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Abstract

We prove that any MV-algebra has a faithful state can be embedded in

an fMV-algebra of integrable functions. As consequence, we prove Hölder’s

inequality and Hausdorff moment problem for MV-algebras with product

and we propose a solution for the stochastic independence of probability

MV-algebras.

Introduction

MV-algebras were defined by Chang [3] and they stand to Łukasiewicz ∞-valued

logic as boolean algebras stand to classical logic. The theory of MV-algebras

was highlighted by Mundici’s categorical equivalence between MV-algebras and

abelian lattice-ordered groups with strong unit (ℓu-groups) [25]. The twofold na-

ture of MV-algebras, generalizations of boolean algebras and unit intervals of ℓu-

groups, is also reflected by their probability theory: the (finite-additive) states

are in one-to-one correspondence with normalized states on ℓu-groups, while
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probability MV-algebras are the main ingredient of the extension of Carathéodory

boolean algebraic probability theory to many-valued events.

A probability MV-algebra [30] is a pair (A, s), where A is a σ-complete MV-

algebra and s is a σ-continuous faithful state. Riecǎn and Mundici propose in

[30] a list of open problems, we recall the fifth one:

"[...] Assuming M and N to be probability MV-algebras, generalize the clas-

sical theory of "stochastically independent" σ-subalgebras as defined in Fremlin’s

treatise [Measure Theory, 325L]."

In [21] the author investigates this problem for MV-algebras endowed with finite-

additive states, but no solution is given for probability MV-algebras, as defined

in [30]. In the present paper, Theorem 3.1 presents a possible solution and we

notice that an analogue result in Fremlin’s treatise [13] is [253F].

An important result in our approach is Theorem 2.1 which, combining the

results from [21] and [22], prove that any MV-algebra that has a faithful state

can be embedded in an f MV-algebra of integrable functions in which the state is

represented by the integral. The representation for states is actually the Kroupa-

Panti teorem , but we make the context more precise. The representation of

the algebraic structure is crucial for our development and is based on Theorem

1.3, which is similar with Kakutani’s representation for abstract L-spaces [17].

The fMV-algebras are defined in [20] any they are MV-algebras endowed with

both an internal product and a scalar product, with scalars from [0, 1]. By

an extension of Mundici’s equivalence, they are categorically equivalent with

unital f -algebras [2]. As direct consequences of Theorem 2.1, in Section we

prove Hölder’s inequality and Hausdorff’s moment problem for PMV-algebras,

i.e. MV-algebras endowed with an internal product [8], and for f MV-algebras.

Section 3 is focused on the problem of stochastic independence. The main

idea is the following: given two probability MV-algebras we embed them in cor-

responding algebras of integrable functions, which allow us to apply the results

from [13]. Our final result can be stated as follows:

Given (A, sA) and (B, sB) two probability MV-algebras, there exists a prob-

ability MV-algebra (T, sT ) and a bilinear function β : A × B → T such that

sT (λ(a, b)) = sA(a) · sB(b), for any a ∈ A and b ∈ B.

By Theorem 3.1, the probability MV-algebra (T, sT ) satisfy an universal prop-

erty which, however, does not characterize it up to isomorphism.
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1 Preliminaries

1.1 Algebraic structures

An MV-algebra is an algebraic structure (A,⊕, ∗, 0), where (A,⊕, 0) is a com-

mutative monoid, ∗ is an involution and the relation (a∗⊕b)∗⊕b = (b∗⊕a)∗⊕a

is satisfied for any a, b ∈ A [3, 4, 27]. The variety of MV-algebras is generated

by ([0, 1],⊕,∗ , 0) where a⊕ b = min(a+ b, 1) and a∗ = 1− a for any a, b ∈ [0, 1].

The category of MV-algebras is denoted MV.

One also defines the constant 1 = 0∗, the operation a⊙ b = (a∗ ⊕ b∗)∗ and

the distance function d(a, b) = (a ⊙ b∗) ⊕ (b ⊙ a∗) for any a, b ∈ A. Setting

a ≤ b if and only if a∗ ⊕ b = 0, then (A,≤, 0, 1) is a bounded distributive lattice

such that a ∨ b = (a∗ ⊕ b)∗ ⊕ b and a ∧ b = (a∗ ∨ b∗)∗ for any a, b ∈ A. An

MV-algebra A is σ-complete (Dedekind-MacNeille complete) if its lattice reduct

is a σ-complete (Dedekind-MacNeille complete) lattice.

If A is an MV-algebra we define a partial operation + as follows: for any

a, b ∈ A, a+b is defined if and only if a ≤ b∗ and, in this case, a+b = A⊕b. This

operation is cancellative and any MV-algebraA satisfies the Riesz decomposition

property [9, Section 2.9]. Throughout the paper we use the following notation:

na = a+ · · ·+ a︸ ︷︷ ︸
n

and n⊕a = a⊕ · · · ⊕ a︸ ︷︷ ︸
n

where a ∈ A and n ≥ 1 is a natural number.

If A and B are MV-algebras then a function ω : A → B is linear if f(a +

b) = f(a) + f(b) whenever a ≤ b∗. Bilinear functions are defined as usual. A

bimorphism is a bilinear function that is ∨-preserving and ∧-preserving in each

component. We refer to [12] for basic results on linear functions.

An ideal in A is a lower subset I that contains 0 and it is closed to ⊕. A

maximal ideal is an ideal that is maximal in the set of all ideals ordered by

set-theoretic inclusion. A semisimple MV-algebra is an MV-algebra in which

the intersection of all maximal ideals is {0}. Equivalently, an MV-algebra A is

semisimple if and only if there exists a compact Hausdorff space X such that

A can be embedded in the MV-algebra C(X) = {f : X → [0, 1] | f continuous}

with pointwise operations [4, Corollary 3.6.8].

A ℓ-group is an abelian group that is also a lattice such that any group

translation is isotone. If G is an ℓ-group, an element u ∈ G is a (strong order)

unit if u ≥ 0, and for every x ∈ G there is a natural number n ≥ 1 such that
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nu ≥ |x|. An ℓ-group is unital if it is endowed with a distinguished unit. The

category of unital ℓ-groups and their unital homomorphisms is denoted auG.

If (G, u) is a unital ℓ-group we denote [0, u] = {x ∈ G|0 ≤ x ≤ u} and we

define

x⊕ y = (x + y) ∧ u and ¬x = u− x for any x, y ∈ [0, u].

Then [0, u]G = ([0, u],⊕,¬, 0) is an MV-algebra. For any MV-algebra A there

exists an ℓu-group (G, u) such that A ≃ [0, 1]G. Moreover, the following property

holds: for any x ≥ 0 in G there exist a natural number n ≥ 1 and a1, . . . , an ∈ A

such that x = a1 + · · ·+ an.

It is possible to define a functor Γ : auG → MV by

Γ(G, u) = [0, u]G and Γ(h) = h|[0,u]G .

where (G, u) is an ℓu-group and h is unital homomorphism. In [25] it is proved

that Γ establishes a categorical equivalence between the categories auG and

MV. In addition, an MV-algebra A is semisimple if and only if the correspond-

ing ℓu-group (G, u) is archimedean.

Instead of ℓu groups, one may consider ℓ-rings, Riesz spaces(vector lattices)

or f -algebras [1, 2] with strong unit and axiomatize the unit interval. The

structures obtained in this manner have an MV-algebra reduct endowed with a

product operation which can be internal or external.

Product MV-algebras (PMV-algebras for short) have been defined in [8] in

the general case and in [24] in a slightly different way for the unital and com-

mutative case. They are MV-algebras endowed with a binary internal product

that satisfies the following, for any x, y, z ∈ P :

(PMV1) c · (a⊙ (a ∧ b)∗) = (c · a)⊙ (c · (a ∧ b))∗

(PMV2) (a⊙ (a ∧ b)∗) · c = (a · c)⊙ ((a ∧ b) · c)∗.

(PMV3) a · (b · c) = (a · b) · c.

A PMV-algebra is unital if it has a unit for the product, and a PMVf -algebra

[8, Theorem 5.4] is a PMV-algebra that satisfies the f -property:

(f) if a ∧ b = 0, then (a · c) ∧ b = (c · a) ∧ b = 0, for any a, b, c ∈ P .

It is straightforward that unital PMV-algebras are PMVf -algebras, and any

PMVf -algebra is subdirect product of totally ordered PMV-algebras [8, Propo-

sition 5.5].

Let us denote by PMV and uR the categories of PMV-algebras and ℓu-rings

such that u · u ≤ u with suitable morphisms. In [8] the functor Γ was extended

to a functor Γ(·) : uR → PMV which is also an equivalence.
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A further extension of the notion of MV-algebra has been introduced in

[10]. A Riesz MV-algebra is a structure (R,⊕,∗ , {α | α ∈ [0, 1]}, 0) such that

(R,⊕,∗ , 0) is an MV-algebra and for any α, β ∈ [0, 1] and any a, b ∈ R we have

(RMV1) α(a⊙ b∗) = (αa) ⊙ (αb)∗,

(RMV2) max(0, α− β)a = (αa)⊙ (βa)∗,

(RMV3) α(βa) = (αβ)a,

(RMV4) 1a = a.

Any homomorphism of MV-algebras between Riesz MV-algebras preserves the

additional unary operations, so it is a homomorphism of Riesz MV-algebras.

Riesz MV-algebras are, up to isomorphism, unit intervals of Riesz spaces with

strong unit. Let us denote by RMV and uRS the categories of Riesz MV-

algebras and, respectively, Riesz spaces with suitable morphisms. In [10] the

functor Γ was extended to a functor ΓR : uRS → RMV which is also an

equivalence.

Finally, fMV-algebras are introduced in [20] as algebraic structures (A,⊕, ∗, ·, {α}α∈[0,1], 0)

such that (A,⊕, ∗, ·, 0) is a PMVf -algebra, (A,⊕, ∗, {α}α∈[0,1], 0) is a Riesz

MV-algebra and the condition α(a · b) = (αb) · b = a · (αb) is satisfied for any

α ∈ [0, 1] and a, b ∈ A. If there exist a unit for the product, A will be called

unital. The corresponding lattice-ordered structures are the f -algebras with

strong unit [2]. If we denot by fMV and fuAlg the categories of f MV-algebras

and fu-algebras with suitable morphisms respectively, we establish a categorical

equivalence Γf : fuAlg → fMV and, in this case, the functor Γf extends the

previous ones: Γ, Γ(·), ΓR.

In order to summarize all categorical equivalence, we present the following

diagram, in which all horizontal arrows are suitable forgetful functors.

uR

PMV

auG

MV

uRS

RMV

fuAlg

fMV

fuAlg

fMV

Γ(·)Γf

U(·ℓ)U(·ℓ)

Γ

U(·) U(·)

U(ℓR)U(ℓR)

ΓR

UR

Γf

UR

Figure 1.

We finally mention that a PMV-algebra, a Riesz MV-algebra or a fMV-

algebra is semisimple if its MV-algebra reduct is semisimple MV-algebra.
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1.2 States. The state-completion.

The notion of state for an MV-algebra has be introduced in [26], in relation to

the notion of "average degree of truth" of a proposition. See also [27, 30] for

advanced topics.

Definition 1.1. A state is a linear function s : A → [0, 1] such that s(1) = 1.

A state s is faithful if s(a) = 0 implies a = 0 for any a ∈ A. We remark that

if there exists a faithful state on A, than A is semisimple.

A state for an ℓu-group (G, u) is a positive normalized additive map t : G →

R. By [27] any state defined on an MV-algebra A can be uniquely extended to

a state on the corresponding ℓu-group.

For states in a MV-algebra an equivalent form of the Riesz representation

theorem holds, due to Kroupa and Panti [18, 28].

Theorem 1.1. For any MV-algebra A there is an affine isomorphism v 7→ sv

of the convex set of regular Borel probability measures on the maximal spectral

space Max(A) onto the set of states on A. For every f ∈ A and m ∈ Max(A),

sv(f) =

∫

Max(A)

f∗(m)dv(m)

where f 7→ f∗ is the representation for semisimple MV-algebras by continuous

functions.

Remark 1.1. The notion of states extends to PMV-algebras, Riesz MV-algebra

and f MV-algebras without changes in the the definition. In [10] the authors

prove that for Riesz MV-algebras any state is homogeneous, i.e. it preserves the

scalar product.

A state is σ-continuous if limn s(an) = s(a) for any a1 ≤ · · · ≤ an ≤ · · · in

A such that
∨

n an = a. A pair (A, s) with A a σ-complete MV-algebra and s a

faithful σ-continuous state is called probability MV-algebra [30].

The metric completion of an MV-algebra with respect to the metric induced

by a state was studied in [21]. We remind it in the sequel, since it is important

for the present investigation.

The starting point is the remark that, given an MV-algebra A and a state

s : A → [0, 1], one can define a pseudo-metric on A by ρs : A×A → [0, 1] defined

by ρs(x, y) = s(d(x, y)) for any x, y ∈ A [30]. The pseudo-metric ρs is a metric

iff s is a faithful state.
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We say that (Ac, sc) is the state-completion of (A, s) if Ac is the Cauchy

completion A w.r.t. the pseudo-metric ρs and sc([{an}n]) = limn s(an) for any

Cauchy sequence {an}n in A. We define ϕA : A → Ac by ϕA(a) = [{a}] for any

a ∈ A.

Theorem 1.2. [21] Let (A, s) be an MV-algebra with a state and (Ac, sc) be its

state-completion then the following hold:

1) Ac is σ-complete, sc is a σ-continuous faithful state and sc ◦ ϕA = s,

2) ϕA is an embedding iff s is faithful,

3) (Universal Property) For any MV-algebra C, for any faithful state m

such that C is ρm-complete and for any state-preserving homomorphism of MV-

algebras f : A → C there exists a unique state-preserving embedding of MV-

algebras f c : Ac → C such that f c ◦ ϕA = f .

Remark 1.2. We remark that any σ-complete MV-algebra is semisimple [26,

Proposition 6.6.2], and (Ac, sc) is a probability MV-algebra.

Proposition 1.1. If P is a unital and commutative PMV-algebra and s a state,

P c is a PMV-algebra.

Proof. In order to define the product on P c, it is enough to prove that the

internal product on P is continuous with respect to ρs. Following the definition

in [21], we define [x] · [y] = [(xn ·yn)n] whenever x = {xn}n and y = {yn}n. The

product is well defined if and only if x ∼ y implies x · z ∼ y · z. By definition

this holds if and only if ρs(xn · zn, yn · zn) → 0. By property of the unitary

product, see [12, Corollary 5.7]

ρs(xn · zn, yn · zn) = s(d(xn · zn, yn · zn)) = s(zn · d(xn, yn)) ≤ s(d(xn, yn)) =

ρs(xn, yn) → 0 by hypothesis,

therefore the conclusion follows.

Following [22], a state-complete Riesz MV-algebra is a structure (A, s) such

that A is a Riesz MV-algebra, s is a state on A and (A, ρs) is a complete metric

space. An L-space [6] is a Banach lattice (L, ‖ · ‖) such that

x, y ≥ 0 in L implies ‖x+ y‖ = ‖x‖+ ‖y‖.

By [22, Corollary 1] any state-complete Riesz MV-algebra is Dedekind-

MacNeille complete. In [22] the author proves the categorical duality between

state-complete Riesz MV-algebras and a particular class of measure space. We

main point is the following theorem, which is similar with Kakutani represen-

tation for abstract L-spaces [17]
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Definition 1.2. If (X,Ω, µ) is a measure space then we define

L1(µ)u = {f ∈ L1(µ) | 0 ≤ f ≤ 1}.

Remark 1.3. We note that L1(µ) is an f -algebra and 1 is a weak unit of L1(µ).

Therefore L1(µ)u is an f MV-algebra.

Theorem 1.3. [22] For any state complete Riesz MV-algebra (A, s) there exists

a measure space (X,Ω, µ) and a isomorphism of Riesz MV-algebras IA : A →

L1(µ)u such that s(a) =
∫
IA(a)dµ for any a ∈ A. Moreover, (X,Ω, µ) is a

probability space such that X is an extremally disconnected compact Hausdorff

space, Ω is the Borel σ-algebra of X and µ is a topological finite measure.

Definition 1.3. [22] A measure space (X,Ω, µ) that satisfies the properties

from Theorem 1.3 is called L-space.

2 Embedding in L1(µ)u

We prove that any MV-algebra which has a faithful state can be embedded in

an f MV-algebra of integrable functions. As a preliminary step, we embed the

MV-algebra in its divisible hull.

Remark 2.1. 1. Any MV-algebra can be embedded in a divisible one. For

details on divisible MV-algebras see [14]. In the semisimple case, Ad =

{a ∈ C(X) | a = a1

n
+ . . . + an

n
, ai ∈ A, n ∈ N}, where A ⊆ C(X).

Moreover, if P is a unital and commutative PMV-algebra then P →֒ P d

is an embedding of PMV-algebras.

2. If s : A → [0, 1] is a state on A then s can be extended to a state sd : Ad →

[0, 1] [19, Theorem 6] such that sd(αa) = αsd(a) for any α ∈ [0, 1]∩Q and

a ∈ A [10, Lemma 11]. Note that sd is faithful whenever s is faithful.

Theorem 2.1. Let A be an MV-algebra and s : A → [0, 1] a state on A. There

exists an L-space (X,Ω, µ) and a homomorphism of MV-algebras FA : A →

L1(µ)u such that s(a) =
∫
FA(a)dµ for any a ∈ A. If s is faithful then FA is an

embedding.

Proof. Let B = A
/
Rad(A) , where Rad(A) is the intersection of all the maximal

ideals of A. Denote by π : A → A
/
Rad(A) the canonical epimorphism. We

8



notice that B is semisimple and we can define the divisible hull Bd as in Remark

2.1. Let ιd be the embedding in the divisible hull. With the notation of Theorem

1.2, we have

A B Bd Bdc
π ιd ϕBd

By [7, Lemma 3.1], Bdc is a state-complete Riesz MV-algebra, therefore by

Theorem 1.3, Bdc ≃ L1(µ)u for a suitable L-space. Finally, t = π ◦ s is a state

on B. By Remark 2.1 t extends to td, and by Theorem 1.2 it extends to tdc.

The conclusion follows from Theorem 1.3.

Remark 2.2. The integral representation of a state from Theorem 2.1 is ob-

viously Kroupa-Panti’s result [18, 28]. We mention that, for our development,

the representation of the algebraic structures is also crucial. We also mention

that we followed the approach from [6], where Riesz integral representation is

derived as a consequence of Kakutani’s representation for L-spaces.

Proposition 2.1. If P is a unital and semisimple PMV-algebra (fMV-algebra)

then the morphism FP from Theorem is a morphism of PMV-algebras (fMV-

algebras).

Proof. We first remark that any unital and semisimple PMV-algebra or f MV-

algebra is commutative by [20]. If A is a unital and semisimple PMV-algebra,

the conclusion follows by Proposition 1.1, Remark 2.1 and [5], since in any

archimedean f -rings, the ring structure is generated by the additive group, and

therefore any homomorphism of groups for the group reduct is an homomor-

phism of rings, and the same applies for unital and semisimple PMV-algebras.

If A is an unital and semisimple f MV-algebra, the result follows by Remark

1.3, [20, Proposition 3.2] and [10, Corollary 2]. In particular in [20] is proved

that any linear homomorphism between unital and semisimple f MV-algebras

commutes with the internal product.

By means of this representation, we prove two immediate consequences for

states using results in functional analysis: Hölder’s inequality and the Hausdorff

moment problem.

Hölder’s inequality for PMV-algebras and f MV-algebras

The first result Hölder’s inequality for PMV-algebras and f MV-algebra, in the

unital and semisimple case. We recall that any unital and semisimple algebra

is commutative.

9



Theorem 2.2. Let A be a semisimple PMV +-algebra (FR+-algebra) and s :

A → [0, 1] a state. If p, q ∈ [1,∞) with 1
p
+ 1

q
= 1 then

s(a · b) ≤ s(ap)
1

p s(bq)
1

q for any a, b ∈ A.

Proof. By Proposition 2.1, FA : A → L1(µ)u is a morphism of PMV-algebras

(f MV-algebras). By Hölder’s inequality for L1(µ), for any a, b ∈ A we get

∫
X
FA(a · b)dµ =

∫
X
(FA(a) · FB(b))dµ ≤

(∫
X
FA(a

p)dµ
) 1

p
(∫

X
FA(b

q)dµ
) 1

q ,

and by Theorem 1.3, s(a · b) ≤ s(ap)
1

p s(bq)
1

q .

The Hausdorff moment problem for PMV-algebras and f MV-algebras

In statistics and probability a very central subject is the Moment Problem.

Given a interval I ⊆ R, the nth-moment of a probability measure µ on I is

defined as
∫
I
xndµ. Let {mk}k≥0 be a sequence of real numbers, the Moment

Problems on I consists on finding out the condition on {mk}k≥0 for which there

exists a probability measure µ on I such that mk is the kth moment of µ.

When I = [0, 1] we get the Hausdorff moment problem [15, 16]. We will prove

a similar result in the context of MV-algebras.

For any k ≥ 1 we define pk : [0, 1] → [0, 1] by pk(x) = xk for any x ∈ [0, 1].

We also set p0(x) = 1 for any x ∈ [0, 1]. Note that pk ∈ FR1 for any k ≥ 0.

If {mk|k ≥ 0} a sequence of real numbers in [0, 1], we define:

∆0mk = mk, ∆rmk = ∆r−1mk+1 −∆r−1mk for any r, k ≥ 0.

The sequence {mk}k satisfies the Hausdorff moment condition if m0 = 1 and

(−1)r∆rmk ≥ 0 for any r, k ≥ 0 [11].

Theorem 2.3. Let C be any unital and semisimple PMV-subalgebra (unital and

semisimple fMV-subalgebra) of C([0, 1]) such that p1 ∈ C. There exists a state

s : C → [0, 1] such that s(pk) = mk if and only if the sequence {mk} satisfies

the Hausdorff moment condition.

Proof. Let s be a state such that s(xk) = mk. Since C is unital, the set of its

ideals coincide with the set of ideals of its MV-algebra reduct and by general
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theory of MV-algebras (see for example [4], Chapter 3) and by the integral

representation due to Kroupa and Panti [18, 28] we have

s(f) =

∫ 1

0

fdµ,

for any f ∈ C, where µ is a probability measure on [0, 1].

By [11] we have

(−1)r∆rmk =
r∑

h=0

(
r

h

)
(−1)hmk+h,

then by the hypothesis,

(−1)r∆rmk =

r∑

h=0

(−1)h
(
r

h

)∫ 1

0

xk+hdµ =

∫ 1

0

[
xk

r∑

h=0

(
r

h

)
(−1)hxh

]
dµ =

=

∫ 1

0

xk(1− x)rdµ ≥ 0,

therefore the Hausdorff moment condition is satisfied.

On the other hand, let s the functional on the set {pn | n = 0, 1, 2, . . .} such that

s(pk) = mk. By [23] s has a unique extension s̃ to a linear prevision (that is a

positive and normalized linear functional) from C([0, 1],R) to R. In particular,

s̃ is a state between ℓ-groups, then s : Γ(C([0, 1],R), 1) → [0, 1] is a state on

C([0, 1]) (see for example [27]). Taking s|C , the restriction of s to C we get the

desired result.

Let A be a unital PMV-algebra (unital f MV-algebra) such that A
/
Rad(A) ⊆

C([0, 1]), and let φA be the map φA : A → C([0, 1]) obtained composing the

canonical epimorphism A → A
/
Rad(A) and the embedding of A

/
Rad(A) in

C([0, 1]). Moreover, we ask that p1 ∈ φA(A).

Corollary 2.1. Let A be a unital PMV-algebra (unital fMV-algebra) as defined

above. If the sequence {mk} satisfies the Hausdorff moment condition, then

there exists a state s : A → [0, 1] such that s(pk) = mk.

Proof. Theorem 2.3 holds for A
/
Rad(A) , therefore s will be the composition

of the state t : A/Rad(A) → [0, 1] with the canonical epimorphism.
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3 Stochastic independence of probability MV-algebras

The notion of independence for probability MV-algebra is one of the open prob-

lems mentioned in [30]. A partial solution has given in [21] for MV-algebras

with states, MV-algebras with extremal states and semisimple MV-algebras. In

this section we obtain a solution for probability MV-algebras.

Recall that a probability MV-algebra is a pair (A, s) with A a σ-complete

MV-algebra and s a faithful σ-continuous state.

Definition 3.1. Let (A, sA), (B, sB) and (T, s) probability MV-algebras, and

β : A×B → T a bilinear function. (A, sA) and (B, sB) are said to be (T, s, β)-

independent if s(λ(a, b)) = sA(a) · sB(b), for any a ∈ A and b ∈ B.

Given (A, sA) and (B, sB) two probability MV-algebras, our problem is to

define a probability MV-algebra (T, s) and a bilinear function β : A × B → T

such that (A, sA) and (B, sB) are (T, s, β)-independent.

Remark 3.1. We recall some general results from Measure Theory, see [13,

253D, 253G, 253F] for further details. Let (XA,ΩA, µA) and (XB,ΩB, µB) be

measure spaces. There is a measure space (XA ×XB,Λ, λ) where λ is the c.l.d.

product measure on XA ×XB and the following properties hold:

(1) ⊗ : L1(µA)×L1(µB) → L1(λ), (f, g) 7→ f⊗g is a bounded bilinear operator,

(2)
∫
(f ⊗ g)dλ =

∫
fdµA

∫
gdµB whenever f ∈ L1(µA), g ∈ L1(µB),

(3) f ⊗ g ≥ 0 in L1(λ) whenever f ≥ 0 and g ≥ 0,

(4) the following universal property is satisfied: for any Banach lattice W (norm

complete Riesz space) and bilinear function φ there exists a unique linear func-

tion ω such that ω ◦ ⊗ = φ.

L1(µA)× L1(µB) L1(λ)

W

⊗

φ
ω

Definition 3.2. For any (A, sA) and (B, sB) probability MV-algebras and let

(XAΩA, µA), (XAΩA, µA) be defined by Theorem 1.3 and (XA×XB,Λ, λ) is the

product measure space from Remark 3.1. The product space is (T, sT ) where

T = L1(λ)u and sT (f) =
∫
XA×XB

fdλ for any f ∈ T .
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Assume β : A×B → L1(λ)u is the bilinear map defined by

β(a, b) = fa ⊗ fb, where

A →֒ Ad →֒ Adc ≃ L1(µA)u, a 7→ FA(a) = fa,

B →֒ Bd →֒ Bdc ≃ L1(µB)u, b 7→ FB(b) = fb.

Remark 3.2. With the above definition, (T, sT ) is a probability MV-algebra

by Theorem 1.3 and Theorem 1.2. Moreover, by Theorem 1.3 and [13, 253D],

sT (β(a, b)) =
∫
(fa ⊗ fbdλ) =

∫
fadµA

∫
fbdµB.

Definition 3.3. Let (A, sA), (B, sB) and (C, sC) be probability MV-algebras.

A linear function ω : A → C is bounded if there exists a natural number K ≥ 1

such that

sC(ω(a)) ≤ K⊕sA(a) for any a ∈ A.

We say that a bilinear function γ : A × B → C is bounded if there exists a

natural number K ≥ 1 such that

sC(γ(a, b)) ≤ K⊕(sA(a)sB(b)) for any a ∈ A and b ∈ B.

The bilinear function γ is continuous if the following property holds: for any

(xn)n ⊆ A, x ∈ A, (yn)n ⊆ B, y ∈ B,

ρsA(xn, x) → 0 and ρsB (yn, y) → 0 imply ρsC (γ(x, y), γ(xn, yn)) → 0.

One can immediately see that any bounded linear function is continuous. In

the sequel we prove the same result for bilinear functions.

Lemma 3.1. If (A, sA), (B, sB) and (C, sC) are probability MV-algebras, K ≥ 1

is a natural number and the bilinear function γ : A × B → C is K- bounded

then, for any a, a′ ∈ A and b, b′ ∈ B

ρsC (γ(a, b), γ
d(a′, b′)) ≤ K⊕(ρsA(a, a

′)⊕ ρsB (b, b
′)).

Proof. Assume b ∈ B. Since γ(·, b) : A → C is a linear map, we get

d(γ(a, b), γ(a′, b)) ≤ γ(d(a, a′), b) for any a, a′ ∈ A.

It follows that

sC(d(γ(a, b), γ(a
′, b)) ≤ sC(γ(d(a, a

′), b)) ≤ K⊕(sA(d(a, a
′))sB(b)),

so sC(d(γ(a, b), γ(a
′, b)) ≤ K⊕sA(d(a, a

′)) for some constant K ≥ 0.

Similarly we get sC(d(γ(a, b), γ(a, b
′)) ≤ K⊕sB(d(b, b

′)) for any a ∈ A, so

sC(d(γ(a, b), γ(a
′, b′))) ≤ sC(d(γ(a, b), γ(a

′, b)))⊕ sC(d(γ(a
′, b), γ(a′, b′)))

≤ K⊕sA(d(a, a
′))⊕K⊕sB(d(b, b

′)), so

ρsC (γ(a, b), γ
d(a′, b′)) ≤ K⊕(ρsA(a, a

′)⊕ ρsB (b, b
′)).

13



Corollary 3.1. If (A, sA), (B, sB) and (C, sC) are probability MV-algebras then

any bounded bilinear function γ : A×B → C is continuous.

Proof. It follows by Lemma 3.1.

Proposition 3.1. If A and B are MV-algebras and σ : A → B is a linear

function, then there is a unique linear function σd : Ad → Bd that extends σ.

Proof. Let a ∈ Ad and a1, . . . , an ∈ A such that a = a1

n
+ · · · + an

n
. We set

σd(a) = 1
n
(σ(a1) + · · ·+ σ(an)). Using Riesz decomposition property[9, Section

2.9] in Ad one can prove that σd is well-defined. We show that σd is linear.

Assume that a + a′ is defined in Ad. We know that a = a1

n
+ · · · + an

n
and

a′ =
a′

1

m
+ · · ·+

a′

m

m
where a1, . . . , an, a

′
1, . . . , a

′
n ∈ A. It follows that

a+ a′ = a1

n
+ · · ·+ an

n
+

a′

1

m
+ · · ·+

a′

m

m
= m a1

nm
+ · · ·+m an

nm
+n

a′

1

nm
+ · · ·+n

a′

m

nm
.

We get

σd(a+ a′) = 1
nm

(mσ(a1) + · · ·+mσ(an) + nσ(a′1) + · · ·+ nσ(a′m))

= 1
n
(σ(a1) + · · ·+ σ(an)) +

1
m
(σ(a′1) + · · ·+ σ(a′m))

= σ(a) + σ(a′).

Lemma 3.2. If (A, sA), (B, sB) and (C, sC) are probability MV-algebras and

γ : A × B → C is a bilinear function, then there exists a unique bilinear γd :

Ad×Bd → Cd that extends γ. Moreover, if γ is bounded then γd is also bounded.

Proof. We first recall that any linear function between divisible MV-algebra is

linear w.r.t. scalars in [0, 1] ∩ Q, has remarked for states in Remark 2.1. If

a ∈ Ad and b ∈ Bd then there are a1, . . . , an ∈ A and b1, . . . , bm ∈ B such that

a = a1

n
+ . . .+ an

n
and b = b1

m
+ . . .+ bm

m
. We define γd : Ad ×Bd → Cd by

γd(a, b) = 1
nm

∑
γ(ai, bj).

The fact that γd is well-defined and the uniqueness follow by Proposition 3.1.

We have that

sdC(γ
d(a, b)) = sdC(γ

d(a1

n
+ . . .+ an

n
, b1
m

+ . . .+ bm
m
)) = sdC(

1
nm

∑
ij γ(ai, bj)) =

sdC(
∑

ij
1

nm
γ(ai, bj)) =

∑
ij

1
nm

sdC(γ(ai, bj)) ≤
∑

ij
1

nm
(K⊕(sA(ai)sB(bj))) =∑

i,j
1

nm
min(KsA(ai)sB(bj), 1) =

∑
i,j min(KsdA(

ai

n
)sbB(

bj
m
), 1

nm
) ≤

min(K(
∑

i,j s
d
A(ai)s

d
B(bj)),

nm
nm

) = K⊕

(∑
i,j s

d
A

(
ai

n

)
sdB

(
bj
m

))
=

K ⊕
((
sdA

(
a1

n

)
+ . . .+ sdA

(
an

n

)) (
sdB

(
b1
m

)
+ . . .+ sdB

(
bm
m

)))
= K⊕(s

d
A(a)s

d
B(b))
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so γd is bounded.

Proposition 3.2. Let (A, sA), (B, sB) and (C, sC) be probability MV-algebras,

and γ : A × B → C a bounded bilinear function. Then there exists a unique

bounded bilinear function γc : Ac ×Bc → Cc that extends γ, defined by

γc([{an}n], [{bn}n]) = [{γ(an, bn)}n]

for any Cauchy sequences {an}n from A and {bn}n from B.

Proof. Let K ≥ 1 be a natural number such that γ is bounded with constant

K. If {an}n, {a′n}n are Cauchy sequences in A and let {bn}n, {b′n}n are Cauchy

sequences in B, from Lemma 3.1, we infer that {γ(an, bn)}n is a Cauchy sequence

in C. Moreover, [{an}n] = [{a′n}n] and [{bn}n] = [{b′n}n] imply [{γ(an, bn)}n] =

[{γ(a′n, b
′
n)}n]. Hence γc can be defined by

γc([{an}n], [{bn}n]) = [{γ(an, bn)}n]

for any Cauchy sequences {an}n from A and {bn}n from B. We get

scC(γ
c([{an}n], [{bn}n])) = limn sC(γ(an, bn)) ≤ K⊕(limn sA(an) limn sB(bn)),

scC(γ
c([{an}n], [{bn}n])) ≤ K⊕(s

c
A([{an}n])s

c
B([{bn}n])).

Let β : Ac × Bc → Cc be another bilinear bounded function that extends γ.

Since limn[an] = [{an}n] in Ac and limn[bn] = [{bn}n] in Bc, by Corollary 3.1,

β([{an}n], [{bn}n]) = limn β([an], [bn]) = limn γ(an, bn) = [{γ(an, bn)}n] =

γc([{an}n], [{bn}n]).

Remark 3.3. If (A, sA), (B, sB) and (C, sC) are probability MV-algebras and

γ : A × B → C is a bounded bilinear function then the following diagram is

commutative:

A×B Ad ×Bd Adc ×Bdc

C Cd Cdc

ιdA × ιdB ϕAd × ϕBd

γ

ιdC ϕC

γd γdc

This is a straightforward consequence of Lemma 3.2 and Proposition 3.2.

We are ready to prove the main result of this section.
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Theorem 3.1. Let (A, sA), (B, sB) be probability MV-algebras and assume

(T, sT ) and β : A×B → T are defined as in Definition 3.2. For any probability

MV-algebra (C, sC) and any bounded bilinear function γ : A×B → C there exists

a unique bounded linear function ω : T → Cdc such that ω(β(a, b)) = γ(a, b) for

any a ∈ A, b ∈ B, i.e. ω(fa ⊗ fb) = fγ(a,b) for any a ∈ A, b ∈ B.

A×B T = L1(λ)u

Cdc = L1(µC)u

C

β

γ

ϕCd

ω

Proof. By Proposition 3.2 there exists a unique bounded bilinear function fγdc :

Adc × Bdc → Cdc that extends γ. By Theorem 1.3 Adc ≃ L1(µA)u, Bdc ≃

L1(µB)u and Cdc ≃ L1(µC)u for suitable measure spaces.

Note that 1A and 1B are weak units in L1(µA) and L1(µB). If we set

LA = {f ∈ L1(µA) | |f | ≤ n1A for some n ≥ 1},

LB = {g ∈ L1(µB) | |g| ≤ n1B for some n ≥ 1},

then (LA,1A) and (LB,1B) are f -algebras with strong unit and they are dense

in L1(µA)u and L1(µB)u, respectively. By [12, Proposition 6.5] there exists an

extension γ̃ : LA×LB → L1(µC) u-bilinear function that extends γdc. We recall

that by construction γ̃(1A,1B) ≤ 1C . One can easily see that the bilinear map

γ̃ is bounded.

In order to extend γ̃ to L1(µA)×L1(µB) we shall apply the B.L.T. theorem

[29, Theorem I.7] twice. Let g ∈ LB be an arbitrary element and apply the

B.L.T. theorem for γ̃(·, g) : LA → L1(µC). Hence there exists a unique bounded

linear transformation γg : L1(µA) → L1(µC) such that γg(f) = γ̃(f, g) for any

f ∈ L1(µA). Now, we fix f ∈ L1(µA) and we define γf : LB → L1(µC) by

γf(g) = γg(f) for any g ∈ LB. Applying again the B.L.T. theorem we get

a unique bounded linear transformation γf ′ : L1(µB) → L1(µC) such that

γf ′(g) = βg(f) for any g ∈ LB. Finally we define γ′ : L1(µA) × L1(µB) →

L1(µC) by γ′(f, g) = γf ′(g) for any f ∈ L1(µA) and g ∈ L1(µB). It follows that

γ′(f, g) = γ̃(f, g) whenever f ∈ LA and g ∈ LB, so γ′ is also bounded.
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By [13, 253F, 253G] there exists a unique bounded linear operator Ω :

L1(λ) → L1(µC) such that Ω(f ⊗ g) = γ′(f, g) for any f ∈ L1(µA) and

g ∈ L1(µB). The desired bounded linear function is ω = Ω |T .

To prove the uniqueness, let ω′ : T → L1(µC) be another bounded linear

function that closes the above diagram. Using [12, Proposition 4.2] we extend it

to the f -algebra generated by T in L1(λ). Applying the B.L.T. theorem we get

a bounded bilinear transformation Ω′ : L1(λ) → L1(µC) such that Ω′(f ⊗ g) =

γ(f, g) for any f ∈ L1(µA)u and g ∈ L1(µB)u. Following similar arguments as

above one gets Ω′(f ⊗ g) = γ′(f, g) for any f ∈ L1(µA) and g ∈ L1(µB), so

Ω′ = Ω and ω′ = ω.

Remark 3.4. If (A, sA) and (B, sB) are two probability MV-algebras we defined

a probability MV-algebra (T, s) and a bilinear function β : A × B → T such

that (A, sA) and (B, sB) are (T, s, β)-independent. Thorem 3.1 can be seen as

a "universal property" of the product space, but it does not define (T, sT ) up

to isomorphism. If (A, sA) and (B, sB) are probability MV-algebras and both

(T, sT ) and (V, sV ) satisfy the property from Theorem 3.1 then T and V have

isomorphic group reducts.
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