arxiv:1401.4658v1 [cs.LO] 19 Jan 2014

Computation Tree Logic Model Checking Based on
Possibility Measures

Yongming L, Yali Li, Zhanyou Ma
College of Computer Science, Shaanxi Normal UniversitgnXir10062, China

Abstract

In order to deal with the systematic verification with unaarinfromation in pos-
sibility theory, Li and Li [19] introduced model checking lafiear-time properties
in which the uncertainty is modeled by possibility measur&sie, Lei and Li
[26] defined computation tree logic (CTL) based on possibiieasures, which
is called possibilistic CTL (PoCTL). This paper is a conation of the above
work. First, we study the expressiveness of POCTL. Unlikabpbilistic CTL,
it is shown that POCTL (in particular, qualitative POCTL)nsre powerful than
CTL with respect to their expressiveness. The equivaleptessions of basic
CTL formulae using qualitative POCTL formulae are preséntedetail. Some
PoCTL formulae that can not be expressed by any CTL formulag@eesented.
In particular, some qualitative properties of repeatedheahility and persistence
are expressed using PoCTL formulae. Next, adapting CTL ixdukrking algo-
rithm, a method to solve the POCTL model-checking problenhigsmtime com-
plexity are discussed in detail. Finally, an example is giteeillustrate the PoCTL
model-checking method.

Keywords: Computation tree logic; possibilistic Kripke structur@sgibility
measure; qualitative property; quantitative property.

1. Introduction

Model checkingl[12] is a formal verification technique whigfows for de-
sired behavioral properties of a given system to be verifiethe basis of a suit-
able model of the system through systematic inspection states of the model.
It is widely used in the design and analysis of computer syst®, 8]. Although
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it has been rapidly gaining in importance in recent yearsssital model check-
ing can not deal with verification of those systems (e.gcooent systems) deal-
ing with uncertainty information. Such as, the developnm&ntnost large and
complex systems is inevitably involved with lots of uncertgand inconsistency
information.

In order to handle the systematic verification with uncertaformation in
probability, Hart and Sharir_[15] in 1986 applied probailtheory to model
checking in which the uncertainty is modeled by probabititgasures. Baier and
Katoen [1] systematically introduced the principle andmoetof model checking
based on probability measures and related applicatiorisMatrkov chain mod-
els for probabilistic systems. For the past few years, theye even more ap-
plications on probability model checking in verifying peafies of systems with
uncertain information (see e.q. [3]).

On the other hand, Zadeh proposed the theory of fuzzy se®a6s P8], and
possibility measures [23, 29] are a development of claksieasures as a branch
of the theory of fuzzy sets from then. As a comparison, pdggilmeasures
(more general, fuzzy measures) focus on non-additivet®ituavhile probability
measures are used for additive situation. Most problenesalsituations are com-
plicated and non-additive. As a matter of fact, fuzzinessrseto pervade most
human perception and thinking processes as noted by Zasj@rially, modeling
human-centered systems, including biomedical systeni$)([@iminal trial sys-
tems, decision making systems([13]), linguistic quantfig7, 27]), and knowl-
edge basel([10]). Therefore, it is necessary to study trerytand its applications
of model checking on non-deterministic systems of non{adgtdmeasure, espe-
cially, fuzzy measure. In this respect, Li andLi[19] inttadd model checking of
linear-time properties in which the uncertainty is modddggossibility measures
and initiated the model checking based on possibility messsuXue, Lei and Li
[26] defined computation tree logic based on possibility sneas, which is called
possibilistic computation tree logic (PoCTL, in short).

Although we have studied the quantitative and qualitatrepprties of PoCTL
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in [26], there are many important issues that still have eettaddressed. The first
important problem is the expressiveness of POCTL: whethgerGIL formulae
can be expressed by PoCTL or vise versa. As we know, probabiCTL and
CTL are not comparable with each other ([1]). This allowshatalistic CTL to
be used to do model checking of real-world problems, whichrez be tackled by
classical CTL model checking. The surprising result of gaper is that CTL is a
proper subclass of POCTL. The second problem is lookingi®method to solve
PoCTL model-checking problems. As we know, there are effeetigorithms and
automated tools to solve CTL model-checking problems. Agusementioned,
CTL is a proper subclass of PoCTL, it is nontrivial to studyetlter there are
effective algorithms to solve the PoCTL model-checkingabems. We shall give
complete study to the above two problems in this paper.

The content of this paper is arranged as follows. In Sectiave2ecall the
notion of possibilistic Kripke structures, the related gibsity measures induced
by the possibilistic Kripke structures, and the main naiohPoCTL introduced
in [2€]. In Section 3, the equivalence of PoCTL formulae afdd.Gormulae is
investigated, and the differences between PoCTL formuldeCT L formulae are
discussed. An important result, CTL is a proper subclaso@fTR., is obtained.
Section 3 also presents qualitative properties of repeatachability and persis-
tence. The PoCTL model checking approach is presented ito8et, and an
illustrative example is given in Section 5. The paper ends wonclusion sec-
tion.

2. Preliminaries

Transition systems or Kripke structures are key models fodeh checking.
Corresponding to possibilistic model checking, we haventhteon of possibilistic
Kripke structures, which is defined as follows.

Definition 2.1. [19] A possibilistic Kripke structure is a tupld = (S, P, I, AP, L),
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(1) S is a countable, nonempty set of states;

(2) P : SxS — [0,1] is the transition possibility distribution such that for
all states, \/ P(s,s)=1;

A)I: Ssi [0, 1] is the initial distribution, such thay/ I(s) =1 ;

(4) AP is a set of atomic propositions; =

(5) L : S — 247 is a labeling function that labels a stataith those atomic
propositions iNAP that are supposed to holddn

Furthermore, if the sef and AP are finite sets, theM = (S,P,I, AP, L) is

called a finite possibilistic Kripke structure.

Remarkl. (1) In Definition[2.1, we require the transition possibilitistribution
and initial distribution are normal, i.eV,scsP(s,s’) = 1 andVI(s) = 1, where
we useVvX or AX to represent the least upper bound (or supremum) or theslarge
lower bound (or infimum) of the subsét C [0, 1], respectively. These condi-
tions are corresponding to the transition probability ritisition and probability
initial distribution in probabilistic Kripke structure dvlarkov chain ([1]), where
the supremum operation is replaced by the sum operatiory. ifeethe main dif-
ferences between possibilistic Kripke structure and podiséic Kripke structure.
In fact, in fuzzy uncertainty, the order instead of the aditis one of the most
important factors to be considered.

(2) The transition possibility distributioR : S x S — [0,1] can also be
represented by a fuzzy matrix. For convenience, this fuzarimnis also written
asP, i.e.,

P = (P(5, ) es,

and P is also called the (fuzzy) transition matrix 6. In [19], we also used
the symbolA to represent transition matrix. For the fuzzy maftfixts transitive
closure is denoted by*. WhenS is finite, and ifS hasN elements, i.elN = |S],
thenP* = Pv P2 v --- v PN [18], whereP**! = Pk o P for any positive integer
numberk. Here, we use the symbol to represent the max-min composition

operation of fuzzy matrixes. Recall that the max-min conipws operation of
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fuzzy matrices is similar to ordinary matrix multiplicatimperation, that is, let
ordinary multiplication and addition operations of reahrhers be replaced by
minimum and maximum operations of real numbers|([29]).

For a possibilistic Kripke structur®! = (S, P, I, AP, L), usingP*, we can get
another possibilistic Kripke structurd™ = (S, P*,I, AP, L).

(3) The authors in [14] also used the notion of fuzzy posisitndl Kripke struc-
tures as the models of qualitative possibilistic logic QRlhjch is formally de-
fined as a structur& = (W, I, 7) whereW is a nonempty set of worlds; maps
AP x W into the truth value sd0,1/n,2/n,--- ,1}(n > 1), andm is a normalized
positive fuzzy subset dtV, i.e., a mappingt : W — [0, 1] such thatt(w) > 0
for eachw and \/ .y m(w) = 1. Obviously, the notion of fuzzy possibilistic
Kripke structure just defined is not equivalent to our notdpossibilistic Kripke
structures. Since our notion of possibilistic Kripke stures is obvious a general-
ization of classical Kripke structures (see![12]) into fuzases and a possibilistic
version of (discrete-time) Markov chains as defined in De@ini10.1 in [1]. So
we still use the name of possibilistic Kripke structuresshéut it has no connec-
tion with that defined in[[14]. The much more related notiorfdscrete-time)
fuzzy Markov chains [17] or (discrete-time) possibilistiarkov chains ([10]) or
possibilistic Markov processes (|16]) which are used to el@értain fuzzy sys-
tems. The only difference between possibilistic Kripkeistures and fuzzy (or
possibilistic) Markov chains lies in that there is no labglifunction in the def-
inition of fuzzy (or possibilistic) Markov chains. In [10possibilistic Markov
chains are used to model the evolution of updating probleenknowledge base
that describes the state of evolving system. Uncertaintyesofrom incomplete
knowledge about the knowledge base, “one may only have steaeabout what
is/are the most plausible state(s) of the system, amonghpe@sse”([10]). This
type of incomplete knowledge was described in terms of pdggidistribution in
[10], the degree of transition possibility distributionndées the plausible degree
of the next state. This provides us a sort of justificationdegrees of transitions

in possibilistic Kripke structures.



The states with I(s) > 0 are considered as the initial states. For stedad
T C S, let P(s, T) denote the possibility of moving fromto some statée T in a
single step, that is,

P(S/ T) = VteTP(S/ t)

Paths in possibilistic Kripke structufd are infinite paths in the underlying
digraph. They are defined as infinite state sequencess;s, - - - € S¥ such that
P(s;, siv1) > 0 for all i € 1. Let Paths(M) denote the set of all paths i, and
Pathsg;,,(M) denote the set of finite path fragmeasgs; - --s, wheren > 0 and
P(s;, si+1) > 0 for 0 < i < n. Let Pathsy(s) (Paths(s) if M is understood) denote
the set of all paths i that start in state. Similarly, Pathsy;_¢in(s) (Paths i (s)
if M is understood) denotes the set of finite path fragmeysts - - s, such that
sp = s. The set of direct successors (callégt ) and direct predecessors (hamed
Pre ) are defined as follows:

Post(s) = {s’ € S| P(s,s") > 0}; Pre(s)={s" € S| P(s’,s) > 0}.

Given a possibilistic Kripke structur®, the cylinder set oft = sy---s, €
Pathsg;,,(M) is defined as ([1])

Cyl(ft) = {rt € Paths(M)|ft € Pref(m)},

wherePref(rt) = {r'|n’ is a finite prefix ofrr}. Then as shown in [19K) =
2PathsM) is the algebra generated Wyl(f) | 7t € Pathsgi,(M)} on Paths(M).
That is to sayQ = 2P*M) js the unique subalgebra 2f*" ™ which is closed

under unions and intersections containf@g!(7)|ft € Pref(m)}.

Definition 2.2. [1€] For a possibilistic Kripke structurd, a functionPo™ :
Paths(M) — [0, 1] is defined as follows:

PoM(mt) = I(sp) A /O.\ P(s;, Sit1) (1)
i=0



foranym = sgsq - -+, 7t € Paths(M). Furthermore, we define
Po™(E) = v{PoM(n) | € E} (2)
for anyE C Paths(M), then, we have a well-defined function
PoM : 2P —s 0, 1],

PoM is called the possibility measure ov@ = 2P#sM) s jt has the properties
stated in Theoremn 2.1. ¥ is clear from the context, theM is omitted and we
simply write Po for Po.

Theorem 2.1.[19] Po is a possibility measure af@ = 2P#=M) j e  Po satisfies
the following conditions:

(1) Po(@) = 0, Po(Paths(M)) = 1;

(2) Po(LJIAi) = \/IPo(Ai) foranyA; € Q,iel.

Theorem 2.2.[19] Let M be a possibilistic finite Kripke structure. Then the
possibility measure of the cylinder sets is givenfyCyl(sy---s,)) = I(so) A
n—-1

N P(si, sis1) whenn > 0 and Po(Cyl(sp)) = I(so).

i=0

Remark2. (1) For paths starting in a certain (possibly noninitiaditst, the same
construction is applied to the possibilistic Kripke stwretM, that results froniV
by lettings be the unique initial state. Formally, fd = (S, P, I, AP, L) and state
s, M, is defined byM, = (S,P,s, AP, L) , wheres denotes an initial distribution
with only one initial state.

(2) For a probabilistic Kripke structu®l, by the intension property of prob-
ability measures, the induced probability measure ([1Diclv is defined on the
o-algebra of2PM) generated by cylinder sets, is uniquely determined by its
definition on cylinder sets. On the other hand, by the exteradiproperty of
possibility measures, the induced possibility measuregn @) is uniquely de-
termined by its definition on single paths as shown in[Eq.(Ihe method to
define probability measure on a probabilistic Kripke stuoetcan not be applied
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to that of possibility measure on possibilistic Kripke sture, and vice versa. For
more comparisons of possibility measures and probabil@asares, we refer to
[9,111,13) 19] and references therein.

Definition 2.3. [26] (Syntax of POCTL)PoCTL state formulaever the sefAP of
atomic propositions are formed according to the followingmymar:

D ::=true |a | ©; A Dy | =D | Poj(p)

wherea € AP, ¢ is a PoCTL path formula anfl € [0, 1] is an interval with
rational bounds.

PoCTL path formulaare formed according to the following grammar:
(PZ::O®|®1U(D2|(D1 uan)z
where®, ®;, and®, are state formulae ande IN.

Definition 2.4. [26] (Semantics of POCTL) Let € AP be an atomic proposition,
M = (5,P1,AP, L) be a possibilistic Kripke structure, state S, ®, W be PoCTL
state formulae, angh be a PoCTL path formulaThe satisfaction relatiok is
definedfor state formulady

ska iff a € L(s);
sE -® iff s £ @,
SEDOAVY iff sE®ands EFVY;

s E Poj(¢) iff Po(s E @) € J, where Po(s E @) = Po™:({rn|rt € Paths(s), 7 E ¢}).
For pathr, the satisfaction relatiog for path formulaés defined by

nE OP iff [1] E @;
nEOUVY iff dk>0, k] EVand nt[i] E P forall0 <i<k-1;
nE®OUWY  iff A0 <k<n (nk] EW A N0 <i<k),n[i] ED)).

where ift = sps15, - - -, thenm[k] = s, for anyk > 0.
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In particular, the path formula@d (“eventually”) anda® (“always”) have the
semantics

7T = 8051 - - | 0D iff s; | @ for some j > 0,
T =805+ F ODiff s; | @ forall j > 0.

Alternatively,¢® = true LI .

Definition 2.5. [26] (Syntax of qualitative PoOCTLytate formulae in the qualita-
tive fragment of PoCTI(over AP) are formed according to the following gram-

mar:
D =true|a| Py A Dy | =D | Poso(p) | Po-1(p)
wherea € AP, ¢ is a path formula formed according to the following grammar:
Qu=0P | D UD,
where®, ®; andd, are state formulae.

As a subclass of PoCTL, the semantics of qualitative PoCTLbzadefined
as that of PoCTL.

Since we shall compare the expressiveness of POCTL and @Tuslrecall
the definition of CTL.

Definition 2.6. [1](Syntax of CTL) State formulae in the fragment of CTL (ove
AP) are formed according to the following grammar:

Du=true|la| P ADy | ~D | dp | Ve
wherea € AP, ¢ is a path formula formed according to the following grammar:
Q=00 | D UD,
where®, ®; andd, are state formulae.
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Definition 2.7. [1] (Semantics of CTL) Letz € AP be an atomic proposition,
M = (5 P11, AP L) be a Kripke structure without terminal state (i.€s, € S,
ds" € S, (s,8') € P), states € S, @, W be CTL state formulae, angd be a CTL
path formula. The satisfaction relatignis defined for state formulae by

sEa iff a € L(s);
sE -® iff s £ ©
SEDOAVY iffsE®ands E V;

sk do iff m | ¢ for some © € Paths(s);
skEVe iff n | @ forall m e Paths(s).

For pathr, the satisfaction relatio for path formulae is defined by

nE Op iff n[1] E ¢;
nEOUVY iff dk>0,n[k] EFVand n[i] EPforall0 <i<k-1.

Remark3. Since we use the PoCTL formuPa;(¢) to denote the possibility mea-
sure of the paths satisfying i.e.,s = Po;(¢) iff Po(s = ¢) € |, POCTL is a possi-
bility measure extension of classical CTL. Both the pogsiic and probabilistic
CTL solve certain uncertainty of errors or other stochalsébaviors occurring
in various real-world applications. As shown in [1], probstic CTL and CTL
are not comparable with respect to their expressiveness .allbws probabilistic
CTL to be used to solve the model-checking problems of realehapplications,
which can not be tackled by classical model-checking allgovs. With regard
to expressiveness of POCTL, there was no further resulte®@odmparisons be-
tween possibilistic CTL and classical CTL. We did not knowether PoCTL can
express CTL or vise versa. We shall study the expressivefd3eCTL in the

next section and discuss PoCTL model checking then.

3. The expressiveness of POCTL

In this section, we study how to define the equivalence betweTL formu-
lae and CTL formulae. We intend to discuss the equivalen¢®@fTL formulae
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and CTL formulae and resolve the problem whether any PoCTindita can be
expressed by a CTL formula or not.
In this section, we always assume théis a finite possibilistic Kripke struc-

ture.

Definition 3.1. For a possibilistic Kripke structur! with state spac8, if ® is a
state formula, lebaty; (D), or briefly Sat(dD), denote{s € S | s E D}.

Definition 3.2. PoCTL formulaeDd andVW are called equivalent, denotdd= W,
if Sat(®) = Sat(\W) for all finite possibilistic Kripke structure®! over AP.

Definition 3.3. A PoCTL formula® is equivalent to a CTL formul&, denoted
D = W, if Saty(®) = Satrsan (W) for any finite possibilistic Kripke structure
M = (5P I,AP L), whereTS(M) = (S,—,I’, AP, L) is defined bys — s’ iff
Po(s,s’) > 0, ands € I" iff I(s) > 0. Obviously,Pathsy(s) = Pathsrs(s), Wo
we use the same symbBhths(s) to denotePathsy(s) and Pathsrsan(s) in the
following.

Remark4. Definition[3.3 is a key notion, analogous to the one for prdisiic
CTL. There are other ways to define an equivalence betweena@@LPoCTL
formulae. We shall give some discussion of this topic in bec3.4.

Theorem 3.1. Letp € [0,1] be a rational numberp an arbitrary POCTL path
formula, then, we have

Po_,(¢) = =Pos,(¢). (3)
Proof. Foranyp € [0, 1], for any possibilistic Kripke structu®{ with state space
S, we have

Sat(Po<p(p)) = {s|Po(s E @) <p}

S—{s|Po(s E ¢) = p}
S — Sat(Po,(¢))
Sat(~Pos,(@)).
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The last equality follows from the fadut(—®) = S — Sat(®P) for any PoCTL state
formula®. Therefore Po,(¢) = —Pos,(¢). O

Dual to Theorem 3]1, we have

P0>p((,0) = _'POSP((P) (4)

for any rational numbep € [0, 1] and path formulap. Then it is easy to prove
that

Po,q(@) = —~Pogy(@) A =Poxq(¢).

Although the qualitative fragment of POCTL state formulag/@llows possibility
bounds of the form» 0 and= 1, bounds of the forre= 0 and< 1 are also definable
as

Po-o(¢) = ~Poso(@), Po«(p) = ~Po-1(p).
3.1. CTL formulae are equivalent to POCTL formulae

Theorem 3.2. Let be any CTL path formula. Then, we have

A = Poso(@). )

Proof. Let M be afinite possibilistic Kripke structure, then we h&wé,;(Po.(¢)) =
{s | Po(s E @) > 0}, andSatrsy(dp) = {s | An € Paths(s), m = ¢}.

Assumes € Sat(Po.o(¢)), then, state satisfiesPo(s E ¢) > 0, and it fol-
lows that{s | drt € Paths(s), m E @} # 0, i.e.,s € Satrso(Ip). Therefore,
Satp(Poso(@)) € Satrspn ().

Conversely, its € Satrsa (), thendrn € Paths(s), m | ¢. SinceM is finite
andm € Paths(s), it follows thatPo™:(rt) > 0, and thusPo(s | ¢) > Po™:(m) > 0.
Therefores € Satp(Poso(¢)). This shows thaSatrsay(Ip) S Sata(Poso(@)).

The above shows th&ttrsan(dp) = Satp(Poso(@). Therefore, we have the
required equality. O

To show the further relationship between CTL and PoCTL, wedritbe exis-
tential normal form of CTL formulae.
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Definition 3.4. [1] Fora € AP, the set of CTL state formulae in existential normal
form (ENF, in short) is given by

O = truelalCDl/\CDp_|—|CD|HOCD|3(CD]|_ICD2)|3D(D.

Theorem 3.3.[1] For each CTL formulae there exists an equivalent CTL form
lae in ENF.

Theorem 3.4.For any CTL formula, there exists an equivalent qualitatfPe€TL
formula.

Proof. By Theoreni 3.3, each CTL formula can be transformed into aivatgnt
formula in ENF. Then, by Theorem 3.2, each CTL formula in ENEguivalent
to a qualitative PoCTL formula. Combining Theorém|3.3 an@&diem 3.2, it
follows that each CTL formula is equivalent to a qualitatR@CTL formula. O

Theorem 3.4 shows that CTL is a subclass of POCTL. We corgretéte
some equivalent formulae as follows, most of which do nodholprobabilistic
CTL as declared in [1].

Proposition 3.1. For any CTL formulaed andW, we have
(1) 30D = Po.o(0D),
(2) 3O D = Po.o(OP),
(3) oD = Po.o(OdP), and
(4) A(P L W) = Po.o(D LI W).

Proposition 3.2. For any CTL formulaed andW, we have
(1) VO D = Poo(O-9),
(2) V(DU W) = Po_y(=V LI (=D A =W)) A Po_o(O0-W),
(3) VoD = Po_y(O0—D), and
(4) YOD = Po_o(0—D).

Remark5. The above propositions may not hold in infinite possibitis€ripke
structure. We give a counterexample for Proposifioh 3.2 (3)
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Assume Proposition 3.2 (3) holds in any infinite possihdistripke structure
M for ® = a € AP, that isV¢a = Po-o(O0—a) such that state fulfills both the
formula Po_y(0—-a) andV¢a or none of them. Fig.1 gives an infinite possibilistic
Kripke structureM = (S, P, I, AP, L), in which states are represented by nodes and
transitions by labeled edges. State names are depictatkitits ovals. Initial
states are indicated by having an incoming arrow withoute@u We can see
that Paths(sg) = {sos152 - -skt®lk > 0}. For thisM, we havePo(sy E O-a) =
VPo{m € Paths(sy) | m F O-a} = 0, and it follows thats, € Saty(Po-o(0O-a)).

Butspsis; - - - £ 0a, i.e.,s9 & Satrsay(V0a). This contradicts the assumption that
Voa = Po_o(O—a).

Fig.1.An infinite possibilistic Kripke structur!.

3.2. CTL is a proper subclass of PoCTL

Theorem 3.5. There is no CTL formula that is equivalentRo_;(¢a).

Proof. Assume that there is a CTL formuiasuch thatd = Po_,(¢a). Consider
the following two finite possibilistic Kripke structuréd, andM,, see Fig.2 and
Fig.3. By a simple calculation, we hav(sy = ¢a) = P(sps157) = 1in M;.
However,Po(sy = ¢a) = Po(ses1s3) = 0.5 in M,. States, satisfiesPo_;(¢a) in
M;, while sy, does not satisffo_;(¢a) in M,. Hence,;s, € Satyy, (Po-1(¢a)), but
so ¢ Satp,(Po=1(0a)). This implies that

Satyr, (o1 (0m)) # Satys,(Po_1(0a)). ®)
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Since® is a CTL state formulae, anfS(M;) = TS(M;), we have
Satrsou)(P) = Satrsa,) (D). (7)

By the assumptiod® = Po_;(¢a), it follows that Satrsp(P) = Sata(Po=1(0a))
for any finite possibilistic Kripke structu®. Then we have

Satyy, (Po-1(0a)) = Saty,(Po-1(0a)). (8)

Eql6 and EQJ8 shows a contradiction, which proves that tiseme CTL formula
that is equivalent tdo-1(¢a). O

Fig.3.A finite possibilistic Kripke structurkl,.

Combining Theorem 314 and Theoréml3.5, it follows that CTlaiproper
subclass of PoCTL. PoCTL is completely different from praibstic CTL. In
fact, probabilistic CTL and CTL can not be comparable witbreather (whereas,
for finite probabilistic Kripke structure, the qualitatil@gment of probabilistic
CTL can be embedded into CTL and thus a proper subclass of BoCT

Using similar arguments, we can show that the following teets also hold
in finite possibilistic Kripke structures.

Theorem 3.6. There is no CTL formula that is equivalentio_,(Oa).
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Theorem 3.7.There is no CTL formula that is equivalent®o_,(0a).

Theorem 3.8. There is no CTL formula that is equivalentRo_(a U b).

3.3. Properties of repeated reachability and persistence

This subsection will show that qualitative properties foemts such as re-
peated reachability - a certain set of states being visépdated, and persistence
- only a certain set of states being visited from the momentan be described
by PoCTL formulae. And we will show that some properties tteat not be ex-
pressed in CTL can be expressed in the qualitative fragnfdPdGTL.

For CTL, universal repeated reachability properties (€ah) be formalized by
the combination of the modalitié&a andV¢:

s |E YOV oa iff 7 = O¢a for all © € Paths(s).

For finite possibilistic Kripke structures, a similar resliblds for the qualitative
fragment of PoCTL.

Theorem 3.9.Let M be a finite possibilistic Kripke structure, andh state of\1.
Then, we have

s E Po_1(OPo-1(¢a)) iff Po(s = 0O¢a) = 1.

Proof. Sinces | Po-1(0Po-1(¢a)) if and only if Po(s E OPo-1(¢a)) = 1, and
s E OPo-1(¢a) iff T = OPo-1(0a) for anyw € Paths(s) , it follows that Po(s
OPo_1(¢a)) = PoM:({n € Paths(s) | m E OPo_i(¢a)}) = 1. For anyn [
OPo_1(¢a), lett = sgsy---s, - -+, thenPo(s; E ¢a) = 1 for anys;, wherei > 0. It
follows thatm = O¢a. Noting thatPo:(rt) < PoM:({n’ € Paths(s) | ™’ E O¢a),
and thus,

Po(s E 0%a) = Po™s({rt € Paths(s) | m E O¢a}) = 1.

Assume thaPo(s E 00a) = 1. As Po(s E O00a) = PoM:({r € Paths(s) | © E
O¢a}) andM is finite, there exists a path | O¢a satisfyingPo™s(nr) = 1. Let
T = 505152 --. Sincen | O¢a, we haven[j---] E ¢a for anyj > 0, where
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n[j---1=siS41---. AsPo™(n[j---]) > Po™(n) andPo™:(rt) = 1, it follows
thatPo™:(ni[j---]) = 1 for anyj > 0. Note thatPo™:(ni[j - - - ]) < Po(s; k= 0a), we
havePo(s; = ¢a) = 1 for anyj > 0. Therefore, we havEo(sy F Po-1(¢a)) = 1.
Hences E Po-(OPo-1(¢a)).

According to the above proof, we have:

s | Po_1(0Po-1(¢a)) iff Po(s = O0a) = 1.

In a similar way, by the analysis of the possibility of the eysuch as repeated
reachability and persistence with more tllsand equal td, we can show that the
following theorems hold in finite possibilistic Kripke stiures for atomic events.

Theorem 3.10.Let M be a finite possibilistic Kripke structure, asda state of

M. Then, we have
s |E Poso(OPoso(0a)) iff Po(s | O0a) > 0.

Recall that universal persistence properties can not beesged in CTL ([1]).
For finite possibilistic Kripke structures, PoCTL allowsesfying persistence
properties with possibility. This is stated by the following theorem.

Theorem 3.11.Let M be a finite possibilistic Kripke structure, asda state of

M. Then, we have
s |E Po_1(0Po-1(0n)) iff Po(s E ¢Oa) = 1.

Theorem 3.12.Let M be a finite possibilistic Kripke structure, asda state of

M. Then, we have

s E Po-o(0Poso(0a)) iff Po(s = ¢0a) > 0.
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3.4. Alternative way to define the equivalence between C@lPagTL formulae

As mentioned in Remarlk 4, the definition of the equivalencP@ETL and
CTL formulae is not unique. Definitidn 3.3 is an analogoussiar of the related
definition of probabilistic CTL and CTL formulae. We will givanother way to
define the equivalence of POCTL and CTL formulae in the foilmymanner.

Definition 3.5. For a finite possibilistic Kripke structu®! = (S, P, I, AP,L) and
a € (0,1], let TS, (M) = (S, =4, 1,, AP, L), wheres —, tiff P(s,t) > «, and
s €1, iff I(s) > a. POCTL formula® is a-equivalent to CTL formuldV, denoted
by® =, W, if Saty(P) = Satrs, (W) for any finite possibilistic Kripke structure
M.

We shall give some properties of PoCTL using the definition-efjuivalence
of POCTL and CTL formulae for € (0,1]. The proofs are very similar to those
in Section 3.2.

Proposition 3.3. Letg be any CTL path formula and € (0, 1]. Then, we have

Jp =a Poza(@). (9)

Proposition 3.4. For any CTL formula and € (0, 1], there exists an-equivalent
PoCTL formula.

Proposition 3.5. For any CTL formulaeb and VW, leta € (0, 1], we have
(1) 0D =, P05, (0D),
(2) A0 D =, Po>,(OP),
(3) Jad =, Pos,(Od), and
(4) AP U W) =, Posy(DLIW).

Proposition 3.6. For any CTL formulaeb and VW, leta € (0, 1], we have
(1) Y O D =, Po,,(O-D),
(2) V(O U W) =, Po_,(—W LI (=@ A =W)) A Po_,(0-W),
(3) YOD =, Po,(O0—~D), and
(4)Vaod =, Po.,(0—D).
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Proposition 3.7. For anya € (0, 1], there is no CTL formula that is-equivalent
to Po_1(¢a).

The a-equivalence of PoCTL and CTL formulae might be useful in dpe
proximation of POCTL formulae using CTL formulae. This wdalllow a graded
approach to establish a level cut to decide e.g. when a ti@msvith value
a can be considered as existing or not. The general notiom-@fuivalence
would be a very general approach such that the notions ofalgunice (actually
> 0—equivalence) and 1-equivalence would come out as a limé easl partic-
ular case respectively. However, intuitively, 1-equivale is too strong to define
the equivalence of POCTL and CTL formulae in the senses dsiarp below.
By l-equivalence, the possibility of a certain “event” isgler than 0 does not
imply that the “event” exists. For example, in Fig.3, inily, s, F 30a. How-
ever, by a simple calculation , we have(sy F ¢a) = 0.5 < 1. It follows that
so = Po-1(0a), hences, ¢ A0a. Furthermore, intuitively, 1-equivalence is too
strong for universal quantifief. By Propositioi 3.6, the universal “event” means
that the possibility of the negation of the “event” is lesartli. There are “events”
such that the possibility of the negation of the “events’assl than 1 but there
exist some paths that violate the “events”. We shall give esamalysis in the
illustrative example in Section 5.

4. PoCTL Model Checking

Similar to classical and probabilistic CTL model-checkprgblems, the PoCTL
model-checking problem can be stated as follows:

For a given finite possibilistic Kripke structurd, states in M, and PoCTL
state formulab, decide whethes = ©.

We write (M, s) = @ for this POCTL model-checking problem.

As shown in the above section, POCTL is more expressible @¥n There
are some PoCTL model-checking problems that can not beetad¥ classical
CTL model-checking algorithm. We shall present some methodtackle POCTL

19



model-checking problems in this section. The techniqueo®™. model check-
ing is very similar to those of classical and probabilistidGnodel checking. The
difference lies in the operations involving in the procegf model checking.

To determine whether = @, we need to compute the satisfaction Se{(®d).
This is done recursively using a bottom-up traversal of thes@ tree ofd with
time complexityO(|®|), where|®| denotes the number of subformulaedof{see
the definition of|®| in Section 6.4.3 in/[1]). As for CTL model checking, the
nodes of the parse tree represent the subformulée Bbr each node of the parse
tree, which represents a subformifaof @, the setSat(\W) is calculated. IV is
propositional logic formulaSat(W) can be computed in exactly the same way as
for CTL. The left part is the treatment of subformulae of theni W = Po;(¢).
Since

Sat(Poy(9)) = [s € S | Po(s E ) € J), (10)

to calculateSat(WV), we need to compute the possibility(s | ¢) for any states.
There are three ways to construct path formplae.,p = OV, ¢ = dL="W
or ¢ = ® LW for some state formula®@ andW andn € IN.
Forp = OV, the next-step operator, the following equality holds:

Po(s EQ¥)= \V P(s,s)

s’eSat(WV)
whereP is the transition matrix oM. In the matrix-vector notation we thus have

that the (column) vectdiPo(s = OW))ses can be computed by multiplyingwith
the characteristic vector faiat(\W), i.e., (column) bit vecto(b;)scs whereb, = 1
if and only ifs € Sat(WV). Write xy = (bs)ses, then we have

(Po(s E OW))ses = P o . (11)
It follows that, checking the next-step operator thus redun a single matrix-
vector multiplication.
To calculate the possibilito(s = ¢) for until formulaep = ® L=" W or
@ =dUW. LetC = Sat(®) andB = Sat(WV), by its definition, we have

Po(s = @ " W) = Po(s E C LU*" B), and

20



Po(s E ®LUW) = Po(s E CL B),

wherePo(s = C =" B) = Po™:({n € Paths(s)|30 < j < n,n[j] € B and for any
0 <k < j, n(k) € C}) andPo(s  C LI B) = PoM:({rt € Paths(s)|dj > 0, t[j] € B
and for any0 <k < j, n(k) € C})

We posed a least fixed point characterization to calciatel= CLB) in [19].
In the following, we shall give a direct method to calcul&tds = C LI=" B) and
Po(s E CLIB), which is completely different from the method used in pitahbstic
CTL model checking for until operator, where a linear equasystem needs to
be solved with more time complexity.

As done in|[19], letS_y, S-1, S; be a partition of5 such that,

(1)BC S_; C{se S|Po(s E CLB) =1};

(2)S\(CUB) € 5 C {s € S|Po(s E CUB) = 0};

(3) Sz = S\(5=1 U S).

The above partition of always exists. For example, we can tadke = B,

5-0 = S\(CU B) and$S, = 5\(5-1 U S_y) = C — B. Note that the technique and
notations used here have been adopted from probabilisticr@ddel checking

.

For all states, write

x; = Po(s E C L=" B).

If s € S_1, we havePo(s = CLI"B) = 1;if s € Sy, Po(s E CU="B) = 0;if s € S5,
we can get a fuzzy matriR, = (P:(s, t))ses by letting P, (s, t) = P(s, t) whenever
s, t € S, and0 otherwise. The left is to give a method to calcul@tgscs, .

By the definition ofC L=" B, we have

{rt € Paths(s)|m E C LU¥" B}
{rt € Paths(s)|Ak < n, if 0 <i <k, (i) € C, and 7t(k) € B}

U{Cyl(so---skt)IO <k<mn,sg=s,51,--,5x € Cand t € B}.
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Hence,
Po(s = CLUS" B)
n
= \/ \/{Po(Cyl(so -+-Sit)sp = 5,81, -+, s € Cand t € B}.
k=0
Write x; = (a:)ies, for the (row) characteristic vector for the singleteh i.e.,
a=11ft =sanda; = 0if t # s; xg = (by)res, for the (column) characteristic

vector forB, i.e.,b; = 1if t € B and0 otherwise. By a simple calculation, we
have

\/{PO(Cyl(so ~-St)sp = 5,81, ,sk € Cand t € B} = x50 P'?‘ oPoxp

for anyk. It follows that

n n
xs:PO(SlzcusnB):\/XSOPI;OPOXB:XSO\/PI?(OPOXB'
k=0 k=0

If we write P5" = \/{_, P%, whereP! is the identity matrix, i.e.P(s, s) = 1 and0

otherwise, then
xs =Po(s E CLUS" B) = xs0 P;" oPo xp.

Hence, if we writex, = (x»(s, t))ses, tes @s the characteristic matrix f&k in
S,i.e., x»(s,s) = 1fors € S, and0 otherwise, then we have

(Xs)ses, = X2 © P?Sn oPo xs. (12)

To calculatg(x;)ses,, it is sufficient to perform matrix multiplication at most+ 3
times. Observe that, if > |S,], thenPf” = Pg Vv P7, which is denoted by;. Then
P; is the reflexive and transitive closure of the fuzzy maftix In this case, we
have

(Xs)ses, = X2 0 Py 0 P o xp. (13)
In particular, we have
(xs)5657 = (PO(S |: cu B))5657 =X?0 P: oPo XB- (14)
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In summary, we have

1, if se 5:1,
xs = Po(s E CLUS" B) = 0, if s €Sy, (15)
XsoP;"oPoyp, Iifs€s,.

In particular, ifn > |S,|, we have
1, if se Szl,
xs = Po(s E CLUS"B) = Po(s E CUB) = 0, if s €S-, (16)
XsoP,oPoyp, ifses,.

In the calculation ofx;).cs, we only need to perform (fuzzy) matrix multipli-
cation at mosiN(= |S]) + 3 times. It follows that the time complexity of POCTL
model checking of a finite possibilistic Kripke structuveand a PoCTL formula
@ can be presented as follows.

Theorem 4.1. (Time Complexity of POCTL Model Checkingd-or a finite pos-
sibilistic Kripke structureM, states in M, and a PoCTL formulab, the PoCTL
model-checking problef], s) E ® can be determined in tin@(size(M)-N-|D|),
where|®| denotes the number of subformulaelof

5. An illustrative example

We now give an example to illustrate the PoCTL model-cheglkipproach
presented in this paper. The same example is used!in [190strdte the appli-
cation of model checking of linear-time properties basegassibility measures.
Note that this is a demonstrative rather than a case studgdaanshowing the
scalability of our approach.

Suppose that there is an animal with a new disease. For thelisease, the
doctor has no complete knowledge about it, but he (or sheuas by experience
that the drug Ribavirin may be useful for the treating thedse.

For simplicity, it is assumed that the doctor considers htyighe animal’'s
condition to be three states, say, “poor”, “fair” and “exeat”. It is vague when
the animal’s condition is said to be “poor”, “fair” and “extant”. The doctor

will use the fuzzy set (called fuzzy state in the following)eo states “poor”,
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“fair” and “excellent” to describe the animal condition ¢sJ,(20, 21] for more
explanations). Therefore, when a possibilistic Kripkeisture is used to model
the treatment processes of the animal, a fuzzy state isaligtdenoted as a three-
dimensional vectofay, a,, a3], which is represented as the possibility distribution
of the animal’s condition over states “poor”, “fair” and ‘edlent”.

Similarly, it is imprecise to say that at what point exacthe tanimal has
changed from one state to another state after a drug treafimen event), be-
cause the drug event occurring may lead a state to fuzzy“state”, “fair” and
“excellent”. Therefore, the treatment process is modeled possibilistic Kripke
structure, in which a transition possibility distributirepresented by & x 3
matrix.

Suppose that the treatment process of the animal is modgl#akollowing
possibilistic Kripke structurd! = (S, P,1, AP, L), whereS = AP = {poor, fair,

excellent},

02 1 1 1
P=|02 05 1 [I=]0|
05 1 05 0

andL(s) = {s} for anys € S.
The structuré\! is presented in Fig.4, and the correspondiigis presented
in Fig.5, where we use the symbaisf, e to represent the states or the atomic

propositions “poor”, “fair” and “excellent” respectively

Fig.4.The possibilistic Kripke structurd for the treatment process of the
animal.
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Fig.5.The correspondingl* of M in Fig.4.

By a simple calculation, we have

05 1 1
Pr=1051 1|
05 1 1
Some calculations are presented as follows in detalil.

(1) Let us calculateéPo(poor [ {poor} LI<7 {excellent}). In this case, let us

take Sy = {excellent}, Soy = {fair}, andS, = {poor}. It follows that, P, =
02 0 O 1 00

[ 0 00 ] and thenP;, = [ 010 ] By Eq(16, we have
0 00 loo1

Po(poor E {poor} LU {excellent})

0
(10 o)op;7opo[o]

1

0
(10 o)opgopo[o]

1

= 1.

Hence,poor | Po_i({poor} L7 {excellent}). It means that the animal will be
recovered after one week treatment with possibility
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(2) Since

Po(poor | olexcellent}) Po(poor [ true LI {excellent})

1 05 0 02 1 1 0
(1()0)o 02 1 0ol 02 05 1 [ofo0

0 0 1 05 1 05 1

= 1

In this case, we takB_; = {excellent}, S—o = 0 andS, = {poor, fair}.
Hence poor = Po_;(¢{excellent}).
(3) We havepoor [~ Volexcellent}. The reason is as follows. By Proposition
3.2(3), we have
Vo{excellent} = Po-o(O—{excellent}).

Let us calculaté’o(s = O—{excellent}), wheres = poor:
Po(s | O—{excellent}) = Po™:({r € paths(s)|rt | O-{excellent}) = PoMS(pf“’) =0.5>0.

Hences = poor £ Po-o(O—{excellent}), i.e.,poor = ¥ o{excellent).
SinceVo{excellent} =, Po(O—{excellent}), andPo(poor = O—{excellent}) =
0.5 < 1, it follows thatpoor =1 V¢{excellent} if we adopt 1-equivalence. This is
too strong, since we still have the evefit(with possibility 0.2) and the eveptf
(with possibility 0.5), and the above two events (may oceim)ate the property

Y Ofexcellent).
(2) and (3) show that ¢® = Po_,(¢®P) does not hold in PoCTL.
(4) Lets = poor, a = excellent, by Theoreni 319, we have

s |E Po_1(OPo-1(0a)) iff Po(s E O¢a) = 1.
It has been shown th&o(s = 0O¢a) = 1 in [19]. Then we know that
s | Po=1(0P0-1(0a)).

(5) SincePo(s = O-{poor}) = 0, wheres = poor. It follows thatpoor =
Yo {poor}.
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6. Conclusion

This paper is a continuation of previous work in the papegs 6], where
LTL model checking based on possibility measures and piissib CTL were
introduced. We further studied the expressiveness of Po&TLPoCTL model
cheking in this paper, which was not considered in[19, 26k hain contribution
of this paper is as follows. We showed that (qualitative) Pb@ more power-
ful than CTL with respect to their expressiveness. In paldic we have shown
that any CTL formula is equivalent to a qualitative PoCTLnfiala. Some basic
PoCTL formulae that are not equivalent to any CTL formulagenadso given.
Some qualitative repeated reachability and persisteragepties were expressed
using PoCTL formulae. The PoCTL model checking problem wasu$sed in
detail. The method of PoCTL model checking were given antirite complexity
was analyzed.

This is the first step of POCTL model checking. There are maimgs that
can be done based on this.

As we know, there are many industrial model checkers relat€lr'L model
checking, including SMV ([25]) and NuSMV. Since CTL is a pesgsubclass of
PoCTL, it is necessary to set up some model checker corrdsppto PoCTL
model checking. The equivalence and abstraction techriguesponding to
PoCTL model checking are also necessary to be investigatibe ifuture work.

Of course, the research directions related to possilgiligti model checking
posed in/[19] can also be applied to POCTL model checking.isVéhree of them

as follows.

e We use max-min composition of fuzzy relations in this papEnere are
other forms of composition of fuzzy relations, such as meodpct compo-
sition which are useful for the applications of fuzzy setbei the related
work using other composition instead of max-min compositian be done
in the future.
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¢ We use the normal possibility distributions in this papee(sonditions (2)
and (3) in the definition of possibilistic Kripke structuréjow to deal with
those possibilistic Kripke structures which do not satsfpditions (2) and
(3) is another future direction to study.

¢ In the definition of possibilistic Kripke structures, thebéing function
L:S — 247 is crisp, there is no vagueness at all here. This restriggitop
strict. How to dealt with the possibilistic Kripke strucéisrwith uncertainty
labeling function in PoCTL is still another issue needed ¢odiscussed
further. Although we can transform a possibilistic Kripkeusture with
uncertainty labeling function into a possibilistic Kripk&gucture with clas-
sical labeling function as noted in [19], a direct methochggpossibilistic

Kripke structures with uncertainty labeling functionglsteserves study.
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