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Abstract

We introduce and study the notions of lower Wijsman topology, upper Wijsman
topology and Wijsman topology of a fuzzy metric space in the sense of Kramosil and
Michalek. In particular, quasi-uniformizability, uniformizability, quasi-metrizability
and metrizability of these topologies are discussed. Their relations with other hy-
pertopologies are also analyzed. Corresponding results to the Wijsman topology of
a metric space are deduced from our approach with the help of the standard fuzzy
metric.

Key words: Fuzzy metric space, Wijsman topology, bispace, separable, second
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1 Introduction and preliminaries

Wijsman introduced in [30] a kind of convergence for sequences of subsets of Rn which
is suitable for working with unbounded sets. Wijsman convergence motivated the intro-
duction and deep study of a topology on the set C0(X) of all nonempty closed subsets
of a metric space (X, d), the so-called Wijsman topology (see e.g. [1, 2] and their ref-
erences, [10, 12, 25, 31], and [6, 5] for more recent contributions). In particular, the
Wijsman topology of a metric space (X, d) is weaker than the topology of the Hausdorff
distance of (X, d).

Since, on the one hand, Wijsman convergence is considered by many mathematicians
as the point of departure for the modern theory of set convergence ([1, Section 2.1, p.
34], [2, Section 1]) and, on the other hand, there exists a well-established theory of the
Hausdorff fuzzy metric for fuzzy metric spaces, the problem of extending the notion
of Wijsman topology to a fuzzy metric space (X,M, ∗) and investigate, among other
properties, its relation with the topology induced by the Hausdorff fuzzy metric of
(X,M, ∗), arises in a natural way. In Section 2 we explore this problem and show
that the situation presents some interesting differences with respect to the classical case
of metric spaces. We also establish some fundamental results on uniformizability and
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metrizability of the Wijsman topology of a fuzzy metric space from which we deduce as
a consequence the classical results corresponding to metric spaces with the help of the
standard fuzzy metric of a metric space.

Furthermore, the Wijsman topology has been considered as the building blocks of
the lattice of hypertopologies because several hypertopologies can be obtained by taking
supremum or infimum of Wijsman topologies (see [3, 11, 12]). Then, it is natural to
wonder if this also occurs in the fuzzy context. Section 3 will be devoted to start this
study.

In the sequel the letters R and N will denote the set of real numbers and the set of
positive integer numbers, respectively.

Our basic references for quasi-metric spaces and quasi-uniform spaces are [9] and
[15], and for general topology it is [14].

Let us recall that a quasi-uniformity on a set X is a filter U on X ×X such that:

(QU1)) for each U ∈ U , ∆ ⊆ U, where ∆ = {(x, x) : x ∈ X};
(QU2) for each U ∈ U there is V ∈ U such that V 2 ⊆ U, where V 2 = {(x, y) ∈ X ×X :
there is z ∈ X with (x, z) ∈ V and (z, y) ∈ V }.

If, in addition, U satisfies:

(QU3) for each U ∈ U , U−1 ∈ U , where U−1 = {(x, y) ∈ X ×X : (y, x) ∈ U},

then U is called a uniformity (on X).

By a (quasi-)uniform space we mean a pair (X,U) such that X is a set and U is a
(quasi-)uniformity on X.

Given a quasi-uniformity U on a set X, the filter U−1 defined on X ×X by U−1 =
{U−1 : U ∈ U} is also a quasi-uniformity on X, called the conjugate of U , and the filter
Us = U ∨ U−1 is a uniformity on X. Obviously each uniformity U is a quasi-uniformity
where U = U−1.

Each quasi-uniformity U on X induces a topology τU on X such that a neighborhood
base for each point x ∈ X is given by {U(x) : U ∈ U}, where U(x) = {y ∈ X : (x, y) ∈
U}.

A bitopological space (or simply, a bispace) is a triple (X, τ1, τ2) such that X is a
set, and τ1 and τ2 are topologies on X.

A bispace (X, τ1, τ2) is called quasi-uniformizable if there is a quasi-uniformity U on
X such that τU = τ1 and τU−1 = τ2. If τ1 is a T0-topology, we say that (X, τ1, τ2) is a
quasi-uniformizable T0-bispace. In this case τ2 is also a T0 topology and (X, τ1 ∨ τ2) is
a Hausdorff uniformizable topological space.

A quasi-metric on a set X is a function d : X × X → [0,+∞) such that for all
x, y, z ∈ X :

(QM1) d(x, y) = d(y, x) = 0⇔ x = y;

(QM2) d(x, y) ≤ d(x, z) + d(z, y).

We shall also consider extended quasi-metrics. These satisfy the preceding conditions
(QM1) and (QM2) above, except that we allow d(x, y) = +∞.

By a quasi-metric space we mean a pair (X, d) such that X is a set and d is a
quasi-metric or an extended quasi-metric on X.

Given an extended quasi-metric d on a set X, the function d−1 defined on X × X
by d−1(x, y) = d(y, x), is also an extended quasi-metric on X, called the conjugate
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of d, and the function ds defined on X × X by ds(x, y) = max{d(x, y), d−1(x, y)} is
an extended metric on X. Of course, d−1 and ds are a quasi-metric and a metric,
respectively, whenever d is a quasi-metric on X. Obviously, each (extended) metric d is
an (extended) quasi-metric where d = d−1.

The following is an easy but useful example of a quasi-metric space.

Example 1.1. Let d be the function defined on R × R by d(x, y) = max{x − y, 0}.
Then (R, d) is a quasi-metric space and ds is the Euclidean metric on R.

Each extended quasi-metric d on X induces a T0 topology τd onX which has as a
base the family of open balls {Bd(x, ε) : x ∈ X, ε > 0}, where Bd(x, ε) = {y ∈ X :
d(x, y) < ε} for all x ∈ X and ε > 0.

Furthermore, it generates a quasi-uniformity Ud on X which has as a base the
countable family {Udn : n ∈ N}, where Udn = {(x, y) ∈ X × X : d(x, y) < 2−n} for all
n ∈ N.

A topological space (X, τ) is said to be quasi-metrizable if there is an extended quasi-
metric d on X such that τ = τd. Similarly, a bispace (X, τ1, τ2) is called quasi-metrizable
if there is an extended quasi-metric d on X such that τd = τ1 and τd−1 = τ2.

We conclude this section by recalling several notions, facts and examples on fuzzy
(quasi-)metric spaces which we will need in the rest of the paper. Our basic references
for fuzzy quasi-metric spaces are [19] and [8].

According to [27], a binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is a continuous t-norm
if ∗ satisfies the following conditions: (i) ∗ is associative and commutative; (ii) ∗ is
continuous; (iii) a ∗ 1 = a for every a ∈ [0, 1]; (iv) a1 ∗ b1 ≤ a2 ∗ b2 whenever a1 ≤ a2

and b1 ≤ b2, with a1, a2, b1, b2 ∈ [0, 1].

Three distinguished examples of continuous t-norm are ∧, Prod and ∗L (the  Lukasiewicz
t-norm) which are defined as a ∧ b = min{a, b}, a Prod b = ab, and a ∗L b = max{a +
b− 1, 0} for all a, b ∈ [0, 1], respectively. Recall that ∗ ≤ ∧ for every continuous t-norm
∗, and that continuous t-norm greater than or equal to ∗L is a copula [22].

By a fuzzy quasi-metric (KM-fuzzy quasi-metric in [8, 19]) on a set X we mean a
pair (M, ∗) such that ∗ is a continuous t-norm and M is a fuzzy set in X×X× [0,+∞)
such that for all x, y, z ∈ X :

(FQM1) M(x, y, 0) = 0;

(FQM2) M(x, y, t) = M(y, x, t) = 1 for all t > 0⇔ x = y;

(FQM3) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s) for all t, s ≥ 0;

(FQM4) M(x, y, ·) : [0,+∞)→ [0, 1] is left continuous.

If in addition, M satisfies

(FQM5) M(x, y, t) = M(y, x, t) for all t > 0,

then (M, ∗) is said to be a fuzzy metric (in the sense of Kramosil and Michalek [23]).

Of course, every fuzzy metric is a fuzzy quasi-metric.

A fuzzy (quasi-)metric space is a triple (X,M, ∗) such that X is a set and (M, ∗) is
a fuzzy (quasi-)metric on X.

It is well known that if (X,M, ∗) is a fuzzy quasi-metric space, then, for each x, y ∈ X
the function M(x, y, ·) is nondecreasing.
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Each fuzzy quasi-metric (M, ∗) on X induces a T0 topology τM onX which has
as a base the family of open balls {BM (x, ε, t) : x ∈ X, ε ∈ (0, 1), t > 0}, where
BM (x, ε, t) = {y ∈ X : M(x, y, t) > 1− ε} for all x ∈ X, ε ∈ (0, 1) and t > 0.

It is also well known (see e.g. [17, 19]) that every fuzzy (quasi-)metric space is
(quasi-)metrizable. More exactly, if (X,M, ∗) is a fuzzy (quasi-)metric space, then the
countable family {Un : n ∈ N} is a base for a (quasi-)uniformity UM on X such that
τUM = τM , where Un = {(x, y) ∈ X ×X : M(x, y, 1/n) > 1− 1/n} for all n ∈ N.

Example 1.2 (compare [16, Example 2.9], [17, Example 2.16]). Let d be an extended
(quasi-)metric on a set X and let Md be the function defined on X ×X × [0,+∞) by
Md(x, y, 0) = 0 and

Md(x, y, t) =
t

t+ d(x, y)
,

for all t > 0. (We adopt the convention that 1
+∞ = 0.) Then, for any continuous t-norm

∗, (Md, ∗) is a fuzzy (quasi-)metric on X called the standard fuzzy (quasi-)metric of
(X, d), and (X,Md, ∗) is called the standard fuzzy (quasi-)metric space of (X, d). Fur-
thermore, it is easy to check that the topologies τd and τMd

coincide on X.

Example 1.3 (see e.g. [7, Example 1]). Let d be an extended (quasi-)metric on a set X
and let Md

01 be the function defined on X×X×[0,+∞) by Md
01(x, y, t) = 0 if d(x, y) ≥ t,

and Md
01(x, y, t) = 1 if d(x, y) < t. Then, for any continuous t-norm ∗, (Md

01, ∗) is a fuzzy
(quasi-)metric on X. Furthermore, it is easy to check that the topologies τd and τMd

01

coincide on X.
In the particular case of the metric space (R, e), where e denotes the Euclidean met-

ric on R, we will simply write M01 instead of M e
01.

Remark 1.1. Let us recall that a sequence (xn)n∈N in a fuzzy metric space (X,M, ∗) is
a Cauchy sequence provided that for each t > 0 and each ε ∈ (0, 1) there exists n0 ∈ N
such that M(xn, xm, t) > 1 − ε whenever n,m ≥ n0. A fuzzy metric space (X,M, ∗)
is said to be complete if every Cauchy sequence converges with respect to τM . It is
well known, and easy to check, that if (X, d) is a complete metric space, then the fuzzy
metric spaces (X,Md, ∗) and (X,Md

01, ∗), of Examples 1.2 and 1.3, are complete.

2 The Wijsman topology of a fuzzy metric space

Following Beer [1, p. 34 and 114], the lower Wijsman topology of a metric space
(X, d), denoted by τ−Wd

, is the weakest topology on C0(X) for which the functional
d(x, ·) : C0(X) → [0,+∞) is upper semicontinuous for all x ∈ X. Similarly, the upper
Wijsman topology of (X, d), denoted by τ+

Wd
, is the weakest topology on C0(X) for which

the functional d(x, ·) is lower semicontinuous for all x ∈ X, and the Wijsman topology
of (X, d), denoted by τWd

, is the weakest topology on C0(X) for which the functional
d(x, ·) is continuous for all x ∈ X.

Remark 2.1. The topologies τ−Wd
, τ+

Wd
and τWd

always exist because the functional
d(x, ·) is upper and lower semicontinuous, and hence continuous, for the discrete topol-
ogy on C0(X). Moreover, one has τWd

= τ−Wd
∨ τ+

Wd
.
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Definition 2.1. Let (X,M, ∗) be a fuzzy metric space. The weakest topology on C0(X)
such that for each x ∈ X and each t > 0 the functional M(x, ·, t) : C0(X)→ [0, 1], given
by

M(x,A, t) = supa∈AM(x, a, t)

for all A ∈ C0(X), is lower semicontinuous will be called the lower Wijsman topology of
(X,M, ∗) and it will be denoted by τ−WM

.

Similarly, the weakest topology on C0(X) such that for each x ∈ X and each t > 0 the
functional M(x, ·, t) is upper semicontinuous will be called the upper Wijsman topology
of (X,M, ∗) and it will be denoted by τ+

WM
, and the weakest topology on C0(X) such

that for each x ∈ X and each t > 0 the functional M(x, ·, t) is continuous will be called
the Wijsman topology of (X,M, ∗) and it will be denoted by τWM

.

Remark 2.2. Obviously (compare Remark 2.1) the topologies τ−WM
, τ+

WM
and τWM

always exist and one has τWM
= τ−WM

∨ τ+
WM

.

Remark 2.3. It is clear that a subbase for τ−WM
consists of all sets of the form

{A ∈ C0(X) : M(x,A, t) > δ}, where x ∈ X, t > 0 and 0 < δ < 1, while a sub-
base for τ+

WM
consists of all sets of the form {A ∈ C0(X) : M(x,A, t) < δ}, where x ∈ X,

t > 0 and 0 < δ < 1.

Remark 2.4. It follows from Remarks 2.2 and 2.3 that a subbase for τWM
consists of

all sets of the form {A ∈ C0(X) : M(x,A, t) > δ} and {A ∈ C0(X) : M(x,A, t) < δ},
where x ∈ X, t > 0 and 0 < δ < 1.

Example 2.1. Let (X, d) be a metric space and let (Md, ∗) the fuzzy metric constructed
in Example 1.2. Since

Md(x,A, t) =
t

t+ d(x,A)
,

for all x ∈ X, A ∈ C0(X) and t > 0, it immediately follows that the functional Md(x, ·, t)
is lower semicontinuous (resp. upper semicontinuous) for a topology τ on C0(X) if and
only if the functional d(x, ·) is upper semicontinuous (resp. lower semicontinuous) for
τ. Therefore τ−Wd

= τ−WMd
and τ+

Wd
= τ+

WMd
, and hence τWd

= τWMd
on C0(X).

Let us recall (see e.g. [1, p. 6-7]) that the Hausdorff distance on C0(X) of a metric
space (X, d) is the extended metric Hd on C0(X), defined as Hd = max{H−d , H

+
d }, where

H−d and H+
d are defined by

H−d (A,B) = sup
a∈A

d(a,B), and H+
d (A,B) = sup

b∈B
d(A, b),

for all A,B ∈ C0(X).

In fact, H−d and H+
d are extended quasi-metrics on C0(X) (compare [4, 24, 25]). The

restriction of H−d and H+
d to the set CB0(X) of all nonempty closed and bounded, are

quasi-metrics and thus Hd is a metric on CB0(X), called the Hausdorff metric of (X, d).
An important and well-known result states that if (X, d) is a metric space, then, for

each x ∈ X, the functional d(x, ·) is upper semicontinuous on (C0(X), H−d ) and lower
semicontinuous on (C0(X), H+

d ), and hence it is continuous on (C0(X), Hd). Therefore,
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one has τ−Wd
⊆ τH−

d
, τ+

Wd
⊆ τH+

d
and τWd

⊆ τHd
on C0(X). Now we will discuss the

corresponding situation in the realm of fuzzy metric spaces and we shall show that it
has some interesting differences with respect to the classical metric case.

To this end, we first proceed to recall the construction of the Hausdorff fuzzy metric
of a fuzzy metric space (X,M, ∗) (see e.g. [21, p. 98]), which is done by adapting to
the fuzzy setting the definition of the Hausdorff probabilistic metric of a probabilistic
metric space [13, 27, 28, 29].

For each A,B ∈ C0(X) let

H−M (A,B, 0) = H+
M (A,B, 0) = 0,

H−M (A,B, t) = sup
0<s<t

inf
a∈A

M(a,B, s), H+
M (A,B, t) = sup

0<s<t
inf
b∈B

M(A, b, s),

for all t > 0, and

HM (A,B, t) = min{H−M (A,B, t), H+
M (A,B, t)},

for all t ≥ 0.

Then (HM , ∗) is a fuzzy metric on C0(X), called the Hausdorff fuzzy metric of
(X,M, ∗). In fact (H−M , ∗) and (H+

M , ∗) are fuzzy quasi-metrics on C0(X) [26].

Our first result in this section provides a fuzzy extension of the fact that for a metric
space (X, d), the functional d(x, ·) is upper semicontinuous on (C0(X), H−d ).

Proposition 2.1. Let (X,M, ∗) be a fuzzy metric space. Then, for each x ∈ X and
each t > 0 the functional M(x, ·, t) is lower semicontinuous on the fuzzy quasi-metric
space (C0(X), H−M ).

Proof. Suppose that there exist x ∈ X and t > 0 for which M(x, , t) is not lower
semicontinuous on (C0(X), H−M ). Then, there exist A ∈ C0(X) and a sequence (An)n∈N
in C0(X) such that for each n ∈ N,

H−M (A,An, 1/n) > 1− 1/n, but

M(x,A, t)−M(x,An, t) > ε for some ε ∈ (0, 1).

Since M(x,A, t) > ε and M(x,A, ·) is left continuous, there is n0 ∈ N such that
M(x,A, t− 1/n) > ε > 1/n for all n ≥ n0.

Now for each n ≥ n0 take yn ∈ A such that

M(x, yn, t− 1/n) + 1/n > M(x,A, t− 1/n).

From our assumption thatH−M (A,An, 1/n) > 1−1/n, it follows thatM(yn, An, 1/n) >
1− 1/n for all n ≥ n0, so

M(x,An, t) ≥ M

(
x, yn, t−

1

n

)
∗M

(
yn, An,

1

n

)

≥
(
M

(
x,A, t− 1

n

)
− 1

n

)
∗
(

1− 1

n

)
,

for all n ≥ n0.
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Since 0 < M(x,An, t) < 1 for all n ∈ N, there exists a subsequence (Ank
)k∈N of

(An)n∈N for which there exists limkM(x,Ank
, t). Then

lim
k
M(x,Ank

, t) ≥ lim
k

(
M

(
x,A, t− 1

nk

)
− 1

nk

)
∗ lim

k

(
1− 1

nk

)
= M(x,A, t),

which contradicts our assumption that M(x,A, t) > M(x,An, t)+ε for all n ∈ N. �

As we recalled above, given a metric space (X, d), the functional d(x, ·) is lower
semicontinuous on (C0(X), H+

d ). The following (compare with Proposition 2.1 above) is
an example of a fuzzy metric space (X,M, ∗) for which there exist x ∈ X and t > 0
such that the functional M(x, ·, t) is not upper semicontinuous on (C0(X), H+

M ).

Example 2.2. Given the metric space (R, e), let (M01,∧) be the fuzzy metric on R
associated to (R, e), as constructed in Example 1.3. Take x = 1, t = 1, A = {0} and
An = {1/n} for all n ∈ N. Since the sequence (1/n)n∈N converges to 0 with respect to
the Euclidean topology, i.e., with respect to the topology induced by (M01,∧), then the
sequence (An)n∈N converges to A in (C0(R), HM01) and hence in (C0(R), H+

M01
). Never-

theless, we have M01(x,A, t) = 0 and M01(x,An, t) = 1 for all n ∈ N, so M01(1, ·, 1) is
not upper semicontinuous on (C0(R), H+

M01
).

From Proposition 2.1 it follows that for any fuzzy metric space (X,M, ∗) one has
τ−WM

⊆ τH−
M

on C0(X). Example 2.2 shows that, nevertheless, the inclusion τ+
WM
⊆ τH+

M

does not hold in general. However we can show the following result.

Proposition 2.2. Let (X,M, ∗) be a fuzzy metric space such that for each x ∈ X and
each A ∈ C0(X) the function M(x,A, ·) : (0,+∞) → [0, 1] is continuous. Then, for
each x ∈ X and each t > 0 the functional M(x, ·, t) is upper semicontinuous on the
fuzzy quasi-metric space (C0(X), H+

M ).

Proof. Suppose that there exist x ∈ X and t > 0 for which M(x, ·, t) is not upper
semicontinuous on (C0(X), H+

M ). Then, there exist A ∈ C0(X) and a sequence (An)n∈N
in C0(X) such that for each n ∈ N,

H+
M (A,An, 1/n) > 1− 1/n, but

M(x,An, t)−M(x,A, t) > ε for some ε ∈ (0, 1).

For each n ∈ N take an ∈ An such that

M(x, an, t) + 1/n > M(x,An, t).

From our assumption thatH+
M (A,An, 1/n) > 1−1/n, it follows thatM(A, an, 1/n) >

1− 1/n for all n ∈ N.
Now choose n0 ∈ N with ε > 1/n0. Then for each n ≥ n0 we have

M

(
x,A, t+

1

n

)
≥ M(x, an, t) ∗M

(
an, A,

1

n

)

≥
(
M(x,An, t)−

1

n

)
∗
(

1− 1

n

)
.
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Since M(x,An, t) − 1/n ∈ (0, 1) for all n ≥ n0 there exist a subsequence (Ank
)k∈N of

(An)n∈N and a real number r ∈ [0, 1] such that

lim
k→∞

M(x,Ank
, t) = r.

Hence, from our hypothesis that M(x,A, ·) is continuous on (0,+∞), and taking into
account that ∗ is continuous on [0, 1]× [0, 1], we deduce that

M(x,A, t) ≥ r.

ThereforeM(x,An, t) > ε+r for all n ∈ N, which contradicts that limk→∞M(x,Ank
, t) =

r. �

From Remak 2.2, and Propositions 2.1 and 2.2 we deduce the following.

Corollary 2.1. Let (X,M, ∗) be a fuzzy metric space such that for each x ∈ X and
each A ∈ C0(X) the function M(x,A, ·) : (0,+∞) → [0, 1] is continuous. Then, for
each x ∈ X and each t > 0 the functional M(x, ·, t) is continuous on the fuzzy metric
space (C0(X), HM ).

Note that the function M(x,A, ·) : (0,+∞)→ [0, 1] is left continuous (equivalently,
lower semicontinuous) for each x ∈ X and each A ∈ C0(X). Consequently, in Proposition
2.2 and Corollary 2.1 it would be enough to ask that the function M(x,A, ·) is right
continuous (equivalently, upper semicontinuous) for each x ∈ X and each A ∈ C0(X)..

In the sequel a fuzzy metric space (X,M, ∗) such that for each x ∈ X and each
A ∈ C0(X) the function M(x,A, ·) : (0,+∞) → [0, 1] is upper semicontinuous (equiva-
lently, continuous), will be called a C-usc fuzzy metric space. In such a case, we will
say that (M, ∗) is a C-usc fuzzy metric on X.

Remark 2.5. Although it is clear that the fuzzy metric space of Example 2.2 is not
C-usc, there exist several interesting examples of C-usc fuzzy metric spaces. In fact, the
standard fuzzy metric space (Example 2.1), and any stationary fuzzy metric space are
instances of C -usc fuzzy metric spaces (recall that a fuzzy metric (M, ∗) on a set X is
stationary [18] provided that for each x, y ∈ X, the function M(x, y, ) : [0,+∞)→ [0, 1]
is constant). For another example, let (X, d) be a metric space; then, it is easy
to check that (X,M, ∗) is a C-usc fuzzy metric space, where ∗ is any continuous t-
norm and M is defined on X × X × [0,+∞) by M(x, y, t) = 0 if d(x, y) ≥ t, and
M(x, y, t) = (t− d(x, y))/(t+ d(x, y)) if d(x, y) < t.

The following two results provide fundamental properties of the Wijsman topology
of a metric space (see e.g. [1, Lemma 2.1.4 and Theorem 2.1.5]).

For a metric space (X, d) the following hold:

(A) The Wijsman topology τWd
on C0(X) is admissible, Hausdorff and uniformizable.

(B) τWd
on C0(X) is second countable if and only if (X, d) is separable.

Next we discuss the corresponding properties in the realm of fuzzy metric spaces.
We shall show that, extending parts of result (A) above, the Wijsman topology τWM

on C0(X) of a fuzzy metric space (X,M, ∗) is Hausdorff and uniformizable (actually,
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we shall show a more general result involving quasi-uniformizability of the lower and
upper Wijsman topologies). On the other hand, we shall show that contrarily to the
metric case, the space of Example 2.2 provides an instance of a separable fuzzy metric
space for which its Wijsman topology is not admissible and does not admit a countable
base. However, we are able to show that separability of a fuzzy metric space (X,M, ∗)
characterizes both second countability and quasi-metrizability of the lower Wijsman
topology on C0(X). We will conclude this section by showing that if (X,M, ∗) is a C-usc
fuzzy metric space, then the following conditions are equivalent: (i) the lower and upper
Wijsman topologies on C0(X) are second countable; (ii) the Wijsman topology on C0(X)
is second countable; (iii) (X,M, ∗) is separable. The classical metric result (B) will be
deduced as a consequence of that characterization.

Of course, a fuzzy metric space (X,M, ∗) is said to be separable if the metrizable
topological space (X, τM ) is separable (equivalently, if τM has a countable base).

Theorem 2.1. Let (X,M, ∗) be a fuzzy metric space. Then (C0(X), τ−WM
, τ+
WM

) is a
quasi-uniformizable T0-bispace.

Proof. It straightforward to see that τ−WM
is a T0 topology on C0(X).

Now, for each x ∈ X, ε ∈ (0, 1) and t > 0 define

Ux,ε,t = {(A,B) ∈ C0(X)× C0(X) : M(x,A, t)−M(x,B, t) < ε}.

Then, it is routine to check that the collection

{Ux,ε,t : x ∈ X, ε ∈ (0, 1), t > 0},

generates a quasi-uniformity UWM
on C0(X). Now let (Aλ)λ∈Λ be a net in C0(X). By

Definition 2.1, (Aλ)λ∈Λ τ−WM
-converges to an A ∈ C0(X) if and only if for each x ∈ X,

ε ∈ (0, 1) and t > 0, we have Aλ ∈ Ux,ε,t(A) eventually. We deduce that τUWM
= τ−WM

.

A similar argument shows that τU−1
WM

= τ+
WM

. �

Corollary 2.2. Let (X,M, ∗) be a fuzzy metric space. Then (C0(X), τWM
) is a Haus-

dorff uniformizable space.

As we recalled above, an important fact in the realm of metric spaces is that the
Wijsman topology on C0(X) of a metric space (X, d) is admissible, i.e., the relative
topology, denoted by τWd|X , that X inherits from τWd

, under the identification x↔ {x},
agrees with the topology τd induced by d (see e.g. [1, Lemma 2.1.4]).

We shall show that this fact does not hold for fuzzy metric spaces, in general. More
exactly, we shall show that for the fuzzy metric (M01,∧) of Example 2.2, the relative
topology τWM01

|R, that R inherits from the Wijsman topology τWM01
is the discrete

topology on R. Therefore, τWM01
on C0(X) is not second countable, so result (B) cannot

be generalized to fuzzy metric spaces without some additional condition.

The following auxiliary result, whose easy proof we omit, will be useful.

Lemma 2.1. Let (X,M, ∗) be a fuzzy metric space. Then τ−WM |X = τM .

Example 2.3. Consider the fuzzy metric (M01,∧) associated to the (Euclidean) metric
space (R, e). Then, for each x, y ∈ R and t ≥ 0, M01(x, y, t) = 1 if |x− y| < t, and
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M01(x, y, t) = 0 if |x− y| ≥ t. Since (R, e) is separable, then (R,M01,∧) is separable.
In particular τe = τM01 , so by Lemma 2.1, τ−WM01

|R is the Euclidean topology on R.
Now take any x ∈ R. Then (see the construction in the proof of Theorem 2.1) for each
ε ∈ (0, 1) we obtain

(Ux−1,ε,1)−1(x) = {y ∈ R : M01(x− 1, y, 1)−M01(x− 1, x, 1) < ε}
= {y ∈ R : M01(x− 1, y, 1) < ε}
= {y ∈ R : M01(x− 1, y, 1) = 0}
= {y ∈ R : |x− 1− y| ≥ 1} = (−∞, x− 2] ∪ [x,∞).

Similarly

(Ux−1,ε,1)−1(x) = {y ∈ R : M01(x+ 1, y, 1) < ε}
= {y ∈ R : |x+ 1− y| ≥ 1} = (−∞, x] ∪ [x+ 2,∞),

where the entourages Ux−1,ε,1 and Ux−1,ε,1 are restricted to R× R.
Since by Theorem 2.1 and its proof, (Ux−1,ε,1)−1(x) and (Ux+1,ε,1)−1(x) are τ+

WM01
|R-

neighborhoods of x, we deduce that V (x) = (Ux−1,ε,1)−1(x) ∩ (Ux+1,ε,1)−1(x) is also a
τ+
WM01

|R-neighborhood of x. Finally, since V (x) = {x} ∪ (−∞, x − 2] ∪ [x + 2,∞) and

τ−WM01
|R is the Euclidean topology on R we deduce that {x} is a τWM01

|R-neighborhood

of x. We conclude that τWM01
|R is the discrete topology on R.

In the proof of our next result we adapt a technique used for the case of metric
spaces (see e.g. [1, Theorem 2.1.5]) to our fuzzy framework. In particular, we will need
the following adaptation of a well-known procedure for ε-discrete subsets of a metric
space [1, p. 36].

Let ε ∈ (0, 1). A subset E of a fuzzy metric space (X,M, ∗) is said to be ε-discrete if
for each x, y ∈ E, with x 6= y, we have M(x, y, ε) ≤ 1− ε. Denote by E the collection of
all ε-discrete subsets of (X,M, ∗) ordered by set inclusion. Since for any linearly ordered
subset L on E , the ε-discrete set ∪E∈LE is an upper bound of L, we deduce from Zorn’s
lemma that X has a maximal ε-discrete subset Eε. Furthermore X = ∪x∈EεBM (x, ε, ε).
Indeed, if there is y ∈ X\ ∪x∈Eε BM (x, ε, ε), then {y} ∪ Eε is a ε-discrete subset of X,
which contradicts the fact that Eε is maximal.

Theorem 2.2. For a fuzzy metric space (X,M, ∗) the following conditions are equiva-
lent:

(1) (X,M, ∗) is separable;
(2) The topology τ−WM

on C0(X) is second countable;

(3) (C0(X), τ−WM
) is a quasi-metrizable space;

(4) The topology τ−WM
on C0(X) is first countable.

Proof. (1)⇒ (2). Let D be a countable dense subset of (X, τM ). We shall show that
if we denote by Q+ the set of all positive rational numbers, then the sets

{A ∈ C0(X) : M(x,A, t) > δ}, (x ∈ D, t ∈ Q+, δ ∈ (0, 1) ∩Q+),

form a countable subbase of the topology τ−WM
on C0(X).
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To this end, let A ∈ C0(X), x ∈ X, t > 0 and δ ∈ (0, 1) such that A ∈ V, where

V = {B ∈ C0(X) : M(x,B, t) > δ}.

Choose δ1, δ2 ∈ (0, δ) ∩Q+ such that M(x,A, t) > δ2 > δ1 > δ. There exists a0 ∈ A
such that M(x, a0, t) > δ2.

By the left continuity of M(x, a0, ·), there exists s0 ∈ (0, t) such that M(x, a0, s) > δ2

whenever s ∈ [s0, t]. Choose η ∈ (0, 1) and t1 ∈ Q+ such that s0 + 2η < t1 + η < t.
Now take ε ∈ (0, 1) such that (1−ε)∗ δ2 > δ1 and (1−ε)∗ δ1 > δ. Then, there exists

z ∈ D such that M(x, z, η) > 1− ε.
We show that M(z,A, t1) > δ1. Indeed, we have

M(z,A, t1) ≥M(z, a0, t1) ≥M(z, x, η) ∗M(x, a0, s0) ≥ (1− ε) ∗ δ2 > δ1.

Finally, let B ∈ C0(X) such that M(z,B, t1) > δ1. Then, there exists b0 ∈ B such
that M(z, b0, t1) > δ1. Hence

M(x,B, t) ≥M(x, b0, t) ≥M(x, z, η) ∗M(z, b0, t1) ≥ (1− ε) ∗ δ1 > δ,

and thus B ∈ V. This concludes the proof.

(2)⇒ (3). This follows from the well-known result (see e.g. [9, Theorems 1.1.25 and
1.2.53]) that every T0 second countable topological space is quasi-metrizable.

(3)⇒ (4) is obvious.

(4) ⇒ (1). If for each ε ∈ (0, 1), any ε-discrete subset of (X,M, ∗) were countable,
then for each n ∈ N there would exist a countable 1/n-discrete subset En of X such
that X = ∪x∈EnBM (x, 1/n, 1/n). Then X = ∪n∈NEn, so (X,M, ∗) would be separable.
Hence, if (X,M, ∗) is not separable, there exist an ε ∈ (0, 1) and an uncountable ε-
discrete subset W of X. Clearly, a base of τ−WM

-neighborhoods of X ∈ C0(X) consists
of all sets of the form

B(F, t, δ) = {A ∈ C0(X) : M(x,A, t) > δ for all x ∈ F},

where F runs over the finite subsets of X, t > 0 and δ ∈ (0, 1).

Let {B(Fn, tn, δn) : n ∈ N} be a countable family of such sets. Choose δ ∈ (0, 1)
such that (1− δ) ∗ (1− δ) > 1− ε.

Then, there exists w0 ∈W such that M(w0, x, ε/2) < 1− δ for all x ∈ ∪n∈NFn.
(Otherwise, since ∪n∈NFn is countable and W is uncountable, there are w1, w2 ∈W,

w1 6= w2, and x0 ∈ X such that M(wi, x0, ε/2) ≥ 1− δ, i = 1, 2. Thus, M(w1, w2, ε) >
1− ε, which contradicts the fact that W is ε-discrete.)

Finally, consider the τ−WM
-neighborhood of X,

UX = {A ∈ C0(X) : M(w0, A, ε/2) > 1− δ}.

Since for each n ∈ N, Fn ∈ B(Fn, tn, δn)\UX , we deduce that X has no a countable base
of τ−WM

-neighborhoods, and, hence, the topology τ−WM
fails to be first countable. �

11



Theorem 2.3. For a C-usc fuzzy metric space (X,M, ∗) the following conditions are
equivalent:

(1) (X,M, ∗) is separable;
(2) The topologies τ−WM

and τ+
WM

on C0(X) are second countable;

(3) (C0(X), τ−WM
, τ+
WM

) is a quasi-metrizable bispace;

(4) The topologies τ−WM
and τ+

WM
on C0(X) are first countable.

Proof. (1)⇒ (2). Let D be a countable dense subset of (X, τM ). Then, the sets

{A ∈ C0(X) : M(x,A, t) > δ}, (x ∈ D, t ∈ Q+, δ ∈ (0, 1) ∩Q+),

and

{A ∈ C0(X) : M(x,A, t) < δ}, (x ∈ D, t ∈ Q+, δ ∈ (0, 1) ∩Q+),

form countable subbases of the topologies τ−WM
and τ+

WM
on C0(X), respectively.

Indeed, it was proved in Theorem 2.2, (1)⇒ (2), that the sets

{A ∈ C0(X) : M(x,A, t) > δ}, (x ∈ D, t ∈ Q+, δ ∈ (0, 1) ∩Q+),

form a countable subbase of τ−WM
on C0(X).

In order to complete the proof of this implication let A ∈ C0(X), x ∈ X, t > 0 and
δ ∈ (0, 1) such that A ∈ V, where

V = {B ∈ C0(X) : M(x,B, t) < δ}.

Choose δ1 ∈ (0, δ) ∩ Q+ such that M(x,A, t) < δ1. Since (X,M, ∗) is C-usc there
exist t1 ∈ Q+, with t1 > t, and ε > 0 such that M(x,A, t′) < δ1 whenever t′ ∈ [t, t1 + ε].

Take δ2 ∈ (0, 1) such that M(x,A, t1 + ε) < δ1 ∗ δ2, and δ3 ∈ (0, 1) such that
δ3 ∗ δ > δ1.

Now take t′ ∈ (t, t+ ε) with t′ < t1 . Then, there is z ∈ D such that M(x, z, t′− t) >
max{δ2, δ3}.

We show that M(z,A, t1) < δ1. Assume the contrary. Then there is a sequence
(an)n in A such that

M(z, an, t1) +
1

n
> δ1,

eventually. Therefore

M(x, an, t1 + ε) ≥M(x, z, t′ − t) ∗M(z, an, t1) ≥ δ2 ∗
(
δ1 −

1

n

)
,

eventually. Consequently
M(x,A, t1 + ε) ≥ δ2 ∗ δ1,

which contradicts the fact that M(x,A, t1 + ε) < δ1 ∗ δ2.
It remains to show that B ∈ V whenever B ∈ C0(X) satisfies M(z,B, t1) < δ1.

Indeed, suppose that for such a B one has M(x,B, t) ≥ δ. Then there exists a sequence
(bn)n in B such that

M(x, bn, t) +
1

n
> δ,

eventually. Therefore

M(z, bn, t1) ≥M(z, x, t′ − t) ∗M(x, bn, t) ≥ δ3 ∗
(
δ − 1

n

)
,
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eventually. Consequently
M(z,B, t1) ≥ δ3 ∗ δ > δ1,

which contradicts the fact that M(z,B, t1) < δ1. We conclude that B ∈ V.

(2) ⇒ (3). This follows from Theorem 2.1 and the well-known result (see e.g. [9,
Theorems 1.1.25 and 1.2.53]) that every quasi-uniformizable T0-bispace (X, τ1, τ2) such
that τ1 and τ2 are second countable topologies, is quasi-metrizable.

(3)⇒ (4) is obvious and (4)⇒ (1) follows from Theorem 2.2, (4)⇒ (1). �

Corollary 2.3. For a C-usc fuzzy metric space (X,M, ∗) the following conditions are
equivalent:

(1) (X,M, ∗) is separable;
(2) The topology τWM

on C0(X) is second countable;
(3) (C0(X), τWM

) is a metrizable space;
(4) The topology τWM

on C0(X) is first countable.

From Corollary 2.3, Example 2.1 and Remark 2.5 we deduce the following.

Corollary 2.4 (see e.g. [1, Theorem 2.1.5]). For a metric space (X, d) the following
conditions are equivalent:

(1) (X, d) is separable;
(2) The topology τWd

on C0(X) is second countable;
(3) (C0(X), τWd

) is a metrizable space;
(4) The topology τWd

on C0(X) is first countable.

Remark 2.6. A very nice result due to Beer (see [1, Theorem 2.5.4]) states that if
(X, d) is a complete and separable metric space, then (C0(X), τWd

) is separable and
admits a compatible complete metric. Example 2.3 shows that this result cannot be
generalized to fuzzy metric spaces, in general. Indeed, since (R, e) is complete and sep-
arable, then (R,M01,∧) is complete and separable but (C0(X), τWM01

) is not separable
because, obviously, (R, τWM01

|R) is not separable (recall that every subspace of a sepa-
rable metrizable space is separable).

Remark 2.7. It seems interesting to point out that Theorem 2.2 (3) and Example 2.3
provide an instance of a quasi-metric d on R such that τd is the Euclidean topology on
R and τds is the discrete topology on R.

3 Connections with other hypertopologies

In this section we explore the relationship between the Wijsman topology of a fuzzy
metric space (X,M, ∗) and other topologies on C0(X) that arise in a natural way in this
context.

We first describe convergence in the Wijsman topology in a similar way to the clas-
sical metric case (compare [1, Lemma 2.1.2]).

Proposition 3.1. Let (X,M, ∗) be a fuzzy metric space. Then a net (Aλ)λ∈Λ in C0(X)
is:
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(a) τ−WM
-convergent to A ∈ C0(X) if and only if whenever A∩G 6= ∅ then Aλ∩G 6= ∅

eventually for every nonempty open set G;
(b) τ+

WM
-convergent to A ∈ C0(X) if and only if whenever 0 < δ < ε < 1 and t > 0

then BM (x, ε, t) ∩A = ∅ implies BM (x, δ, t) ∩Aλ = ∅ eventually.

Proof. (a) Suppose that (Aλ)λ∈Λ is τ−WM
-convergent to A. Let G be a nonempty open

set such that there exists x ∈ A∩G. Let ε ∈ (0, 1) and t > 0 such that BM (x, ε, t) ⊆ G.
Since A ∈ {B ∈ C0(X) : M(x,B, t) > 1 − ε}, then Aλ belongs to that set eventually,
i.e., M(x,Aλ, t) > 1− ε so BM (x, ε, t) ∩Aλ 6= ∅ eventually.

Conversely, suppose that A ∈ {B ∈ C0(X) : M(x,B, t) > ε}. Then A ∩ BM (x, 1 −
ε, t) 6= ∅ so Aλ ∩ BM (x, 1 − ε, t) 6= ∅ eventually. Consequently, Aλ ∈ {B ∈ C0(X) :
M(x,B, t) > ε} eventually.

(b) Suppose that (Aλ)λ∈Λ is τ+
WM

-convergent to A. Let 0 < δ < ε < 1 and t > 0 with
BM (x, ε, t)∩A = ∅. Then M(x,A, t) ≤ 1−ε < 1−δ. By assumption M(x,Aλ, t) < 1−δ
eventually, so BM (x, δ, t) ∩Aλ = ∅ eventually.

Conversely, suppose that A ∈ {B ∈ C0(X) : M(x,B, t) < ε}. Let α = M(x,A, t) < ε.
Since BM (x, 1 − α, t) ∩ A = ∅, by hypothesis BM (x, 1 − α+ε

2 , t) ∩ Aλ = ∅, i.e.,
M(x,Aλ, t) ≤ (α+ ε)/2 < ε eventually. �

Remark 3.1. We observe that as an immediate consequence of part (a) of the above
result, the lower Wijsman topology of a fuzzy metric space (X,M, ∗) coincides with the
lower Vietoris topology [1] associated with the topology τM which has as a base the
elements of the form

G− = {A ∈ C0(X) : A ∩G 6= ∅},

where G is a nonempty τM -open subset of X.
Indeed, it is easy to prove that if G is τM -open and for each x ∈ G we pick up

εx ∈ (0, 1) and tx > 0 such that BM (x, εx, tx) ⊆ G, then

G− = ∪x∈G{A ∈ C0(X) : M(x,A, tx) > 1− εx}.

Moreover, it is obvious that

{A ∈ C0(X) : M(x,A, t) > 1− ε} = (BM (x, ε, t))−.

From this fact and Theorem 2.2 it follows that a fuzzy metric space (X,M, ∗) is
separable if and only if the lower Vietoris topology associated to τM is second countable
on C0(X).

Next we recall two definitions of classical hypertopologies ( see e.g. [1]).

Let (X, τ) be a topological space. The upper Vietoris topology τ+
V on C0(X) is the

topology generated by all sets of the form

G+ = {B ∈ C0(X) : B ⊆ G},

where G is a nonempty open subset of X.

Let (X,U) be a uniform space. The upper proximal topology σ++
U on C0(X) is the

topology generated by all sets of the form

G++ = {B ∈ C0(X) : U(B) ⊆ G for some U ∈ U},
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where G is a nonempty open subset of X.

It is clear that for every uniform space (X,U), σ++
U ⊆ τ+

V , where τ+
V is the upper

Vietoris topology of (X, τU ).
If (X, d) is a metric space we shall denote by σ++

d the upper proximal topology of
the uniformity generated by d.

Observe that the definition of the upper Vietoris topology is purely topological so
it can be considered directly in a fuzzy metric space. Nevertheless, the definition of the
upper proximal topology makes use of a uniformity so a suitable definition is needed in
this framework.

Definition 3.1. Let (X,M, ∗) be a fuzzy metric space. Then, the upper proximal
topology σ++

M is the topology on C0(X) which has as a base the sets of the form

G++ = {B ∈ C0(X) : BM (B, ε, t) ⊆ G for some ε ∈ (0, 1) and t > 0},
where G is a nonempty τM -open subset of X.

Remark 3.2. Let (X, d) be a metric space. Then σ++
d = σ++

Md
on C0(X).

Let us show this. Indeed, suppose that A ∈ C0(X) and Bd(A, ε) ⊆ G where G
is open. Let 0 < t < 1 − ε. We claim that BMd

(A, ε, t) ⊆ G. In fact, suppose
Md(a, y, t) > 1 − ε where a ∈ A. Hence, d(a, y) < εt/(1 − ε) < ε, so y ∈ G. In a
similar way it can be proved that if BMd

(A, ε) ⊆ G then Bd(A, εt/(1− ε)) ⊆ G.

Next we show that every upper proximal topology of a fuzzy metric space is a classi-
cal upper proximal topology. More precisely, we show that the upper proximal topology
induced by a fuzzy metric space (X,M, ∗) can be also induced by a certain metric d onX.

Proposition 3.2. Let (X,M, ∗) be a fuzzy metric space. Then σ++
M = σ++

d on C0(X)
where d is any metric on X generating the uniformity UM .

Proof. Suppose that BM (A, ε, t) ⊆ G where A ∈ C0(X), ε ∈ (0, 1), t > 0 and G is a
nonempty τM -open subset of X. Since d is compatible with UM we can find δ > 0 such
that

{(x, y) ∈ X ×X : d(x, y) < δ} ⊆ {(x, y) ∈ X ×X : M(x, y, t) > 1− ε}.

Consequently, Bd(A, δ) ⊆ BM (A, ε, t) ⊆ G.
Proceeding in a similar way, it is proved that if Bd(A, ε) ⊆ G then BM (A, δ, t) ⊆ G

for some δ ∈ (0, 1), t > 0. �

The following result establishes the relationship between the upper Wijsman topol-
ogy of a C-usc fuzzy metric space (X,M, ∗) and its upper proximal topology.

Proposition 3.3. Let (X,M, ∗) be a C-usc fuzzy metric space. Then τ+
WM
⊆ σ++

M .

Proof. Let H = {B ∈ C0(X) : M(x,B, t) < 1 − ε} ∈ τ+
WM

where x ∈ X, ε ∈ (0, 1)
and t > 0.

If H = ∅, we obviously have H ∈ σ++
M .

Then, suppose H 6= ∅ and let A ∈ H. Take δ > ε such that M(x,A, t) < 1 − δ.
Since M(x,A, ·) is continuous at t and M(x,A, t) < 1 − δ we can find an s > t for
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which M(x,A, s) < 1 − δ. Then, by continuity of ∗, there exists γ ∈ (0, 1) such that
M(x,A, s) < (1− δ) ∗ (1− γ).

Now choose t′ > 0 such that s > t′ > t. We first notice that

BM (A, γ, s− t′) ⊆ X\BM (x, δ, t).

Otherwise, we can find y ∈ X, a ∈ A and a sequence (zn)n∈N in X such that M(a, y, s−
t′) > 1− γ, M(y, zn, 1/n) > 1− 1/n and M(x, zn, t) > 1− δ for all n ∈ N. Take n0 ∈ N
such that t′ > t+ 1/n0. Then, for each n ≥ n0 we have

M(x,A, s) ≥ M(x, a, s) ≥M(x, zn, t) ∗M(zn, y, 1/n) ∗M(y, a, s− t′)
≥ (1− δ) ∗ (1− 1/n) ∗ (1− γ).

So, by continuity of ∗, M(x,A, s) ≥ (1−δ)∗(1−γ), which contradicts that M(x,A, s) <
(1− δ) ∗ (1− γ). Furthermore, if B ∈ (X\BM (x, δ, t))++ then B ⊆ X\BM (x, δ, t) so, in
particular, B ∩ BM (x, δ, t) = ∅, i.e., M(x,B, t) ≤ 1 − δ < 1 − ε, and thus B ∈ H. We
conclude that H ∈ σ++

M . �

Example 3.1. We show that, in general, the above proposition is not true for an
arbitrary fuzzy metric space. Let us consider the fuzzy metric space (R,M01,∧) of
Example 2.3 and the τ+

WM01
-open set

V = {B ∈ C0(X) : M01(0, B,
1

2
) <

1

2
}.

It is obvious that A = [1/2, 1] ∈ V.
On the other hand, it is easy to see that UM01 = Ue, so ,by Proposition 3.2, we deduce

that σ++
M01

= σ++
e . Consequently, if τ+

WM01
⊆ σ++

M01
= σ++

e on C0(X) then we could find

an open set G such that A ∈ G++ ⊆ V. Hence, there exists ε > 0 with Be(A, ε) ⊆ G,
so C = [(1− ε)/2, 1 + ε/2] also belongs to G++. However, M01(0, C, 1/2) = 1, and thus
C 6 ∈V.

Notice that this example also shows that τ+
WM

is not weaker than τ+
V , in general.

Remark 3.3. It is well known [1, p. 50] that given two metrics d, q on a nonempty
set X, then σ++

d = σ++
q if and only if Ud = Uq. This is also true for fuzzy metrics. In

fact, if (M, ∗) and (N, ?) are fuzzy metrics on X, then for any pair of metrics d and q
on X generating the uniformities UM and UN , respectively, we deduce from Proposition
3.2 the following

σ++
M = σ++

N ⇔ σ++
d = σ++

q ⇔ Ud = Uq = UM = UN .

As promised, we now present two results which show that the Wijsman topology in
our fuzzy context can be used to construct other hypertopologies [3, 1].

Proposition 3.4. Let (X,M, ∗) be a C-usc fuzzy metric space and denote by M (resp.
D) the set of all C-usc fuzzy metrics (resp. metrics) on X inducing the topology τM .
Then

sup{τ+
WN

: (N, ?) ∈M} = sup{τ+
Wd

: d ∈ D} = τ+
V .

Proof. The equality sup{τ+
Wd

: d ∈ D} = τ+
V is well-known [3]. Now let (N, ?) ∈ M.

By Propositions 3.2 and 3.3 we have τ+
WN
⊆ σ++

N = σ++
d for any metric d generating the
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uniformity UN . Since d ∈ D and σ++
d ⊆ τ+

V we deduce that sup{τ+
WN

: (N, ?) ∈ M} ⊆
τ+
V .

Finally, given d ∈ D, we have τ+
Wd

= τ+
WMd

(Example 2.1), so the other inclusion

follows since (Md, ∗) ∈M for any continuous t-norm ∗. �

Lemma 3.1 ([20, Proposition 2.5]). Let (X, d) be a metric space. Then Ud = UMd
.

Proposition 3.5. Let (X,M, ∗) be a C-usc fuzzy metric space and denote by M (resp.
D) the set of all C-usc fuzzy metrics (resp. metrics) on X inducing the topology τM .
Then

sup{τ+
WN

: (N, ?) ∈M and UN = UM} = sup{τ+
Wq

: q ∈ D and Uq = UM} = σ++
M .

Proof. Let d ∈ D with Ud = UM . It is known [3] that sup{τ+
Wq

: q ∈ D and Uq =

UM} = σ++
d and by Proposition 3.2 this topology equals to σ++

M . Now let (N, ?) ∈ M
such that UN = UM . By Proposition 3.3 and Remark 3.3 we have τ+

WN
⊆ σ++

M . We

deduce that sup{τ+
WN

: (N, ?) ∈M and UN = UM} ⊆ σ++
M .

Finally, given q ∈ D such that Uq = UM , we have, by Lemma 3.1, UMq = UM .
Consequently τ+

Wq
= τ+

WMq
⊆ sup{τ+

WN
: (N, ?) ∈M and UN = UM}. �

In view of Proposition 3.2 it is natural to wonder if given a fuzzy metric space
(X,M, ∗), we can find a metric d on X such that τWM

= τWd
. It seems that a suit-

able candidate for d should be a metric compatible with UM . We conclude the paper
with an example showing that not every metric with this property satisfies the assertion.

Example 3.2. Let d0 be the discrete metric on N and let d1 be the metric on N given
by d1(n, n) = 0 for all n ∈ N, d1(1, n) = 2 for all n > 1, and d1(n,m) = 1 for all n,m > 1
with n 6= m. Then Ud0 = Ud1 , so by Lemma 3.1, UMd0

= Ud1 . However τWd0
6= τWd1

[1,
Example 2.1.3 and p. 38], and hence (see Example 2.1), τWMd0

6= τWMd1
.

4 Conclusion and further work

We have introduced and studied a notion for the Wijsman topology induced by a fuzzy
metric space in the sense of Kramosil and Michalek. Although our approach seems to
be the natural one, the situation presents some differences with respect to the classical
case of metric spaces as the Wijsman topology is not admissible. Nevertheless, we have
been able to obtain fundamental result about this topology. In particular, we have
characterized metrizability of the Wijsman topology of a fuzzy metric and we have
emphasized that our results allow to improve classical results about hypertopologies.

In a further work, we will try to generalize, if possible, our results to any fuzzy metric
space (X,M, ∗), deleting the C-usc condition. This would entail to look for a different
definition of the upper Wijsman topology in the fuzzy context in such a way that the
Wijsman topology be admissible and have a good behaviour in the hypertopological
lattice.
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