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The theory of logical gates in quantum computation has inspired the 

development of new forms of quantum logic, called quantum computational 

logics. The basic semantic idea is the following: the meaning of a 

formula is identified with a quantum information quantity, represented by 

a density operator, whose dimension depends on the logical complexity of 

the formula. At the same time, the logical connectives are interpreted as 

operations defined in terms of quantum gates.  

  

In this framework, some possible relations between fuzzy representations 

based on continuous t-norms for quantum gates and the probabilistic 

behavior of quantum computational finite-valued connectives are 

investigated. 

Abstract
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Abstract

The theory of logical gates in quantum computation has inspired the devel-
opment of new forms of quantum logic, called quantum computational logics.
The basic semantic idea is the following: the meaning of a formula is identi-
fied with a quantum information quantity, represented by a density operator,
whose dimension depends on the logical complexity of the formula. At the
same time, the logical connectives are interpreted as operations defined in
terms of quantum gates.

In this framework, some possible relations between fuzzy representations
based on continuous t-norms for quantum gates and the probabilistic behav-
ior of quantum computational finite-valued connectives are investigated.

Keywords: Fuzzy connectives, non-classical logics, quantum gates.

1. Introduction

The mathematical formalism of quantum theory has inspired the devel-
opment of different forms of non-classical logics, called quantum logics. In
many cases the semantic characterizations of these logics are based on spe-
cial classes of algebraic structures defined in a Hilbert-space environment.
Interesting generalizations of quantum logic introduced by Birkhoff and von
Neumann are the so called unsharp (or fuzzy) quantum logics that can be
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semantically characterized by referring to different classes of algebraic struc-
tures whose support is the set of all effects of a Hilbert space [6].

A different approach to quantum logic has been developed in the frame-
work of quantum computational logics, inspired by the theory of quantum
computation [8, 9, 2]. While sharp and unsharp quantum logics refer to possi-
ble structures of physical events, the basic objects of quantum computational
logics are pieces of quantum information: possible states of quantum systems
that can store the information in question. The simplest piece of quantum
information is a qubit : a unit-vector of the Hilbert space C2 that can be
represented as a superposition |ψ〉 = c0|0〉 + c1|1〉. The two elements of the
canonical basis of C2, |0〉 = (1, 0) and |1〉 = (0, 1), represent the classical bits
or, equivalently, the two classical truth-values. It is interesting to consider a
“many-valued generalization” of qubits, represented by qudits : unit-vectors
living in a space Cd, where d ≥ 2.

The aim of this paper is to study a probabilistic type representation for
logical gates based on product t-norm,  Lukasiewicz sum and some many
valued connectives in the framework of quantum computation with density
operators. Any formula of the language gives rise to a quantum circuit that
transforms the density operator associated to the formula into the density
operator associated the atomic subformulas in a reversible way [9]. One of
the advantages of this probabilistic type representation is that we can deal
with such circuits as expressions in an algebraic environment (as in the case
of Boolean algebra to describe digital circuits).

The paper is organized as follows. In Sections 2-3, we introduce basic
notions of quantum computational logics and recall some gates that play
a special role from the logical point of view and some interesting relations
between these gates and the probability function p. In Section 4, we intro-
duce matrix basis decompositions for density matrices associated to states
of d-dimensional quantum systems and describe a state tomography scheme.
In Section 5, we show some interesting relations between the logical gates
and continuous t-norms by probability values. Finally, in Sections 6-7, we
describe the capacity for some holistic connectives of characterizing entan-
glement of formation both for isotropic states and for Werner states.

2. The basic notions

Let us first recall some basic definitions. As is well known, the general
mathematical environment for quantum computation is the Hilbert space

2
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H(n) := Cd ⊗ . . .⊗ Cd︸ ︷︷ ︸
n−times

(n-fold tensor product where n ≥ 1 and d ≥ 2). The

canonical orthonormal basis B(n) of H(n) is defined as follows:

B(n) =

{
|x1, . . . , xn〉 : x1 ∈

{
0,

1

d− 1
,

2

d− 1
, . . . , 1

}
, . . . , xn ∈

{
0,

1

d− 1
,

2

d− 1
, . . . , 1

}}
,

where |0〉 = (1, 0, . . . , 0), | 1
d−1〉 = (0, 1, 0, . . . , 0), | 2

d−1〉 = (0, 0, 1, 0, . . . , 0),
. . . , |1〉 = (0, . . . , 0, 1), while |x1, . . . , xn〉 is an abbreviation for the tensor
product |x1〉 ⊗ . . .⊗ |xn〉.

Any piece of quantum information is represented by a density operator ρ
of a space H(n). A quregister (or quregister-state) is represented by a unit-
vector |ψ〉 (which is a pure state) of a space H(n) or, equivalently, by the
corresponding density operator P|ψ〉 (the projection-operator that projects
over the closed subspace determined by |ψ〉). Following a standard conven-
tion, we assume that P|1〉 represents the truth-value Truth, P|0〉 represents
the truth-value Falsity and P| j

d−1
〉 represent intermediate truth-values (where

0 < j < d− 1).
In this framework, one can define the projections that represent the Truth,

the Falsity and intermediate properties in any space H(n). A truth-value
projection of H(n) is a projection P

(n)
j

d−1

whose range is the closed subspace

spanned by the set of all quregisters ending with j
d−1 of H(n), where 0 ≤ j ≤

d− 1.
Accordingly, by applying the Born rule, one can now define the probability

that ρ is true, false and an intermediate truth-value in H(n):

p j
d−1

(ρ) = tr
(
ρP

(n)
j

d−1

)
,

where 0 ≤ j ≤ d− 1 and tr is the trace-functional.
From an intuitive point of view, p j

d−1
(ρ) represents the probability that

the information stocked by the density operator ρ is the truth-value j
d−1 .

One can now define the probability for any density operator ρ of H(n) as
the weighted mean of the truth-values.

Definition 1. The probability of a density operator.

p(ρ) =
1

d− 1

d−1∑
j=1

j p j
d−1

(ρ)

3
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Clearly, we have:

p(ρ) = tr
(
ρ (I(n−1) ⊗ E)

)
,

where I(n−1) is the identity operator of H(n−1) and E is the effect of the form
0 0 0 · · · 0
0 1

d−1 0 · · · 0

0 0 2
d−1 · · ·

...
...

...
...

. . . 0
0 0 · · · 0 1


In the particular case where ρ corresponds to the qubit

|ψ〉 = c0|0〉+ c1|1〉,

we obtain that p(ρ) = |c1|2.
The concept of entanglement can be defined both for pure and for mixed

states. Consider the product-space

H(m+n+p) = H(m) ⊗H(n) ⊗H(p).

Any density operator ρ ofH(m+n+p) represents a possible state for a composite
physical system S = S1+S2+S3 (consisting of three subsystems). According

to the quantum formalism, ρ determines the reduced states Red
(l)
[m,n,p](ρ) that

represent the state of Sl (in the context ρ), with l = 1, 2, 3 and Red
(k,l)
[m,n,p](ρ)

that represent the state of Sk+Sl, where 1 ≤ k < l ≤ 3, respectively. In such
a case, we say that ρ is a multipartite state with respect to the decomposition
[m,n, p].

It may happen that ρ is a bipartite pure state, while Red
(1)
[m,n](ρ) and

Red
(2)
[m,n](ρ) are proper mixtures. In this case the information about the

whole system is more precise than the pieces of information about its parts.
As an example, consider the following density operator:

ρ = P 1√
2
(|0,0〉+|1,1〉)

(the projection that projects over the closed subspace spanned by the vector
1√
2
(|0, 0〉+ |1, 1〉)).
We have:

Red
(1)
[1,1](ρ) = Red

(2)
[1,1](ρ) =

1

2
I(1).

4
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Definition 2. (Factorizability, separability and entanglement)
Let ρ be a bipartite state of H(m+n) (with respect to the decomposition
[m,n]).

1) ρ is called a (bipartite) factorized state of H(m+n) iff ρ = ρ1⊗ ρ2, where
ρ1 and ρ2 are density operators of H(m) and H(n), respectively;

2) ρ is called a (bipartite) separable state of H(m+n) iff ρ =
∑

iwiρi, where
each ρi is a bipartite factorized state of H(m+n), wi ∈ [0, 1] and

∑
iwi =

1;

3) ρ is called a (bipartite) entangled state of H(m+n) iff ρ is not separable.

Accordingly, a pure state is entangled iff it is non-factorizable. Proper
mixtures, instead, may be non-factorizable, separable (and, hence, non-
entangled). An example is represented by the following proper mixture:

ρ =
1

2
P|0,0〉 +

1

2
P|1,1〉

A pure bipartite state ρ ofH(m+n) is called maximally entangled iffRed
(1)
[m,n] =

1
2m

I(m) or Red
(2)
[m,n] = 1

2n
I(n). A state ρ of H(m+n) is called a maximally mixed

state of H(m+n) iff ρ = 1
2(m+n)I

(m+n).
How to measure the “entanglement-degree” of a given state? Different

definitions for the concept of entanglement-measure, which quantify different
aspects of entanglement, have been proposed in the literature [8, 11, 5]. One
of the most interesting notions of entanglement-measure is the concept of
entanglement of formation, which is defined in terms of the notion of von
Neumann-entropy.

Let ρ be a density operator of the space H(n). The von Neumann-entropy
of ρ is defined as follows:

ES(ρ) = −
∑
i

λi lnλi,

where λi are the eigenvalues of ρ.

Definition 3. (The entanglement of formation)
Let ρ be a bipartite state of the spaceH(m+n). The entanglement of formation
of ρ is defined as follows:

EF (ρ) = inf

{∑
i

wiES(Red
(j)
[m,n](P|ψi〉)) : ρ =

∑
i

wiP|ψi〉

}
,

5
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where j ∈ {1, 2}.

Apparently, the number EF (ρ) is determined by the set of all values of the
von Neumann-entropy of the two pure reduced states that correspond to all
possible representations of ρ as a mixture of pure states.

3. Quantum logical gates

Pure pieces of quantum information are processed by quantum logical
gates (briefly, gates): unitary operators that transform quregisters into qureg-
isters in a reversible way.

The quantum realization of d–valued one–input/one–output gates can be
done by considering single quantum systems whose Hamiltonian on Cd is:

H =


ε0 0 0 · · · 0
0 ε0 + ∆ε 0 · · · 0

0 0 · · · ...
...

...
...

. . . 0
0 0 · · · 0 ε0 + (d− 1)∆ε


The energy eigenvalues εj = ε0 + j∆ε of H, starting from the ground

energy state ε0 and equispaced by the quantum of energy ∆ε, are the ones of
the infinite dimensional quantum harmonic oscillator truncated at the d− 1
excited level (see Fig. 1).

The unit vector |H = εj〉 = | j
d−1〉, for j ∈ {0, 1, . . . , d − 1}, is the eigen-

vector of the state of energy ε0 + j∆ε. The spectral resolution of the above
truncated harmonic oscillator Hamiltonian is:

H =
d−1∑
j=0

(ε0 + j∆ε)Pεj

where each orthogonal projection Pεj = P
(1)
j

d−1

is the quantum realization of

the sharp event “a measure of the system energy yields the value ε0 + j∆ε”.
The operators a† and a are non–Hermitian, adjoints of each other. The

action of a on the vectors of the canonical orthonormal basis of Cd is the
following: a†| j

d−1〉 =
√
j + 1| j+1

d−1〉 for j ∈ {0, 1, . . . , d− 2}, a†|1〉 = 0; whereas

the action of a is: a| j
d−1〉 =

√
j| j−1
d−1〉 for j ∈ {1, 2, . . . , d− 1}, a|0〉 = 0.

6
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Figure 1: Energy levels of the truncated harmonic oscillator

Creation and annihilation operators on the Hilbert space Cd have the
following forms:

a† =


0 0 · · · 0 0
1 0 · · · 0 0

0
√

2 · · · 0 0
...

...
. . .

...
...

0 0 · · ·
√
d− 1 0

 a =


0 1 0 · · · 0

0 0
√

2 · · · 0
...

...
...

. . .
...

0 0 0 · · ·
√
d− 1

0 0 0 · · · 0


Using a† and a, we can introduce the following operators representing the

d–dimensional extension of the two–dimensional case:

N = a† a =



0 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · d− 2 0
0 0 0 · · · 0 d− 1


N ′ = a a† =



1 0 0 · · · 0 0
0 2 0 · · · 0 0
0 0 3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · d− 1 0
0 0 0 · · · 0 0


The eigenvalues of the self–adjoint operator N are 0, 1, 2, . . . , d − 1, and

the eigenvector corresponding to the generic eigenvalue j is |N = j〉 = | j
d−1〉.

7
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One possible physical interpretation of N is that it describes the number
of particles of physical systems consisting of a maximum number of d − 1
particles. In order to add a particle to the j particles state |N = j〉 (thus
making it switch to the “next” state |N = j + 1〉) we apply the creation op-
erator a†, while to remove a particle from this system (thus making it switch
to the “previous” state |N = j − 1〉) we apply the annihilation operator a.
Since the maximum number of particles that can be simultaneously in the
system is d− 1, the application of the creation operator to a full d− 1 par-
ticles system does not have any effect on the system, and returns the null
vector. Analogously, the application of the annihilation operator to an empty
particle system does not affect the system and returns the null vector as a
result.

Another physical interpretation of operators a† and a, by operator N ,
follows from the possibility of expressing the Hamiltonian as follows:

H = ε0I + ∆εN = ε0I + ∆ε a† a

In this case a† (resp., a) realizes the transition from the eigenstate of energy
εk = ε0 + j∆ε to the “next” (resp., “previous”) eigenstate of energy εj+1 =
ε0 + (j + 1) ∆ε (resp., εj−1 = ε0 + (j − 1) ∆ε) for any 0 ≤ j < d − 1 (resp.,
0 < j ≤ d − 1), while it collapses the last excited (resp., ground) state of
energy ε0 + (d− 1) ∆ε (resp., ε0) to the null vector.

As is well known, for a fixed integer d ≥ 2 the angular momentum based
on the Hilbert space Cd consists of the triple of self–adjoint operators J =
(Jx, Jy, Jz). Moreover, for k = d−1

2
, the real value k(k + 1) is an eigenvalue

of the operator J2 = J2
x + J2

y + J2
z . The matrix representation of the z

component of this angular momentum with respect to the orthonormal basis
of its eigenvectors is:

Jz =


d−1
2

0 . . . 0 0
0 d−3

2
. . . 0 0

...
...

. . .
...

...
0 0 . . . 3−d

2
0

0 0 . . . 0 1−d
2


Thus, the z component of the angular momentum can assume d possible
eigenvalues: m = d−(2j+1)

2
for j ∈ {0, 1, . . . , d− 1} with corresponding eigen-

vectors |Jz = d−(2j+1)
2
〉 = | j

d−1〉.

8
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Let us consider the two operators J+ and J− on the Hilbert space Cd

which are obtained from the general angular momentum operators as:

J+ = Jx + iJy J− = Jx − iJy

The operators J+ and J− are non–Hermitian, adjoints of each other, and
satisfy the canonical commutation relation [J+, J−] = 2Jz. In matrix form
they can be expressed as follows:

J+ =



0
√
d− 1 0 · · · 0 0

0 0
√

2(d− 2) · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · ·
√

2(d− 2) 0

0 0 0 · · · 0
√
d− 1

0 0 0 · · · 0 0


and

J− =



0 0 · · · 0 0 0√
d− 1 0 · · · 0 0 0

0
√

2(d− 2) · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · ·
√

2(d− 2) 0 0

0 0 · · · 0
√
d− 1 0


.

As is well known, the action of operators J+ and J− on the vectors of the
orthonormal basis of Cd formed by the eigenvectors of Jz is the following:
J+|Jz = m〉 =

√
k(k + 1)−m(m+ 1)|Jz = m+ 1〉 for m = −k, . . . , k and

J−|Jz = m〉 =
√
k(k + 1)−m(m− 1)|Jz = m− 1〉 for m = −k, . . . , k.

Thus, we can interpret these operators as follows: the application of J+ has
the effect of changing the z component of the angular momentum to the next
value. If applied to a system which has already a maximum value of Jz, J+
leaves the system unchanged and returns the null vector. Analogously, the
application of J− has the effect of switching the system to the previous value
of the z component of the angular momentum. If applied to a system which
has already a minimum value of Jz, J− does not affect the system and returns
the null vector. In analogy to the creation and annihilation operators, we
call J+ the spin–rising operator and J− the spin–lowering operator on Cd.

9
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The actions of J+ and J− on the vectors of the qudit orthonormal basis are
the following: J+| j

d−1〉 =
√
j(d− j)| j−1

d−1〉 for j ∈ {1, 2 . . . , d − 1}, J+|0〉 = 0

and J−| j
d−1〉 =

√
(j + 1)(d− (j + 1))| j+1

d−1〉 for j ∈ {0, 1, . . . , d−2}, J−|1〉 = 0.
Thus, we have that J+ behaves as a spin–rising and, simultaneously, as a
truth value annihilation operator, whereas J− behaves as a spin–lowering
and as a truth value creation operator.

When dealing with two truth values, it holds:

a† = J− =

[
0 0
1 0

]
and a = J+ =

[
0 1
0 0

]
Therefore it holds also N = J−J+ and N ′ = J+J−, whereas in general, for
d > 2, such equalities do not hold.

It is expedient to recall the definition of some gates introduced in [3] that
play a special role from the logical point of view.

For any n ≥ 1, the diametrical negation gate is the linear operator F
(n)
¬

such that for every element |x1, . . . , xn〉 of the computational basis B(n):

F (n)
¬ (|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗ |1− xn〉.

For any n ≥ 1, the intuitionistic gate is the linear operator F (n,1)
∼ such

that for every element |x1, . . . , xn+1〉 of the computational basis B(n+1):

F (n,1)
∼ (|x1, . . . , xn+1〉) =


|x1, . . . , xn〉 ⊗ |1〉 if xn = 0 and xn+1 = 0
|x1, . . . , xn〉 ⊗ |0〉 if xn = 0 and xn+1 = 1
|x1, . . . , xn+1〉 otherwise

For any n ≥ 1, the necessity gate F
(n,1)
� is the linear operator such that

for every element |x1, . . . , xn+1〉 of the computational basis B(n+1):

F
(n,1)
� (|x1, . . . , xn+1〉) =


|x1, . . . , xn〉 ⊗ |1〉 if xn = 1 and xn+1 = 0
|x1, . . . , xn〉 ⊗ |0〉 if xn = 1 and xn+1 = 1
|x1, . . . , xn+1〉 otherwise

For any m ≥ 1 and any n ≥ 1, the min-conjunction gate F
(m,n,1)
∧ is the

linear operator such that for every element |x1, . . . , xm+n+1〉 of the computa-
tional basis B(m+n+1):

F
(m,n,1)
∧ (|x1, . . . , xm+n+1〉) =


|x1, . . . , xm, xm+n+1 − xm, xm+2, . . . , xm+n, xm〉

if xm < xm+n+1 and xm+1 = 0
|x1, . . . , xm, 0, xm+2, . . . , xm+n, xm+1 + xm〉

if xm = xm+n+1 and 0 < xm+1 ≤ 1− xm
|x1, . . . , xm+n+1〉 otherwise

10
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For any m ≥ 1 and any n ≥ 1, the max-disjunction gate F
(m,n,1)
∨ is the

linear operator such that for every element |x1, . . . , xm+n+1〉 of the computa-
tional basis B(m+n+1):

F
(m,n,1)
∨ (|x1, . . . , xm+n+1〉) =


|x1, . . . , xm, 1− xm + xm+n+1, xm+2, . . . , xm+n, xm〉

if xm+n+1 < xm and xm+1 = 1
|x1, . . . , xm, 1, xm+2, . . . , xm+n, xm+1 + xm − 1〉

if xm = xm+n+1 and 1− xm ≤ xm+1 < 1
|x1, . . . , xm+n+1〉 otherwise

For any m ≥ 1 and any n ≥ 1, the  Lukasiewicz gate is the linear operator
F (m,n,1)
→L

such that for every element |x1, . . . , xm+n+1〉 of the computational

basis B(m+n+1):

F (m,n,1)
→L

(|x1, . . . , xm+n+1〉) =


|x1, . . . , xm+n−1, xm, 1− xm + xm+n〉

if xm+n < xm amd xm+n+1 = 1
|x1, . . . , xm+n−1, xm+n+1 + xm − 1, 1〉

if xm+n = xm and 1− xm ≤ xm+n+1 < 1
|x1, . . . , xm+n+1〉 otherwise

For any m ≥ 1 and any n ≥ 1, the Gödel gate is the linear operator
F (m,n,1)
→G

such that for every element |x1, . . . , xm+n+1〉 of the computational

basis B(m+n+1):

F (m,n,1)
→G

(|x1, . . . , xm+n+1〉) =


|x1, . . . , xm+n−1, 1, xm+n〉

if xm+n < xm and xm+n+1 = 1
|x1, . . . , xm+n−1, xm+n+1, 1〉

if xm+n+1 < xm and xm+n = 1
|x1, . . . , xm+n+1〉 otherwise

For any m ≥ 1 and any n ≥ 1, the Monteiro gate is the linear operator
F (m,n,1)
→M

such that for every element |x1, . . . , xm+n+1〉 of the computational

basis B(m+n+1):

F (m,n,1)
→M

(|x1, . . . , xm+n+1〉) =


|x1, . . . , xm+n−1, 1, xm+n〉

if xm = 1 and xm+n+1 = 1
|x1, . . . , xm+n−1, xm+n+1, 1〉

if xm = 1 and xm+n = 1
|x1, . . . , xm+n+1〉 otherwise

11
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For any m ≥ 1 and any n ≥ 1, the truncated sum gate F
(m,n,1)
⊕ is the linear

operator such that for every element |x1, . . . , xm+n+1〉 of the computational
basis B(m+n+1):

F
(m,n,1)
⊕ (|x1, . . . , xm+n+1〉) =


|x1, . . . , xm+n−1, 1− xm, xm + xm+n〉

if xm + xm+n < 1 and xm+n+1 = 1
|x1, . . . , xm+n−1, xm+n+1 − xm, 1〉

if xm ≤ xm+n+1 < 1 and xm+n = 1− xm
|x1, . . . , xm+n+1〉 otherwise

For any m ≥ 1 and any n ≥ 1, the  Lukasiewicz conjunction gate F
(m,n,1)
�

is the linear operator such that for every element |x1, . . . , xm+n+1〉 of the
computational basis B(m+n+1):

F
(m,n,1)
� (|x1, . . . , xm+n+1〉) =


|x1, . . . , xm+n−1, 1− xm, xm + xm+n − 1〉

if xm + xm+n > 1 and xm+n+1 = 0
|x1, . . . , xm+n−1, xm+n + xm+n+1, 0〉

if 0 < xm+n+1 ≤ xm and xm+n = 1− xm
|x1, . . . , xm+n+1〉 otherwise

For any m ≥ 1 and any n ≥ 1, the Goguen gate is the linear operator
N (m,n,1)
→Π

such that for every element |x1, . . . , xm+n+1〉 of the computational

basis B(m+n+1):

N (m,n,1)
→Π

(|x1, . . . , xm+n+1〉) =



|x1, . . . , xm+n−1, 1 + xm+n − xm+n

xm
, xm+n

xm
〉

if xm, xm+n ∈ GLp, xm+n < xm and xm+n+1 = 1
|x1, . . . , xm+n−1, xm+n + xm+n+1 − 1, 1〉

if xm, xmxm+n+1 ∈ GLp, xm > 0, xm+n+1 < 1
and xm+n + xm+n+1 − 1 = xmxm+n+1

|x1, . . . , xm+n+1〉 otherwise

where GLp = {0} ∪ { 1
2j
|j ∈ Z and 0 ≤ j ≤ p − 2}. The Goguen implica-

tion requires truth values which are implemented as non-equispaced rational
numbers. If we let d = 2p−2+1 then all the numbers of GLp are also elements
of
{

0, 1
d−1 ,

2
d−1 , . . . , 1

}
. This means that we can use a specially designed d-

valued gate to compute the Goguen implication for a p-valued logic.
Note that the above gates are self-reversible. Besides, when d = 2,

F (m,n,1)
→L

= F (m,n,1)
→G

= F (m,n,1)
→M

= N (m,n,1)
→Π

and when d = 3, F (m,n,1)
→G

= N (m,n,1)
→Π

.
The quantum logical gates we have considered so far are, in a sense,

“semiclassical”. A quantum logical behaviour only emerges in the case where
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our gates are applied to superpositions. When restricted to basis elements,
such operators turn out to behave as classical (reversible) truth-functions.

The diametrical negation can be uniformly defined on the setD =
⋃∞
n=1H(n)

for any density operator ρ of H(n) in the expected way:

Not(ρ) := F
(n)
¬ ρF

(n)
¬

On this basis, an intuitionistic negation INeg, an anti-intuitionistic nega-
tion Con, a possibility Pos, a necessity Nec can be defined for any density
operator in H(n+1):

INeg(ρ) := F (n,1)
∼ ρF (n,1)

∼ if Red
(2)
[n,1](ρ) = P|0〉,

Con(ρ) := F
(n,1)
� ρF

(n,1)
� if Red

(2)
[n,1](ρ) = P|1〉,

Pos(ρ) := F (n,1)
∼ ρF (n,1)

∼ if Red
(2)
[n,1](ρ) = P|1〉,

Nec(ρ) := F
(n,1)
� ρF

(n,1)
� if Red

(2)
[n,1](ρ) = P|0〉.

Besides, a  Lukasiewicz conjunction And, disjunction Or and implication
 LImp, a Gödel implication GImp, a Monteiro implication MImp, a MV-conjunction
 LOr and MV-disjunction  LAnd, a Goguen implication NImp can be defined
for any density operator ρ in H(m+n+1):

And(ρ) := F
(m,n,1)
∧ ρF

(m,n,1)
∧ if Red

(2)
[m,1,n](ρ) = P|0〉,

Or(ρ) := F
(m,n,1)
∨ ρF

(m,n,1)
∨ if Red

(2)
[m,1,n](ρ) = P|1〉,

 LImp(ρ) := F (m,n,1)
→L

ρF (m,n,1)
→L

if Red
(3)
[m,n,1](ρ) = P|1〉,

GImp(ρ) := F (m,n,1)
→G

ρF (m,n,1)
→G

if Red
(3)
[m,n,1](ρ) = P|1〉,

MImp(ρ) := F (m,n,1)
→M

ρF (m,n,1)
→M

if Red
(3)
[m,n,1](ρ) = P|1〉,

 LOr(ρ) := F
(m,n,1)
⊕ ρF

(m,n,1)
⊕ if Red

(3)
[m,n,1](ρ) = P|1〉,

 LAnd(ρ) := F
(m,n,1)
� ρF

(m,n,1)
� if Red

(3)
[m,n,1](ρ) = P|0〉,

NImp(ρ) := N (m,n,1)
→Π

ρN (m,n,1)
→Π

if Red
(3)
[m,n,1](ρ) = P|1〉.

In [4] two universal gates f 1
d and md for finite-valued reversible and con-

servative logics are introduced. Using the quantum implementation of the
gate f 1

d , one can realize Not, INeg, Pos, And, Or,  LImp, GImp, while using the
quantum implementation of the gate md, one is able to realize Not, INeg,
Pos, Nec,  LOr,  LAnd.

One important feature of all many–valued connectives now presented is
that they are equal to the analogous Boolean connectives when only falsity
and truth are involved.

13
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The following theorem describes some interesting relations between the
probability function p and some logical gates.

Theorem 1. [7]
Let ρ and σ be two density operators of H(m) and H(n) respectively. The
following properties hold:

(i) p(Not(ρ)) = 1− p(ρ);

(ii) p(INeg(ρ)) = p0(ρ);

(iii) p(Con(ρ)) = 1− p1(ρ);

(iv) p(Pos(ρ)) = 1− p0(ρ);

(v) p(Nec(ρ)) = p1(ρ);

(vi) p(And(ρ⊗P|0〉⊗σ)) =
∑d−1

j=2

∑j−1
k=1

k
d−1p j

d−1
(ρ)p k

d−1
(σ)+

∑d−1
j=1

∑d−1
k=j

j
d−1p j

d−1
(ρ)p k

d−1
(σ);

(vii) p(Or(ρ⊗P|1〉⊗σ)) =
∑d−1

j=1

∑j−1
k=0

j
d−1p j

d−1
(ρ)p k

d−1
(σ)+

∑d−1
j=0

∑d−1
k=j

k
d−1p j

d−1
(ρ)p k

d−1
(σ);

(viii) p( LImp(ρ⊗σ⊗P|1〉)) =
∑d−1

j=0

∑j−1
k=0(1−

j−k
d−1)p j

d−1
(ρ)p k

d−1
(σ)+

∑d−1
j=0

∑d−1
k=j p j

d−1
(ρ)p k

d−1
(σ);

(ix) p(GImp(ρ⊗σ⊗P|1〉)) =
∑d−1

j=2

∑j−1
k=1

k
d−1p j

d−1
(ρ)p k

d−1
(σ)+

∑d−1
j=0

∑d−1
k=j p j

d−1
(ρ)p k

d−1
(σ);

(x) p(MImp(ρ⊗ σ ⊗ P|1〉)) = 1− p1(ρ)(1− p(σ));

(xi) p( LOr(ρ⊗σ⊗P|1〉)) =
∑d−1

j=0

∑d−2−j
k=0

j+k
d−1p j

d−1
(ρ)p k

d−1
(σ)+

∑d−1
j=0

∑d−1
k=d−1−j p j

d−1
(ρ)p k

d−1
(σ);

(xii) p( LAnd(ρ⊗ σ ⊗ P|0〉)) =
∑d−1

j=0

∑d−1
k=d−1−j(

j+k
d−1 − 1)p j

d−1
(ρ)p k

d−1
(σ);

(xiii) p(NImp(ρ⊗σ⊗P|1〉)) =
∑d−1

j=2

∑j−1
k=1

k
j
p j
d−1

(ρ)p k
d−1

(σ)+
∑d−1

j=0

∑d−1
k=j p j

d−1
(ρ)p k

d−1
(σ).

4. Generalized Pauli matrices

Matrix bases can be used to decompose density matrices associated to
states of d-dimensional quantum systems. For qubits, an important basis is

14
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formed by the identity matrix and by the three Pauli matrices. A density
matrix can be expressed by a 3-dimensional vector, the Bloch vector, that lies
within the Poincaré-Bloch ball (sphere of radius 1). In higher dimensions,
two bases play an important role: the generalized Pauli basis and the Weyl
operator basis.

For any j, k, l such that 1 ≤ j ≤ d2 − 1 and 0 ≤ k < l ≤ d − 1, the
generalized Pauli matrices σj on Cd can be defined as follows:

σj =



|k〉〈l|+ |l〉〈k|
if j ≤ d(d−1)

2
and j = k(1−k)

2
+ (d− 2)k + l;

−i|k〉〈l|+ i|l〉〈k|
if d(d−1)

2
< j ≤ d(d− 1) and j = d(d−1)+k(1−k)

2
+ (d− 2)k + l;√

2
l(l+1)

(∑l−1
k=0 |k〉〈k| − l|l〉〈l|

)
if j > d(d− 1) and j = d(d− 1) + l.

They are the standard SU(d) generators. In particular, d(d−1)
2

matrices

are symmetric, d(d−1)
2

matrices are antisymmetric, d−1 matrices are diagonal.
Let ρ be a density operator of Cd. The expansion of ρ with respect to the
orthogonal basis {I(1), σj : 1 ≤ j ≤ d2 − 1} is

ρ =
1

d

(
I(1) +

√
d(d− 1)

2

d2−1∑
j=1

bjσj

)
,

where bj =
√

d
2(d−1)tr(ρ σj) ∈ R.

b = (b1, . . . , bd2−1) represents the Bloch vector associated to ρ with re-
spect to the basis {I(1), σj : 1 ≤ j ≤ d2 − 1}, that lies within a Bloch ball
(hypersphere of radius 1). The Bloch vector has real components that can
be expressed as expectation values of measurable quantities. For example,
when d = 3, we obtain the Gell-Mann Hermitian matrices and the Bloch
vector can be expressed as expectation values of spin 1 operators.

For any k, l such that 0 ≤ k ≤ d− 1 and 0 ≤ l ≤ d− 1, we have:

|k〉〈l| =


1
2
(σ k(1−k)

2
+(d−2)k+l + i σ d(d−1)+k(1−k)

2
+(d−2)k+l) if k < l;

1
2
(σ l(1−l)

2
+(d−2)l+k − i σ d(d−1)+l(1−l)

2
+(d−2)l+k) if k > l;

1
d
I(1) −

√
l

2(l+1)
σd2−d+l +

∑d−l−2
j=0

1√
2(j+l+1)(j+l+2)

σd2−d+j+l+1 if k = l.
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For any j, k, l such that 0 ≤ j ≤ d2− 1, 0 ≤ k ≤ d− 1 and 0 ≤ l ≤ d− 1,
the Weyl operators Wj on Cd can be defined as follows:

Wj =
d−1∑
m=0

ωkm|m〉〈m+ l mod d|,

where ω = e
2πi
d , j = kd+ l and mod d is the modulo d.

Weyl operators are non-Hermitian but unitary and form an orthonormal
basis of the Hilbert space Cd. In particular, tr(W †

j Wj′) = d δj j′ . Clearly,

W0 = I(1) and for any j such that 1 ≤ j ≤ d2 − 1, tr(Wj) = 0. Note that
the Weyl basis {W0,W1,W2,W3} = {I(1), σ1, σ3, iσ2} coincides with the Pauli
basis for d = 2.

The shift operator W1 (in a cyclic vector space) and the clock (with d
hours) operator Wd generalize σ1 and σ3, respectively.

We have:

Wj = W
b j
d
c

d W j mod d
1

where W 0
d = W 0

1 = I(1).
The following Vandermonde matrix generalize the Walsh-Hadamard ma-

trix and it is used for discrete Fourier transformations:

V =
1√
d


1 1 1 · · · 1

1 ω(d−1) ω2(d−1) · · · ω(d−1)2

1 ω(d−2) ω2(d−2) · · · ω(d−1)(d−2)

...
...

...
. . .

...
1 ω ω2 · · · ω(d−1)


We have: Wd = V W1 V

†.
The expansion of ρ with respect to the basis {Wj : 0 ≤ j ≤ d2 − 1} is

ρ =
1

d

(
I(d) +

√
d− 1

d2−1∑
j=1

bjWj

)
,

where bj = 1√
d−1tr(ρW †

j ) ∈ C.

b = (b1, . . . , bd2−1) represents the Bloch vector associated to ρ with respect
to the basis {Wj : 0 ≤ j ≤ d2 − 1} that lies within a Bloch ball.

16
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For any k, l such that 0 ≤ k ≤ d− 1 and 0 ≤ l ≤ d− 1, we have:

|k〉〈l| = 1

d

d−1∑
m=0

ω−kmWmd+(l−k mod d).

Weyl operators has been used in quantum teleportation [1]. They are
also useful in the study of the geometry of entanglement.

The gate W1 and the following two gates play a special role in state
tomography as stated by the following theorem.

Definition 4. Hadamard gate.
For any d ≥ 2, the Hadamard gate (for the first two eigenvectors) is the linear

operator
√̃
I such that for every element |x〉 of the computational basis B(1):

√̃
I(|x〉) =


1√
2
(|0〉+ | 1

d−1〉) if x = 0
1√
2
(|0〉 − | 1

d−1〉) if x = 1
d−1

|x〉 otherwise

Definition 5. Square root of Ñot gate.
For any d ≥ 2, the square root of Ñot gate (for the first two eigenvectors)

is the linear operator
√̃
Not such that for every element |x〉 of the computa-

tional basis B(1):

√̃
Not(|x〉) =


1
2
((1 + i)|0〉+ (1− i)| 1

d−1〉) if x = 0
1
2
((1− i)|0〉+ (1 + i)| 1

d−1〉) if x = 1
d−1

|x〉 otherwise

Clearly,
√̃
I,
√̃
Not,W1 have the following matrix forms:

√̃
I =


1√
2

1√
2

0 · · · 0
1√
2
− 1√

2
0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


√̃
Not =


1+i
2

1−i
2

0 · · · 0
1−i
2

1+i
2

0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 W1 =


0 1 0 · · · 0

0 0 1
. . .

...
...

... 0
. . . 0

0 0
...

. . . 1
1 0 0 · · · 0


17
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Theorem 2. [7]
For any d ≥ 2 and any density operator ρ of Cd, there exist a function
f : [0, 1]d−1 → Cd such that

ρ = f(p1, . . . , ph, . . . , pd2−1),

where ph is a probability of a combination of three gates
√̃
I,
√̃
Not,W1 applied

to ρ.

5. Fuzzy representation for quantum logical gates

The following theorem shows some interesting relations between some
logical gates and continuous t-norms by probability values. The probability
of the gates can be described in terms of the corresponding logical operation
and ⊕, · [10].

Theorem 3. Let ρ and σ be two density operators of H(m) and H(n) respec-
tively. The following properties hold:

(i) p(Not(ρ)) = ⊕d−1j=0(¬ j
d−1)p j

d−1
(ρ);

(ii) p(INeg(ρ⊗ P|0〉)) = ⊕d−1j=0(∼ j
d−1)p j

d−1
(ρ);

(iii) p(Con(ρ⊗ P|1〉)) = ⊕d−1j=0([ j
d−1)p j

d−1
(ρ);

(iv) p(Pos(ρ⊗ P|1〉)) = ⊕d−1j=0(♦ j
d−1)p j

d−1
(ρ);

(v) p(Nec(ρ⊗ P|0〉)) = ⊕d−1j=0(� j
d−1)p j

d−1
(ρ);

(vi) p(And(ρ⊗ P|0〉 ⊗ σ)) = ⊕d−1j=0 ⊕
j−1
k=0 ( j

d−1 ∧
k
d−1)p j

d−1
(ρ)p k

d−1
(σ);

(vii) p(Or(ρ⊗ P|1〉 ⊗ σ)) = ⊕d−1j=0 ⊕
j−1
k=0 ( j

d−1 ∨
k
d−1)p j

d−1
(ρ)p k

d−1
(σ);

(viii) p( LImp(ρ⊗ σ ⊗ P|1〉)) = ⊕d−1j=0 ⊕
j−1
k=0 ( j

d−1 → L
k
d−1)p j

d−1
(ρ)p k

d−1
(σ);

(ix) p(GImp(ρ⊗ σ ⊗ P|1〉)) = ⊕d−1j=0 ⊕
j−1
k=0 ( j

d−1 →G
k
d−1)p j

d−1
(ρ)p k

d−1
(σ);

18
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(x) p(MImp(ρ⊗ σ ⊗ P|1〉)) = ⊕d−1j=0 ⊕
j−1
k=0 ( j

d−1 →M
k
d−1)p j

d−1
(ρ)p k

d−1
(σ);

(xi) p( LOr(ρ⊗ σ ⊗ P|1〉)) = ⊕d−1j=0 ⊕
j−1
k=0 ( j

d−1 ⊕
k
d−1)p j

d−1
(ρ)p k

d−1
(σ);

(xii) p( LAnd(ρ⊗ σ ⊗ P|0〉)) = ⊕d−1j=0 ⊕
j−1
k=0 ( j

d−1 �
k
d−1)p j

d−1
(ρ)p k

d−1
(σ);

(xiii) p(NImp(ρ⊗ σ ⊗ P|1〉)) = ⊕d−1j=0 ⊕
j−1
k=0 ( j

d−1 →N
k
d−1)p j

d−1
(ρ)p k

d−1
(σ).

Proof.

(i) By theorem 1, p(Not(ρ)) = 1 − p(ρ) =
∑d−1

j=0

(
1 − j

d−1

)
p j
d−1

(ρ). Since

p j
d−1

(ρ) ∈ [0, 1] and
∑d−1

j=0 p j
d−1

(ρ) = 1, p(Not(ρ)) = ⊕d−1j=0(¬ j
d−1)p j

d−1
(ρ).

(ii)-(v) Similarly.

(vi) By theorem 1, p(And(ρ⊗ P|0〉 ⊗ σ)) =
∑d−1

j=2

∑j−1
k=1

k
d−1p j

d−1
(ρ)p k

d−1
(σ) +∑d−1

j=1

∑d−1
k=j

j
d−1p j

d−1
(ρ)p k

d−1
(σ) =

∑d−1
j=0

∑d−1
k=0 min{ j

d−1 ,
k
d−1}p j

d−1
(ρ)p k

d−1
(σ).

Since p j
d−1

(ρ), p k
d−1

(σ) ∈ [0, 1] and
∑d−1

j=0 p j
d−1

(ρ) =
∑d−1

k=0 p k
d−1

(σ) = 1,

p(And(ρ⊗ P|0〉 ⊗ σ)) = ⊕d−1j=0 ⊕
j−1
k=0 ( j

d−1 ∧
k
d−1)p j

d−1
(ρ)p k

d−1
(σ).

(vii)-(xiii) Similarly.

p(And(Red
(1)
[m,1,n](ρ)⊗ P|0〉⊗Red(3)[m,1,n](ρ))) will be called the fuzzy compo-

nent of p(And(ρ)). The fuzzy component is not related to pure states and
does not characterize entanglement. Indeed, for the following states ρj of
C2 ⊗C2 ⊗C2 with j = 1, . . . , 4, p(And(ρj)) corresponds to the fuzzy compo-

nent p(Red
(1)
[1,1,1](ρj))p(Red

(3)
[1,1,1](ρj)):

ρ1 = P 1√
2
(|0〉+|1〉) ⊗ P|0〉 ⊗ P 1√

2
(|0〉+|1〉)

ρ2 =
1

2
I(1) ⊗ P|0〉 ⊗

1

2
I(1)

ρ3 =
1

4
P|0,0,0〉 +

1

4
P|1,0,1〉 +

1

2
P 1√

2
(|0,0,1〉+|1,0,0〉)

ρ4 = P 1
2
(|0,0,0〉+|0,0,1〉+|1,0,0〉−|1,0,1〉)
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but ρ1 is a pure state, ρ2 is a factorized state, ρ3 is a separable state and ρ4
is an entangled state.

For any d1, d2 ≥ 2, a density operator ρ of Cd1 ⊗ Cd2 can be written

as follows [12]: ρ = 1
d1d2

Id1 ⊗ Id2 + 1
2d1

∑d2
1−1
j=1 tr(ρ(Id1 ⊗ σj))Id1 ⊗ σj +

1
2d2

∑d2
2−1
j=1 tr(ρ(σj⊗Id2))σj⊗Id2 + 1

4

∑d2
1−1
i=1

∑d2
2−1
j=1 tr(ρ(σi⊗σj))σi⊗σj, where

Id1 and Id2 are the identity operators of Cd1 and Cd2 , respectively.

Let ρ be a density operator of C2⊗C2. Then, ρ = 1
4

(
I(2)+

√
6
∑15

j=1 bjσj

)
.

Let us now consider the following operators:
ρ̂ = 1

4
(I(1) ⊗ P|0〉 ⊗ I(1) +

∑3
j=1[tr(ρ(σj ⊗ I(1)))σj ⊗ P|0〉 ⊗ I(1) + tr(ρ(I(1) ⊗

σj))I
(1) ⊗ P|0〉 ⊗ σj +

∑3
i=1 tr(ρ(σi ⊗ σj))σi ⊗ P|0〉 ⊗ σj]);

M(ρ) :=
1

4

3∑
i=1

3∑
j=1

(tr(ρ(σi⊗σj))−tr(ρ(σi⊗I(1)))−tr(ρ(I(1)⊗σj)))σi⊗P|0〉⊗σj.

We have:

ρ̂ = Red
(1)
[1,1](ρ)⊗ P|0〉 ⊗Red(2)[1,1](ρ) +M(ρ);

p(Red
(1)
[1,1](ρ)) =

1−
√

2b14 − b15
2

;

p(Red
(2)
[1,1](ρ)) =

2−
√

6b13 +
√

2b14 − 2b15
4

;

p(And(ρ̂)) =
1− 3b15

4
.

Thus, p(And(M(ρ̂))) 6= 0 iff p(And(ρ̂)) does not correspond to the fuzzy

component (p(And(ρ̂)) 6= p(Red
(1)
[1,1](ρ))p(Red

(2)
[1,1](ρ))).

Note that even when p(And(ρ̂)) corresponds to the fuzzy component,

p(Red
(1)
[1,1](ρ)) = 1−

√
2b14−b15

2
and p(Red

(2)
[1,1](ρ)) = 1−3b15

2(1−
√
2b14−b15)

may depend

on each other. Indeed, for ρ = P
(1−k)|0,0,0〉+

√
k(1−k)|0,0,1〉+

√
k(1−k)|1,0,0〉−k|1,0,1〉,

p(Red
(1)
[1,1,1](ρ)) = k,

p(Red
(3)
[1,1,1](ρ)) = k,

p(And(ρ̂)) = k2,

where k ∈ (0, 1).
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6. Isotropic states and Werner states

An isotropic state ρ is a bipartite state of a space H(2) that satisfies the
following condition for any unitary operator U of H(n):

(U ⊗ U∗)ρ(U † ⊗ U∗†) = ρ.

Hence, any isotropic state ρ ofH(2) is invariant under the whole U⊗U∗-group
of transformations (where U is any unitary operator of H(n) and U∗ is the
complex conjugate of U).

One can prove that the class of all isotropic states of H(2) can be repre-
sented as a one-parameter manifold of states.

Lemma 4. Any isotropic state of the space H(2) can be represented as fol-
lows:

ρι =
1

d2 − 1

[ (
1− ι

d

)
I(2) +

(
ι− 1

d

)
P(2)
]
,

where 0 ≤ ι ≤ d and P(2) =
∑d−1

i,j=0 |
i

d−1 ,
i

d−1〉〈
j

d−1 ,
j

d−1 |.

Notice that the number ι represents the expectation value of P(2) for the state
ρι (i.e. ι = tr(P (2)ρι)) and ρι can be viewed as a mixture of a maximally
chaotic state and a singlet state:

ρι =
1− α
d2

I(2) +
α

d
P(2),

where α = d ι−1
d2−1 .

The expansion of ρ with respect to the basis {I(d), σj : 1 ≤ j ≤ d2− 1} is

ρι =
1

d2
I(1) ⊗ I(1) +

α

2d

d2−1∑
j=1

cjσj ⊗ σj,

where cj =

{
−1 if d(d−1)

2
< j ≤ d(d− 1);

1 otherwise.
The expansion of ρι with respect to the basis {Wj : 0 ≤ j ≤ d2 − 1} is

ρι =
1

d2

(
I(1) ⊗ I(1) + α

d2−1∑
j=1

Wj ⊗Wj′

)
,
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where j′ = (−b j
d
c mod d) d+ j mod d.

Similar results can be found for another interesting class of states that
contains all Werner states, introduced in [15] in order to show that entangled
bipartite states do not necessarily exhibit non-local correlations.

A Werner state is a bipartite state ρ of a space H(2) that satisfies the
following condition for any unitary operator U of H(1):

(U ⊗ U)ρ(U † ⊗ U †) = ρ.

Hence, any Werner state is invariant under local unitary transformations.
As happens in the case of Werner states, one can also prove that the class

of all Werner states of H(2) can be represented as a one-parameter manifold
of states.

Lemma 5. Any Werner state of the space H(2) can be represented as follows:

ρw =
1

d2 − 1

[ (
1− w

d

)
I(2) +

(
w − 1

d

)
SW(1,1)

]
,

where −1 ≤ w ≤ 1 (while I(2) and SW(1,1) are the identity operator and the
swap-gate of the space H(2), i.e., the linear operator such that, for every
element |x〉 ⊗ |y〉 of the canonical basis, SW(1,1)|x, y〉 = |y, x〉).

Notice that the number w represents the expectation value of SW(1,1) for the
state ρw (i.e. w = tr(SW(1,1)ρw)).

7. Entanglement for isotropic states and Werner states

Unlike the general case, the probabilistic behavior of the holistic conjunc-
tion allows us to characterize entanglement both for isotropic states and for
Werner states.

Lemma 6. [13]
Let ρι be an isotropic state of H(2).

EF (ρι) =

{
h(s(γ(ι)) + (1− γ(ι)) log2(d− 1)) if ι ∈ (1, d]

0 otherwise
,

where γ(ι) = 1
d2 (
√
ι +

√
(d− 1)(d− ι))2, s is the binary Shannon entropy

(i.e. s(x) = −x log2 x − (1 − x) log2(1 − x)) and h is the convex-hull of the
inner expression (i.e. the largest convex curve nowhere larger than the given
one).
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On this basis one can prove that the entanglement of formation of isotropic
states also can be represented in terms of the probabilistic behavior of the
holistic conjunction.

Lemma 7. Let ρ be a state of the Hilbert spaceH(3) such that ρι = Red
(1,3)
[1,1,1](ρ)

is an isotropic bipartite state of H(2) and Red
(2)
[1,1,1](ρ) = P|0〉. Then,

1) p(ρ) = p(ρι) = p(Red
(1)
[1,1](ρι)) = p(Red

(2)
[1,1](ρι)) = 1

2
;

2) p(And(ρ)) = 2d−3+ι
6(d−1) .

Proof. 1) p(ρ) = tr(ρ(I(2) ⊗ E)) = tr(ρι(I
(1) ⊗ E)) = tr(Red

(2)
[1,1](ρι)E) =

tr(Red
(1)
[1,1](ρι)E) =

∑d−1
k=0

k
d−1

1
d2−1(d(1− ι

d
) + ι− 1

d
) = 1

2
.

2) p(And(ρ)) = tr
(
F

(m,n,1)
∧ ρF

(m,n,1)
∧ (I(n−1)⊗E)

)
=
∑d−1

k=0
k
d−1

1
d2−1(2(

∑d−1
j=k 1−

ι
d
)− (1− ι

d
) + ι− 1

d
) = 2d−3+ι

6(d−1) = 1
3
− 1

6d
− (d+1)α

6d
, where α = d ι−1

d2−1 .

In particular, for any entangled state ρι (i.e. ι ∈ (1, d]), we have: 1
3
<

p(And(ρ)) ≤ 1
2
. For any separable state ρι (i.e. ι ∈ [0, 1]), we have: 1

3
−

1
6(d−1) ≤ p(And(ρ)) ≤ 1

3
. For the factorized state ρι = 1

d
I(1) ⊗ 1

d
I(1) (i.e.

ι = 1
d
), we have: p(And(ρ)) = 1

3
− 1

6d
. Note that the fuzzy component

p(And(Red
(1)
[1,1,1](ρ) ⊗ P|0〉 ⊗ Red(3)[1,1,1](ρ))) = p(1

d
I(1) ⊗ P|0〉 ⊗ 1

d
I(1)) = 1

3
− 1

6d

does not depend on ι.

Theorem 8. Let ρ be a state of the Hilbert spaceH(3) such that ρι = Red
(1,3)
[1,1,1](ρ)

is an isotropic bipartite state of H(2) and Red
(2)
[1,1,1](ρ) = P|0〉. Then,

EF (ρι) =


h
[
s(γ(6(d− 1)p(And(ρ))− 2d+ 3))

+(1− γ(6(d− 1)p(And(ρ))− 2d+ 3)) log2(d− 1)
]
,

if 1
3
< p(And(ρ)) ≤ 1

2
;

0, otherwise.

Proof. By Lemma 6 and Lemma 7.

A simple correlation connects the entanglement of formation for a Werner
state ρw with the parameter w [14].
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Lemma 9. The entanglement of formation of any Werner space ρw of H(2)

is

EF (ρw) =

{
s
(

1−
√
1−w2

2

)
if w ∈ [−1, 0];

0, otherwise

where s(x) = −x log2 x− (1− x) log2(1− x).

On this basis one can prove that the entanglement of formation of Werner
states can be represented in terms of the probabilistic behavior of the holistic
conjunction.

Lemma 10. Let ρ be a state of the Hilbert space H(3) such that ρw =
Red

(1,3)
[1,1,1](ρ) is a Werner state of H(2) and Red

(2)
[1,1,1](ρ) = P|0〉. Then,

1) p(ρ) = p(ρw) = p(Red
(1)
[1,1](ρw)) = p(Red

(2)
[1,1](ρw)) = 1

2
;

2) p(And(ρw)) = 2d−3+w
6(d−1) .

Proof. Similar to Lemma 7.

Theorem 11. Let ρw be a Werner state of H(2).

EF (ρw) =


s

1−

√
1−
(
6(d−1)p(And(ρ))−2d+3

)2

2

 ,

if 1
3
− 1

3(d−1) ≤ p(And(ρ)) < 1
3
− 1

6(d−1) ;

0, otherwise.

Proof. By Lemma 9 and Lemma 10.

One might wonder whether the capacity of characterizing entanglement
may depend on the specific features of the holistic conjunction. The answer
to this question is negative. In fact, similar results can be obtained by using
the gate Or instead of And.

Theorem 12. Let ρ be a state of the Hilbert space H(3) such that ρι =
Red

(1,3)
[1,1,1](ρ) is an isotropic bipartite state of H(2) and Red

(2)
[1,1,1](ρ) = P|1〉.

Then,

1) p(Or(ρ)) = 4d−3−ι
6(d−1) ;
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2) EF (ρι) =


h
[
s(γ(6(1− d)p(Or(ρ)) + 4d− 3))

+(1− γ(6(1− d)p(Or(ρ)) + 4d− 3)) log2(d− 1)
]
,

if 1
2
< p(Or(ρ)) ≤ 2

3
;

0, otherwise.

Proof. 1) p(Or(ρ)) = tr
(
F

(m,n,1)
∨ ρF

(m,n,1)
∨ (I(n−1)⊗E)

)
=
∑d−1

k=0
k
d−1

1
d2−1(2(

∑k
j=0 1−

ι
d
)− (1− ι

d
) + ι− 1− 1

d
) = 4d−3−ι

6(d−1) = 2
3

+ 1
6d
− (d+1)α

6d
, where α = d ι−1

d2−1 .

2) By Lemma 6 and 1).

Similar results can also be obtained by using other gates that represent
a binary function (in the Hilbert-space environment).

Theorem 13. Let ρι be an isotropic bipartite state (or a Werner state) of
the Hilbert space H(2). Then,

(i) p( LImp(ρι ⊗ P|1〉)) = 5d−6+ι
6(d−1) ;

(ii) p(GImp(ρι ⊗ P|1〉)) = 4d2+d−6+(2d−1)ι
6(d2−1) ;

(iii) p(MImp(ρι ⊗ P|1〉)) = 2d2−d−2+ι
2(d2−1) ;

(iv) p( LOr(ρι ⊗ P|1〉)) =
d(d2−1)(5d−6+ι)+6(dι−1)b d+1

2
c(b d+1

2
c−d)

6d(d2−1)(d−1) ;

(v) p( LAnd(ρι ⊗ P|0〉)) =
d(d2−1)(d−ι)+6(dι−1)((d−1 mod 2)b d−1

2
c)(1+b d−1

2
c)

6d(d2−1)(d−1) .

Proof.

(i) p( LImp(ρι⊗P|1〉)) = 1
d2−1(

∑d−2
k=0

k
d−1(k+1)(1− ι

d
)+ d(d+1)

2
(1− ι

d
)+d(ι−

1
d
)) = 5d−6+ι

6(d−1) ;

(ii) p(GImp(ρι⊗ P|1〉)) = 1
d2−1(

∑d−2
k=0

k
d−1(d− 1− k)(1− ι

d
) + d(d+1)

2
(1− ι

d
) +

d(ι− 1
d
)) = 4d2+d−6+(2d−1)ι

6(d2−1) ;

(iii) p(MImp(ρι⊗P|1〉)) = 1
d2−1(

∑d−2
k=0

k
d−1(1− ι

d
)+(d2−d+1)(1− ι

d
)+d(ι− 1

d
)) =

2d2−d−2+ι
2(d2−1) ;
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(iv) p( LOr(ρι ⊗ P|1〉)) = 1
d2−1(

∑d−2
k=0

k
d−1(k + 1)(1 − ι

d
) + d(d+1)

2
(1 − ι

d
) +∑b d−1

2
c

k=0
2k
d−1(ι−1

d
)+(d−bd+1

2
c)(ι−1

d
)) =

d(d2−1)(5d−6+ι)+6(dι−1)b d+1
2
c(b d+1

2
c−d)

6d(d2−1)(d−1) ;

(v) p( LAnd(ρι⊗ P|0〉)) = 1
d2−1(

∑d−1
k=0

k
d−1(d− k)(1− ι

d
) +
∑b d−1

2
c

k=0 (2k+ (d− 1

mod 2))(ι− 1
d
)) =

d(d2−1)(d−ι)+6(dι−1)((d−1 mod 2)b d−1
2
c)(1+b d−1

2
c)

6d(d2−1)(d−1) .

8. Conclusion

We showed some interesting relations between the logical gates and con-
tinuous t-norms by probability values. On this basis, one can deal with
quantum circuits as expressions in an algebraic environment (such as prod-
uct many valued algebra for combinational circuits made up from  Lukasiewicz
gates). Some holistic connectives are useful in order to characterize the en-
tanglement of formation both for isotropic states and for Werner states. In
a future work, we will study possible applications to game theory and to
the theory of communication with feedback. In particular, we will analyze
holistic situations in Rényi-Ulam’s games and Pelc’s game.
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