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Abstract

In this paper we propose different robust fuzzy clustering models for classifying heteroskedastic (volatility) time series, following
the so-called model-based approach to time series clustering and using a partitioning around medoids procedure. The proposed
models are based on a GARCH parametric modeling of the time series, i.e. the unconditional volatility and the time-varying
volatility GARCH representation of the time series. We first suggest a timid robustification of the fuzzy clustering. Then, we
propose three robust fuzzy clustering models belonging to the so-called metric, noise and trimmed approaches, respectively. Each
model neutralizes the negative effects of the outliers in the clustering process in a different manner. In particular, the first robust
model, based on the metric approach, achieves its robustness with respect to outliers by taking into account a “robust” distance
measure; the second, based on the noise approach, achieves its robustness by introducing a noise cluster represented by a noise
prototype; the third, based on the trimmed approach, achieves its robustness by trimming away a certain fraction of outlying time
series. The usefulness and effectiveness of the proposed clustering models is illustrated by means of a simulation study and two
applications in finance and economics.
© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

In the last two decades, the literature on time series clustering has increased considerably with different method-
ological approaches and with a large range of applications in many different fields including finance, economics,
econophysics, marketing and new frontiers of marketing—such as digital marketing and neuromarketing—genetics
(microarray gene analysis), environmetrics, geology, telecommunications and biomedical sciences. See, e.g., [1-18].

From a methodological point of view, time series clustering methods can be classified into three classes [3,19]:
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Observation-based clustering: the time series clustering methods belonging to this approach are based on the
actual observed time series—considering all the observations or positions of the time series or suitable transfor-
mations of the observed time series, e.g., the so-called velocities, accelerations, polygonal representations of the
observed time series [1,2,4,6,10,20-22]. This clustering approach is particularly useful with short time series. In
addition, other observation based clustering methods are built upon the so-called Dynamic Time Warping (DTW),
which is a well-known technique for finding an optimal alignment between two given (time-dependent) sequences
under certain restrictions (see, e.g., [23]). See [19] for more details.
Feature-based clustering: in this case, the methods are based on suitable features derived for the time series. In
fact, as remarked by Caiado et al. [19] “if a time series consists of a large number of observations, clustering time
series based on these observations is not a desirable option because of the noise that is present, and the fact that the
autocorrelation structure of the time series is ignored”. In the literature, different feature-based clustering methods
have been developed to address the problem of clustering noisy raw time series data. As a broad distinction,
methods can be classified as follows:
e methods based on time domain features: i.e., autocorrelation function (ACF) [6,24-26], partial autocorrelation
function (PACF) [25] and inverse autocorrelation function (IACF) [25];
e methods based on frequency domain features: i.e., based on the periodogram and its transformations [13,26],
coherence [27] and cepstral [13];
e methods based on wavelet features: i.e., wavelet decomposition [11,14,18].
See [19] for more details.
Model-based clustering: these methods are based on the features of the models fitted to the time series. In particu-
lar, for these methods, it is assumed that a set of time series generated from the same model have similar patterns.
Time series are clustered by means of parameter estimates or by means of the residuals of the fitted models [19].
In this class, several time series clustering methods are based on the ARIMA representation of the time series (see,
e.g., [16,17,28-34]). Notice that most of these methods are devoted to capturing the structure of the mean of the
process hypothesized as generator of the data, whereas little attention has been put on the variance. This approach
is correct when dealing with clustering based on ARIMA models and in the presence of homoskedastic variance;
in fact, in this case, the variance is a function of the process parameters, so that it is implicitly considered in the
clustering process [7]. Dealing with heteroskedastic time series—or volatility time series—the comparison of the
dynamics of the variances is pivotal [7]. If the conditional variance follows a stochastic process, heteroskedastic
time series can be represented by GARCH models. In the literature, some time series clustering methods based
on GARCH models have been proposed—see, for instance, [7-9,12,15]. Finally, in the model-based time series
clustering approach we can also include the methods based on functional representation (see, e.g., [35]) and on
nonparametric or semiparametric (e.g. splines) (see, e.g., [36]) representation of the time series. For more details
on this methodological class, see [19].

In this paper, the model-based approach is adopted. In particular, given the motivations shown in 3) we focus our

attention on the model-based clustering of time series based on a GARCH parametric modeling of the time series.

el NS

The main contribution of this paper is to propose different clustering models which have the following features:

they are based on a “Partitioning Around Medoids” (PAM) approach;

they follow the fuzzy clustering approach to generate a fuzzy partition of the heteroskedastic time series;

they are robust to the presence of outliers, i.e. time series with anomalous patterns;

they are based on a GARCH parametric modeling of heteroskedastic time series, more specifically on the different
components of the volatility of the GARCH representation of time series, i.e. the unconditional volatility («v) and
the time varying volatility (#vv). Notice that this approach also allows to compare time series of different lengths;
they are based on a suitable distance measure for heteroskedastic time series which weights differently the differ-
ent components of the volatility of the GARCH representation of time series.

Given the features of the proposed models, the aim is to classify heteroskedastic time series by taking into account

the different components of their volatility, in such a way that the presence of anomalous time series is detected and
neutralized in the clustering process.
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The paper is organized as follows. In Section 2, we briefly introduce the concepts of unconditional and time-
varying volatility of GARCH models and a suitable distance measure for the volatility characteristics derived from
the GARCH representation of time series. In Section 3, following a fuzzy approach different GARCH model-based
robust clustering models for heteroskedastic time series are proposed. A simulation study and two applications are
shown, respectively, in Sections 4 and 5. Final remarks are made in Section 6.

2. GARCH models and distance measure for heteroskedastic time series
2.1. Unconditional, minimum and time-varying volatilities

Let y; (t =1,...,T) be a time series, where ¢ is the time index, modeled as the sum of a constant term p and a
zero mean heteroskedastic univariate process &; (heteroskedastic disturbance):

=W+ &

e = uy/hy (2.1)

where u; is a univariate white noise process with mean 0 and variance 1. The conditional variance h; follows a
GARCH(p, g) process as [37]:

hi=y+aiel  +...+aig;,+fihi1+...+ Bghig 22)

with

y>0,0<e;<1,0<B;<l(i=1....pij=1....9). Za,+2ﬁ]<1
i=1

Consider the difference between &2 and ,:

m=e—h (2.3)

where 7, are zero mean errors, uncorrelated with past information. After simple algebra, from Equation (2.2) the
squared disturbances 8[2 can be represented as an ARMA(p*, g) process:

*

q
e=y+Yy (@+Be =Y B+ (2.4)

i=1 j=1

where p* =max(p, q), o; =0fori > p,if p* =g, Bj =0for j > q if p* = p.

The parameters of the GARCH(p, g) model are (y,ay,...,ap, 1, ..., By). Hence, the GARCH process will be
denoted also as GARCH(y, a1, ..., ap, Bi, ..., By).

Given the usual stationarity and invertibility restrictions on the roots of (1 — (w1 + B81)z —... — (o; + ﬂi)Zi - =
(otpx + ﬁp*)zl’*) and (1 — B1z—.. .,szj — ... — Byz?), from (2.4) 8,2 can be expressed as an infinite autoregressive
AR(00) model, after recursive substitution:

el = ana, L+ (2.5)
1-Y18 &

As it is well known, indicating with ¢; the generic AR parameter and with 6; the generic MA parameter of an
ARMA (p, g) model, the recursive formula:

q
=Y Om_j=¢  k=0.1,... (2.6)
j=1

provides the sequence of parameters mx. In (2.6) ¢g =1, ¢; =0 for i > p and 13 = 0 for k < 0. From (2.4) and (2.6)
the my parameters are:

Please cite this article in press as: P. D’Urso et al., GARCH-based robust clustering of time series, Fuzzy Sets Syst. (2016),
http://dx.doi.org/10.1016/j.£s5.2016.01.010




FSS:6987

4 P. D’Urso et al. / Fuzzy Sets and Systems eee (eeee) see—ecee

q
=+ B — Y BT 2.7)
j=1
From (2.5) the expected volatility at time ¢ + 1, given the information available at time ¢, can be split in a constant
part and a time-varying part (which depends on the time history of the volatility) [7]:

o0
14 2
E(e2 )= —Z—— 4+ ) mel, 2.8)
1+1 1 — Z;]':] ﬁj ]; t

The unconditional volatility (uv) is then given by the unconditional expected value of etz L

Y
(=20 B = X2 )

The time-varying part of the volatility is an infinite weighted sum of unobservable random variables (see (2.8)).
The null time-varying volatility is obtained when each of the ;. coefficient is equal to zero. Considering the metric
introduced by Piccolo [28] between two ARIMA models as the Euclidean distance between the coefficients of the
AR(00) representation of the two models, the distance of a time series from the case of null time-varying volatility
(hence the case of constant volatility) is given by Otranto [7], yielding the expression of time varying volatility:

uv=E(e?, ) = (2.9)

0 3
= (Z n,f) (2.10)
k=1

2.2. A distance measure for heteroskedastic time series

The distance between each pair of time series is measured by comparing the unconditional volatility and the
time-varying volatility of the time series, i.e. by separately considering the distances for the unconditional volatility
and the time-varying volatility estimated parameters of the GARCH representation of the time series and using a
suitable weighting system for such distance components. Thus, by considering the i-th and i’-th units, we have:

2 g2 2 44 2 2 2 2,4
w,vdiin = [wluvdi,'/ + wztvvdii/]z = [wy @v; —uvir)” + ws (tvy; — tvvyr)7]2 (2.11)

where Wdizl., = (uv; —uv;r)? is the squared Euclidean distance between the unconditional volatility of units i and i’ (uv;
and uv;s respectively); ,Wdizi, = (twv; — twjr)? is the squared Euclidean distance between the time-varying volatility
of units i and i’ (rvv; and tvv;s respectively); wy, wa > 0 are suitable weights for the unconditional and time-varying
components. These weights can be fixed subjectively a priori by considering external or subjective conditions (internal
weighting system) or can be computed objectively within a suitable clustering procedure (external weighting system).

We assume the following conditions: wi + wy = 1 (normalization condition) and w1, wy > 0. We can set w; =
w, wy = (1 —w).

To select the weights, an objective criterion has been adopted. Therefore, the weight values are not fixed a priori
but are computed via a minimization algorithm. Thus we obtain weights that minimize the loss function with respect
to the optimal values of wy, ws.

The distance measure (2.11) has the following features:

1) w.nvdii 1s a metric. The properties of identity, non-negativity, symmetry are easily verified. Also the triangular
inequality property is satisfied, as it can be verified after some algebra.
i) v nvdii 1s computationally easy and theoretically intuitive.

The weights w1, w; are intrinsically associated to the characteristics of the time series captured by the unconditional
and time-varying volatility; thus the weights allows to tune properly the influence of the two components of the
volatility of the time series when calculating the distance.
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Series with similar unconditional volatility can have different dynamics, characterized by different time-varying
volatilities; conversely series with similar time-varying volatility can have different unconditional volatilities.

Through the normalization condition wi + wy = 1, we can easily assess, in a comparative fashion, the contribution
of the components in the computation of ,,, n,d;;’.

The measure ,, nd;; is utilized for comparisons within a set of data rather than for examining a single pair of data.
Thus, for a given dataset, the weighting system is optimal only for the dataset involved.

If two series have the same unconditional volatility and the same time-varying volatility, it is not possible to
conclude that they are generated by the same GARCH process. In fact the equality of the two unconditional volatilities
and the two time-varying volatilities is relative to two nonlinear combinations of the parameters of the GARCH
representation. The case of equality of the two data generating processes is obtained if and only if the constant y and
the parameters o; and B8; (i =1,..., p; j=1,...,q) are the same for the two GARCH models. This is a stronger
requirement with respect to the equality of the unconditional volatilities and the time-varying volatilities. It is obvious
that the equality of the parameters of two time series implies equal unconditional and time-varying volatilities (but
not vice versa).

In the paper robust fuzzy clustering models for heteroskedastic time series based on the estimated parameters of the
GARCH representation are introduced. Specifically, the proposed models focus on the contribution of the parameters
of the GARCH representation to the unconditional and time-varying volatility.

Other clustering methods based on the volatility related to the GARCH representation of time series have been
proposed in the literature.

Caiado and Crato [5] have introduced a dissimilarity measure between two volatility time series based on the
Euclidean distance among the estimated parameters y, «; and 8; i =1,...,p; j=1,...,q) of the GARCH repre-
sentation of the time series weighted with their estimated covariances. Then a hierarchical agglomerative clustering
method augmented with the dissimilarity measure proposed is used.

Otranto [7] has proposed a three level clustering of time series. The first level groups time series on the basis of the
unconditional volatility. The second level subgroups time series with similar time-varying volatility within the groups
characterized by similar unconditional volatility. Finally, a more accurate classification is obtained distinguishing,
within the groups with equal unconditional and time-varying volatilities, the time series with equal parameters of the
GARCH representation. The similarity of the time series in each of the three levels is determined using the result
(p-value) of a Wald statistical test on the unconditional volatility, on the time-varying volatility, on the estimated
GARCH parameters, respectively. The threshold on the p-values allows the automatic detection of the number of
clusters.

D’Urso et al. [15] have introduced two fuzzy clustering models of volatility time series in the framework of a
partitioning around medoids approach. One is based on the Caiado and Crato dissimilarity between the estimated
parameters of the GARCH representation of the volatility time series [5] and the other on the autoregressive distance
measure [28] applied by [7] to GARCH processes generating the volatility time series.

With respect to [5] and to [7,12] the novelty of our proposed models are: i) the use of a distance based on the
components of the volatility (unconditional and time-varying) objectively weighted; ii) the robustness to the presence
of outliers of the clustering algorithms in which the distance works; iii) the fuzziness of the partition.

With respect to [15] the novelty of the proposed models are: i) the use of a distance based on the components of
the volatility (unconditional and time-varying) objectively weighted; ii) the robustness to the presence of outliers of
the clustering algorithms in which the distance works.

The N x T data matrix Y consists of N time series observed in 7' times periods:

yuuo oo Yt --- VNIT
Y=|y1 - Vit - VT (2.12)
YN1 .- YNt --- JYNT

In the GARCH representation it turns into:
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UNT  UN2 Vi
where v;1 = uv; and v;p = tvy;.

Notice that it is not strictly necessary that the time series are of equal length. However, the fact that the time series
could have different length does not affect overall results, since the analysis is based on their GARCH representations.
Hence, to avoid a more cumbersome notation, we stick to the case in which all time series have the same length.
Finally, we observe that the orders p and g of the GARCH process are not necessarily equal.

3. Robust fuzzy clustering models of time series

In this section we propose different robust clustering models for time series based on a GARCH modeling of the
time series and a fuzzy partitioning around medoids (fuzzy PAM) approach. The motivations connected both to the
fuzzy and PAM approaches are shown in the following sections.

3.1. Fuzzy motivation

We adopt a fuzzy approach in order to take into account the intrinsic (non-stochastic) uncertainty derived from the
clustering of such complex data as time series, and to capture the switching or drifting nature of some time series in the
clustering process. Fuzzy clustering allows one time series to be allocated to two or more cluster, with a membership
degree that represents the (non-stochastic) uncertainty related to the assignment of the time series to each cluster. In
particular, our clustering models inherit the several advantages of the fuzzy approach to cluster analysis [2,4,11,13,
14,16,17,22,38,39]. In particular, as remarked by Hwang et al. [40]:

1. the fuzzy clustering algorithm is attractive because it is compatible with distribution-free procedure;

2. due to the difficulty of identifying a clear boundary between clusters in real world problems, the partial classifica-
tion of fuzzy clustering appears more attractive than the deterministic classification of nonoverlapping clustering
methods such as k-means [41,42];

3. the fuzzy clustering is computationally more efficient because dramatic changes in the value of cluster member-
ship are less likely to occur in estimation procedures [41] and it has been shown to be less afflicted by local optima
problems [43];

4. the memberships for any given set of respondents indicate whether there is a second-best cluster almost as good
as the best cluster—a result which traditional clustering methods cannot uncover [44];

5. the fuzzy approach is preferable to the probabilistic approach—e.g., finite mixture approach—, because, generally,
the latter approach assumes stringent distributional assumptions on data within unknown clusters. In the fuzzy
clustering approach, no specific form of distributions for observed data (within each cluster) needs to be assumed
a priori for the proposed method. In addition, the fuzzy approach is less afflicted by the problem of convergence
compared to the finite mixture approach [40].

In addition, we have the following motivations justifying the fuzzy approach for the clustering of time series [22,45]:

6. Greater sensitivity in capturing the details characterizing the time series. In many cases, since the dynamics
of the time series are drifting or switching, the standard (non-fuzzy) clustering approaches are likely to miss this
underlying structure. The switches, which are usually vague, can be naturally treated by means of fuzzy clustering.

7. Greater adaptivity in defining the prototype time series. This can be better appreciated when the observed time
patterns do not differ too much from each other. In this case, the fuzzy definition of the clusters allows us to single
out underlying structures, if these are likely to exist in the given set of time series.

Please cite this article in press as: P. D’Urso et al., GARCH-based robust clustering of time series, Fuzzy Sets Syst. (2016),
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3.2. PAM motivation

The task of clustering is useful to suitably summarize the information in a set of time series. Instead of considering
all time series one can analyze prototypal time series, i.e., time series that retain the main features of similar time series
classified in the same group. To this end, we adopt the so called “Partitioning Around Medoid” (PAM) approach [46]
in a fuzzy framework, i.e. the Fuzzy C-Medoids (FCMd) approach [47,48]. With FCMd, the prototypes of each group,
henceforth “medoid time series”, are time series actually observed and not “virtual” time series, like the “centroids”
derived with a Fuzzy C-Means (FCM) approach [49]. The possibility of obtaining non-fictitious representative time
series in the clusters is very appealing and useful in a wide range of applications. This is very important for the inter-
pretation of the selected clusters. In fact, as remarked by Kaufman and Rousseeuw [46] “in many clustering problems
one is particularly interested in a characterization of the clusters by means of typical or representative objects [time
series]. These are objects [time series] that represent the various structural aspects of the set of objects [time series]
being investigated. There can be many reasons for searching for representative objects [time series]. Not only can these
objects [time series] provide a characterization of the clusters, but they can often be used for further work or research,
especially when it is more economical or convenient to use a small set of k objects [C time series in our case] instead of
the large set one started off with”. Notice that, since the medoids are observed time series, by using the PAM approach,
the constraints on the GARCH coefficients of the prototypal time series are always satisfied (provided that the observed
time series are stationary and invertible), which is not necessarily guaranteed when using the k-means approach.

3.3. GARCH-based fuzzy clustering models

In the literature on fuzzy clustering, a very interesting line of research has focused on how to use fuzzy clustering
in the presence of anomalous data [50-56].

To this purpose, in the present section, we first propose the GARCH-based Fuzzy C-Medoids Clustering model
(GARCH-FCMdAC model) (see Section 3.3.1).

This model, inheriting the features of the non-fuzzy clustering version (see, [36,57]), provides only a timid robus-
tification of the fuzzy clustering. The model alleviates the negative effects of the presence of outliers in the dataset but
does not solve the problem. For this reason, we then propose the following robust models which represent different
types of robustification of the GARCH-FCMdC model:

— GARCH-based Exponential Fuzzy C-Medoids Clustering model (GARCH-E-FCMdC model) (section 3.3.2),

— GARCH-based Fuzzy C-Medoids clustering with Noise Cluster model (GARCH-NC-FCMdC model) (sec-
tion 3.3.3),

— GARCH-based Trimmed Fuzzy C-Medoids Clustering model (GARCH-Tr-FCMdC model) (section 3.3.4).

All the above clustering models include in the objective function the distance measure (2.11).

Each model neutralizes in a different manner the negative effects of the outliers in the clustering process. In partic-
ular, the GARCH-E-FCMdC model achieves its robustness with respect to outliers by taking into account a “robust”
distance measure; the GARCH-NC-FCMdC model achieves its robustness by introducing a noise cluster represented
by a noise prototype; the GARCH-Tr-FCMdC model achieves its robustness by trimming away a certain fraction of
anomalous time series.

3.3.1. GARCH-based Fuzzy C-Medoids Clustering model (GARCH-FCMdC)

By considering the data matrix Y and the distance measure (2.11), in which the weights are objectively computed
during the clustering process, we can classify units with fuzzy information within a fuzzy framework, by means of the
GARCH Fuzzy C-Medoids Clustering model (GARCH-FCMJC), characterized as follows:

N C
min : FGarcH-FeMdc (U, V, wi, wa) = Z Z L

i=1c=1

2 2 2 2
= Z Zu%[wluvdic + wztvvdic]

i=1 c=1
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= Z Zu [wl (uv; — uvc)2 + w%(lw,- — tvvc)z]
i=1c=1
C
Zu,'c:l; wi+wy=1; w,wy>0 (3.1)
c=1
where m > 1 is a weighting exponent that controls the fuzziness of the obtained partition; V.. = (v¢1, ve2) (see (2.13))
is the medoid for cluster c¢; u;. indicates the membership degree of the i-th unit in the c-th cluster; U is the N x C
matrix of the membership degrees.
By solving the constrained quadratic minimization problem (3.1) via the Lagrangian multiplier method we obtain
the optimal solution u;. and w1, wy. We consider the following Lagrangian function:

N C C
Ly (ic, \, wi, wp) = ZZ Uie w]uvd” + wztvvd 1- (Zuic - 1) (3.2)

i=1 c=1 c=1

We take the first partial derivatives with respect to u;. and A and set them to O:

aLm(uiC7 )\'9 wi, w2)

" =0 & mu!""[w}nd: +windi] — 1 =0 (3.3)
ic
O L ics by w1, W) ¢
m zcva): 1, W2 :O@Zl/h’c_lzo (3.4)
From (3.3) we have:
e
( A > m—1 1 m—1
wio—= | = (3.5)
lC m w%uvd,zc + w%tvvd,zc
and, upon substituting (3.5) in (3.4),
1
)\‘ ﬁ C 1 m—1
- > 3 3 =1 (3.6)
m =1 LW1 uvd + wztvvd

Therefore

= 1
(—) = : (3.7)
m m—=1

c 1
ZC:] [wluvdz +w2tud2 ]
Finally, substituting (3.7) into (3.5) yields to:
1

Ujc = 1

C w] uvd +w21vvd m=T
=1 w]uvd :/+w2tltdi2(.

3

1
= _. (3.8)
20y 202 (toy: 2 | m=T
C w1 (uv; —uve)*+ws (tvv; —tvve)
SC_ [ 1 ; ]

W (v —uv )2+ w3 (tw; —tvv )

By taking the partial derivative of (3.2) with respect to wy, noting that wy = 1 — wy, it follows:

N C
S ut [wiwd? = (= wmd? | =0

i=1c=1
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from which we obtain:
N C m 2
Dol el wipiwvd;,
N C 2 2
Dimt 2emt Uielwdie + avd;)

N C
Doiml Doemt ull (tvv; — tvve)?

w] =

—3N c m ) 2 . 2 (3.9)
Zizl Zczl MI-C[(MV, —uve)® + (tvv; — tvve)=]
In a similar way, we can derive w»:
N c 2
Wy = Zi:l Zc:l u;’zwdic
- N C
Zi:l Zczl M?é(uvdizc + tvvdizc)
N C
_ ity Dot U uvi — uve)? (3.10)
ZlNzl Zle ul [(wvi — uve)? + (tvvj — 1vve)?]
The medoids are obtained by solving the following minimization problem:
N
g = argmin Z ul [w}d?, + winyd?] = argmin g (V;) (3.11)
1<i’<N i—1 1<i’<N

where
N
g(¥i) = Y ultwlwd? + (1 = w1)2md?].
i=1

Forc=1,...,C, if the value of g is smaller than g(v.) the new medoid for cluster c is v,.
In the following, we show the algorithm for the GARCH-FCMdC model.

Algorithm (GARCH-FCMdC model).

Step 0: Fix the power of the membership degrees (m), the number of clusters (C) and the maximum number of
iterations (maxiter). Generate randomly the membership degree matrix U©) subject to conditions in (3.1), and pick C
medoids in the data matrix. Set . the submatrix containing the C medoids, V. being the medoid for cluster c.

Step 1: Compute wgs_l) according to (3.9) using U~V and HE D, where s > 1 denotes the iteration number.

Step 2: Update the medoid matrix HS): for ¢ = 1,...,C set
N
g = argmin Z u?’é[w%wdizi, +(1 - wl)zlwd?i/]

1=i'sN

and ;,E;Y) =V,. Update U asin (3.8), using H and wis_l) (for the unit i” that is medoid for cluster [ set u;»; = 1;
0 otherwise).
Step 3: If HO~D =H®, or iteration number s = maxiter the algorithm has converged, otherwise go to step 1.

3.3.2. GARCH-based Exponential Fuzzy C-Medoids Clustering model (GARCH-E-FCMdC)

In this section, we introduce a robust fuzzy clustering model belonging to the metric approach, the GARCH-based
Exponential Fuzzy C-Medoids Clustering model (GARCH-E-FCMdC). This model achieves its robustness with re-
spect to outliers by taking into account the following “robust” distance measure [52,58]:

1
uvf?r)\i]\)/dii/ =[1- exp{_,814\/,tvvd,'21/}]E
_ 2 2 2 \114
=[1 — exp{—B(wiwd}; + winvd;j;)}]2
1
= [1 — exp{—Blwi (uv; — wvi))* + w3 (tvv; — )’ 1} (3.12)

where B is a suitable parameter (positive constant) determined according to the variability of the data.
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In particular, following [58], it is easy to prove that (3.12) is a metric.

Notice that, within a fuzzy k-means clustering framework, Wu and Yang [52] describe a theoretical foundation to
asseverate that k-means clustering models based on the “exponential distance” are more robust than the models based
on the Euclidean distance.

By considering the “exponential distance”, we have the following GARCH-E-FCMdC model:

N C

. _ exp 12
min : FGarcH-E-Femdc U, V, wi, w) = Z Z e (vl

i=1 c=1
N C
- Z Zu;’;u — exp{—Blw? wv; — uve)* + w3 v — vwe)*1} (3.13)
i=1 c=1

The model (3.13) represents an extension of Wu and Yang’s model [52] to heteroskedastic time series modeled
via GARCH with medoid prototypes and a suitable (squared) distance measure for GARCH modeled time series. We
obtain the optimal solutions u;. and wp, wy by solving the constrained quadratic minimization problem (3.13). In
particular, from the following Lagrangian function (under the constraints in (3.1) for the membership degrees):

C
Ly (ujc, A, wi, wZ)_ZZ uvet/\rzz c)_)\(zuic_ 1) (3.14)
c=1

i=1c=1

By taking the partial derivatives of (3.14) with respect to ;. and A and by setting them to O:

8Lm(uiC7 )"3 wi, w2)

=0 & mul" [pabd:] — 1 =0
Outjc

C
aL (u'ﬁ)\" w]5w2)
" "a/\ =04 Y ue—1=0

from which we obtain, with algebraic passages similar to those illustrated in (3.5)—(3.7):
1

_ 1
exp 52 m—1
ZC uv, tvvd
=1 E‘PdZ

| uv.ovv

Ujc =

1
_ — (3.15)

c [ 1-ewi=pwii—wo) +uwd@vi—mo)2)) |7
1—exp{—ﬂ[w|2(uvi—qu/)Z—i-w%(tvv,-—tvvc/)z]}

By taking the partial derivatives of (3.14) with respect to w it follows:
N C
Z Z m a2 2 20, 2
uj. | exp{—PBlwy wv; — uve)™ + wi(tvv; — tvve)1}
i=1 c=1
B [wl (uvdl'zc + tvvdjzc) - tvvdjzc] =0
from which we obtain:
ZlN 1 ch 1 u;‘ﬁtwd? (1 uvel)\%d2)

Zl_l Zc 1 um (Wd2 + fVde (1 - uvi)lipvdz)

w] =

; Z ull’ (tvv; — tvvc)zexp{—ﬁ[w%(uvi —uv)r + wz(z‘vv, )}

= (3.16)
C
Z Ui [(@v; — ch)z + (v — ch)z]exp{ ﬂ[wz(uvt - Mvc)z + w5 (Wvl - WVC)Z]}

i Mz
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Fig. 3.1. Effect of the parameter 8 on the squared distance (3.12).
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Fig. 3.2. Effect of the parameter S on the membership degrees (3.15).

In a similar way, we can derive w;:

N c 2 exp 12
Doict 2ot Wiewndi (1 =y i)
N c 2 2 exp 12
Doimt 2ot Wielwdip + amdi ) (1= 4y ndi)

wy =

N C
o> ull(uv; — uvc)zexp{—ﬂ[w%(uvi —uve)? + w%(tvv,- — o))

i=1c=1
= (3.17)
N C
3wl [(uvi — uve)? + (tvv — tvve)2lexp{—Blwi v — uve)® + w3 (tvv; — tvve)?1}

i=1c=1

Notice that (3.16) and (3.17) can be solved only using an iterative method.

We observe that W;@zd’.i, is a monotone increasing function of , s, d;;» which assigns a small weight to outliers.

The value of 8, computed as the inverse of the variance in the data [52], appropriately affects the distance (3.12)
and the membership degree (3.15) in terms of robustness to outliers.

The effect of the parameter 8 on the squared distance (3.12) is illustrated in Fig. 3.1.

In the presence of low variability of the data, increasing distances receive a weight lower than in the case of high
variability.

The effect of the parameter 8 on the membership degree (3.15) is illustrated in Fig. 3.2.

Fig. 3.2 shows different membership curves for different parameters  obtained with the GARCH-E-FCMdC in the
case of two clusters with centers in 0.5 and 0.6 (the same values of uv and rvv have been considered). The curve with
circle points represents the GARCH-FCMdC membership curve. If 8 is very small (high variability in the data) the
GARCH-E-FCMdC membership curve is very close to the GARCH-FCMdC membership curve which well represents
fuzzy boundaries; if 8 is very large (low variability in the data) the GARCH-E-FCMdC membership curve (shaped
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as a step function) is very different from to the GARCH-FCMdC membership curve as it assigns membership 0.5 to
data that are slightly far from the centers, well representing the characteristic of separation between the clusters.
To solve the model (3.13), we can use the following algorithm.

Algorithm (GARCH-E-FCMdC model).

Step 0: Fix the power of the membership degrees (m), the number of clusters (C), the value of 8 and the maximum
number of iterations (maxiter). Generate randomly the membership degree matrix ) subject to conditions in (3.1),
and pick C medoids in the data matrix. Set H the submatrix containing the C medoids, v, being the medoid for
cluster c.

Step 1: Compute u)(s b according to (3.9) using U~ and H D, where s > 1 denotes the iteration number.
Step 2: Update the medoid matrix HE: for ¢ = 1,...,C set

exj
g = argmin E uie . pd”,)
I<i’<N ;4

and v&“) =V,. Update U asin (3.8), using H) and wﬁsil) (for the unit i” that is medoid for cluster [ set u;»; = 1;
0 otherwise).
Step 3: If HO~D =, or iteration number s = maxiter the algorithm has converged, otherwise go to step 1.

3.3.3. GARCH-based Fuzzy C-Medoids Clustering with Noise Cluster model (GARCH-NC-FCMdC)

In this section, we propose the Fuzzy C-Medoids clustering model with Noise Cluster (GARCH-NC-FCMdC).
This model achieves its robustness with respect to outliers by introducing a noise cluster represented by a noise
prototype, i.e. a noise medoid, which is always at the same distance from all units. By following [50], let there be
C — 1 good clusters and let the C-th cluster be the noise cluster. Let V¢ be the noise prototype (i.e. noise medoid). It
is assumed that the distance measure ,, y,d;c of unit i from medoid vc isequaltod, i =1..., N.

Then the GARCH-NC-FCMdC model can be formalized as follows:

min : FgarcH-NC-Femdc U, V, wi, wa)
N Cc-1
- Z Z MICMV Wlec + ZuzC82
i=1 c=1
N C-1
= Z Z ulc[wluvdw + wztvvdw] + Zu C82
i=1 c=1 i=1
N C-1 N
= Z Z ;’é[w%(uv,' —uve)? + w%(tvvi — )]+ Z ulmcéz (3.18)
i=1 c=1 i=1

where ujc= 1— Zg:ll Uic.

Notice that the model (3.18) represents an extension of model proposed by Davé [50] to GARCH data with medoid
prototypes.

The d1stance from the noise cluster depends on the average distance among units 8% = p(N(C — 1))~! x
Zl 1 ZC_ 1 w,md;,. In any case, the results do not seem very sensitive to the value of the multiplier p [50]. Due
to the presence of 5 umts that are close to good clusters are correctly classified in a good cluster while the noise units
that are away from good clusters are classified in the noise cluster.

By considering the Lagrangian function (under the constraints in (3.1) for the membership degrees):

N C—-1 C
Lin(tic, by wi, w2) = Y > " ufe[windy, + winvd;e] +Zu,682 (Zuic - 1)
c=1

i=1 c=1 i=1

and developing the derivatives, we obtain the following optimal solutions:
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1
Uic = I 1
CX_:I w%uvdizc+w%”"'di2c o + wlzl“’di20+w%tVVdizc ol
=1 w%ut>d’v2(/+w%tv'v'dizc/ 82
1
- c-1 L 1
— w%(uv,-—uv(;)2+w%(rvvi—tvvc)z m=1 n w%(uv,-—uv(;)z—&-w%(rvvi—lvvc)z m=1
P wf(uv,-—uvc/)z—&-w%(tvvi—tvv(./)z 52
forc=1,...,C — 1, while the membership degrees for the noise cluster are:
_1
1 |m-1
[#]
uic

- 1
CX_:I 1 m—1 + |: 1 :Im—l
=1 w%ul7dizc/+w%1v'v'di26/ 82
_1
1 |m-1
[#]
1

CX—:I 1 m—1 + l pre |
P w%(uvi—uvc/)z—&-w%(tvvi—tvv(./)z 52

The value of w; and w, is obtained as in (3.9)—(3.10), where the inner summation ranges over the C — 1 good
clusters.

Algorithm (GARCH-NC-FCMdC model).

Step 0: Fix the power of the membership degrees (), the number of clusters (C), a value for p and the maximum
number of iterations (maxiter). Generate randomly the membership degree matrix U subject to conditions in (3.1),
and pick C — 1 medoids in the data matrix. Set H the submatrix containing the C — 1 medoids, V. being the medoid
for cluster c.

Step 1: Compute w}s_l) according to (3.9) using U~V and HE~D and SZ(H), where s > 1 denotes the iteration
number.

Step 2: Update the medoid matrix H®): forc=1,...,C — I set

q= argmmZ rlwwds + (1= wi)wd ]
I<i"<N ;

and v = ¥,. Update U as in (3.8), using H* and wgs_l) (for the unit i” that is medoid for cluster / set u;» = 1;
0 otherwise).
Step 3: If ™D = or iteration number s = maxiter the algorithm has converged, otherwise go to step 1.

3.3.4. GARCH-based Trimmed Fuzzy C-Medoids Clustering model (GARCH-Tr-FCMdC)

To overcome the outlier problem in the fuzzy clustering, it is also possible to adopt a trimming-based robust version
of the GARCH-FCMdC model, the Trimmed Fuzzy C-Medoids Clustering model (GARCH-Tr-FCMdC). Following
[48], we define an objective function for a robust version of the GARCH-FCMdC model by considering the Least
Trimmed Squares approach and using (3.8)—(3.10).

This model achieves its robustness with respect to outliers by trimming away a certain fraction of the data units and
requires the specification of the “trimming ratio”, t, which is the fraction of the data units that has to be trimmed [48].

The objective function is obtained by substituting in the objective function (3.1) the expression of the opti-
mal u;. (3.8):

min : FGARCH-Tr-FCMdC (opt)
1—-m

N
= Z (Z[wluvd“ + w2fwdzc]l ’"> = Zharmi

i=1 i=1
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where
c 1—m
2 2 2 2
harm; = (Z[wlwdic + wynvdi.] 1"”)
c=1
c 1-m
_ 20 2 2, 29715
=Y 1wl — wve)® + wlevw; — tvv) 2w (3.19)
c=1

is C~! times the harmonic mean of [wlzwdl.zc + wgmdi]ﬁ when m = 2.

The objective function of the GARCH-Tr-FCMdC model, when TN (0 < t < 1) data units are trimmed, corre-
sponding to those with the highest values of harm; (the farthest from the medoids), is obtained by modifying the
objective function in (3.1) setting to N’ = N — © N the limit of the range of the outer summation:

N C
min : Foarc-remac @, Vow, wa) = " ul [y mdic]®
i=1c=1

= Z Zuu[wl Mlec + w2fVVd2 ]

i=1c=1

= Z Zu [wl (uv; — uvc)2 + w%(tvv,- — tvvc)z] (3.20)
i=1c=1
and is minimized with respect to the related parameters.
The values of w; and wy are obtained as in (3.9)—(3.10).
Notice that GARCH-Tr-FCMdC model represents an extension of the Krishnapuram et al.’s model [48] to GARCH
data with medoid prototypes.

Algorithm (GARCH-Tr-FCMdC model).

Step 0: Fix the power of the membership degrees (m), the number of clusters (C), a value for 7 and the maximum
number of iterations (maxiter). Generate randomly the membership degree matrix U© subject to conditions in (3.1),
and pick C medoids in the data matrix. Set H the submatrix containing the C medoids, v, being the medoid for
cluster c.

Step 1: Compute wgs_l) according to (3.9) using U and ’}L(“l), where s > 1 denotes the iteration number.
Step 2: Compute the harmonic distance harm; (3.19) fori =1, ..., N and trim the TN (0 < t < 1) units correspond-
ing to the highest values of harm;.

Step 3: Compute the membership degrees matrix us) > asin (3.8) for the N' = N — t N data units. Update the medoid

matrix H®: forc=1,..., C set
N/

qg= argmmZuw[wlwd” + (1 —w)adi]
I<i’<N’;

and ;,cs =V,. Update U asin (3.8), using H and wgs_l) (for the unit ;" that is medoid for cluster [ set u;» = 1;
0 otherwise).
Step 4: If HO~D =H, or iteration number s = maxiter the algorithm has converged, otherwise go to step 1.

3.3.5. Some remarks

To choose the optimal number of clusters for the fuzzy classification, we considered the Xie—Beni index [59]. For
the robust procedures considered it is also necessary to detect the optimal value of the parameters that control for the
presence of anomalous time series, i.e. § for GARCH-NC-FCMdAC and t for GARCH-Tr-FCMdC. The query for the
optimal values of C and of the parameters is conducted over a grid of values. For C fixed, we choose the optimal value
of the parameters for each method, thus obtaining a set of optimal values of the parameter for each value of C. Then,
we select the number of clusters that minimize the value of the Xie—Beni index.
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Fig. 3.3. Computation time for GARCH-FCMdC and Linearized-GARCH-FCMdC.

The optimal value of § for the GARCH-NC-FCMdC method is obtained by adopting the strategy proposed by
[16]. First, we executed the fuzzy clustering with noise cluster method with increasing values of §. Then, by analyzing
the distribution of the percentage of objects assigned to the noise cluster, we determined the optimal value of § in
correspondence of an abrupt change of the “slope” of the distribution.

The optimal values of t for the trimmed-based proposed procedure is determined according to the Unsupervised
Fuzzy Trimmed Algorithm presented by [51]. We gradually increase v and compute the objective function for each
value of 7. We expect that as 7 increases, the outlier time series are eliminated and the value objective function
decreases. The optimal value of T is obtained in correspondence with the largest change, in absolute value, of the
objective function.

Computational complexity and scalability are two important issues in objective function-based clustering. As the
complexity is always linear with respect to the number of variables and of clusters, we consider the complexity
with respect to the number of units N for each iteration of the algorithm. The complexity of all the proposed robust
algorithms is O(N?). In fact these algorithms operate on each data unit twice (nested cycle) as the prototype is the
medoid. To lower the complexity of the proposed robust algorithms the algorithms can be modified so that only a
subset of data units is examined while updating the medoid for cluster ¢ (Linearization). The subset is the set of data
units that correspond to the top highest membership values in cluster ¢ (under a proper threshold). The complexity of
all the robust algorithms is reduced to O (N) with the exception of the GARCH-Tr-FCMdC algorithm that is reduced
to O(NlogN) [48]. The complexity of this model is in fact dominated by the complexity of the ordering step that
is O(NlogN). The GARCH-FCMAC algorithm and the Linearized-GARCH-FCMdC algorithm have been run on
simulated datasets considering C = 2 clusters, the value m = 1.5 of the power of the fuzziness degree, two variables,
one hundred values of N (100 to 10000 step 100). The results are shown in Fig. 3.3.

We observe that the complexity of the GARCH-FCMdC grows as O (N?) whilst the complexity of the Linearized-
GARCH-FCMAC as O (N); the time required for N = 10000 is 100 (GARCH-FCMAC) and 10 (Linearized-GARCH-
FCMAC) times the time required for N = 1000, respectively.

The value of the fuzziness exponent has been set to m = 1.5 according to suggestions by [60].

4. Simulation study

In this section, we illustrate the results of a simulation study conducted to evaluate the performance and the
clustering accuracy of the proposed robust clustering models' GARCH-FCMdC, GARCH-E-FCMdC, GARCH-NC-
FCMdC, GARCH-Tr-FCMdC. Datasets according to two different scenarios have been simulated. In each dataset
N =100 time series of length 7 = 1000 are generated. For each scenario, two separated clusters of time series
generated, respectively, from two different GARCH processes have been simulated. In the first Scenario the first gen-
erating process is GARCH(0.40, 0.30, 0.20) resulting in uv = 0.67 and tvv = 0.31, the second generating process is
GARCH(0.40, 0.60, 0.20) resulting in v = 1.00 and tvv = 0.61; in the second Scenario the first generating process

1 Source code of the algorithms is available from the authors upon request.
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Table 4.1
Data and outlier generation in the simulation experiment.
GARCH(y, «, B) uy vy
Scenario 1 cluster 1 i =1,..., N/2) GARCH(0.40, 0.30, 0.20) 0.67 0.31
cluster2(( =N/2+1,...,N) GARCH(0.40, 0.60, 0.20) 1.00 0.61
outliers y N(0.02,0.005) 0.10 0.86
o N(0.85,0.005)
BU0.10,1 —a)
Scenario 2 cluster1 i =1,..., N/2) GARCH(0.10, 0.35, 0.10) 0.16 0.35
cluster2(( =N/2+1,...,N) GARCH(0.30, 0.10, 0.10) 0.37 0.10
outliers y N(0.14,0.001) 0.69 0.85
o N(0.85,0.001)
BU0.05,1 —a)
2 2
S Wikt s o WWWWWWWW
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Fig. 4.1. Simulation Scenarios (Scenario 1 top, Scenario 2 bottom).

is GARCH(0.10, 0.35, 0.10) resulting in uv = 0.16 and tvv = 0.35, the second generating process is GARCH(0.30,
0.10, 0.10) resulting in uv = 0.37 and rvv = 0.10.

In order to evaluate the robustness of the proposed models in the presence of outliers, 0.1 N and 0.2N outliers were
added to the 100 time series. In the first Scenario the value of the parameter y of the outliers is generated from a
Gaussian distribution N (0.02, 0.005), the value of the parameter o from a Gaussian distribution N (0.85, 0.005), the
value of the parameter 8 from a Uniform distribution U (0.10, 1 — &) (in order to guarantee @ + < 1), resulting
in uv = 0.10 and tvv = 0.85. The resulting either 100 or 120 time series of the first Scenario are characterized by
the variability (measured by the sample variance of the simulated values) of the unconditional volatility greater than
the variability of the time-varying volatility. In the second Scenario the value of the parameter y of the outliers is
generated from a Gaussian distribution N (0.14,0.001), the value of the parameter « from a Gaussian distribution
N (0.85,0.001), the value of the parameter § from a Uniform distribution U (0.05,1 — «) (in order to guarantee
o + B < 1), resulting in uv = 0.69 and tvv = 0.85. The resulting either 100 or 120 time series of the second scenario
are characterized by the variability of the time-varying volatility greater than the variability of the time unconditional
volatility.

Data generation is summarized in Table 4.1, while the simulated scenarios are depicted in Fig. 4.1.

The performances of each model have been evaluated with respect to misclassification and to prototype detection.

To evaluate the robustness of a clustering model with respect to misclassification in the presence of outliers, a crite-
rion for comparing clustering partitions is needed. A review and analysis of these criteria in the non-fuzzy framework
can be found in [61]. The Fuzzy Rand index (fri) [62,63] has been used to compare the hard partition in two clusters
with the fuzzy partition obtained as output of the robust models. The Fuzzy Rand index is a fuzzy extension of the
Rand index based on agreements and disagreements in the two partitions. The index is averaged over 100 simulation
runs.

The Xie—Beni index of cluster-validity (xb) is also presented.
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Table 4.2
Performance parameters of the robust models.
Yooutlier Scenario 1 Scenario 2
wq xb fri md w xb fri md
GARCH-FCMdC 0% 0.35 0.06 0.96 1.05 0.60 0.03 0.98 1.04
10% 0.40 0.25 0.94 1.12 0.52 0.44 0.95 1.17
20% 0.40 0.41 0.93 1.25 0.51 0.69 0.92 1.22
GARCH-E-FCMdC 0% 0.36 0.06 0.96 1.05 0.62 0.03 0.99 1.04
10% 0.37 0.19 0.95 1.05 0.62 0.25 0.98 1.09
20% 0.39 0.32 0.94 1.09 0.56 0.51 0.97 1.14
GARCH-NC-FCMdC 0% 0.35 0.06 0.96 1.05 0.56 0.03 0.99 1.04
10% 0.33 0.07 0.95 1.05 0.56 0.03 0.98 1.05
20% 0.34 0.08 0.95 1.05 0.56 0.08 0.98 1.05
GARCH-Tr-FCMdC 0% 0.32 0.06 0.96 1.05 0.68 0.03 0.99 1.04
10% 0.35 0.06 0.96 1.05 0.61 0.04 0.99 1.05
20% 0.32 0.06 0.96 1.05 0.63 0.12 0.98 1.05
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Fig. 4.2. Simulated data (dots) and medoids (triangles)—first Scenario. Top 10% outliers, bottom 20% outlier; left to right GARCH-FCMdC,
GARCH-E-FCMdC, GARCH-NC-FCMdC/GARCH-Tr-FCMdC (same medoids). (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

To evaluate the robustness of a clustering model with respect to prototype detection in the presence of outliers, an
index md has been introduced which compares the medoids obtained in the presence of outliers with the expectation
of the generating random variable. The index for the case of n outliers is the following:
d(oVi,nV1) +d(0V2, nV1) +d(0V1, nV2) + d(0V2, nV2)

2d(ov1,0V2)

md[(o¥V1,0V2), (2 V1, nV2)] =

where , V. denotes the medoid of cluster ¢ in the case of n outliers and ¢V, the medoid obtained considering the
expected values of the generative random variables and d(.,.) the Euclidean distance. It holds md > 1 due to the
triangular inequality.

The index is averaged over the 100 simulation runs.

The results are presented in Table 4.2. For each scenario, the best results are in bold font. In Figs. 4.2-4.3 the
optimal medoids for the two scenarios are represented by red triangles.

Table 4.2 shows the high performances of the proposed models either in terms of classification correctness (fri
close to 1) or in terms of robustness in the presence of an increasing number of outliers (md close to 1). The model
GARCH-FCMAC is less robust in the presence of outliers either considering misclassification or prototype detection

Please cite this article in press as: P. D’Urso et al., GARCH-based robust clustering of time series, Fuzzy Sets Syst. (2016),
http://dx.doi.org/10.1016/j.£s5.2016.01.010
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Fig. 4.3. Simulated data (dots) and medoids (triangles)—second Scenario. Top 10% outliers, bottom 20% outlier; left to right GARCH-FCMdC,
GARCH-E-FCMdC, GARCH-NC-FCMdC/GARCH-Tr-FCMdC (same medoids). (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

(higher value of md than the other models, graphically represented in Figs. 4.2 and 4.3). In scenario 1 for all the
models the value of w; is smaller than 0.5 due to the greater variability of the unconditional volatility uv; in scenario
2 for all the models the value of w; is greater than 0.5 due to the greater variability of the time varying volatility tvv
(see section 2).

5. Applications
5.1. International stock-market volatility daily index returns

The first application is based on the volatility daily index returns of the major international stock exchanges. The
data includes 30 time series with unequal length, since the period of observation of time series starts from January 2000
until December 2010, but some of time series data were available only for a shorter period. As observed above (see
Sections 1 and 2.2), the classification on time series that have unequal length is possible because we use a parametric
approach based of representation the time series in GARCH process. All data are available on the finance section of
Yahoo website.” The goal of the application is to show the usefulness of the fuzzy clustering approach in identifying
groups of countries whose daily index returns share a similar volatility pattern. The time series of daily index returns
are shown in Fig. 5.1.

In order to choose the best GARCH(p, ¢) models for the time series of daily index returns we consider the Box
and Jenkins modeling procedure. The final results of this procedure are shown in Table 5.1. The best model selected
for all time series is the GARCH(1, 1). All estimated coefficients are significant. In Table 5.1 we show the models’
coefficients, their standard error (in brackets) and some diagnostic tests with the related p-value. Q and 0? are the
values of the Ljung—Box test up to twenty lags for serial correlation in the residuals and the LM is the Lagrange
multiplier test for ARCH (AutoRegressive Conditional Heteroskedasticity) effects in the residuals. We then apply the
clustering algorithms which uses the truncated AR(co) representation described in Section 2. First we represent the
GARCH(1,1) process in the ARMA(1,1) process; then the time series transformed in the ARMA process are fitted
with truncated AR(0co) models and those time series fitted with AR models retain their coefficients.

The indices are represented in Fig. 5.2 according to the values of uv, tvv.

We apply our four robust clustering models—i.e. the GARCH-FCMdC model, the GARCH-E-FCMdC model, the
GARCH-NC-FCMdC model, the GARCH-Tr-FCMdC model compared with the crisp version of each model. Data
are standardized dividing each variable by its maximum value.

2 http://finance.yahoo.com.
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Fig. 5.1. Daily index returns of 30 international stock exchanges.

The membership degrees are presented in Table 5.2.
The best value of cluster validity for all the models is obtained with a partition in 2 clusters, with lowest values
shown by the three robust models. The partitions based on the robust fuzzy clustering for the models GARCH-E-
FCMdC, GARCH-NC-FCMdC, GARCH-Tr-FCMdC are the following (notice that units 8 and 14 are present only in
the partition obtained with GARCH-E-FCMdC):

T T T T T T T T T 1T
2000 2003 2006 2009

(1,3,4,9,10, 12, 14,15, 16, 17, 22,23, 24,27)(2,5,6,7,8,9, 11, 13, 18, 19, 20, 21, 25, 26, 28, 29, 30)
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Table 5.1

Estimated coefficients of GARCH(1,1) processes for the daily index returns.

Indices ARCH & GARCH B 0(20) p-value Q2(20) p-value LM p-value
1 AEX (NL) 0.1081 (0.0141) 0.8858 (0.0129) 22.4556 0.3163 22.6634 0.3056 18.0606 0.1159
2 S&P/ASX 200 (AUS) 0.0869 (0.0164) 0.9096 (0.0164) 21.1871 0.3861 18.7262 0.5396 13.7442 0.3173
3 ATX (AT) 0.1284 (0.0211) 0.8578 (0.0249) 28.355 0.1188 16.6635 0.6747 11.1938 0.5123
4 BFX (BE) 0.1444 (0.0216) 0.8466 (0.0208) 22.4823 0.3149 16.0483 0.7136 8.9599 0.7063
5 BVSP (BR) 0.0689 (0.0176) 0.9088 (0.0159) 25.0868 0.1981 17.4879 0.621 10.4213 0.579
6 CAC40 (F) 0.0939 (0.0122) 0.9000 (0.0146) 26.7516 0.1423 12.7494 0.8878 9.9122 0.6236
7 DAX (D) 0.0927 (0.0123) 0.8990 (0.0120) 22.472 0.3154 26.3797 0.1536 17.3854 0.1244
8 EGX30 (ET) 0.0260 (0.0240) 0.9655 (0.0378) 25.0183 0.1528 20.174 0.447 11.2824 0.5048
9 FTSE100 (GB) 0.1053 (0.0135) 0.8898 (0.0131) 22.442 0.317 29.8209 0.1105 17.9871 0.1201

10 FTSEMIB (I) 0.1079 (0.0209) 0.8845 (0.0195) 14.5796 0.7999 25.5811 0.1801 16.9896 0.1308

11 HANG SENG (HK) 0.0664 (0.0095) 0.9286 (0.0091) 23.5587 0.2621 24.3376 0.2279 17.9232 0.1259

12 IBEX 35 (E) 0.1009 (0.0190) 0.8845 (0.0173) 17.2738 0.6351 28.1289 0.1277 17.2675 0.1301

13 IPC (MEX) 0.0789 (0.0157) 0.9089 (0.0187) 30.3476 0.0998 9.0994 0.9817 7.2364 0.8415

14 IPSA (RCH) 0.1763 (0.0304) 0.7962 (0.0291) 31.8239 0.0812 18.7324 0.5392 12.9544 0.3723

15 ISEQ (IRL) 0.1002 (0.0176) 0.8908 (0.0186) 28.6551 0.1106 14.695 0.7935 9.2692 0.6797

16 JKSE (RI) 0.1393 (0.0315) 0.8007 (0.0470) 32.8754 0.0779 18.4597 0.5571 9.0147 0.7016

17 KLSE (MAL) 0.1298 (0.0357) 0.8677 (0.0361) 30.1713 0.0954 26.8163 0.1514 2.2909 0.9988

18 KS11 (ROK) 0.0806 (0.0157) 0.9151 (0.0146) 27.8968 0.1118 15.2465 0.7621 10.1004 0.6071

19 MERV (RA) 0.0969 (0.0145) 0.8764 (0.0174) 29.7804 0.1034 14.2712 0.8164 10.6137 0.5622

20 NIKKEI (J) 0.0948 (0.0132) 0.8947 (0.0126) 18.9275 0.5265 27.5483 0.1205 17.4932 0.1319

21 OMXS30 (S) 0.1240 (0.0204) 0.8487 (0.0243) 16.1155 0.7094 19.9271 0.4624 11.5688 0.4808

22 OSEAX (N) 0.0675 (0.0207) 0.9244 (0.0237) 28.8912 0.0956 23.7344 0.2541 13.9576 0.3042

23 SENSEX (IND) 0.1403 (0.0313) 0.8432 (0.0250) 32.2054 0.071 14.5702 0.8004 12.2251 0.4277

24 SMI (CH) 0.1176 (0.0145) 0.8684 (0.0143) 22.5214 0.3128 29.6336 0.1098 18.9469 0.1019

25 S&P 500 (USA) 0.0801 (0.0108) 0.9124 (0.0108) 13.5258 0.8537 23.1422 0.2818 18.4981 0.1093

26 SSE (CN) 0.0718 (0.0175) 0.9210 (0.0181) 28.1062 0.1027 13.0897 0.8735 5.9461 0.9187

27 STI (SGP) 0.1032 (0.0198) 0.8953 (0.0171) 28.26 0.1033 20.9776 0.3984 13.437 0.3381

28 TA100 (IL) 0.0921 (0.0183) 0.8791 (0.0223) 29.7282 0.1005 16.6511 0.6754 12.8321 0.3813

29 S&P/TSX (CND) 0.0658 (0.0133) 0.9296 (0.0142) 12.5148 0.8972 14.0501 0.8279 11.6758 04721

30 TSEC (TW) 0.0672 (0.0129) 0.9281 (0.0130) 12.5148 0.8972 29.9133 0.1027 17.2473 0.1283
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Fig. 5.2. Unconditional volatility and time-varying volatility of the indices.

The partition based on the GARCH-FCMdC model is:
(1,2,3,4,6,7,9,10, 12,14, 15, 16, 17, 20, 21, 22,23, 24,27)(5, 8, 11, 13, 18, 19, 25, 26, 28, 29, 30)

Some comments follow.
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Table 5.2
Membership degrees.
GARCH-FCMdC GARCH-NC-FCMdC GARCH-E-FCMdC GARCH-Tr-FCMdC
membership degrees crisp membership degrees crisp membership degrees crisp membership degrees crisp

1  AEX 1.000 0.000 1 0.998 0.001 0.001 1 0.999 0.001 1 0.999 0.001 1

2 S&P/ASX 200 0.850 0.150 1 0.008 0.990 0.003 1 0.070 0.930 1 0.059 0.941 2

3 ATX 0.996 0.004 1 0.990 0.003 0.007 1 0.997 0.003 1 0.998 0.002 1

4 BFX 0.975 0.025 1 0.735 0.026 0.239 1 0.943 0.057 1 0.976 0.024 1

5 BVSP 0.057 0.943 2 0.021 0.832 0.147 3 0.020 0.980 2 0.009 0.991 2

6 CAC40 0.958 0.042 1 0.189 0.789 0.022 1 0.474 0.526 1 0.322 0.678 1

7 DAX 0.892 0.108 1 0.072 0915 0.013 1 0.276 0.724 1 0.265 0.735 2

8 EGX30 0.216 0.784 2 0.009 0.038 0954 3 0.384 0.616 2 outlier

9 FTSE100 0.999 0.001 1 0.990 0.007 0.003 1 0.995 0.005 1 0.997 0.003 1
10 FTSEMIB 1.000 0.000 1 0.996 0.003 0.001 1 0.998 0.002 1 0.999 0.001 1
11 HANG SENG 0.053 0.947 2 0.013 0920 0.067 2 0.007 0.993 2 0.003 0.997 2
12 IBEX 35 1.000 0.000 1 0.999 0.000 0.000 1 1.000 0.000 1 1.000 0.000 1
13 IPC 0.021 0.979 2 0.000 0.999 0.001 2 0.000 1.000 2 0.000 1.000 2
14 IPSA 0.934 0.066 1 0.289 0.028 0.683 3 0.818 0.182 1 outlier
15 ISEQ 0.993 0.007 1 0.725 0.250 0.025 1 0.876 0.124 1 0.887 0.113 1
16 JKSE 0.584 0.416 1 0.998 0.001 0.001 3 0.997 0.003 1 0.999 0.001 1
17 KLSE 0.989 0.011 1 0.938 0.011 0.051 1 0.984 0.016 1 0.992 0.008 1
18 KSl11 0.159 0.841 2 0.000 1.000 0.000 1 0.001 0.999 2 0.000 1.000 2
19 MERV 0.203 0.797 2 0.030 0958 0.012 3 0.127 0.873 2 0.101 0.899 2
20  NIKKEI 0.805 0.195 1 0.126 0.857 0.018 1 0.377 0.623 1 0.271 0.729 2
21  OMXS30 0.510 0.490 2 0.001  0.999 0.000 1 0.018 0.982 2 0.015 0.985 2
22 OSEAX 0.979 0.021 1 1.000  0.000 0.000 1 1.000 0.000 1 1.000 0.000 1
23 SENSEX 0.954 0.046 1 0.898 0.015 0.087 1 0.975 0.025 1 0.989 0.011 1
24 SMI 1.000 0.000 1 1.000  0.000 0.000 1 1.000 0.000 1 1.000 0.000 1
25  S&P 500 0.366 0.634 2 0.000 1.000 0.000 1 0.000 1.000 2 0.000 1.000 2
26 SSE 0.000 1.000 2 0.005 0.980 0.015 2 0.001 0.999 2 0.000 1.000 2
27  STI 1.000 0.000 1 0.987 0.010 0.003 1 0.994 0.006 1 0.995 0.005 1
28  TA100 0.029 0.971 2 0.000 1.000 0.000 2 0.007 0.993 2 0.005 0.995 2
29  S&P/TSX 0.131 0.869 2 0.014 0.909 0.077 2 0.008 0.992 2 0.004 0.996 2
30 TSEC 0.039 0.961 2 0.011 0937 0.052 2 0.005 0.995 2 0.002 0.998 2

The analysis of the crisp classification—i.e., the classification obtained when each time series is assigned to a
cluster according to the maximal membership degree—for all the models shows worse performances with respect to
the cluster validity indices.

The obtained value of w; is 0.29 for GARCH-FCMdAC, 0.10 for GARCH-E-FCMdC, GARCH-NC-FCMdC,
GARCH-Tr-FCMdC showing higher variability for the unconditional volatility component.

Due to the values of wy, the clusters are identified mainly on the basis of the time-varying volatility. In particular,
cluster 1 includes time series with low values of uv and high values of tvv.

In the GARCH-NC-FCMdC model indices 8 (EGX30) and 14 (IPSA) have the highest membership to the
noise cluster. In the GARCH-Tr-FCMdC model the indices trimmed are 8 and 14. Then, GARCH-NC-FCMdC and
GARCH-Tr-FCMdC identify the Egyptian index EGX30 and the Chilean index IPSA as outliers. The outlier EGX30
shows a strong membership to the noise cluster, while the membership degree of the outlier index IPSA is lighter.
Index EGX30 is an outlier as it has very low value for the time-varying volatility, while IPSA has a high value for
time-varying volatility (Fig. 5.2).

Indexes 8 and 14 are assigned to clusters 2 and 1 in the models GARCH-FCMdC and GARCH-E-FCMdC, but in
the model GARCH-E-FCMdC with a lower membership, thus not affecting the value of the cluster validity index.

In the robust model GARCH-E-FCMdC the medoids are (24, 13) in GARCH-NC-FCMdC, GARCH-Tr-FCMdC
(24, 18); in GARCH-FCMJAC (12, 26). As for GARCH-FCMAC, the medoids are influenced by the presence of index
8; in fact index 26 has a lower value of vy with respect to indices 13 or 18. As a consequence indices 2, 6, 7, 20 and
21 move to the other cluster for the reason that they are too far from index 26. Moreover, beside index 8, also indices
16 and 19 have low membership to the related cluster as the higher value of w; leads to consider also the high value
of uv as anomalous.

Please cite this article in press as: P. D’Urso et al., GARCH-based robust clustering of time series, Fuzzy Sets Syst. (2016),
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Fig. 5.3. Membership degrees.

With regards to the crisp classification, the crisp version of GARCH-NC-FCMAC assigns to cluster 3 also indices
5, 16 and 19 beside 8 and 14, due to the higher value of w; (higher weight to uv).

Separation and compactness of the obtained partitions are illustrated in Fig. 5.3. The analysis of the membership
degrees shows that some indices present uncertain classification in the model GARCH-FCMAC, specifically indices
8, 14, 16, 21 and 25, and in the model GARCH-E-FCMAC, specifically indices 6, 7, 8 and 14. Indexes 8 and 14 are
in the noise cluster in the model GARCH-NC-FCMJAC and are trimmed in the model GARCH-Tr-FCMdC; then the
clusters obtained by the highest membership degree are clearly identified.

5.2. Volatility daily stocks returns in FTSEMIB index

The second application is based on daily returns of stocks that form the FTSEMIB index. It is the most significant
index in the Italian Stock Exchange. FTSEMIB index contains stocks of 40 major Italian and foreign companies listed
on the Italian Stock Exchange. The period of observation of time series starts from January 2000 until December
2010, even if some time series are observed for a shorter period (see Section 5.1). As for the previous application,
data are available on the finance section of the Yahoo website.” The time series of daily stocks returns are shown in
Fig. 5.4.

Following the same procedure as in section 5.1, we obtain the results shown in Table 5.3. The best model selected
for all index is the GARCH(1,1). All estimated coefficients are significant.

The uv and tvv values of the time series are represented in Fig. 5.5.

We proceed to apply the clustering algorithms in a similar way as in section 5.1. The membership degrees are
presented in Table 5.4.

The best value of cluster validity for all the models is obtained with a partition in 2 clusters. The partitions based on
the robust fuzzy clustering for the models GARCH-E-FCMdC, GARCH-NC-FCMdC, GARCH-Tr-FCMdC are the
following (units 13 appear only in the partition obtained with GARCH-E-FCMdC):

1,2,3,4,5,7,8,9,10, 14, 15, 16, 18, 19, 21, 23, 25, 26, 27, 28, 29, 30, 33, 37)
(6,11,12,13,17, 20,22, 24,31, 32, 34, 35, 36, 38, 39, 40)

The partition based on the GARCH-FCMdC model is:

3 http://finance.yahoo.com.
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Fig. 5.4. Daily stock returns in FTSEMIB index.

(6,11,12,13,17, 20,22, 24,31, 32, 34, 35, 39, 40)

Some comments follow.
The value of w; is 0.19 for GARCH-FCMdC, 0.10 for GARCH-E-FCMdC, GARCH-NC-FCMdC, GARCH-Tr-
FCMdAC showing higher variability for the unconditional volatility component. As in the previous application, the
clusters are identified mainly on the basis of the time-varying volatility. In particular, cluster 1 includes stocks with

low values of tvv.

2000 2003 2006 2009
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Table 5.3

Estimated coefficients of GARCH(1,1) processes for the volatilities daily returns of stocks that make up the FTSEMIB index.

Indices ARCH & GARCH § 0(20) p-value 02(20) p-value M p-value
1 A2A 0.0732 (0.0166) 0.9129 (0.0194) 15.4036 0.7528 11.4715 0.933 7.5247 0.821
2 AGL 0.0554 (0.0175) 0.9384 (0.0188) 16.3899 0.6921 18.4857 0.5554 11.8067 0.4613
3 ATL 0.0767 (0.0456) 0.9107 (0.0537) 27.3807 0.1139 19.1045 0.515 13.0634 0.3644
4 AZM 0.0646 (0.0175) 0.9287 (0.0208) 24.2525 0.2315 14.7687 0.6323 11.8495 0.4578
5 BMPS 0.0633 (0.0494) 0.9330 (0.0581) 19.1115 0.5145 2.5685 0.9999 1.2496 0.9999
6 BP 0.0946 (0.0392) 0.8894 (0.0523) 14.5424 0.8019 21.3779 0.3751 16.1554 0.1842
7 BUL 0.0288 (0.0076) 0.9670 (0.0091) 23.2198 0.2781 17.8185 0.5993 9.4886 0.6607
8 BZU 0.0739 (0.0240) 0.9109 (0.0378) 25.0183 0.1528 20.174 0.447 11.2824 0.5048
9 CIR 0.0773 (0.0264) 0.8974 (0.0360) 15.0904 0.7712 14.4385 0.8075 9.5823 0.6525

10 CPR 0.0609 (0.0266) 0.9250 (0.0358) 24.6161 0.2055 15.9732 0.7182 5.9035 0.9208

11 ENEL 0.1032 (0.0264) 0.8766 (0.0309) 26.5389 0.1487 15.7944 0.7292 11.9232 0.4518

12 ENI 0.1006 (0.0177) 0.8790 (0.0199) 9.9481 0.9691 12.4756 0.8987 7.6896 0.8088

13 EXO 0.3724 (0.0911) 0.5360 (0.0812) 21.3099 0.379 13.1397 0.8713 5.4366 0.9417

14 F 0.0710 (0.0178) 0.9162 (0.0274) 26.2113 0.1511 11.2366 0.9398 3.8176 0.9865

15 FNC 0.0770 (0.0162) 0.8947 (0.0212) 11.6451 0.9277 15.6669 0.737 12.8545 0.3797

16 FSA 0.0552 (0.0129) 0.9415 (0.1343) 21.9669 0.3423 22.0685 0.3368 18.3615 0.1305

17 G 0.1130 (0.0207) 0.8788 (0.0205) 21.7589 0.3537 20.5448 0.4243 16.183 0.183

18 GEO 0.0581 (0.0239) 0.9235 (0.0343) 26.9204 0.1093 17.2527 0.6365 7.1647 0.8465

19 IPG 0.0764 (0.0367) 0.8854 (0.0636) 28.241 0.0987 5.4978 0.9994 3.3998 0.992

20 ISP 0.1048 (0.0175) 0.8966 (0.0140) 12.8623 0.8832 21.0717 0.3929 14.3241 0.2804

21 IT 0.0586 (0.0139) 0.9339 (0.0164) 22.1081 0.3346 24.4691 0.2576 19.3877 0.1133

22 LTO 0.1132 (0.0379) 0.8189 (0.0451) 18.2315 0.5721 4.9232 0.9997 2.7138 0.9972

23 LUX 0.0675 (0.0207) 0.9244 (0.0237) 28.8912 0.0956 23.7344 0.2541 13.9576 0.3042

24 MB 0.1067 (0.0313) 0.8697 (0.0376) 16.9691 0.6549 15.7673 0.7309 10.7501 0.5504

25 MED 0.0543 (0.0158) 0.9301 (0.0211) 27.1193 0.1098 14.2428 0.8179 3.8923 0.9853

26 MS 0.0531 (0.0159) 0.9384 (0.0189) 13.5258 0.8537 14.4849 0.805 11.0043 0.5285

27 PC 0.0485 (0.0138) 0.9467 (0.0172) 20.9986 0.3972 9.8382 0.971 7.764 0.8033

28 PLT 0.0461 (0.0153) 0.9416 (0.0172) 17.9797 0.5888 5.1802 0.9996 3.1017 0.9947

29 PMI 0.0778 (0.0382) 0.8977 (0.0597) 12.1308 09114 7.946 0.9922 6.9472 0.8611

30 PRY 0.0783 (0.0176) 0.9053 (0.0185) 19.7975 0.4706 27.4171 0.1198 13.7839 0.3147

31 SPM 0.0953 (0.0196) 0.8846 (0.2237) 8.8633 0.9844 13.6736 0.8466 11.2227 0.5099

32 SRG 0.1100 (0.0411) 0.8537 (0.0574) 29.2104 0.0899 28.1461 10.5984 20.2692 0.1019

33 ST™M 0.0442 (0.0096) 0.9519 (0.0107) 26.1209 0.1618 14.5289 0.8027 8.5747 0.7387

34 STS 0.1221 (0.0398) 0.8452 (0.0362) 27.4943 0.1219 25.5554 0.1809 12.394 0.4145

35 TEN 0.1064 (0.0282) 0.8500 (0.0366) 12.298 0.9054 10.3814 0.9607 5.0749 0.9554

36 TIT 0.0849 (0.0239) 0.9023 (0.0262) 20.4692 0.4289 11.7006 0.9259 5.9236 0.9198

37 TRN 0.0704 (0.0183) 0.9139 (0.0247) 15.7937 0.7293 17.3621 0.6293 12.9452 0.373

38 UBI 0.0824 (0.0196) 0.9083 (0.0215) 20.9975 0.3972 15.5249 0.7456 10.3168 0.5881

39 UCG 0.1085 (0.0227) 0.8916 (0.0203) 19.456 0.4923 17.3197 0.6321 11.1715 0.5142

40 UNI 0.1338 (0.0560) 0.8617 (0.0432) 12.6666 0.8912 6.6912 0.9975 3.9481 0.9844
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Fig. 5.5. Unconditional volatility and time-varying volatility of the stocks.
Table 5.4
Membership degrees.
GARCH-FCMdC GARCH-NC-FCMdC GARCH-E-FCMdC GARCH-Tr-FCMdC
membership degrees crisp membership degrees crisp membership degrees crisp membership degrees crisp
1 A2A 0.999 0.001 1 0.939 0.050 0.011 1 0.945 0.055 1 0.950 0.050 1
2 AGL 0.995 0.005 1 0.999 0.000 0.000 1 1.000 0.000 1 1.000 0.000 1
3 ATL 0.983 0.017 1 0.751 0.223 0.026 1 0.764 0.236 1 0.770 0.230 1
4 AZM  1.000 0.000 1 0.998 0.001 0.001 1 0.999 0.001 1 0.999 0.001 1
5 BMPS 1.000 0.000 1 0.999 0.001 0.000 1 0.999 0.001 1 0.999 0.001 1
6 BP 0.128 0.872 2 0.045 0.928 0.028 2 0.044 0.956 2 0.048 0.952 2
7 BUL 0.940 0.060 1 0.531 0.030 0.439 1 0.897 0.103 1 0.947 0.053 1
8 BZU 0.998 0.002 1 0.930 0.058 0.012 1 0.936 0.064 1 0.941 0.059 1
9 CIR 0.989 0.011 1 0914 0.070 0.016 2 0.924 0.076 1 0.928 0.072 1
10 CPR 1.000 0.000 1 1.000 0.000 0.000 1 1.000 0.000 1 1.000 0.000 1
11 ENEL 0.198 0.802 2 0.000 1.000 0.000 2 0.000 1.000 2 0.000 1.000 2
12 ENI 0.243 0.757 2 0.000 0.999 0.000 2 0.000 1.000 2 0.000 1.000 2
13 EXO 0.283 0.717 2 0.002 0.006 0.991 3 0.485 0.515 2 outlier
14 F 0.998 0.002 1 0.965 0.027 0.008 1 0.971 0.029 1 0.973 0.027 1
15 FNC 0.999 0.001 1 0.955 0.036 0.009 1 0.960 0.040 1 0.964 0.036 1
16  FSA 0.997 0.003 1 1.000 0.000 0.000 1 1.000 0.000 1 1.000 0.000 1
17 G 0.043 0.957 2 0.002 0.991 0.007 2 0.004 0.996 2 0.002 0.998 2
18 GEO 0.987 0.013 1 0.995 0.002 0.003 1 0.998 0.002 1 0.998 0.002 1
19 IPG 0.650 0.350 1 0.768 0.119 0.113 3 0.868 0.132 1 0.862 0.138
20 ISP 0.040 0.960 2 0.001 0.997 0.002 2 0.001 0.999 2 0.001 0.999 2
21 IT 0.999 0.001 1 1.000 0.000 0.000 1 1.000 0.000 1 1.000 0.000 1
22 LTO 0.128 0.872 2 0.015 0.979 0.006 2 0.015 0.985 2 0.015 0.985 2
23 LUX 1.000 0.000 1 0.990 0.007 0.003 1 0.992 0.008 1 0.993 0.007 1
24 MB 0.060 0.940 2 0.000 1.000 0.000 2 0.000 1.000 2 0.000 1.000 2
25 MED  0.996 0.004 1 0.997 0.001 0.002 1 0.999 0.001 1 0.999 0.001 1
26 MS 0.994 0.006 1 0.998 0.001 0.002 1 0.999 0.001 1 0.999 0.001 1
27 PC 0.992 0.008 1 0.989 0.003 0.008 1 0.996 0.004 1 0.997 0.003 1
28 PLT 0.973 0.027 1 0.946 0.010 0.044 1 0.983 0.017 1 0.989 0.011 1
29 PMI 0.986 0.014 1 0.883 0.098 0.019 2 0.895 0.105 1 0.900 0.100 1
30 PRY 0.886 0.114 1 0.706 0.255 0.039 2 0.730 0.270 1 0.733 0.267 1
31 SPM 0.224 0.776 2 0.007 0.990 0.003 2 0.008 0.992 2 0.007 0.993 2
32 SRG 0.165 0.835 2 0.000 1.000 0.000 2 0.000 1.000 2 0.000 1.000 2
33  STM 0.985 0.015 1 0.960 0.008 0.032 1 0.987 0.013 1 0.992 0.008 1
34  STS 0.000 1.000 2 0.003 0.991 0.007 2 0.004 0.996 2 0.003 0.997 2
35 TEN 0.117 0.883 2 0.042 0.929 0.029 2 0.041 0.959 2 0.045 0.955 2
36 TIT 0.842 0.158 1 0.128 0.852 0.019 2 0.138 0.862 2 0.131 0.869 2
37 TRN 0.994 0.006 1 0.982 0.013 0.005 1 0.985 0.015 1 0.986 0.014 1
38 UBI 0.880 0.120 1 0.187 0.789 0.024 2 0.199 0.801 2 0.192 0.808 2
39 UCG 0.057 0.943 2 0.002 0.991 0.007 2 0.004 0.996 2 0.003 0.997 2
40 UNI 0.027 0.973 2 0.023 0.775 0.202 2 0.052 0.948 2 0.029 0.971 2
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Fig. 5.6. Membership degrees.

As previously, GARCH-NC-FCMdC and GARCH-Tr-FCMdC identify the same outlier, the stock EXO (13). Stock
EXO is an outlier as it has a very high value of the variables representing the time-varying volatility and the uncondi-
tional volatility (Fig. 5.5). Stock 13 is assigned to cluster 2 in the models GARCH-FCMdC and GARCH-E-FCMdC,
but in the model GARCH-E-FCMdC with a low membership, thus not deteriorating the value of the cluster validity
index.

The medoids obtained with the robust models GARCH-E-FCMdC, GARCH-NC-FCMdC, GARCH-Tr-FCMdC
are (10, 24); the medoids identified with GARCH-FCMJC is (4, 34). For GARCH-FCMJC the medoids are influenced
by the presence of stock 13; in fact index 34 has a higher value of fvv with respect to 24. As a consequence stocks 36,
38 move to the other cluster for the reason that they are too far from stock 34. Moreover, beside stock 13 also stock
19 has low membership to the related cluster as the higher value of w; leads to consider also the high value of uv as
anomalous.

The crisp versions of GARCH-NC-FCMdC and GARCH-Tr-FCMdC assign to cluster 3 or trim also stock 19,
beside 13, due to the higher value of w; (higher weight to uv).

Separation and compactness of the obtained partitions are illustrated in Fig. 5.6. The analysis of the membership
degrees shows that some stocks present uncertain classification in the GARCH-FCMdC and GARCH-E-FCMdC
models, specifically stock 13. Stock 13 is in the noise cluster in the model GARCH-NC-FCMdC and is trimmed in
the model GARCH-Tr-FCMdC; then the clusters obtained by the highest membership degree are clearly identified.

6. Final remarks and future perspectives

In the literature the task of time series classification has been addressed following different methodological ap-
proaches. In this paper, considering a fuzzy approach and adopting a partitioning around medoids procedure we have
considered the so-called model-based approach to time series clustering. In particular, different robust clustering mod-
els have been proposed for classifying heteroskedastic time series. They are based on a GARCH parametric modeling
of the time series, i.e. the unconditional volatility and time-varying volatility GARCH representation of the time se-
ries. We firstly have suggested a timid robustification of the fuzzy clustering, i.e. the GARCH-based Fuzzy C-Medoids
Clustering (GARCH-FCMdAC model). It represents the basic model for the robust clustering models suggested suc-
cessively. In fact, based on the GARCH-FCMdC model, we have proposed three robust fuzzy clustering models
belonging, respectively, to the so-called metric, noise and trimmed approaches, i.e. the GARCH-based Exponential
Fuzzy C-Medoids Clustering model (GARCH-E-FCMdC model), the GARCH-based Fuzzy C-Medoids Clustering
with Noise Cluster model (GARCH-NC-FCMdC model) and the GARCH-based Trimmed Fuzzy C-Medoids Clus-
tering model (GARCH-Tr-FCMdC model). Each model neutralizes in a different manner the negative effects of the
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outliers in the clustering process. In particular, the GARCH-E-FCMdC model achieves its robustness with respect to
outliers by taking into account a “robust” distance measure; the GARCH-NC-FCMdC model achieves its robustness
with respect to outliers by introducing a noise cluster represented by a noise prototype; the GARCH-Tr-FCMdC model
achieves its robustness with respect to outliers by trimming away a certain fraction of outlying time series data.

The usefulness and effectiveness of the proposed clustering models have been illustrated by means of a simulation
study and two applications in finance and economics. The simulation and empirical studies have shown the good
performances of the robust clustering models in defying properly the optimal partitions of the heteroskedastic time
series and in capturing and neutralizing the negative effects of possible outliers in the clustering process.

In the future, we will investigate, in a fuzzy framework, new clustering approaches for classifying time series with
non-stationary and/or non-linear structure.
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