric from this
point of view. Specifically, we analyze how this convergence behaves with respect to
maximizers. For example, we prove that if {fλ}λ∈Λ is a net of fuzzy sets converging
to an upper semicontinuous fuzzy set f and {xλ}λ∈Λ is a net in X converging to
x, where xλ is a maximizer of fλ for all λ ∈ Λ, then x is a maximizer of f.

2. Convergences on [0, 1]

We will introduce some convergences on the unit interval I = [0, 1] of R which
will be useful in our study. These convergences can also be considered in the general
context of the set R = R ∪ {−∞, +∞}.

Definition 1. Let {xλ}λ∈Λ be a net in I. Then

• the lower limit of {xλ}λ∈Λ is

lim inf
λ∈Λ

xλ = sup
λ′∈Λ

inf
λ≥λ′

xλ;

• the upper limit of {xλ}λ∈Λ is

lim sup
λ∈Λ

xλ = inf
λ′∈Λ

sup
λ≥λ′

xλ.

Notice that limλ∈Λ xλ = x in the usual topology of I if and only if lim supλ∈Λ xλ =
lim infλ∈Λ xλ = x.

From this, we consider the following topological convergences on I.

Definition 2. A net {xλ}λ∈Λ in I is said to be

• lower convergent to x ∈ I, and we write x ∈ limL

λ∈Λ xλ, if x ≤ lim infλ∈Λ xλ;

• upper convergent to x ∈ I, and we write x ∈ limU

λ∈Λ xλ, if lim supλ∈Λ xλ ≤
x.

Consequently,

(2) lim inf
λ∈Λ

xλ = max lim
λ∈Λ

Lxλ and lim sup
λ∈Λ

xλ = min lim
λ∈Λ

Uxλ.

Remark 1. It is easy to check that lower convergence (resp. upper convergence) is
convergence in the topology of the lower quasi-pseudometric ℓ (resp. upper quasi-
pseudometric u) given by ℓ(x, y) = max{x − y, 0} (resp. u(x, y) = ℓ(y, x)) for all
x, y ∈ I. Furthermore, the lower convergence (resp. upper convergence) is compat-
ible with the lower topology (resp. upper topology) on I whose open sets are of
the form (a, 1] (resp. [0, a)) where a ∈ I.

In the theory of continuous lattices, the lower topology on I is known as the Scott
topology [11] and its open sets are characterized by the following: O is Scott-open
if and only if O is an upper set and if sup D ∈ O then D ∩O , ∅ for every directed
set D.

Remark 2. We observe that a fuzzy set f on a metric space (X, d) is upper semi-
continuous (resp. lower semicontinuous) at x ∈ X if and only if f is continuous
at x when I is endowed with the upper (resp. lower) quasi-pseudometric. Conse-
quently, f is upper semicontinuous (resp. lower semicontinuous) at x if for every
ε > 0 we can find δε > 0 such that f(y) − f(x) < ε (resp. f(x) − f(y) < ε) for all
y ∈ Bd(x, δε).
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Then we say that a fuzzy set f is uniformly upper semicontinuous if for
every ε > 0 we can find δε > 0 such that

f(y) − f(x) < ε

whenever d(x, y) < δε.
We denote by UUSC(X) the family of all uniformly upper semicontinuous fuzzy
sets on X.

We introduce now two other convergences.

Definition 3. Given x ∈ I, we say that a net {xλ}λ∈Λ in I is:

• S≤-convergent to x if there exists λ0 ∈ Λ such that x ≤ xλ for all λ ≥ λ0;
• S≥-convergent to x if there exists λ0 ∈ Λ such that x ≥ xλ for all λ ≥ λ0.

Remark 3. We observe that S≤-convergence coincides with the convergence in
the Alexandroff topology associated with the partial order ≤ of I, whose open sets
constitute the topology

τ≤ = {O ⊆ I : if x, y ∈ I, x ∈ O and x ≤ y ⇒ y ∈ O} = {[a, 1] : a ∈ I} ∪ {∅}.

We also notice that if A ⊆ I then the closure of A in τ≤ is A =↓ A = {x ∈ I :
x ≤ a for some a ∈ A}.

In a similar way, S≥-convergence coincides with the convergence in the Alexan-
droff topology associated with the partial order ≥ of I, whose open sets are

τ≥ = {O ⊆ I : if x, y ∈ I, x ∈ O and x ≥ y ⇒ y ∈ O} = {[0, a] : a ∈ I} ∪ {∅}.

Furthermore (compare with equation (2))

(3) lim inf
λ∈Λ

xλ = sup lim
λ∈Λ

τ≤xλ and lim sup
λ∈Λ

xλ = inf lim
λ∈Λ

τ≥xλ,

and, in general, {xλ}λ∈Λ is not τ≤-convergent (resp. τ≥-convergent) to lim infλ∈Λ xλ

(resp. lim supλ∈Λ xλ). Therefore, the Alexandroff topology τ≤ (resp. τ≥) is strictly
finer than the lower topology (resp. upper topology).

We introduce now other two convergences which will be useful later on.

Definition 4. Given x ∈ I, we say that a net {xλ}λ∈Λ in I is:

• S<-convergent to x if there exists λ0 ∈ Λ such that x < xλ for all λ ≥ λ0;
• S>-convergent to x if there exists λ0 ∈ Λ such that x > xλ for all λ ≥ λ0.

Remark 4. Notice that the two above convergences are not topological, i. e. there
does not exist any topology whose associated convergence is equivalent to one of
the above convergences. This is due to the fact that constant sequences are not
convergent in these convergences. Nevertheless, they satisfy the rest of the axioms
for being a topological convergence (see [19, page 64]).

Furthermore, the finest topology whose convergence is coarser than S<-convergence
(resp. S>-convergence) is the Alexandroff topology τ≤ (resp. τ≥).

Remark 5. It is obvious that S<-convergence implies τ≤-convergence which implies
lower convergence. In the same way, S>-convergence implies τ≥-convergence which
implies upper convergence.

3. Convergences of fuzzy sets

By F(X) we denote the family of all fuzzy sets over X , i. e. all the [0, 1]-valued
functions defined over X .
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3.1. Pointwise convergence.

Definition 5 ([1, Page 71]). Let (X, τ) be a topological space and {fλ}λ∈Λ a net
in F(X), where I is endowed with a convergence S. We say that {fλ}λ∈Λ is S-

pointwise convergent to f at x ∈ X if the sequence {fλ(x)}λ∈Λ is S-convergent
to f(x).

If {fλ}λ∈Λ is S-pointwise convergent to f at every x ∈ X, we just say that
{fλ}λ∈Λ is S-pointwise convergent to f.

When we particularize the above definition for the lower and upper convergences
we have the following:

Definition 6. Let (X, τ) be a topological space. A net {fλ}λ∈Λ in F(X) is said to
be:

• lower pointwise convergent to f at x ∈ X if lim infλ∈Λ fλ(x) ≥ f(x);
• upper pointwise convergent to f at x ∈ X if lim supλ∈Λ fλ(x) ≤ f(x);
• pointwise convergent to f at x ∈ X if it is both lower and upper pointwise

convergent to f at x, i. e. limλ∈Λ fλ(x) = f(x).

When the above conditions are satisfied for all x ∈ X we just say that {fλ}λ∈Λ is
lower pointwise convergent (resp. upper pointwise convergent, pointwise convergent)
to f .

Remark 6. Notice that {fλ}λ∈Λ is lower pointwise convergent to f if and only if
end f ⊆ end li fλ where (li fλ)(x) = lim infλ∈Λ fλ(x) for all x ∈ X.

In a similar way, {fλ}λ∈Λ is upper pointwise convergent to f if and only if
end ls fλ ⊆ end f where (ls fλ)(x) = lim supλ∈Λ fλ(x).

Consequently, {fλ}λ∈Λ is pointwise convergent to f if and only if end ls fλ =
end li fλ = end f. This statement is also valid considering epigraphs instead of
endographs.

If we consider in Definition 5 the τ≤-convergence and τ≥-convergence we have
the following:

Definition 7. Let (X, τ) be a topological space. A net {fλ}λ∈Λ in F(X) is said to
be:

• τ≤-pointwise convergent to f if given x ∈ X there exists λx ∈ Λ such
that f(x) ≤ fλ(x) for all λ ≥ λx;

• τ≥-pointwise convergent to f if given x ∈ X there exists λx ∈ Λ such
that f(x) ≥ fλ(x) for all λ ≥ λx.

If the above inequalities are strict we say that {fλ}λ∈Λ is S<-pointwise convergent
(resp. S>-pointwise convergent) to f.

3.2. Γ-convergence. The origins of the Γ-convergence, and its counterpart epi-
convergence, are due to Wijsman [27] when he introduced the so-called infimal
convergence for convex functions. The relationship between this convergence and
Kuratowski-Painlevé convergence of epigraphs was explicitly observed by Klee in
the review of Wijsman’s paper, although it is implicit in the results of the paper.

Later on, Γ-convergence appeared again in nonconvex problems of minimization
by De Giorgi and Franzoni [7].

Recall that if (X, τ) is a topological space and {Aλ}λ∈Λ is a net of subsets of X
then
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• the lower limit of {Aλ}λ∈Λ is the set

LiAλ = {x ∈ X : Aλ ∩ V , ∅ residually, for all V ∈ N (x)};

• the upper limit of {Aλ}λ∈Λ is the set

LsAλ = {x ∈ X : Aλ ∩ V , ∅ cofinally, for all V ∈ N (x)}.

In this way, a net {Aλ}λ∈Λ of subsets of X is lower Kuratowski-Painlevé convergent
(resp. upper Kuratowski-Painlevé convergent; Kuratowski-Painlevé convergent) to
A [2] if A ⊆ LiAλ (resp. LsAλ ⊆ A; A = LiAλ = LsAλ). We also observe (see [2,
Proposition 5.2.5]) that lower Kuratowski-Painlevé convergence is convergence in
the lower Vietoris topology so it is always topological.

We recall that Γ-convergence is Kuratowski-Painlevé convergence of endographs
of functions. Consequently, a net {fλ}λ∈Λ in F(X) is said to be Γ−-convergent
to the fuzzy set f if end f ⊆ Li end fλ. It can be proved (see [2, Lemmas 5.3.3
and 5.3.4],[9, Proposition 1.9] for the epi-convergence version) that Li end fλ is the
endograph of the fuzzy set given by

(4) (Lifλ)(x) = inf
V ∈N (x)

lim inf
λ∈Λ

Mfλ
(V ),

where Mfλ
(V ) = supv∈V fλ(v).

Furthermore, the net {fλ}λ∈Λ is Γ+-convergent to f if Ls end fλ ⊆ end f. The
upper limit of the endographs of the elements of the net {fλ}λ∈Λ is the endograph
of the fuzzy set

(5) (Lsfλ)(x) = inf
V ∈N (x)

lim sup
λ∈Λ

Mfλ
(V ).

Remark 7. We notice that if (X, d) is a metric space and {fλ}λ∈Λ is a net in
F(X) then

(Lifλ)(x) = inf
ε>0

lim inf
λ∈Λ

Mfλ
(Bd(x, ε)),

(Lsfλ)(x) = inf
ε>0

lim sup
λ∈Λ

Mfλ
(Bd(x, ε)).

It is not difficult to prove that if {fn}n∈N is a sequence of fuzzy sets in F(X) then

(Lifn)(x) = sup
{xn}n∈N→x

lim inf
n→+∞

fn(xn),

(Lsfn)(x) = sup
{xn}n∈N→x

lim sup
n→+∞

fn(xn).

We observe that, in contraposition with Γ−-convergence, Γ+-convergence is not
topological in general. In fact, the sequence of fuzzy sets {fn}n∈N over I endowed
with the Euclidean topology whose elements are equal to the characteristic function
f of the set ]1/2, 1] is not Γ+-convergent to f since infε>0 lim supn∈NMfn

(Bd(1/2, ε)) =
1 > f(1/2) = 0. The sequence {fn}n∈N is Γ+-convergent to every fuzzy set greater
than or equal to the characteristic function of the closed interval [1/2, 1].

Remark 8. Let {fλ}λ∈Λ be a net of fuzzy sets defined on a topological space. We
observe that:

end li fλ ⊆ Li end fλ = end Lifλ and end ls fλ ⊆ Ls endfλ = end Lsfλ.

Suppose that (x, α) ∈ end li fλ, i. e. α ≤ lim infλ∈Λ fλ(x). Let ε > 0. Then
α − ε/2 < infλ≥λ′ fλ(x) for all λ′ greater than a certain λε. Consequently, (x, α −
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ε/2) ∈ end fλ ∩ (V × (α − ε, α + ε)) for all λ ≥ λε and all neighborhood V of x.
Therefore, (x, α) ∈ Li end fλ.

To prove the other inclusion we can proceed in a similar way but taking into
account that if α ≤ lim supλ fλ(x) then for each λ ∈ Λ we can find λ′ ≥ λ such that
α − ε/2 < fλ′(x).

For first countable spaces, Γ-convergence admits a very useful characterization.

Theorem 1 (cf. [2, Theorem 5.3.5], [21, Propositions 8.6.1 and 8.6.2], [24, Proposition 7.2]).
Given a first countable topological space (X, τ), a sequence {fn}n∈N in F(X) is

• Γ−convergent to f if and only if for every x ∈ X there exists a sequence
{xn}n∈N convergent to x such that f(x) ≤ lim infn→+∞ fn(xn);

• Γ+-convergent to f if and only if lim supn→+∞ fn(xn) ≤ f(x) for every
sequence {xn}n∈N convergent to x.

Although in general there is no relationship between Γ-convergence and pointwise
convergence [2, p. 156], [9, Theorem 2.18], by the above remark we can obtain the
following:

Proposition 1. Let (X, τ) be a topological space and let {fλ}λ∈Λ be a net in F(X).
Then:

(1) if {fλ}λ∈Λ is lower pointwise convergent to f then it is Γ−-convergent to
f ;

(2) if {fλ}λ∈Λ is Γ+-convergent to f then it is upper pointwise convergent to
f ;

(3) the set of limit points of the net {fλ}λ∈Λ in the lower pointwise convergence
and in the Γ−-convergence coincide if and only if (li fλ)(x) = (Li fλ)(x) for
all x ∈ X ;

(4) the set of limit points of the net {fλ}λ∈Λ in the upper pointwise convergence
and in the Γ+-convergence coincide if and only if (ls fλ)(x) = (Ls fλ)(x) for
all x ∈ X ;

Proof. The proof follows from Remarks 6 and 8. �

The next example shows limiting counterexamples for the preceding result.

Example 1. Let us consider the sequence {fn}n∈N of spike functions on I given
by

fn(x) =











2nx if 0 ≤ x < 1
2n

2 − 2nx if 1
2n

≤ x < 1
n

0 if 1
n

≤ x ≤ 1

.

If we endow I with the Euclidean metric, then it is clear that {fn}n∈N is pointwise
convergent to the zero fuzzy set on I, so (li fn)(x) = lim infn→+∞ fn(x) = 0 for all
x ∈ I. Nevertheless,

(Li fn)(x) = (Ls fn)(x) =

{

0 if 0 < x ≤ 1

1 if x = 0
.

Consequently, Li end fn = Ls end fn = ({0} × I) ∪ (]0, 1] × {0}). From this,
we can deduce that the sequence {fn}n∈N is Γ−-convergent to the characteristic
function of the singleton {0} but it is not lower pointwise convergent to this fuzzy
set. Furthermore, the sequence is upper pointwise convergent to the zero fuzzy set
but it is not Γ+-convergent to that fuzzy set.
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3.3. Uniform convergence. Recall that a net {fλ}λ∈Λ in F(X) is uniform con-
vergent to a fuzzy set f if for each ε > 0 there exists λε ∈ Λ such that for all
x ∈ X

|f(x) − fλ(x)| < ε for all λ ≥ λε.

Definition 6 splits the pointwise convergence in two convergences. The same can
be made with the uniform convergence.

Definition 8. Let (X, τ) be a topological space and let f be a fuzzy set on X. A
net {fλ}λ∈Λ in F(X) is:

• lower uniformly convergent to f if for each ε > 0 there exists λε ∈ Λ
such that for all x ∈ X

f(x) − fλ(x) < ε for all λ ≥ λε;

• upper uniformly convergent to f if for each ε > 0 there exists λε ∈ λ
such that for all x ∈ X

fλ(x) − f(x) < ε for all λ ≥ λε.

From this it is clear that {fλ}λ∈Λ is uniformly convergent to f if it is both lower
and upper uniformly convergent to f .

We next introduce other uniform convergences related to some convergences
introduced in Section 2.

Definition 9. Let (X, τ) be a topological space and let f be a fuzzy set on X. A
net {fλ}λ∈Λ in F(X) is:

• τ≤-uniformly convergent to f if there exists λ0 ∈ Λ such that for each
x ∈ X

f(x) ≤ fλ(x) for all λ ≥ λ0;

• τ≥-uniformly convergent to f there exists λ0 ∈ Λ such that for each
x ∈ X

fλ(x) ≤ f(x) for all λ ≥ λ0.

If the above inequalities are strict we say that {fλ}λ∈Λ is S<-uniformly convergent
(resp. S>-uniformly convergent) to f.

Observe that simultaneous τ≤-uniform convergence and τ≥-uniform convergence
of a net {fλ}λ∈Λ to a function f obviously implies that f = fλ residually. Fur-
thermore, it is clear that τ≤-uniform convergence (resp. τ≥-uniform convergence)
implies lower uniform convergence (resp. upper uniform convergence). It is easy to
construct examples to check that the converse is not true in general.

4. The supremum metric

Let (X, d) be a metric space. The supremum metric d∞ [16, 17, 22] on F(X)
is given by

d∞(f, g) = sup
0<α≤1

Hd([f ]α, [g]α) = sup
0<α≤1

max{ sup
y∈[g]α

d([f ]α, y), sup
x∈[f ]α

d(x, [g]α)}.

Actually, d∞ is an extended pseudometric (for example, d∞(f, g) = 0 where f, g
are the characteristic functions of Q ∩ I and I ∩ I, respectively) although we will
refer to it as a metric. Furthermore, if d∞ is restricted to USC(X), the family of
all upper semicontinuous fuzzy sets on X , then we obtain an extended metric since
superlevel sets are closed.
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Remark 9. Notice that

sup
0<α≤1

Hd([f ]α, [g]α) = sup
0≤α≤1

Hd([f ]α, [g]α).

Indeed, it is obvious that d∞(f, g) = sup0<α≤1 Hd([f ]α, [g]α) ≤ sup0≤α≤1 Hd([f ]α, [g]α).
On the other hand, suppose that d∞(f, g) = ε (if d∞(f, g) = +∞ the conclusion
is obvious). Given x ∈ [f ]0 and n ∈ N we can find αn ∈ (0, 1] and y ∈ [f ]αn

such that d(x, y) < 1/(2n). By assumption, Hd([f ]αn , [g]αn) ≤ ε so there exists
z ∈ [g]αn ⊆ [g]0 with d(y, z) ≤ ε + 1/(2n). Consequently, d(x, z) < ε + 1/n so
d(x, [g]0) < ε + 1/n. Hence d(x, [g]0) ≤ ε for all x ∈ [f ]0.

In a similar way, it can be proved that d(x, [f ]0) ≤ ε for every x ∈ [g]0. Therefore,
Hd([f ]0, [g]0) ≤ d∞(f, g).

The supremum metric can be split in two (extended) quasi-pseudometrics given
by

d−
∞(f, g) = sup

0<α≤1
ed([f ]α, [g]α),

d+
∞(f, g) = sup

0<α≤1
ed([g]α, [f ]α),

where ed([f ]α, [g]α) is the excess of [f ]α over [g]α. We call d−
∞ (resp. d+

∞) the lower
supremum quasi-pseudometric (resp. the upper supremum quasi-pseudometric).
We emphasize that we use the term “quasi” because d−

∞ and d+
∞ are not in general

symmetric. It is easy to check that d∞(f, g) = max{d+
∞(f, g), d−

∞(f, g)}.
Moreover, it is straightforward to prove (see equation (1)) that a net {fλ}λ∈Λ in

F(X) is

• d−
∞-convergent to f ∈ F(X) if and only if given ε > 0 there exists λε ∈ Λ

such that [f ]α ⊆ Bd([fλ]α, ε) for all λ ≥ λε and all α ∈ (0, 1];
• d+

∞-convergent to f ∈ F(X) if and only if given ε > 0 there exists λε ∈ Λ
such that [fλ]α ⊆ Bd([f ]α, ε) for all λ ≥ λε and all α ∈ (0, 1].

We will use this characterization of these two convergences in the sequel.

Remark 10. Let (X, d) be a metric space and let {fλ}λ∈Λ be a net in F(X). Given
f, F ∈ F(X) such that f(x) ≤ infλ∈Λ fλ(x) and F (x) ≥ supλ∈Λ fλ(x) for all x ∈ X,
then it is obvious that {fλ}λ∈Λ is d−

∞-convergent (resp. d+
∞-convergent) to f (resp.

F ). In particular {fλ}λ∈Λ is always d−
∞-convergent to the identically 0 fuzzy set

and d+
∞-convergent to the constant fuzzy set 1.

Furthermore, we know by [2, Lemma 1.5.1] that ed(A, B) = supx∈X d(B, x) −
d(A, x) so we have that

d−
∞(f, g) = sup

0<α≤1
sup
x∈X

d([g]α, x) − d([f ]α, x),

d+
∞(f, g) = sup

0<α≤1
sup
x∈X

d([f ]α, x) − d([g]α, x).

Therefore,
d∞(f, g) = sup

0<α≤1
duc(d([f ]α, ·), d([g]α, ·))

where duc denotes the metric compatible with the topology of uniform convergence
given by

duc(f, g) = sup
x∈X

|f(x) − g(x)|.

The proof of the next proposition follows from the above observations.
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Proposition 2. Let (X, d) be a metric space. Then a net {fλ}λ∈Λ in F(X) is
d∞-convergent to f if and only if given ε > 0 there exists λε ∈ Λ such that

|d([fλ]α, x) − d([f ]α, x)| < ε

for all λ ≥ λε, x ∈ X and α ∈ (0, 1].

In the following, we try to give a formula which allows us to obtain, as in equa-
tions (4) and (5) for Γ-convergence, the limit of a net of functions convergent with
respect to the lower or upper supremum quasi-pseudometrics. We also intend to
establish a characterization of the convergence in these two quasi-pseudometrics in
the spirit of Theorem 1.

4.1. Convergence in the lower supremum quasi-pseudometric. Let (X, d)
be a metric space. Recall that if f ∈ F(X), then Mf(A) = supa∈A f(a), where
∅ , A ⊆ X . The role of this functional in the study of the d−

∞-convergence is
crucial as the next proposition shows.

Proposition 3 (cf. [14]). Let (X, d) be a metric space and let {fλ}λ∈Λ be a net in
F(X). Consider the following statements:

(1) {fλ}λ∈Λ is τ≤-uniformly convergent to f ;
(2) {Mfλ

(Bd(·, ε))}λ∈Λ is S<-uniformly convergent to f for all ε > 0;
(3) {fλ}λ∈Λ is d−

∞-convergent to f ;
(4) {Mfλ

(Bd(·, ε))}λ∈Λ is τ≤-uniformly convergent to f for all ε > 0;
(5) {fλ}λ∈Λ is Γ−-convergent to f.

We have the following implications:

(1)
u

(3) ⇒ (4) ⇒ (5)
t

(2)

Proof. (1) ⇒ (3) Suppose that {fλ}λ∈Λ is τ≤-uniformly convergent to f. Then there
exists λ0 ∈ Λ such that f(x) ≤ fλ(x) for all λ ≥ λ0 and all x ∈ X. Therefore, given
α ∈ (0, 1] and x ∈ [f ]α then α ≤ f(x) ≤ fλ(x) so [f ]α ⊆ Bd([fλ]α, ε) for all λ ≥ λ0.
Consequently, {fλ}λ∈Λ is d−

∞-convergent to f.

(2) ⇒ (3) Let ε > 0. By assumption, we can find λε ∈ Λ such that f(x) <
Mfλ

(Bd(x, ε)) for all λ ≥ λε and all x ∈ X. Consequently, given λ ≥ λε and
α ∈ (0, 1], if x ∈ [f ]α we can find xλ ∈ Bd(x, ε) such that α ≤ f(x) ≤ fλ(xλ).
Therefore, x ∈ Bd([fλ]α, ε) for all λ ≥ λε, which concludes this implication.

(3) ⇒ (4) Since {fλ}λ∈Λ is d−
∞-convergent to f, given ε > 0 we can find λε ∈ Λ

such that [f ]f(x) ⊆ Bd([fλ]f(x), ε) for all λ ≥ λε and all x ∈ X (notice that by
Remark 9 there is no need to ask that f(x) > 0). Given x ∈ X , if f(x) = 0
then f(x) = 0 ≤ fλ(x) ≤ Mfλ

(Bd(x, ε)) for all λ ∈ Λ. On the other hand, if
f(x) > 0 we can find xλ ∈ Bd(x, ε) such that f(x) ≤ fλ(xλ) for all λ ≥ λε. Hence
f(x) ≤ Mfλ

(Bd(x, ε)) for all λ ≥ λε and all x ∈ X.

(4) ⇒ (5) Given ε > 0 then f(x) ≤ Mfλ
(Bd(x, ε)) for all λ ≥ λε and all x ∈ X.

Hence we deduce that f(x) ≤ infλ≥λε
Mfλ

(Bd(x, ε)) for all x ∈ X . Consequently,
f(x) ≤ infε>0 lim infλ∈Λ Mfλ

(Bd(x, ε)) so {fλ}λ∈Λ is Γ−-convergent to f. �
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Remark 11. One of the main uses of the Γ-convergence appears in the context of
variational analysis where questions about the maximum or minimum of a function
relative to a certain set are fundamental. In this way, a number of basic questions
with respect to the stability of the set of minimizers or maximizers appear in a
natural way. For example, if a net {fλ}λ∈Λ converges to f in some sense does the
net {Mfλ

(X)}λ∈Λ converge to Mf (X)? If xλ ∈ ArgmaxXfλ = {x ∈ X : f(x) =
Mfλ

(X)} for all λ ∈ Λ and {xλ}λ∈Λ converges to x, is x in ArgmaxXf? The dual
version of these questions for minimizers and others are developed deeply in [24].
Although these results deal with lower semicontinuous functions, it is not difficult
to translate them to the context of fuzzy sets.

For example, it is not hard to prove that (cf. [24, Proposition 7.29 (b)]) a
net of fuzzy sets {fλ}λ∈Λ is Γ−-convergent to f if and only if Mf (Bd(x, ε)) ≤
lim infλ∈Λ Mfλ

(Bd(x, ε)) for every x ∈ X and ε > 0. Hence Mf(X) ≤ lim infλ∈Λ Mfλ
(X)

(cf. [2, Proposition 1.3.5]).
The previous proposition gives a result in this direction when considering the d−

∞-
convergence. In this way, from (4) we deduce that f(x) ≤ lim infλ∈Λ Mfλ

(Bd(x, ε))
for all x ∈ X and all ε > 0 and Mf (X) ≤ Mfλ

(X) residually. Taking into account
this and the above comments, we can easily deduce that d−

∞convergence implies
Γ−-convergence.

At this point, it is natural to wonder whether it is possible to obtain a characteri-
zation of the d−

∞-convergence similar to the characterization of the Γ−-convergence
that we have just mentioned. We prove it in Corollary 4.

From this, it is also easy to obtain (4) ⇒ (5) of the above proposition.

Now we provide several examples showing that the implications in the above
proposition cannot be reversed in general. In all of them, we will consider that the
real line and its subsets are endowed with the Euclidean metric de.

Example 2 ((3); (1)). Consider the sequence of fuzzy sets on I given by

fn(x) =

{

x − 1
3n

if 1
3n

< x < 1 − 1
3n

1 otherwise
,

for all n ∈ N. Let f be the identity function on I. Given ε > 0, take nε ∈ N
with 1/nε < ε. Let α ∈ (0, 1] and x ∈ [f ]α, i. e. α ≤ f(x) = x. Pick n ≥ nε.
If x + 1/(3n) ∈ [0, 1] then α ≤ x ≤ fn(x + 1/(3n)). Since x + 1/(3n) ∈ Bde

(x, ε)
then x ∈ Bde

([fn]α, ε). If x + 1/(3n) < I then fn(x) = 1 ≥ α so x ∈ Bde
([fn]α, ε).

Consequently, {fn}n∈N is d−
∞-convergent to f.

Nevertheless, the sequence {fn}n∈N is obviously not τ≤-uniformly convergent to f.

Example 3 ((3); (2)). Just consider the constant sequence {fn}n∈N of fuzzy sets
on R such that fn is the function identically 1. Then fn(x) = Mfn

(Bd(x, ε)) = 1
for all x ∈ R and all ε > 0. It is obvious that {fn}n∈N is d−

∞-convergent to the
constant fuzzy set 1 but {Mfn

(Bde
(·, ε))}n∈N is not S<-pointwise convergent to that

fuzzy set for any ε > 0.

Example 4 ((4) ; (3) and (5) ; (3)). Let us consider the space ℓ1 of all real
sequences such that ‖x‖1 =

∑∞
n=1 |x(n)| < ∞. Let {fn}n∈N be the sequence of fuzzy

sets on ℓ1 given by

fn(x) =

{

1 − 1
k

if x = 1
n

ek

0 otherwise
,
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where ek is the sequence whose terms are always 0 except the kth term which is 1,
for all k ∈N. Let f be the characteristic function of the constant zero sequence 0.
It is easy to see that fn is upper semicontinuous for all n ∈ N and f so is. It is
clear that {Mfn

(B‖·‖1
(·, ε))}n∈N is τ≤-uniformly convergent to f for all ε > 0. In

fact, given ε > 0, let n0 ∈N such that 1/n0 < ε. Then, given x ∈ ℓ1 we have that
{

f(x) = 0 ≤ fn(x) ≤ Mfn
(B‖·‖1

(x, ε)) if x , 0

f(x) ≤ Mfn
(B‖·‖1

(x, ε)) = Mfn

({

1
n

ek : k ∈N
})

= 1 if x = 0

for all n ≥ n0. Nevertheless, {fn}n∈N is not d−
∞-convergent to f since [f ]1 = {0}

but [fn]1 = ∅ for all n ∈N.

Example 5 ((5) ; (4)). Let us define on R the sequence of fuzzy sets {fn}n∈N

where

fn(x) =

{

n−1
n3 (n2 − x2) if − n ≤ x ≤ n

0 otherwise
.

It is not difficult to see that

inf
ε>0

lim inf
n→+∞

Mfn
(Bde

(a, ε)) = lim inf
n→+∞

Mfn
(Bde

(a, δ)) = 1

for all a ∈ R and all δ > 0. Therefore, {fn}n∈N is Γ−-convergent to the con-
stant function f(x) = 1 for all x ∈ R. Nevertheless, given ε > 0 the sequence
{Mfn

(Bde
(·, ε))}n∈N is not τ≤-pointwise convergent to f since Mfn

(Bde
(x, ε)) < 1

for all n ∈N and all x ∈ R.

The next two examples show that, in general, there is no relationship between
the lower uniform convergence and the d−

∞-convergence.

Example 6. Let us consider the sequence {fn}n∈N of fuzzy sets on R given by
fn(x) = 1 − 1/n for all n ∈N and all x ∈ R. Then it is obvious that this sequence
is (lower-)uniformly convergent to the constant fuzzy set f(x) = 1 for all x ∈ R.
However, {fn}n∈N is not d−

∞-convergent to f since [f ]1 = R * Bd([fn]1, ε) = ∅ for
all ε > 0 and all n ∈N.

We now exhibit that d−
∞-convergence does not imply lower uniform convergence

(compare with Proposition 5).

Example 7. In the real line, consider, for all n ∈N, the following fuzzy sets:

fn(x) =











−n x
2 + 1

2 if − 1
n

≤ x < 0

n x
2 + 1

2 if 0 ≤ x ≤ 1
n

1 otherwise

.

Let f(x) = 1 for all x ∈ R. Then, given ε > 0 choose nε ∈N such that 1/nε < ε/2.
Given x ∈ R, if x < [− 1

nε
, 1

nε
] then fn(x) = 1 for all n ≥ nε. If x ∈ [− 1

n
, 1

n
] for some

n ≥ nε then x − ε/2 < [− 1
n

, 1
n

] or x + ε/2 < [− 1
n

, 1
n

]. In any case, given n ≥ nε,
fn(x′) = 1 for some x′ ∈ Bde

(x, ε). This proves that {fn}n∈N is d−
∞-convergent to

f.
However, this sequence is not lower uniformly convergent to f, since fn(0) = 1/2

for all n ∈N but f(0) = 1.
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Corollary 1. Let (X, d) be a metric space and let {fλ}λ∈Λ be a net in F(X). If
{fλ}λ∈Λ is d−

∞-convergent to f then, given x ∈ X,

f(x) ≤ inf
ε>0

lim inf
λ∈Λ

Mfλ
(Bd(x, ε)).

Proof. This is a direct consequence of Proposition 3 and equation 4. �

In [14, Lemma 3.3] it is proved a nice characterization for the convergence in the
supremum metric of sequences of upper semicontinuous fuzzy sets with compact
support, which can be considered as a bilateral converse of implication (3) ⇒ (4)
in Proposition 3. We can reformulate that result for the lower supremum quasi-
pseudometric in our terms in the following way. Given a metric space (X, d), let us
denote by SUSC(X) the family of all upper semicontinuous fuzzy sets on X with
compact support. Then the result asserts that a sequence {fn}n∈N in SUSC(X) is
d−

∞-convergent to f ∈ SUSC(X) if and only if {Mfn
(Bd(x, ε))}n∈N is τ≤-uniformly

convergent to f for all ε > 0. Therefore, this lemma shows that the converse of
implication (3) ⇒ (4) of Proposition 3 is true under these additional hypotheses.
Nevertheless, this result is not valid in general as Example 4 exhibits. Notice that in
this example, the sequence {fn}n∈N is d−

∞-convergent to every fuzzy set f verifying
that endf ⊆ [(ℓ1 − {0}) × {0}] ∪ [{0} × [0, 1[)] = A. However, the set A does not
correspond to the endograph of a fuzzy set. This shows that there is no hope to
obtain a characterization of the d−

∞-convergence in the spirit of the characterization
of the Γ−-convergence given by equation (4) in Section 3.2.

However, we can provide a purely set-theoretic characterization of the d−
∞-

convergence. To achieve this, we need to introduce an apropriate concept of uniform
convergence for sets.

Let X be a nonempty set and let P(X) be the family of all subsets of X . Recall
that a net {Aλ}λ∈Λ in P(X) is lower convergent to a set A ∈ P(X) if

A ⊆ lim inf
λ∈Λ

Aλ :=
⋃

λ0∈Λ





⋂

λ≥λ0

Aλ



 ,

that is, we can find λ0 ∈ Λ such that

A ⊆ ∩λ≥λ0
Aλ.

Notice that if (X, τ) is a topological space then lim infλ∈Λ Aλ ⊆ LiAλ and the
two limits coincide when τ is the discrete topology.

The previous set-convergence allows us to define a convergence for a net of mul-
tifunctions. The following definition seems to be a natural uniform version for this
convergence of multifunctions.

Definition 10. Let X be a nonempty set and let {fλ}λ∈Λ be a net of multifunctions
fλ : X ⇒ I. We say that the net {fλ}λ∈Λ is lower uniformly convergent to the
multifunction f : X ⇒ I if we can find λ0 ∈ Λ such that

f(x) ⊆
⋂

λ≥λ0

fλ(x) for all x ∈ X.

The following result characterizes d−
∞-convergence in the most general context.

Theorem 2. Let (X, d) be a metric space and let us consider that I is endowed
with the Alexandroff topology τ≤. Then a net {fλ}λ∈Λ in F(X) is d−

∞-convergent
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to a fuzzy set f if and only if the net of multifunctions {fε
λ}λ∈Λ is lower uniformly

convergent to f for all ε > 0, where fε
λ : X ⇒ I is given by fε

λ(x) = fλ(Bd(x, ε))
τ≤

.

Proof. Suppose that {fλ}λ∈Λ is d−
∞-convergent to f . Let ε > 0. Given x ∈ X , if

f(x) = 0 it is obvious that f(x) ∈ fλ(Bd(x, ε))
τ≤

=↓ fλ(Bd(x, ε)) for all λ ∈ Λ
(see Remark 3). Otherwise, by assumption, there exists λε ∈ Λ such that [f ]α ⊆
Bd([fλ]α, ε) for all λ ≥ λε and all α ∈ (0, 1]. In particular, taking α = f(x) > 0,
there exists xλ ∈ Bd(x, ε) such that f(x) ≤ fλ(xλ) for all λ ≥ λε. Hence f(x) ∈

∩λ≥λε
fλ(Bd(x, ε))

τ≤
. Since λε does not depend on x, we have proved the necessity.

Conversely, let ε > 0 and α ∈ (0, 1]. Suppose that x0 ∈ [f ]α. By hypothesis, there

exists λε ∈ Λ such that f(x) ⊆ ∩λ≥λε
fλ(Bd(x, ε))

τ≤
for all x ∈ X. In particular,

f(x0) ∈ fλ(Bd(x0, ε))
τ≤

for all λ ≥ λε so x0 ∈ Bd([fλ]α, ε) for all λ ≥ λε which
finishes the proof. �

Corollary 2 (cf. Equation 4). Let (X, d) be a metric space. If {fλ}λ∈Λ is a net
in F(X) d−

∞-convergent to f then

f(x) ∈
⋂

ε>0

lim inf
λ∈λ

fλ(Bd(x, ε))
τ≤

for all x ∈ X.

Remark 12. Given a net {fλ}λ∈Λ in F(X), it is easy to check that

sup
⋂

ε>0

lim inf
λ∈λ

fλ(Bd(x, ε))
τ≤

= inf
ε>0

lim inf
λ∈Λ

Mfλ
(Bd(x, ε))

from which we again deduce immediately that d−
∞-convergence implies Γ−-convergence.

Corollary 3 (cf. [14, Lemma 3.3]). Let (X, d) be a metric space. Then a net
{fλ}λ∈Λ in SUSC(X) is d−

∞-convergent to f ∈ SUSC(X) if and only if {Mfλ
(Bd(·, ε))}λ∈Λ

is τ≤-uniformly convergent to f for all ε > 0.

Proof. By Proposition 3, we only have to prove the sufficiency.
Let ε > 0. By assumption, we can find λε such that f(x) ≤ Mfλ

(Bd(x, ε/2)) for
all λ ≥ λε and all x ∈ X. We show that [f ]α ⊆ Bd([fλ]α, ε) for all λ ≥ λε and all
α ∈ (0, 1]. Let x ∈ [f ]α. Given λ ≥ λε, if α ≤ f(x) < Mfλ

(Bd(x, ε/2)) then it is
obvious that x ∈ Bd([fλ]α, ε). Otherwise, suppose that f(x) = Mfλ

(Bd(x, ε/2)) > 0
(if f(x) = 0 the conclusion is obvious). Then we can find a sequence {an}n∈N

in Bd(x, ε/2) such that fλ(an) > 0 for all n ∈ N and limn→+∞ fλ(an) = f(x).
Since [fλ]0 is compact, we can suppose without loss of generality that the sequence
{an}n∈N is convergent to a ∈ Bd(x, ε/2). Since fλ is upper semicontinuous we have
that lim supn→+∞ fλ(an) = f(x) ≤ fλ(a). We conclude again that x ∈ Bd([fλ]α, ε).
Consequently, {fλ}λ∈Λ is d−

∞-convergent to f. �

Corollary 4. Let (X, d) be a metric space. Then a net {fλ}λ∈Λ in F(X) is d−
∞-

convergent to f if and only if for each ε > 0 there exists λε ∈ Λ such that

f(x) ≤ Mfλ
(Bd(x, ε)) for all λ ≥ λε and all x ∈ X

and

if given λ ≥ λε, f(x) = Mfλ
(Bd(x, ε)) then ArgmaxBd(x,ε)fλ , ∅.

Proof. It easily follows from Theorem 2. �

For convergence of sequences, we can give the following characterization of the
d−

∞-convergence (cf. Theorem 1).
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Theorem 3. Let (X, d) be a metric space and let {fn}n∈N be a sequence in F(X).
Then {fn}n∈N is d−

∞-convergent to a fuzzy set f if and only if there exists a sequence
{gn}n∈N of self-maps in X uniformly convergent to idX such that {fn ◦ gn}n∈N is
τ≤-uniformly convergent to f.

Proof. Suppose first that {fn}n∈N is d−
∞-convergent to f . Therefore, given k ∈ N

we can find nk ∈ N such that [f ]f(x) ⊆ Bd([fn]f(x), 1/k) for all n ≥ nk and all
x ∈ X. We can assume without loss of generality that the sequence {nk}k∈N is
strictly increasing. Given x ∈ [f ]0, since x ∈ [f ]f(x) (see Remark 9), for each
n ≥ nk pick xnk ∈ Bd(x, 1/k) such that f(x) ≤ fn(xnk). For each n ∈ N, define
gn(x) = xnk when nk ≤ n < nk+1 and gn(x) = x0 when n < n1 for some fixed point
x0 ∈ X. On the other hand, if x < [f ]0 define gn(x) = x for all n ∈N. Then {gn}n∈N

is the desired sequence. In fact, given k ∈N then d(x, gn(x)) ≤ d(x, xnk) < 1/k for
all n ≥ nk and all x ∈ X so {gn}n∈N is uniformly convergent to idX . Furthermore,
f(x) ≤ fn(gn(x)) for all n ≥ nk and all x ∈ X.

Conversely, let ε > 0, α ∈ (0, 1] and x0 ∈ X such that α ≤ f(x0). By assumption,
there exists nε ∈ N such that d(x, gn(x)) < ε and f(x) ≤ fn(gn(x)) for all n ≥ nε

and all x ∈ X. This means that x0 ∈ Bd([fn]α, ε) for all n ≥ nε. Since nε does not
depend on α the proof is finished. �

Remark 13. By Theorem 1 we deduce that a sequence {fn}n∈N of fuzzy sets in a
first countable topological space is Γ−-convergent to a fuzzy set f if and only if there
exists a sequence {gn}n∈N of self-maps on X pointwise convergent to idX such that
{fn ◦ gn}n∈N is lower pointwise convergent to f. From this and the above result, we
obtain again that d−

∞-convergence of sequences implies Γ−-convergence.

4.2. Convergence in the upper supremum quasi-pseudometric. Now, we
center our attention into the upper part.

Proposition 4. Let (X, d) be a metric space and let {fλ}λ∈Λ be a net in F(X).
Consider the following statements:

(1) {fλ}λ∈Λ is S>-uniformly convergent to Mf(Bd(·, ε)) for all ε > 0;
(2) {fλ}λ∈Λ is d+

∞-convergent to f ;
(3) {fλ}λ∈Λ is τ≥-uniformly convergent to Mf (Bd(·, ε)) for all ε > 0.

Then the following implications hold:

(1) ⇒ (2) ⇒ (3).

Proof. (1) ⇒ (2) Given ε > 0 there exists λε ∈ Λ such that fλ(x) < Mf(Bd(x, ε))
for all λ ≥ λε and all x ∈ X. Let α ∈ (0, 1]. Given λ ≥ λε, if x ∈ [fλ]α then
α ≤ fλ(x) < Mf(Bd(x, ε)) so we can find xλ ∈ Bd(x, ε) such that fλ(x) < f(xλ).
Consequently, x ∈ Bd([f ]α, ε). Therefore, {fλ}λ∈Λ is d+

∞-convergent to f .
(2) ⇒ (3) If {fλ}λ∈Λ is d+

∞-convergent to f then, given ε > 0 we can find λε ∈ Λ
such that [fλ]α ⊆ Bd([f ]α, ε) for all λ ≥ λε and all α ∈ (0, 1]. Fix x ∈ X and
λ ≥ λε. If fλ(x) = 0 it is clear that fλ(x) ≤ Mf (Bd(x, ε)). If fλ(x) > 0, then

[fλ]fλ(x) ⊆ Bd([f ]fλ(x), ε) so fλ(x) ≤ Mf(Bd(x, ε)), which concludes the proof. �

Remark 14. Observe that if {fλ}λ∈Λ is d+
∞-convergent to f and x is a local max-

imum of f then {fλ(x)}λ∈Λ is τ≥-convergent to f(x). In fact, we can find ε > 0
such that Mf (Bd(x, ε)) = f(x) and, by (3) of the above result, λ0 ∈ Λ such that

fλ(x) ≤ Mf (Bd(x, ε)) = f(x),
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for all λ ≥ λ0 so the conclusion follows.
In particular, if f is a constant fuzzy set then {fλ}λ∈Λ is d+

∞-convergent to f if
and only if it is τ≥-uniformly convergent to f.

It is clear that the converse of implication (1) ⇒ (2) of the above proposition
is not true in general since S>-uniform convergence is not topological but d+

∞-
convergence so is (just consider the constant sequence whose elements are the zero
function). Furthermore, (2) ⇒ (3) cannot be reversed either as the next example
shows.

Example 8. For each n ∈N define the fuzzy sets fn(x) = 1 − x for all x ∈ I and

f(x) =

{

1 − x if x , 0

0 if x = 0
.

It is easy to see that {fn}n∈N is τ≥-uniformly convergent to Mf (Bd(·, ε)) for all
ε > 0 (however, observe that {fn(0)}n∈N is not convergent to f(0)). Neverthe-
less, [fn]1 = {0} for all n ∈ N and [f ]1 = ∅. Consequently, {fn}n∈N is not
d+

∞-convergent to f.

Remark 15. Observe that by statement (3) of Proposition 4, if {fλ}λ∈Λ is d+
∞-

convergent to f then

lim sup
λ∈Λ

fλ(x) ≤ f(x) = lim sup
x′→x

f(x′),

for all x ∈ X. Nevertheless, we cannot obtain the converse (see Example 10).
Furthermore, we can also deduce that Mfλ

(X) ≤ Mf (X) residually.

Remark 16. Notice that to obtain the equivalence between (2) and (3) of the
above proposition we need to consider at least those fuzzy sets f which verify that
given x ∈ X if the net {Mf(Bd(x, δ))}δ>0 is residually constant then the net
{ArgmaxBd(x,δ)f}δ>0 is residually nonempty (see Example 8). Otherwise, we can
find x0 ∈ X and ε0 > 0 such that ArgmaxBd(x0,ε0)f = ∅ but for every ε > 0 there

exists ε > δε > 0 such that Mf (Bd(x0, δε)) = Mf (Bd(x0, ε0)). For each δ > 0 define
fδ by fδ(x) = Mf (Bd(x, δ)) for all x ∈ X. It is clear that {fδ}δ>0 is τ≥-uniformly
convergent to Mf (Bd(·, ε)) for all ε > 0. Nevertheless, if {fδ}δ>0 is d+

∞-convergent
to f then we can find γε0

> 0 such that [fδ]α ⊆ Bd([f ]α, ε0) for all δ ≤ γε0
and for

all α ∈ (0, 1]. However, x0 ∈ [fδγε0

]Mf (Bd(x0,δγε0
)) but since ArgmaxBd(x0,ε0)f = ∅

and Mf(Bd(x0, ε0)) = Mf(Bd(x0, δγε0
)) then x0 < Bd([f ]Mf (Bd(x0,δγε0

), ε0).

Proposition 5. Let (X, d) be a metric space, let {fλ}λ∈Λ be a net in F(X) and
let f ∈ UUSC(X). Consider the following statements:

(1) {fλ}λ∈Λ is τ≥-uniformly convergent to f ;
(2) {fλ}λ∈Λ is d+

∞-convergent to f ;
(3) {fλ}λ∈Λ is upper uniformly convergent to f ;
(4) {fλ}λ∈Λ is Γ+-convergent to f.

Then the following implications hold:

(1) ⇒ (2) ⇒ (3) ⇒ (4).

Proof. (1) ⇒ (2) If {fλ}λ∈Λ is τ≥-uniformly convergent to f, there exists λ0 ∈ Λ
such that fλ(x) ≤ f(x) for all λ ≥ λ0 and all x ∈ X. Obviously, this implies that
[fλ]α ⊆ Bd([f ]α, ε) for all λ ≥ λ0, ε > 0 and α ∈ (0, 1].
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(2) ⇒ (3) By Proposition 4 we know that {fλ}λ∈Λ is τ≥-uniformly convergent to
Mf(Bd(·, ε)) for all ε > 0. Since f is uniformly upper semicontinuous we can find
δε > 0 such that

f(y) < f(x) + ε,

whenever d(x, y) < δε. Therefore, given x ∈ X we have that

Mf(Bd(x, δε)) < f(x) + ε.

Furthermore, there exists λδε
∈ Λ such that, fλ(x) ≤ Mf (Bd(x, δε)) < f(x) + ε for

all λ ≥ λδε
and all x ∈ X. Consequently, {fλ}λ∈Λ is upper uniformly convergent to

f.
(3) ⇒ (4) If {fλ}λ∈Λ is upper uniformly convergent to f , given δ > 0 we

can find λδ ∈ Λ such that fλ(x) ≤ f(x) + δ for all λ ≥ λδ and all x ∈ X.
Hence, given ε > 0, then Mfλ

(Bd(x, ε)) ≤ Mf (Bd(x, ε)) + δ for all λ ≥ λδ, so
lim supλ∈Λ Mfλ

(Bd(x, ε)) ≤ Mf(Bd(x, ε)) + δ. Since δ is arbitrary we deduce that
lim supλ∈Λ Mfλ

(Bd(x, ε)) ≤ Mf(Bd(x, ε)), so

inf
ε>0

lim sup
λ∈Λ

Mfλ
(Bd(x, ε)) ≤ inf

ε>0
Mf (Bd(x, ε)) = lim sup

x′→x

f(x′) = f(x).

Therefore, {fλ}λ∈Λ is Γ+-convergent to f. �

Next, we provide some examples showing that the converses of the implications
of the above proposition are not true in general. Again, we suppose that R and all
its subsets are endowed with the Euclidean metric de.

Example 9 ((2); (1)). Consider the sequence {fn}n∈N of upper semicontinuous
fuzzy sets on I given by

fn(x) =

{

x + 1
n

if 1
3n

≤ x ≤ 1 − 1
3n

0 otherwise
,

for all n ∈N. Let f be the identity fuzzy set on I. Given ε > 0, take nε ∈ N with
1/nε < ε. Let α ∈ (0, 1], n ≥ nε and x ∈ [fn]α, i. e. α ≤ fn(x) = x + 1/n =
f(x+1/n). Since x+1/n ∈ Bde

(x, ε) then x ∈ Bde
([f ]α, ε). Consequently, {fn}n∈N

is d+
∞-convergent to f.

On the other hand, it is clear that {fn}n∈N is not τ≥-uniformly convergent to f
since f(x) < fn(x) for all x ∈

[

1
3 , 2

3

]

and all n ∈N.

Example 10 ((3); (2)). Consider the fuzzy sets fn(x) = 1/2 + 1/(n + 1) for all
n ∈ N and all x ∈ R. It is clear that the sequence {fn}n∈N is (upper-)uniformly
convergent to the fuzzy set f(x) = 1/2 for all x ∈ R. Nevertheless, given ε > 0
and n ∈ N we can find α ∈ (0, 1] such that 1/2 < α < 1/2 + 1/(n + 1) so
[fn]α = R * Bde

([f ]α, ε) = ∅. Consequently, {fn}n∈N is not d+
∞-convergent to f.

Example 11 ((4); (3)). For each n ∈N, define fn : I → I given by

fn(x) =

{

1
2 if x ≥ 1

n

1 otherwise
.

Since infε>0 lim supn∈NMfn
(Bd(x, ε)) = 1/2 for all x ∈ I, we deduce that {fn}n∈N

is Γ+-convergent to the identically 1/2 fuzzy set f .
On the other hand, given 0 < ε < 1/2 and n ∈N then

fn(1/(n + 1)) − f(1/(n + 1)) = 1/2 > ε,

so {fn}n∈N is not upper uniformly convergent to f.
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We notice that, in general, d+
∞-convergence does not imply Γ+-convergence. In

fact, Γ+-convergence is not topological in general. For example, the constant se-
quence of fuzzy sets defined over R whose elements are the characteristic function
of R − {0} is not Γ+-convergent to itself. Observe that these fuzzy sets are not
upper semicontinuous.

However, as in the lower part, we can provide a purely set-theoretic characteri-
zation of this convergence. Let X be a nonempty set and let P(X) be the family
of all subsets of X . Recall that a net {Aλ}λ∈Λ in P(X) is upper convergent to a
set A ∈ P(X) if

lim sup
λ∈Λ

Aλ :=
⋂

λ0∈Λ





⋃

λ≥λ0

Aλ



 ⊆ A.

Notice that if (X, τ) is a topological space then lim supλ∈Λ Aλ ⊆ LsAλ. In con-
traposition with the lower part, lim supλ∈Λ Aλ and LsAλ can be different even for
discrete topological spaces.

This allows us to define the following uniform convergence for multifunctions:

Definition 11. Let X be a nonempty set and let {fλ}λ∈Λ be a net of multifunctions
fλ : X ⇒ I. We say that the net {fλ}λ∈Λ is upper uniformly convergent to the
multifunction f : X ⇒ I if we can find λ0 ∈ Λ such that

⋃

λ≥λ0

fλ(x) ⊆ f(x) for all x ∈ X.

The following result characterizes d+
∞-convergence in the most general context,

where we use the fact that a fuzzy set f on a metric space (X, d) can be considered
as a multifunction f ′ : X ⇒ I such that f ′(x) = {f(x)}. In fact, we will not
distinguish between f and f ′.

Theorem 4. Let (X, d) be a metric space. Then a net {fλ}λ∈Λ in F(X) is d+
∞-

convergent to f ∈ F(X) if and only if the net {fλ}λ∈Λ considered as a net of
multifunctions is upper uniformly convergent to the multifunction fε : X ⇒ I for

all ε > 0 where fε(x) = f(Bd(x, ε))
τ≤

.

Proof. Suppose that {fλ}λ∈Λ is d+
∞-convergent to f. Given ε > 0 we can find

λε ∈ Λ such that [fλ]α ⊆ Bd([f ]α, ε) for all λ ≥ λε and all α ∈ (0, 1]. Fix x ∈ X
and λ ≥ λε. If fλ(x) = 0 then it is obvious that fλ(x) ∈ fε(x) =↓ f(Bd(x, ε)). If
fλ(x) , 0 then [fλ]fλ(x) ⊆ Bd([f ]fλ(x), ε) so we deduce that fλ(x) ∈ fε(x) which
finishes this implication.

Now suppose that {fλ}λ∈Λ is upper uniformly convergent to fε for all ε > 0.
Then, given ε > 0, there exists λε ∈ Λ such that fλ(x) ∈ fε(x) for all λ ≥ λε. Let
α ∈ (0, 1], λ ≥ λε and x ∈ [fλ]α. Since fλ(x) ∈ fε(x) we can find xλ ∈ Bd(x, ε)
such that fλ(x) ≤ f(xλ). Therefore x ∈ Bd([f ]α, ε). This concludes the proof. �

Corollary 5. Let (X, d) be a metric space. If the net {fλ}λ∈Λ in F(X) is d+
∞-

convergent to f ∈ F(X) then

lim sup
λ∈Λ

endfλ ⊆ end f.

Proof. If {fλ}λ∈Λ is d+
∞-convergent to f , by the above theorem {fλ}λ∈Λ is upper

uniformly convergent to fε for all ε > 0. Therefore, given ε > 0 we can find
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λε ∈ Λ such that fλ(x) ≤ Mf (Bd(x, ε)) for all λ ≥ λε and all x ∈ X. Hence,
∪λ≥λε

end fλ ⊆ end Mf(Bd(·, ε)) so

lim sup
λ∈Λ

end fλ ⊆
⋂

ε>0

⋃

λ≥λε

end fλ ⊆
⋂

ε>0

end Mf (Bd(·, ε)) = end f.

�

Observe that the converse of the previous result is not true in general (see Ex-
ample 10).

Remark 17. Notice that when we consider upper semicontinuous fuzzy sets, the
above result can be improved since {fλ}λ∈Λ is Γ+-convergent to f so

Ls endfλ ⊆ end f.

Corollary 6 (cf. [14, Lemma 3.3]). Let (X, d) be a metric space. Then a net
{fλ}λ∈Λ in SUSC(X) is d+

∞-convergent to f ∈ SUSC(X) if and only if {fλ}λ∈Λ

is τ≥-uniformly convergent to Mf(Bd(·, ε)) for all ε > 0.

Proof. By Proposition 4, we only have to prove the sufficiency.
Let ε > 0. By assumption, we can find λε such that fλ(x) ≤ Mf(Bd(x, ε/2))

for all λ ≥ λε and all x ∈ X. We show that [fλ]α ⊆ Bd([f ]α, ε) for all λ ≥ λε

and all α ∈ (0, 1]. Fix λ ≥ λε and α ∈ (0, 1]. Let x ∈ [fλ]α. If α ≤ fλ(x) <
Mf(Bd(x, ε/2)) then it is obvious that x ∈ Bd([f ]α, ε). Otherwise, suppose that
fλ(x) = Mf (Bd(x, ε/2)) > 0 (if fλ(x) = 0 the conclusion is obvious). Then we
can find a sequence {an}n∈N in Bd(x, ε/2) such that f(an) > 0 for all n ∈ N
and limn→+∞ f(an) = fλ(x). Since [f ]0 is compact, we can suppose without loss
of generality that the sequence {an}n∈N is convergent to an a ∈ Bd(x, ε/2). Since
f is upper semicontinuous we have that lim supn→+∞ f(an) = fλ(x) ≤ f(a). We
conclude again that x ∈ Bd([f ]α, ε). Consequently, {fλ}λ∈Λ is d+

∞-convergent to
f. �

Corollary 7. Let (X, d) be a metric space. Then a net {fλ}λ∈Λ in F(X) is d+
∞-

convergent to f if and only if for all ε > 0 there exists λε ∈ Λ such that

fλ(x) ≤ Mf(Bd(x, ε)) for all λ ≥ λε and all x ∈ X

and
if given λ ≥ λε, fλ(x) = Mf (Bd(x, ε)) then ArgmaxBd(x,ε)f , ∅.

4.3. Convergence in the supremum metric. From the results obtained in the
last two sections, it is easy to state results about the convergence in the supremum
metric only combining the corresponding fact about the lower and upper parts. For
instance:

Theorem 5. Let (X, d) be a metric space. Then a net {fλ}λ∈Λ in F(X) is d∞-
convergent to f ∈ F(X) if and only if:

(1) the net of multifunctions {fε
λ}λ∈Λ is lower uniformly convergent to f for

all ε > 0, where fε
λ : X ⇒ I is given by fε

λ(x) = fλ(Bd(x, ε))
τ≤

;
(2) the net {fλ}λ∈Λ considered as a net of multifunctions is upper uniformly

convergent to the multifunction fε : X ⇒ I for all ε > 0 where fε(x) =

f(Bd(x, ε))
τ≤

.

Corollary 8 ([14, Lemma 3.3]). Let (X, d) be a metric space. Then a net {fλ}λ∈Λ

in SUSC(X) is d∞-convergent to f ∈ SUSC(X) if and only if:
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(1) {Mfλ
(Bd(·, ε))}λ∈Λ is τ≤-uniformly convergent to f for all ε > 0;

(2) {fλ}λ∈Λ is τ≥-uniformly convergent to Mf (Bd(·, ε)) for all ε > 0.

Finally we will treat explicitly some questions about maximization when consid-
ering the d∞-convergence.

Proposition 6. Let (X, d) be a metric space. If a net {fλ}λ∈Λ in F(X) is d∞-
convergent to f then {Mfλ

(X)}λ∈Λ is residually constant and equal to Mf(X).

Proof. This is a consequence of Remarks 11 and 15. �

Proposition 7. Let (X, d) be a metric space and let {fλ}λ∈Λ be a net in F(X)
d∞-convergent to an upper semicontinuous fuzzy set f. If xλ ∈ ArgmaxXfλ for all
λ ∈ Λ and {xλ}λ∈Λ is convergent to x0 then x0 ∈ ArgmaxXf.

Proof. Suppose that xλ ∈ ArgmaxXfλ for all λ ∈ Λ and that {xλ}λ∈Λ is convergent
to x0. Since {fλ}λ∈Λ is d∞-convergent to f , by Proposition 4 given ε > 0 we can
find λε ∈ Λ such that

fλ(x) ≤ Mf (Bd(xλ, ε/2)) for all x ∈ X, λ ≥ λε,

and
d(x0, xλ) < ε/2 for all λ ≥ λε.

In particular, and since Bd(xλ, ε/2) ⊆ Bd(x0, ε) for all λ ≥ λε, we have that

fλ(xλ) = Mfλ
(X) ≤ Mf(Bd(xλ, ε/2)) ≤ Mf (Bd(x0, ε)) ≤ Mf(X)

for all λ ≥ λε. By the above proposition we know that Mf (X) = Mfλ
(X) residually

so
Mfλ

(X) = Mf(Bd(x0, ε)) = Mf (X) residually.

Since this is valid for all ε > 0 and f is upper semicontinuous then lim supx→x0
f(x) =

infε>0 Mf (Bd(x0, ε)) = f(x0) = Mf (X). �

Remark 18. Notice that the previous proposition is not true if we don’t con-
sider upper semicontinuous fuzzy sets. For example, consider the net of fuzzy sets
{fλ}λ∈Λ on I which are equally constant to 1 and the fuzzy set in I given by

f(x) =

{

1 if 0 < x ≤ 1

1/2 if x = 0
.

It is obvious that {fλ}λ∈Λ is d∞-convergent to f . Nevertheless, 0 ∈ ArgmaxXfλ

for all λ ∈ Λ but 0 < ArgmaxXf.
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