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Abstract

Our main issue was to understand the connection between Łukasiewicz

logic with product and the Pierce-Birkhoff conjecture, and to express it in

a mathematical way. To do this we define the class of f MV-algebras, which

are MV-algebras endowed with both an internal binary product and a

scalar product with scalars from [0, 1]. The proper quasi-variety generated

by [0, 1], with both products interpreted as the real product, provides the

desired framework: the normal form theorem of its corresponding logical

system can be seen as a local version of the Pierce-Birkhoff conjecture.

Introduction

Łukasiewicz ∞-valued logic with the primitive connectives → and ¬ has as set of
truth values the real interval [0, 1] with x→ y = max(0, 1−x+y) and ¬x = 1−x
for any x, y ∈ [0, 1]. The completeness theorem states that a formula is provable
if and only if it holds in the standard model [0, 1]. The corresponding algebraic
structures, called MV-algebras [4], were defined as structures (A,⊕,∗ , 0) of type
(2, 1, 0) satisfying some appropriate axioms. The variety of MV-algebras is
generated by ([0, 1],⊕,∗ , 0) where x⊕ y = min(1, x+ y) and x∗ = 1− x for any
x, y ∈ [0, 1].

One major result in the theory of MV-algebras is the categorical equivalence
with the Abelian lattice-ordered groups with strong unit [24]. As a consequence,
for any MV-algebra A there exists an Abelian lattice-ordered group with strong
unit (G, u) such that A ≃ [0, u]G, where [0, uG] = ([0, u],⊕,∗ , 0) with x ⊕ y =
u ∧ (x+ y) and x∗ = u− x for any x, y ∈ [0, u].
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The standard MV-algebra [0, 1] is closed with respect to the real product,
so the study of the structure obtained by endowing the MV-algebras with a
product operation was an active research direction. Our model in this case is
([0, 1],⊕, ·,∗ , 0), where ([0, 1],⊕,∗ , 0) is the standard MV-algebra and · is the
real product. We shall only mention the references strictly related with our
development, but the literature on the subject is far richer. For such structures
further categorical equivalences with classes of lattice-ordered structures were
proved.

If we consider the real product as a binary operation on [0, 1], the correspond-
ing structures are MV-algebras A endowed with an operation · : A × A → A.
These were introduced and studied in [8] under the name of PMV-algebras and
they are categorically equivalent to a class of lattice-ordered rings with strong
unit. Particular important subclasses were further studied in [21, 22]. As proved
in [21], the variety of (commutative and unital) PMV-algebras is larger than the
variety generated by ([0, 1],⊕, ·,∗ , 0). The quasi-variety ISP ([0, 1]) was charac-
terized in [22].

One can also consider the real product on [0, 1] as a scalar multiplication.
Our standard model in this case is ([0, 1],⊕,∗ , {α | α ∈ [0, 1]}, 0) where x 7→ αx
is a unary operation for any α ∈ [0, 1]. These structures are investigated in [9]
under the name of Riesz MV-algebras and they are categorically equivalent to
Riesz spaces (vector lattices) with strong unit. The variety of Riesz MV-algebras
is generated by the standard model [0, 1].

Both for PMV-algebras and Riesz MV-algebras logical systems were devel-
oped [13, 9] and such systems are conservative extensions of Łukasiewicz logic.
One of the main theorems of Łukasiewicz logic states that the term functions
corresponding to the formulas of Łukasiewicz logic with n variables (n ≥ 1)
are exactly the continuous [0, 1]-valued piecewise linear functions with integer
coefficients defined on [0, 1]n [20]. This can be seen as a normal form theorem
for Łukasiewicz logic. A similar result was proved in [9] for the logical system
that has Riesz MV-algebras as models; in this case the piecewise linear functions
have real coefficients. In [23, Introduction] it is stated that a similar result for
PMV-algebras is related to the Pierce-Birkhoff conjecture [3] (see Section 5 for
explicit formulations).

Our main issue was to understand the connection between Łukasiewicz logic
with product (in a broad sense) and the Pierce-Birkhoff conjecture, and to
express it in a mathematical way. To do this, we study the class of struc-
tures obtained by endowing MV-algebras with both the internal binary pro-
duct and the scalar product (as a family of unary operations). We called
fMV-algebras the structures obtained in this way and the model we focus on
is I = ([0, 1],⊕, ·,∗ , {α | α ∈ [0, 1]}, 0).

We can briefly express our final conclusions as follows:
(1) the variety of f MV-algebras is larger then HSP(I);
(2) we characterize ISP(I); we called FR+-algebras the members of ISP(I);
(3) the logical system FMVL+ that has FR+-algebras as models is a conserva-
tive extension of Łukasiewicz logic and it is complete w.r.t. I;
(4) the normal form theorem for FMVL+ (Conjecture 5.1) is, in our approach,
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the link between the Pierce-Birkhoff conjecture and Łukasiewicz logic with pro-
duct. We proved it for n ≤ 2, due to the fact that the Pierce-Birkhoff conjecture
is proved in this case [19]. Note that Conjecture 5.1 does not immediately imply,
nor it is implied by the Pierce-Birkhoff conjecture, additional results are needed
and, in our opinion, these results belong more to the area of algebraic geometry
than to the area of logic.

Note that for FR+-algebras we prove the subdirect representation w.r.t.
totally-ordered structures and a representation as algebras of ∗[0, 1]-valued func-
tions, where ∗[0, 1] is an ultrapower of [0, 1].

Section 1 contains the preliminary notions. In Section 2 we define the f MV-
algebras, we prove a subdirect representation theorem and the categorical equiv-
alence between f MV-algebras and a subclass of f -algebras. In Section 3 we
investigate special classes of f MV-algebras and in the last subsection we intro-
duce the class of FR+-algebras. Logical systems are developed in Section 4. In
Section 5 we relate previous results with the Pierce-Birkhoff conjecture.

1 Preliminaries

We recall the algebraic structures involved in our development.

1.1 MV-algebras and ℓu-groups

An MV-algebra is an algebraic structure (A,⊕,∗ , 0) such that (A,⊕, 0) is an
abelian monoid, (x∗)∗ = x and (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x for any x, y ∈ A.
If A is an MV-algebra, one can define x ⊙ y = (x∗ ⊕ y∗)∗, x ⊖ y = x ⊙ y∗,
x → y = x∗ ⊕ y and 1 = 0∗, for any x, y ∈ A. The order defined by setting
x ≤ y if and only if x⊙ y∗ = 0 is a lattice order such that x ∨ y = (x⊙ y∗)⊕ y
and x∧y = (x∗ ∨y∗)∗ = x⊙ (x∗ ⊕ y) for any x, y ∈ A. We refer to [6] for all the
unexplained notions concerning MV-algebras and to [25] for advanced topics.

The variety of MV-algebras is generated by ([0, 1],⊕,∗ , 0) where x ⊕ y =
min(1, x+y) and x∗ = 1−x for any x, y ∈ [0, 1]. Any MV-algebra is a subdirect
product of totally-ordered MV-algebras. Moreover, any MV-algebra can be
embedded into a subalgebra of an ultrapower of [0, 1].

An ideal I in an MV-algebra A is a nonempty subset such that for any
x, y ∈ I, x ⊕ y ∈ I and if x ≤ y with y ∈ I then x ∈ I. The intersection
of all maximals ideals in an MV-algebra is called radical, and it is denoted by
Rad(A). An MV-algebra is called semisimple if Rad(A) = {0}. Recall that any
semisimple MV-algebra is isomorphic to a subalgebra of the MV-algebra C(X)
of [0, 1]-valued continuous functions defined on a suitable topological space X .

The relation between MV-algebras and lattice-ordered groups plays a crucial
role in our approach. A lattice-ordered group is a group is a structure (G,+, 0,≤)
such that (G,+, 0) is a group, (G,≤) is a lattice and x ≤ y implies x+z ≤ y+z
for any x, y, z ∈ G [1, 2]. A strong unit u is an element u > 0 such that for any
x ∈ G there exists an n ∈ N with x ≤ nu. An ℓu-group is a pair (G, u) where G
is an Abelian lattice-ordered group and u is a strong unit in G. For any element
u ∈ G, u > 0 we define the unit interval as
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[0, u]G = ([0, u] = {x ∈ G | 0 ≤ x ≤ u},⊕,∗ , 0), where

x⊕ y = u∧ (x+ y) and x∗ = u− x for any x, y ∈ [0, u]. The structure [0, u]G is
an MV-algebra.

An ℓ-group G is said to be Archimedean if nx ≤ y for any n ∈ N, with
x, y ∈ G, implies x ≤ 0.

Let MV denote the category of MV-algebras and auG the category whose
objects are ℓu-groups and whose morphisms are homomorphisms of ℓu-groups
that preserve the strong unit.

Theorem 1.1. [24] Let Γ be the functor defined by

Γ : auG → MV Γ(G, u) = [0, u]G and Γ(h) = h|[0,u]G ,
then Γ establishes a categorical equivalence. Moreover, an MV-algebra is semisim-
ple if and only if the corresponding ℓu-group is Archimedean.

1.2 PMV-algebras and ℓu-rings

A PMV-algebra [8] is a structure (P,⊕, ∗, ·, 0) such that (P,⊕, ∗, 0) is an MV-
algebra and the binary operation · satisfies the following, for any x, y, z ∈ P :

(PMV1) z · (x⊙ (x ∧ y)∗) = (z · x)⊙ (z · (x ∧ y))∗
(PMV2) (x⊙ (x ∧ y)∗) · z = (x · z)⊙ ((x ∧ y) · z)∗.
(PMV3) x · (y · z) = (x · y) · z.

A PMV-algebra that has unit for product is called unital, and in this case the
unit is 1 = 0∗ [8, Proposition 3.1].

A ·-ideal I in a PMV-algebra P is an MV-ideal that satisfies the condition
x · y ∈ I and y · x ∈ I for any x ∈ I and y ∈ P .

A PMVf-algebra is an PMV-algebra that satisfies the following condition:
(f) x ∧ y = 0 implies (x · z) ∧ y = (z · x) ∧ y = 0 for any x, y, z ∈ P .

By [8, Theorem 5.4] this condition has an equational form. Trivially, unital
PMV-algebras are PMVf -algebras and the standard MV-algebra [0,1] endowed
with the usual real product is a PMVf -algebra. Any PMVf -algebra is a subdi-
rect product of totally-ordered PMVf -algebra.

The Product MV-algebras defined in [21, Definition 2.8] are the unital and
commutative PMV-algebras from [8] ([21], [22, Theorem 2.8]). A PMV + -
algebra P is a unital and commutative PMV-algebra that satisfies the quasi-
identity (x2 = 0 ⇒ x = 0) for any x ∈ P [22]. Any PMV +-algebra is a
subdirect product of totally-ordered PMV +-algebras [13].

Theorem 1.2. [22] The class of all PMV +-algebras is the quasi-variety gener-
ated by ([0, 1],⊕, ·,∗ , 0). Moreover, any totally-ordered PMV +-algebra embeds
into a subalgebra of an ultrapower of [0, 1].

An ℓu-ring R is an ℓu-group endowed with an operation · : R × R → R
such that (R, ·) is a ring and x · y ≥ 0 whenever x, y ≥ 0 [1, 3]. An f -ring is a
lattice-ordered ring R such that x ∧ y = 0 implies (x · z) ∧ y = (z · x) ∧ y = 0,
for any z ≥ 0 and x, y ∈ R.

Denoted by PMV the category of PMV-algebras and product preserv-
ing homomorphisms of MV-algebras and by uR the category of ℓu-rings and
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homomorphisms of ℓu-rings, we extend the functor Γ and we get a functor
Γ(·) : uR → PMV, with Γ(·)(R, u) = [0, u]R and Γ(·)(h) = h|[0,u]R , where
(R, u) is an object and h is a morphism in uR. The functor Γ(·) establishes a
categorical equivalence [8]. Moreover, f -rings correspond to PMVf -algebras.

1.3 Riesz MV-algebras and Riesz spaces

A Riesz MV-algebra [9] is a structure (R,⊕,∗ , {α | α ∈ [0, 1]}, 0) such that
(R,⊕,∗ , 0) is an MV-algebra and {α | α ∈ [0, 1]} is a family of unary operations
satisfying the following identities for any α, β ∈ [0, 1] and any x, y ∈ R:

(RMV1) α(x ⊙ y∗) = (αx) ⊙ (αy)∗,
(RMV2) max(0, α− β)x = (αx) ⊙ (βx)∗,
(RMV3) α(βx) = (αβ)x,
(RMV4) 1x = x.

By [9, Corollary 2] any homomorphism of MV-algebras between Riesz MV-
algebras preserves the additional unary operations, so it is a homomorphism
of Riesz MV-algebras. Similarly, if R is a Riesz MV-algebra then any ideal
I of the MV-algebra reduct is closed to the unary operations: αx ∈ I for
any x ∈ I and α ∈ [0, 1]. The variety of Riesz MV-algebras is generated by
([0, 1],⊕, ·,∗ , {α | α ∈ [0, 1]}, 0) [9].

A Riesz space is a lattice ordered linear space over the real field, that is an
ℓ-group endowed with a scalar product with scalars over R such that αx ≥ 0
for any α and x non-negative [26]. When we deal with ℓu-groups, we obtain a
Riesz space with strong unit.

Let uRS be the category of Riesz spaces with strong unit and linear homo-
morphisms of ℓu-groups, and let RMV be the category of Riesz MV-algebras
with homomorphisms of Riesz MV-algebras. We get a functor ΓR : uRS →
RMV, with ΓR(R, u) = [0, u]R and ΓR(h) = h|[0,u]R , where (R, u) is an ob-
ject and h is a morphism in uRS. The functor ΓR establishes a categorical
equivalence [9].

Putting all together, we get the following commutative diagram

uR

PMV

auG

MV

uRS

RMV

Γ(·)

U(·ℓ)

Γ

U(·)

U(ℓR)

ΓR

UR

Figure 1.

where UR, U(ℓR), U(·), U(·ℓ) are forgetful functors.
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1.4 f -algebras

An f-algebra is a strucure (L,+, ·, {r|r ∈ R}, 0,≤) such that (L,+, ·, 0,≤) is a
f -ring, (L,+, {r|r ∈ R}, 0,≤) is a Riesz space and the following condition is
satisfied:

(fa) r(x · y) = (rx) · y = x · (ry) for any x, y ∈ L and any r ∈ R.

If there exists an element e such that xe = ex = x for any x ∈ L, L will be
called unital, and e is the unit element for L. An f -algebra with strong unit is an
f -algebra in which the underlying Riesz space is a Riesz space with strong unit.
This notion was first introduced in [3], for further details see also [1, 12, 26].

Definition 1.1. In the sequel, an fu-algebra is a pair (V, u), where V is an
f -algebra and u ∈ V is a strong unit such that u ·u ≤ u. If (V1, u1) and (V2, u2)
are fu-algebras then g : V1 → V2 is a homomorphism of fu-algebras if it is a
homomorphism of f -algebras and g(u1) = u2.

Note that, for an fu-algebra (V, u), the interval [0, u] is closed with respect to
the product operations and with respect to the scalar multiplication by elements
from [0, 1].

2 f MV-algebras

2.1 Definitions and first results

In the following we define the structure of fMV-algebra, an appropriate notion
of an ideal and we prove a subdirect representation theorem.

Definition 2.1. An fMV-algebra is a structure (A,⊕, ·,∗ , {α | α ∈ [0, 1]}, 0)
which satisfies the following properties for any x, y, z ∈ A and α ∈ [0, 1]:

(f MV1) (A,⊕, ·,∗ , 0) is a PMVf -algebra,
(f MV2) (A,⊕,∗ , {α | α ∈ [0, 1]}, 0) is a Riesz MV-algebra,
(f MV3) α(x · y) = (αx) · y = x · (αy).

We say that the f MV-algebra A is unital (commutative) if its PMV-algebra
reduct (A,⊕, ·,∗ , 0) is unital (commutative).

Remark 2.1. The class of f MV-algebras is a variety, denoted by FMV.

One can see that an f MV-algebra has an MV-algebra reduct, a Riesz MV-
algebra reduct, as well as a PMV-algebra reduct and the forgetful functors are
summarized in the following diagram:

fMV

MV RMVPMV

U(R,·)
UR

U(·)

U(·) UR

Figure 2.
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Lemma 2.1. If an fMV-algebra A is unital then the unit is 1.

Proof. If A is a unital f MV-algebra, then UR(A) is a unital PMV-algebra. The
result follows from [8, Proposition 3.1].

The following examples play an important role in our development.

Example 2.1. 1. The real interval [0, 1] with the standard structure of MV-
algebra is an f MV-algebra where both the scalar multiplication and the
internal product coincides with the real product. We always consider
[0, 1] endowed with this structure, but we note that it does not generate
the variety of all f MV-algebras, but only a proper subclass (see Section
3.3).

2. If (V, u) is an fu-algebra then, by [9, Lemma 5] and [8, Theorem 5.2], the
interval [0, u] is trivially a Riesz MV-algebra and a PMVf -algebra. The
condition (f MV3) from Definition 2.1 holds, since it is already satisfied in
(V, u). Hence [0, u]V = ([0, u],⊕, ·,∗ , {α | α ∈ [0, 1]}, 0) is an f MV-algebra.

We list some further examples.

Example 2.2. 1. For any nonempty set X , [0, 1]X with point-wise opera-
tions of MV-algebra and point-wise products is an f MV-algebra.

2. If (X, τ) is a topological compact and Hausdorff space then C(X) = {f :
X → [0, 1] | fcontinuous} with point-wise operations of MV-algebra and
point-wise products is an f MV-algebra.

3. On the Riesz MV-algebra [0, 1]2 with coordinate-wise operations of MV-
algebra and coordinate-wise scalar product, we define the internal product
by (x1, y1)·(x2, y2) = (x1x2, 0) for any x1, x2, y1, y2 ∈ [0, 1]. One can easily
prove that the structure obtained in this way is an f MV-algebra.

4. Let H be an one dimensional Hilbert space over the complex field, H the
set of all bounded Hermitian operators on H and assume D is a nonempty
subset of H. Hence C′′

(D), the bicommutant of D is an f -algebra with
strong unit E, where E is the identity operator. For more details we refer
to [16, Chapter 8]. Then, the unit interval [θ, E] is an f MV-algebra, where
θ is the null operator.

In [8] the proper notion of ideal was defined for PMV-algebras, under the
name of ·-ideal. We follow a similar approach for f MV-algebras.

Definition 2.2. If A is an f MV-algebra then a subset I ⊂ A is an ideal if it is
an ideal of the MV-algebra reduct of A. An ideal I of A is a ·-ideal if l if it is a
·-ideal of the PMV-algebra reduct of A.

Remark 2.2. Assume A is an f MV-algebra and I is a ·-ideal of A.

(1) Since αx ≤ 1x = x for any α ∈ [0, 1] and x ∈ A, then x ∈ I implies αx ∈ I
for any α ∈ [0, 1].
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(2) When A is unital, ·-ideals coincide with the ideals of the MV-algebra
reduct of A, since for any x ∈ I and any y ∈ A we get x · y ≤ x · 1 = x.

For a ·-ideal I of an f MV-algebra A, we define a congruence relation by:

x ∼I y if and only if x⊙ y∗ ∈ I and y ⊙ x∗ ∈ I

By [9, Remark 2], the quotient of A with respect to ∼I is a Riesz MV-algebra.
In order to prove that the quotient is a PMVf -algebra, we need to prove that

if x ∼I y, then z · x ∼I z · y and x · z ∼I y · z.
But this follows trivially by conditions (f1) and (f2) in Section 1.2.
We can now define the product in the quotient algebra A/ ∼I by

[x] · [y] = [x · y],
and A /I is an f MV-algebra.

We are ready to prove the subdirect representation theorem with respect to
totally-ordered structures.

Theorem 2.1. Any fMV-algebra A is a subdirect product of totally-ordered
fMV-algebras.

Proof. By [8, Theorem 5.5], UR(A) is a subdirect product of totally-ordered
PMVf -algebras, i.e. there exists a family {Ak}k∈K of totally-ordered PMVf -
algebras and a subdirect representation ι : A→ ∏

k∈K Ak. Consequently, there
is a family {Pk}k∈K of prime ·-ideals of UR(A) such that ∩{Pk|k ∈ K} = {0}.
By definition, Pk is also a ·-ideal of A, so Ak is a totally-ordered f MV-algebras
for any k ∈ K.

2.2 Categorical equivalence with fu-algebras

The aim of this section is to prove a categorical equivalence between f MV-
algebras and f -algebras, generalizing the similar results for MV-algebras, PMV-
algebra and Riesz MV-algebras.

We denote by fMV the category whose objects are f MV-algebras and whose
morphisms are homomorphisms of f MV-algebras and by fuAlg the category
whose objects are fu-algebras and whose morphisms are homomorphisms of f -
algebras that preserve the strong unit.

The functor Γf : fuAlg → fMV is defined by

• Γf (V, u) = [0, u]V as in Example 2.1,

• if g : (V1, u1) → (V2, u2) is a homomorphism of fu-algebras then Γf (g) is
defined as g|[0,u1].

Theorem 2.2. The functor Γf establishes a categorical equivalence.

Proof. Γf is trivially well defined. First, we prove that for any f MV-algebra A,
there exists an fu-algebra (V,u) such that A ≃ Γf (V, u).

By [9, Proposition 3] there exists a Riesz space with strong unit (V, u) such
that U(·)(A) ≃ ΓR(V, u). Since A has a PMV-algebra reduct, by [8, Theorems
4.2 and 5.2], (V, u) can be endowed with an internal product · : V × V → V

8



such that (V, ·) is an f -ring. Moreover, by easy computation (V, u) satisfies the
condition (fa).

One can easily see that the functor Γf is faithful: if we have h1, h2 :
(V1, u1) → (V2, u2), such that Γf (h1) = Γf (h2), then h1 and h2 coincide on
the generating set of (V1, u1), therefore they coincide on the whole algebra, and
h1 = h2.

To end the proof, we show that Γf is full. Let A, B be f MV-algebras such
that A ≃ Γf(V1, u1), B ≃ Γf (V2, u2) for (V1, u1) and (V2, u2) objects in fuAlg.
If h : A → B is a homomorphism of f MV-algebras then, in particular, h is a
homomorphism of PMV-algebras between the PMV-algebra reducts of A and B.
By [8, Theorem 4.2], there exists a homomorphism of ℓu-rings h♯ : (V1, u1) →
(V2, u2) extending h. By [2, Chapter XV Section 2 Corollary], any morphism of
ℓ-groups between Riesz spaces is linear. It follows that h♯ : (V1, u1) → (V2, u2)
is also linear, so it is a homomorphism of fu-algebras.

We are now able to complete the diagram:

uR

PMV

auG

MV

uRS

RMV

fuAlg

fMV

fuAlg

fMV

Γ(·)Γf

U(·ℓ)U(·ℓ)

Γ

U(·) U(·)

U(ℓR)U(ℓR)

ΓR

UR

Γf

UR

Figure 3.

Corollary 2.1. Let A ≃ Γf (V, u). If A is unital then (V, u) is unital and its
unit coincide with the strong unit u.

Proof. If follows from Lemma 2.1 and [8, Proposition 3.1 and Theorem 3.3]

Corollary 2.2. Any homomorphism of PMV-algebras between the PMV-algebra
reducts of two fMV-algebras preserves the scalar product, i.e. it is a morphism
of fMV-algebras.

Proof. By [2, Chapter XV Section 2 Corollary] any morphism of ℓ-groups be-
tween Riesz spaces is linear. Then we apply Theorem 2.2.

Corollary 2.3. Let A be an fMV-algebra in which the internal product is com-
mutative. Then x · y = (x ∧ y) · (y ∨ x).

Proof. By Theorem 2.2, there exists an fu-algebra (V, u) such that A ≃ Γf (V, u).
By [26, Theorem 142.4], x · y = (x ∧ y) · (y ∨ x) for any x, y ∈ V .

Let V be an f-algebra. Recall that a subset J of V is an ℓ-ideal if it is a
linear subspace that satisfies the following conditions:

(ℓ1) if x ∈ V , y ∈ J , |x| ≤ |y| then x ∈ J ,
(ℓ2) if x ∈ J , y ∈ V then x · y ∈ J and y · x ∈ J .

9



Remark 2.3. Let (V,u) be an fu-algebra, and let A = Γ(V, u). We define the
maps

Φ : I 7→ Φ(I) = {x ∈ V | |x| ∧ u ∈ I} and Ψ : H 7→ Ψ(H) = H ∩ [0, u]

for any ·-ideal I of A and any ℓ-ideal H of V . Then Φ and Ψ are order-
isomorphisms from the set of ·-ideals of A to the set of ℓ-ideals of (V, u). The
proof follows by the similar result for PMV-algebras and ℓ-rings [8, Theorem
5.1] and by the fact that any ideal of ℓ-ring considered in [8] is an ℓ-ideal by [2,
Chapter XV Section 2 Lemma 1].

Definition 2.3. For a ·-ideal I of an f MV-algebra A, the nil-radical is√
I = {x ∈ A | xn ∈ I for some n ∈ N},

where xn is

n times︷ ︸︸ ︷
x · . . . · x.

Proposition 2.1. If I is a ·-ideal in a commutative fMV-algebra A, then
√
I

is a ·-ideal in A.

Proof. Let (V, u) be the fu-algebra such that A = Γf (V, u). We first remark

that Ψ(
√
Φ(I)) =

√
I, using the notation of Remark 2.3. Indeed:

x ∈ Ψ(
√
Φ(I)) ⇔ x ∈

√
Φ(I) ∩ [0, u] ⇔

0 ≤ x ≤ u and x ∈
√
Φ(I) ⇔

0 ≤ x ≤ u and there exists n ∈ N such that xn ∈ Φ(I) ⇔
0 ≤ x ≤ u and |xn| ∧ u ∈ I ⇔ x ∈ A and xn ∧ u = xn ∈ I ⇔ x ∈

√
I.

By Remark 2.3, Φ(I) is an ℓ-ideal, then
√
Φ(I) is an ℓ-ideal by [14, Proposition

4.2] and again by Remark 2.3 Ψ(
√
Φ(I)) is a ·-ideal.

3 Classes of f MV-algebras

In the theory of f -algebras, the Archimedean, the semisimple, the semiprime
and the formally real structures are proper subclasses studied in the literature.
We introduce and briefly investigate the same notions for f MV-algebras. Our
main goal is achieved in Section 3.4, where we characterize the quasi-variety of
f MV-algebras generated by [0, 1].

3.1 Semisimple and Archimedean f MV-algebras

It is known that Archimedean MV-algebras and semisimple MV-algebras coin-
cide. The same holds for Riesz MV-algebras, since a Riesz MV-algebra has the
same congruences as its MV-algebra reduct. The theory of f MV-algebras has
this property no longer.

We recall that an f -algebra is Archimedean if na ≤ b for any n ∈ N implies
a ≤ 0. The notion of semisimple f -algebra is present in literature in different
forms, due to the different kind of radicals that can be defined on a f -ring
(see for example [1, Section 8.6]). We will follow [17], and define an f -algebra
ℓ-semisimple if the intersection of all maximal ℓ-ideals is {0}.
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Definition 3.1. Let A be an f MV-algebra and let (V, u) be an fu-algebra
such that A ≃ Γf (V, u). We say that the f MV-algebra A is Archimedean (ℓ-
semisimple) if the fu-algebra V is Archimedean (ℓ-semisimple).

We note that an f MV-algebraA is Archimedean if and only if its MV-algebra
reduct U(R,·)(A) is a semsimple MV-algebra.

Proposition 3.1. Let A be an Archimedean fMV-algebra. Then A is commu-
tative with respect to the internal product.

Proof. Let (V, u) be the fu-algebra such that A ≃ Γf (V, u). By definition, A is
Archimedean if and only if (V, u) is Archimedean. Therefore, the result follows
from [26, Theorem 140.10].

Lemma 3.1. Any ℓ-semisimple fMV-algebra is Archimedean.

Proof. If we denote by ℓRad(A) the intersection of all maximal ·-ideal for the
f MV-algebra A, since any ·-ideal is an ideal for the reduct U(R,·)(A) it follows
that Rad(A) ⊆ ℓRad(A). Then, if A is ℓ-semisimple, so it is U(R,·)(A), and A is
Archimedean.

Remark 3.1. If A is a unital f MV-algebra then A is Archimedean if and only
if A is ℓ-semisimple. This result is a direct consequence of Remark 2.2 (2): in
this case any ideal is a ·-ideal.

For unital f MV-algebras, the two classes coincide. Our main interest focuses
on this case, but the general relation between Archimedeanity and semisimplic-
ity in the non-unital case will make the subject of future studies.

Proposition 3.2. Let A1, A2 be semisimple and unital fMV-algebras, and let
f : A1 → A2 be a homomorphism of Riesz MV-algebras. Then f is also a
homomorphism of PMV-algebras.

Proof. By Theorem 2.2 there exist two unital and Archimedean f -algebras
(V1, u1) and (V2, u2) such that A = Γf (V1, u1) and B = Γf (V2, u2). The map
f ♯ that extend f is a positive map between Archimedean and unital f -algebras
such that f ♯(v) = u. Therefore by [15, Corollary 5.5], f ♯ is also an algebra
homomorphism, and f : A1 → A2 is a homomorphism of PMV-algebras, as well
as a homomorphism of Riesz MV-algebras.

3.2 Semiprime f MV-algebras

We recall that a semiprime f -algebra is an algebra without nilpotents [26, Chap-
ter 142].

Definition 3.2. An element x of an f MV-algebra (f -algebra) is nilpotent if there
exists an positive integer n such that xn = x · . . . · x︸ ︷︷ ︸

n times

= 0. An f MV-algebra A

(f -algebra V ) is called semiprime if xn = 0 implies x = 0.
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Remark 3.2. One can easily see that an f MV-algebra A (f -algebra V ) is
semiprime if and only if x · x = 0 implies x = 0 for any x ∈ A (x ∈ V ).

Proposition 3.3. Assume A is an fMV-algebra and (V, u) is an fu-algebra such
that A ≃ Γf (V, u). Then A is semiprime if and only if (V, u) is semiprime.

Proof. In one direction it is obvious. For the other direction, in the case of
positive elements the proof is a simple matter of computation; then the result
follows from the positive element case by [26, Theorem 142.1(iv)], that is the
remark that x+ · x− = 0 = x− · x+.

Remark 3.3. Since the property of being semiprime depends only on the un-
derlying f -ring structure, a similar result holds for PMVf -algebras and f -rings.
We state it without proof.

Proposition 3.4. Assume P is a commutative and unital PMV-algebra and
(R, u) is an fu-ring such that P ≃ Γ(·)(R, u). Then P is a PMV+-algebra if and
only if (R, u) is semiprime.

Corollary 3.1. Let A be a semisimple and unital fMV-algebra. Then A is
semiprime.

Proof. Let (V, u) be the fu-algebra such that A = Γf (V, u). By hypothesis, A
is Archimedean, so V is also Archimedean and u is a unit for the product. By
[26, Theorem 142.5(iii)] it follows that (V, u) is semiprime, so A is semiprime by
Proposition 3.3.

Corollary 3.2. Let A be a semiprime fMV-algebra. Then for any x, y ∈ A,
x2 = y2 if and only if x = y.

Proof. The result follows directly by Proposition 3.3 and [26, Theorem 142.3(ii)].

We shall further analyze the commutative, unital and semiprime algebras in
the following sections.

3.3 Formally real f MV-algebras

While the varieties of Abelian ℓ-groups and Riesz spaces are generated by R

endowed with the corresponding structure, this is not true for the varieties of
f -rings and f -algebras and counterexamples can be found in [12, 18]. Conse-
quently, algebras from HSP([0, 1]) were called formally real.

The same facts remain true when applying the Γ functors (see Figure 3).
The varieties of MV-algebras and Riesz MV-algebras are generated by the real
interval [0, 1] endowed with the corresponding structure (see [6] and, respec-
tively [9]), while the varieties of (commutative and unital) PMV-algebras and
f MV-algebras are not. For PMV-algebras, a counterexample was given in [13].
This example also stands for f MV-algebras and we briefly recall it in the next
example.

12



Example 3.1. In [13, Example 3.14] the authors define a totally-ordered finite
monoid S and they consider the set F [S] = {r1Xs1 + . . .+ rnX

sn | n ∈ N, ri ∈
F si ∈ S}, where F is the ordered field of real numbers. They further identify
X⊤ with 0, where ⊤ is the greatest element of S and they denote F [S]h the
quotient obtained in this way, which is an f -ring. Hence the interval [0,1] of
F [S]h is a PMV-algebra that does not satisfy the following identity:

(x1 · z1 ⊖ y1 · z2) ∧ (x2 · z2 ⊖ y2 · z1) ∧ (y1 · y2 ⊖ x1 · x2) = 0.
Since the identity holds in the real interval [0, 1], it provides the intended count-
example in the context of PMV-algebras. We only have to note that F [S]h is in
fact an f-algebra so [0,1] is an f MV-algebra that does not belong to HSP([0, 1]).

Definition 3.3. Following [12], we will call an f MV-algebra (PMV-algebra)
formally real if it belongs to HSP([0, 1]). We denote by FR the class of formally
real f MV-algebras.

Remark 3.4. In general, a formally real f -ring is not unital. For PMV-algebras
and f MV-algebras the situation is different: by [8] the unit is the greatest
element of the algebras and it belongs to the language. Then the condition for
the unit is not existential but universal, that is 1 · x = x · 1 = x for any x.

By well-known results of universal algebra (see for example [11]), the free
f MV-algebra in FR exists and its elements are term functions defined on [0, 1].
More precisely, the language of f MV-algebras is

Lf = {⊕, ·,∗ , 0, } ∪ {δα | α ∈ [0, 1]},
where δα is a unary operation that is interpreted by x 7→ αx for any α ∈ [0, 1].
For any n ≥ 1, let X = {x1, . . . , xn} and assume Termn is the set of Lf -terms
with variables from X . We denote by FRn the free f MV-algebra in FR with n
free generators. It follows that

FRn = {t̃ | t ∈ Termn, t̃ : [0, 1]
n → [0, 1] is the term function of t}.

In order to characterize FRn we give the following definition.

Definition 3.4. A piecewise polynomial function defined on the n-cube is a
continuous function f : [0, 1]n → [0, 1] such that there exists a finite number of
polynomials f1, . . ., fk ∈ R[x1, . . . , xn] with the property that f(a1, . . . , an) =
fi(a1, . . . , an) for any (a1, . . . , an) ∈ [0, 1]n and for some i ∈ {1, . . . , k}.

The polynomials fi are called the components of f .

Proposition 3.5. The elements of FRn are piecewise polynomial functions
defined on the n-cube.

Proof. Let t be a term in Termn. The result will be proved by structural
induction on t. We recall that any terms in Termn is built from the language
Lf and the set of variables {xi}i≤n.

If t = xi for some i ≤ n, then t̃ = πn
i , the ith projection and it is trivially a

piecewise polynomial function.
If t = t∗1, then t̃ = t̃1

∗
. By induction hypothesis there exists an integer h and

some polynomials q1, . . . , qh ∈ R[x1, . . . , xn] such that for any point in the n-
cube, t̃1 coincides with one of them. Then 1− q1, . . . , 1− qh are the components
of t̃.
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If t = t1 ⊕ t2, let q1,. . ., qm be the components of t̃1 and p1,. . .,pk be the
components of t̃2. Then t̃ is defined by the set of polynomials {1} ∪ {sij}i,j ,
where sij = 1− qi + pj for any i ∈ {1, . . . ,m} and j ∈ {1, . . . , k}.

If t = δα(t1) for some α ∈ [0, 1] and q1,. . .,qs are the components of t̃1, then
αq1,. . .,αqs are the components of t̃.

If t = t1 · t2, let q1,. . ., qm be the components of t̃1 and p1,. . .,pk be the
components of t̃2. Then t̃ is defined by the polynomials qi · pj , for any i ∈
{1, . . . ,m} and j ∈ {1, . . . , k}.

The converse of the above proposition is related to the Pierce-Birkhoff con-
jecture [3, 12] and it will be analyzed in Section 5.

3.4 FR+-algebras

The class of FR+-algebras is the quasi-variety of f MV-algebras generated by
[0, 1]. In order to characterize this class, we follow the ideas from [22], where a
similar investigation is done for PMV-algebras.

The FR+-algebras are the core of our development, from the algebraic point
of view. We prove a representation theorem w.r.t. totally-ordered structures,
as well as a representation theorem via ultrapowers of [0, 1]. In Section 4.2 we
develop a logical system that has FR+-algebras as models and in Section 5 we
connect them this logic with the Pierce-Birkhoff conjecture.

We recall that a PMV-algebra A is a PMV +-algebra [22] if it is unital,
commutative and it satisfies the condition:

(sp) x · x = 0 implies x = 0 for any x ∈ A.

Theorem 3.1. For an fMV-algebra A the following are equivalent:
(1) A ∈ ISP([0, 1]),
(2) A is a unital, commutative and semiprime fMV-algebra,
(3) UR(A), the PMV-algebra reduct of A, is a PMV+-algebra,
(4) A is in FR and x · x = 0 implies x = 0 for any x ∈ A.

Proof. (1) ⇔ (2) One direction is trivial, since any element in ISP([0, 1]) is
unital, commutative and semiprime. For the other direction, let V be the class
of unital, commutative and semiprime f MV-algebras. If A ∈ V, then UR(A) is
a PMV +-algebras, and by [22, Corollary 4.4] it belongs to ISP([0, 1]), therefore
A is a subalgebra of a direct product of copies of [0, 1], and the direct product is
trivially a f MV-algebra. The map that gives the inclusion is a homomorphism of
PMV-algebras, therefore it is a homomorphism of f MV-algebras, and A belongs
to ISP([0, 1]) as f MV-algebra.
(2) ⇔ (3) is obvious.
(1) ⇒ (4) Since ISP([0, 1]) ⊆ HSP([0, 1]), it is straightforward.
(4) ⇒ (2) Any formally real f MV-algebra is unital and commutative, and the
quasi-identity in the hypothesis characterizes semiprime f MV-algebras.

Definition 3.5. Following [22] we denote FR
+ =ISP([0, 1]), the quasi-variety

generated by the standard f MV-algebra [0, 1]. An f MV-algebra A is a FR+-
algebra if it is unital, commutative and semiprime.
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Proposition 3.6. FRn belongs to FR
+, for any positive integer n.

Proof. By Theorem 3.1 we just need to prove that FRn is semiprime. Let
g ∈ FRn such that g2 = 0, the null function. This means that g(x) · g(x) = 0
for every x ∈ [0, 1]n. Since g(x) ∈ [0, 1], the above condition implies g(x) = 0
for any x ∈ [0, 1]n, and g = 0.

For FR+-algebras we prove the subdirect representation theorem w.r.t. totally-
ordered FR+-algebras, as well as the representation as an algebra of ∗[0, 1]-
valued functions.

Theorem 3.2. Any FR+-algebra is a subdirect product of totally-ordered FR+-
algebras.

Proof. It is similar to the proof of Theorem 2.1, by [13, Theorem 3.9].

Theorem 3.3. For any FR+-algebra A there exists an ultrapower ∗[0, 1] of
[0, 1] and a set I such that A is embedded in ( ∗[0, 1])I .

Proof. We first prove the result for totally-ordered FR+-algebras. By hypothe-
sis, the PMV-algebra reduct of A is a PMV +-chain, therefore by [22, Corollary
4.4] A can be embedded, as a PMV-algebra, in an ultrapower of [0, 1]. Since
any PMV-algebras homomorphism is also a Riesz MV-algebras homomorphism,
the embedding is between f MV-algebras.
By Proposition 3.2, any FR+-algebra A is subdirect product of a family {Ai}i
of totally-ordered FR+-algebras. We know that any Ai is embedded in Ui, an
ultrapower of [0, 1]. By [5, Proposition 3.1.4 and Corollary 4.3.13] there exists
an ultrapower U of [0, 1] such that every Ui is embedded in U . It follows that
A is embedded in ΠiU .

4 Logic for unital and commutative f MV-algebras

In this section, we define the propositional calculus FMVL, that has unital
and commutative f MV-algebras as models, as well as the propositional calculus
FMVL+ that has FR+-algebras as models. For the latter we prove standard
completeness w.r.t. [0, 1].

4.1 The propositional calculus FMVL
The language of the propositional logic FMVL consists of:
(i) a countable set of propositional variables v1, v2, . . .;
(ii) the binary connectives are → and ·;
(iii) the unary connective ¬;
(iv) a family of unary connectives {∇α | α ∈ [0, 1]};
(v) the parentheses ( and ).
Formulas, theorems, deductions, proof are defined as usual. The axioms for the
logic of unital and commutative f MV-algebras will be the following:
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(L1) ϕ→ (ψ → ϕ)
(L2) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))
(L3) (ϕ ∨ ψ) → (ψ ∨ ϕ)
(L4) (¬ψ → ¬ϕ) → (ϕ→ ψ)
(R1) ∇α(ϕ→ ψ) ↔ (∇αϕ→ ∇αψ)
(R2) ∇(α⊙β∗)ϕ↔ (∇βϕ→ ∇αϕ)
(R3) ∇α(∇βϕ) ↔ ∇α·βϕ
(R4) ∇1ϕ↔ ϕ
(P1) (χ · (ϕ⊖ ψ)) ↔ ((χ · ϕ) ⊖ (χ · ψ))
(P2) (ϕ · (ψ · χ)) ↔ ((ϕ · ψ) · χ)
(P3) ϕ→ (ϕ · (ϕ→ ϕ))
(P4) ϕ · ψ → ϕ
(P5) ϕ · ψ ↔ ψ · ϕ
(A1) ∆α(ϕ · ψ) ↔ (∆αϕ · ψ)
(A2) ∆α(ϕ · ψ) ↔ (ϕ ·∆αψ),
where ϕ ⊖ ψ means ¬(ϕ → ψ), ∆αϕ means ¬∇α(¬ϕ) and the only deduction
rule will be the Modus Ponens. The set of formulas in FMVL will be denoted
by FfMV .

Note that (L1)-(L4) are the axioms of Łukasiewicz logic.
For a subset Θ ⊆ FfMV we define an equivalence relation as follows:

ϕ ≡Θ ψ iff Θ ⊢ ϕ→ ψ and Θ ⊢ ψ → ϕ.

We define the following operation on FfMV / ≡Θ:
• [ϕ]∗Θ = [¬ϕ]Θ, [ϕ]Θ → [ψ]Θ = [ϕ→ ψ]Θ;
• [ϕ]Θ ⊕ [ψ]Θ = [¬ϕ→ ψ]Θ, [ϕ]Θ · [ψ]Θ = [ϕ · ψ]Θ;
• α[ϕ]Θ = [∆αϕ]Θ
• 1Θ = TFMVL(Θ), 0Θ = 1∗Θ.

Theorem 4.1. The structure fMV L(Θ) = ((FfMV / ≡Θ,⊕, ∗, ·, 0Θ),Φ), where
Φ : [0, 1] × FfMV → FfMV , Φ(α, [ϕ]) = [∆αϕ], is a unital and commutative
fMV-algebra.

Proof. By [9, Proposition 5], this structure is a Riesz MV-algebra. By [13,
Lemma 3.21] it is a unital and commutative PMV-algebra, and by axioms (A1)
and (A2) we get the algebra’s relations between internal product and scalar
product. Trivially any unital PMV-algebra is an PMVf -algebra.

In the sequel, we will denote by fMV L the Lindenbaum-Tarski algebra of
the logic, that is fMV L(Θ) with Θ = ∅.

An appropriate semantic for the logic has unital and commutative f MV-
algebras as models. Let A be an f MV-algebra; an evaluation is a function
e : FfMV → A such that:

(e1) e(ϕ→ ψ) = e(ϕ)∗ ⊕ e(ψ),
(e2) e(¬ϕ = e(ϕ)∗),
(e3) e(∇αϕ) = (αe(ϕ)∗)∗,
(e4) e(ϕ · ψ) = e(ϕ) · e(ψ),

for any formulas ϕ and ψ of FMVL.
We have the following completeness theorem.
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Theorem 4.2. Let Θ be a set of formulas and ϕ a formula in FfMV . The
following are equivalent:
(1) Θ ⊢ ϕ,
(2) Θ |=A ϕ for any fMV-algebra A,
(3) Θ |=A ϕ for any totally-ordered fMV-algebra A,
(4) [ϕ]Θ = 1Θ in fMV L(Θ).

Proof. (2) ⇔ (3) follows by Theorem 2.1. The rest of the proof is straightfor-
ward.

Proposition 4.1. FMVL is a conservative extension of L, the infinite valued
Łukasiewicz logic.

Proof. Let ϕ be a formula in Łukasiewicz logic which is a theorem in FMVL.
Then by completeness, ϕ is a tautology in the standard f MV-algebra [0, 1], and
since ϕ does not involves · and ∇α, it is a tautology in the standard MV-algebra
[0, 1]. Then by the completeness of Łukasiewicz logic, ϕ is a theorem in L.

As for Łukasiewicz logic, the deduction theorem holds in its local form.

Remark 4.1. Let Θ be a non-empty subset of FfMV , and ϕ ∈ FfMV . For any
ψ ∈ FfMV we have

Θ ∪ {ϕ} ⊢ ψ iff Θ ⊢ ϕ→ · · · (ϕ→ψ),

where ϕ appears n times for some n ≥ 1. The proof is similar with the one for
Łukasiewicz logic [6, Proposition 4.6.4].

4.2 The propositional calculus FMVL+

The propositional calculus FMVL+ is obtained from FMVL by adding the
deduction rule

Semiprime:
¬(ϕ · ϕ)

¬ϕ .

Theorem 4.3. Let Θ be a set of formulas in FMVL+ and ϕ a formula. Then
the following are equivalent:
(1) Θ ⊢ ϕ,
(2) e(ϕ) = 1 for any e [0, 1]-model of Θ,
(3) e(ϕ) = 1A for any algebra A from FR

+ and for any e A-model of Θ.

Proof. (1) ⇒ (2) It is straightforward, since Modus Ponens and Semiprime
preserve tautologies.
(2) ⇒ (3) It follows by Theorem 3.1
(3) ⇒ (1) Since (3) holds for the algebras from FR

+, then (1) follows directly
by the definition of 1Θ.

It follows that the models of FMVL+ are FR+-algebras. Note that our
system is an extension of the system PL′, defined in [13], that has PMV+-
algebras as models.
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Proposition 4.2. FMVL+ is a conservative extension of L.

Proof. It is similar to the proof for FMVL.

Remark 4.2. FMVL+ does not satisfy the deduction theorem in the same
form of FMVL: the counterexample in [13, Corollary 3.19] applies.

The appropriate semantic for FMVL+ is the one with unital, commutative
and semiprime f MV-algebras, that is, algebras in FR

+, as models with the usual
definition for evaluations.

Remark 4.3. Let n ≥ 1 be a natural number. The Linbenbaum-Tarski algebra
with n variables, denoted by fMV L+

n , is isomorphic with the free FR+-algebra
with n free variables. By Propositions 3.5 and 3.6, we infer that fMV L+

n ≃ FRn

and we know that the elements of FRn are [0, 1]-valued piecewise polynomial
functions defined on [0, 1]n.

In the following section we shall investigate the answer to the following
question: does FRn contain all the [0, 1]-valued piecewise polynomial functions
defined on [0, 1]n?

The following result is a preliminary step.

Proposition 4.3. If p : [0, 1]n → R is a polynomial with real coefficients then
there exists a formula ϕ with n variables of FMVL+ such that ((p ∨ 0) ∧ 1)
coincides with the term function associated to ϕ.

Proof. The proof is similar with the one of [9, Proposition 7.6]. In the following
we denote the function p 7→ ((p ∨ 0) ∧ 1) by ̺, and by ϕ̃ the term function
associated to the formula ϕ. Let p : [0, 1]n → R be a polynomial function. Let
k be the degree of p. Then it follows

p(x1, . . . , xn) =
∑

i1+...+in≤k

ci1,...,inx
i1
1 · · ·xinn ,

where ci1,...,in ∈ R for any choice of the indexes. We notice that any ci1,...,in can
be written as a sum of a finite number of elements in [−1, 1], then we assume
that

p(x1, . . . , xn) = rmym + · · · rp+1yp+1 + rp + · · ·+ r1

where m ≥ 1 and p ≥ 0 are natural numbers, p ≤ m, rj ∈ [−1, 1] \ {0}
for any j ∈ {1, . . . , m} and yj ∈ {xi11 · · ·xinn | i1 + . . . + in ≤ k} for any
j ∈ {p+ 1, . . . , m}.
We prove the theorem by induction on m ≥ 1. In the sequel we denote by x an
element (x1, · · · , xn) from [0, 1]n.
Initial step m = 1. We have p(x) = r for any x ∈ [0, 1]n or p(x) = rxi11 · · ·xinn
for any x ∈ [0, 1]n where r ∈ [−1, 1] \ {0} and {i1, . . . , in} is a suitable set of
index.

If r ∈ [−1, 0) then ̺(p) = 0 so ̺ ◦ p = ϕ̃ for ϕ = 0.
If r ∈ (0, 1] then p = ̺ ◦ p. It follows that p = ϕ̃ where ϕ = δr(0

∗
) if

p(x) = r for any x ∈ [0, 1]n, and ϕ = δr(v
i1
1 · . . . · vinn ) if p(x) = rxi11 · · ·xinn for
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any x ∈ [0, 1]n.
Induction step. We take p = g + h where ̺ ◦ g = ϕ̃1 for some formula ϕ1 and
there is r ∈ [−1, 1] \ {0} and a suitable choice of index for i1, . . . , in such that
h(x) = r for any x ∈ [0, 1]n, or h(x) = rxi11 · · ·xinn for any x ∈ [0, 1]n. We
consider two cases.
Case 1. If r ∈ (0, 1] then h : [0, 1]n → [0, 1] so ̺ ◦ p = ((̺ ◦ g)⊕ h)⊙ (̺ ◦ (1+ g))
by [9, Lemma 10]. Following the initial step, there is a formula ϕ2 such that
h = ϕ̃2. We notice that 1 + g = 1 − (−g) and the induction hypothesis holds
for (−g), then there is a formula ϕ3 such that ̺ ◦ (−g) = ϕ̃3. It follows by [9,
Lemma 10], ̺◦(1+g) = 1−ϕ̃3 = ϕ̃3

∗
. We get ̺◦p = ϕ̃ where ϕ = (ϕ1⊕ϕ2)⊙ϕ∗

3.
Case 2. If r ∈ [−1, 0), then g + h = (g − 1) + (1+ h) and 1+ h : [0, 1]n → [0, 1].
By [9, Lemma 10] we get

̺ ◦ p = ((̺ ◦ (g − 1))⊕ (1 + h))⊙ (̺ ◦ g).
Following the initial step, there is a formula ϕ2 such that −h = ϕ̃2, so 1 + h =
1− (−h) = ϕ̃2

∗
. In the sequel we have to find a formula ϕ3 that corresponds to

̺ ◦ (g − 1), where
g(x) = rmym + · · ·+ rp+1yp+1 + rp + · · ·+ r1

with rj ∈ [−1, 1]\{0} for any j ∈ {1, . . . ,m} and yj in {xi11 · · ·xinn | i1+. . .+in ≤
k} for any j ∈ {p+ 1, . . . ,m}.
Case 2.1. If rj ≤ 0 for any j ∈ {1, . . . ,m} then g−1 ≤ 0, so ̺◦ (g−1) = 0 = ϕ̃3

with ϕ3 = 0.
Case 2.2. If there is j0 ∈ {1, . . . , p} such that rj0 > 0, then

(g − 1)(x) = rmym + · · ·+ rp+1yp+1 + rp + · · ·+ (rj0 − 1) + · · ·+ r1
and rj0 − 1 ∈ [−1, 0), so the induction hypothesis applies to g − 1. Then there
exists a formula ϕ3 such that ̺ ◦ (g − 1) = ϕ̃3.
Case 2.3. If there is j0 ∈ {p + 1, · · · ,m} such that rj0 > 0, then we set
h0(x) = rj0yj0 and

g0(x) = g(x)− rj0yj0 − 1.
It follows that g − 1 = g0 + h0 such that g0 satisfies the induction hypothesis
and h0 : [0, 1]n → [0, 1]. We are in the hypothesis of Case 1, so there exists a
formula ϕ3 such that ̺ ◦ (g − 1) = ϕ̃3.
Summing up, we get ̺ ◦ (g + h) = ϕ̃ with t = ((ϕ2 ⊕ ϕ∗

3)⊙ ϕ1).

5 Connections with the Pierce-Birkhoff conjec-

ture

At the end of the paper [3], the authors asked for a characterization of the "free,
commutative, real ℓ-algebra (ℓ-group) with n generators" and they conjectured
that "it is isomorphic with the l-group of real functions which are continuous and
piecewise polynomial of degree at most n over a finite number of pieces". They
asked "the same problem for the free (commutative) ℓ-rings, for free f -rings",
saying that: "The former is probably very difficult".

Definition 5.1. Let n ≥ 1 be a natural number.
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• A function f : R
n → R is a piecewise polynomial (PWP) function if

it is continuous and there is a finite set of polynomials {p1, . . . , pk} ∈
R[x1, . . . , xn] such that for any (a1, . . . , an) ∈ R

n there exists i ∈ {1, . . . , k}
with f(a1, . . . , an) = pi(a1, . . . , an).

• A continuous function f : Rn → R is a inf-sup-polynomial-definable (ISD)
function if there is a finite set of polynomials {qij |1 ≤ i ≤ m, 1 ≤ j ≤
k} ⊆ R[x1, . . . , xn] such that f =

∨m
i=1

∧k
j=1 qij .

We denote by PWP (n) the set of all PWP-functions and by ISD(n) the set
of all ISD-functions defined as above.

Remark 5.1. The Pierce-Birkhoff conjecture states that PWP (n) = ISD(n)
for any n ≥ 2 and, in this form, it was formulated by Henriksen and Isbell. The
proof for n ≤ 2 was made by L. Mahé in [19], where an unpublished proof of
Gus Efroymson is also quoted.

Definition 5.2. Let n ≥ 1 be a natural number.

• A function f : [0, 1]n → [0, 1] is a PWPu-function if it is continuous and
there is a finite set of polynomials with real coefficients p1, . . . , pk : Rn →
R such that for any (a1, . . . , an) ∈ R

n there exists i ∈ {1, . . . , k} with
f(a1, . . . , an) = pi(a1, . . . , an).

• A continuous function f : [0, 1]n → [0, 1] is an ISDu-function if there is a
finite set of polynomials with real coefficients {qij : [0, 1]n → R|1 ≤ i ≤
m, 1 ≤ j ≤ k} such that f =

∨m
i=1

∧k
j=1((qij ∨ 0) ∧ 1).

We denote by PWP (n)u the set of all PWPu-functions and by ISD(n)u the
set of all ISDu-functions.

Theorem 5.1. The following properties hold:
(1) ISD(n)u ⊆ FRn ⊆ PWP (n)u for any n ∈ N,
(2) ISD(n)u = FRn = PWP (n)u, for n ≤ 2.

Proof. (1) It is a direct consequence of Propositions 4.3 and 3.5.
(2) Let f ∈ PWP (n)u with n ≤ 2. f can be extended to a function f : Rn → R

in the following way: for n = 1, we set f(x) = c0 for any x ≤ 0 and f(x) = c1
for any x ≥ 1, where c0 = f(0) and c1 = f(1); for n = 2, since f is defined over
[0, 1]2, the result follows by [10, Theorem 1.2]. Therefore, by [19] there exist
two set of indexes I, J such that

f =
∨

i∈I

∧

j∈J

fij ,

where fij are polynomial functions from R
n to R with real coefficient. We con-

sider the restrictions f and fij on [0, 1]n of f and fij respectively, and we get

f = ̺ ◦ f =
∨

i∈I

∧

j∈J

(̺ ◦ fij) =
∨

i∈I

∧

j∈J

ϕ̃ij ,
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for some suitable formulas, by Proposition 4.3 . We set ϕ =
∨

i∈I

∧
j∈J ϕij , and

we get f = ϕ̃. Then PWP (n)u = FRn = ISD(n)u, for n ≤ 2.

Remark 5.2. We worked in the context of f MV-algebras, so the components
of the piecewise polynomial functions have real coefficients. A similar approach
can be used in the context of PMV-algebras, but in this case the components of
the piecewise polynomial functions will have integer coefficients. One can easily
see that Propositions 4.3, 3.5 and Theorem 5.1 can be proved in a similar way.

Conjecture 5.1. ISD(n)u = FRn = PWP (n)u for any n ≥ 3.

Conclusion. The Pierce-Birkhoff conjecture implies Conjecture 5.1 in the pres-
ence of additional extension results (see [10] for n = 2). Assuming Conjecture
5.1 holds, in order to prove the Pierce-Birkhoff conjecture, one needs results of
the following type:

if f ∈ PWP (n) such that (f ∧ 1 ∨ 0)|[0,1]n ∈ ISD(n)u then f ∈ ISD(n).

Conjecture 5.1 is a normal form theorem for the logical system FMVL+, ob-
tained by extending Łukasiewicz logic with both an internal and external pro-
duct and it can be seen as a local version of the Pierce-Birkhoff conjecture.
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