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Abstract

A representation theorem for a class of BL-algebras with finite spectrum is presented. Although the class comprised by our 
result is not the whole class of BL-algebras with finite spectrum, it applies to some important classes such as finite BL-algebras 
and BL-chains with finite spectrum among others. Our representation constitutes a generalization of the ordinal sum construction, 
since we decompose each algebra in terms of totally ordered Wajsberg hoops.
© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Basic Fuzzy Logic (BL for short) was introduced by Hájek in [10] to formalize fuzzy logics in which the conjunc-
tion is interpreted by a continuous t-norm on the real segment [0, 1] and the implication by its corresponding adjoint. 
The equivalent algebraic semantics for BL, in the sense of Blok and Pigozzi, is the class of BL-algebras. Many alge-
braic properties of BL-algebras correspond to logical properties of BL and, because of the lack of a reasonable proof 
theory, BL-algebras are the main tool for reasoning inside BL. BL-algebras form a variety (or equational class) of 
residuated lattices [10]. Subvarieties of the variety of BL-algebras are in correspondence with axiomatic extensions 
of BL. Important examples of subvarieties of BL-algebras are MV-algebras, Gödel algebras, product algebras and also 
Boolean algebras. On the other hand, BL-algebras can be characterized as bounded basic hoops ([2]). The theory of 
hoops has proved to be really useful to work with these algebras (see [2] and [6]).

One of the main tools to understand a class of algebras is to find representation theorems for the algebras in the 
class. Such theorems allow one to study every algebra in the class in terms of simpler or better known structures. 
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That is the case of the famous Stone representation theorem for Boolean algebras and, since that, many others were 
stated in the field of algebraic logic. In the absence of a representation theorem for a class of algebras, a weaker 
alternative are embedding theorems. They provide a way to embed every algebra into a product of simpler algebras. 
For BL-algebras, there is the well-known Hájek’s subdirect representation theorem ([10, Lemma 2.3.16]), which is 
a particular case of Birkhoff’s subdirect representation theorem ([7]). It states that each BL-algebra is a subdirect 
product of totally ordered BL-algebras (BL-chains).

For subclasses of BL-algebras there are two important representation theorems. The first one ([8], see also [11]), is 
a representation theorem for finite BL-algebras in terms of finite MV-chains. The second one ([2]), is a representation 
theorem for BL-chains. It states that each BL-chain can be uniquely decomposed as an ordinal sum of totally ordered 
Wajsberg hoops. This result, together with the subdirect representation of BL-algebras, constitute the most important 
tools to analyze the variety of BL-algebras. Some of the results that are based on these theorems are amalgamations 
theorems ([13]), the study of canonical extensions of BL-algebras ([5]), the study of subvarieties of BL-algebras 
([2,6]), among others. In [1] finite BL-algebras are represented as algebras of weighted subforests of a labeled forest. 
Trying to generalize the ordinal sum construction for GBL-algebras, a class of algebras broader than the class of 
BL-algebras, in [11] and [12] P. Jipsen and F. Montagna introduce the poset product construction (called poset sum 
in [11]). The poset product is also a generalization of the ordinal sum construction for a not necessarily totally ordered 
index set. Their result turns out to be an embedding theorem: they embed each BL-algebra into a poset indexed family 
of totally ordered MV-chains and product chains (see [6] or Theorem 4.3, where a detailed proof of this fact is offered).

But so far we lack a representation theorem for the whole class of BL-algebras. Our aim is to find such a theorem, 
though in this paper we partially succeed. What we present is a representation theorem for the class of BL-algebras 
whose spectrum (set of prime filters) satisfies two important properties: it is finite and independent (see Definition 3.5). 
Such a class includes the class of totally ordered BL-algebras with finite spectrum and the class of finite BL-algebras. 
Unlike the case of poset product in [12], which is stated in terms of MV-chains and product chains, our representation 
constitutes a genuine generalization of the ordinal sum construction, since we decompose each algebra in terms of 
totally ordered Wajsberg hoops.

The paper is organized as follows: In Section 2 we present all the background of BL-algebras and hoops necessary 
to understand the main results of the paper. After that, in Section 3 we introduce the notion of dependent triplets 
of filters and we analyze BL-algebras with finite and independent spectrum. We also define the necessary spectrum, 
which is the subset of the spectrum that will be needed for the representation and prove some related theorems, that can 
be of independent interest. In Section 4 and to make the paper self-contained, we detail the poset product construction 
and prove that each BL-algebra can be embedded into a poset product of a family of MV-chains and product chains. 
The reader should notice that this new embedding differs from the one presented in [6, Theorem 3.5.4], which simply 
relies on the subdirect representation theorem [10, Lemma 2.3.16]. Unlike that embedding, the one in the present 
paper (Theorem 4.3) takes as an index poset a subposet of the spectrum.

The novelty comes in Section 5, where given a BL-algebra A of finite and independent spectrum we define BL-
functions, which are functions from the poset dual with respect to the necessary spectrum into a union of totally 
ordered Wajsberg hoops. After defining BL-operations on the functions, we prove that they form a BL-algebra. This 
BL-algebra is clearly stated in terms of totally ordered Wajsberg hoops. In the last section we prove the main theorem 
of the paper: each BL-algebra of finite and independent spectrum can be represented as an algebra of functions from 
a root system into a disjoint union of totally ordered Wajsberg hoops.

2. Preliminaries

A hoop is an algebra A = 〈A, ·, →, �〉 of type 〈2, 2, 0〉, such that 〈A, ·, �〉 is a commutative monoid and for all 
x, y, z ∈ A:

(1) x → x = �,
(2) x · (x → y) = y · (y → x),
(3) x → (y → z) = (x · y) → z.

A hoop A = 〈A, ·, �〉 is a naturally ordered residuated commutative monoid, where the order is defined by x ≤ y

iff x → y = � and the residuation is
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x · y ≤ z iff x ≤ y → z.

The partial order on a hoop is a semilattice order, with x ∧ y = x · (x → y). A basic hoop is a hoop that satisfies the 
equation:

(((x → y) → z) · ((y → x) → z)) → z = �.

In every basic hoop A an operation ∨ can be defined by

x ∨ y = ((x → y) → y) ∧ ((y → x) → x),

thus L(A) = 〈A, ∧, ∨, �〉 is a lattice with greatest element �. In addition, every basic hoop A satisfies the prelinear
equation:

(x → y) ∨ (y → x) = �.

A BL-algebra is a bounded basic hoop, that is, it is an algebra A = 〈A, ·, →, ⊥, �〉 of type 〈2, 2, 0, 0〉 such that 
〈A, ·, →, �〉 is a basic hoop and ⊥ is the least element of L(A).

The varieties of BL-algebras and basic hoops will be denoted by BL and BH, respectively. It is known that both 
varieties are congruence distributive and congruence permutable. Some important subvarieties of BL that we shall 
need are the one of MV-algebras, that is, BL-algebras satisfying x → ⊥ → ⊥ = x, and the one of product algebras, that 
is, BL-algebras satisfying (x → ⊥) ∨ ((x → (x · y)) → y) = � (see [10]). We presented the definition of BL-algebras 
as basic hoops because we will be using the hoop structure of each BL-algebra throughout the paper.

Alternatively, an equivalent definition in terms of residuated lattices can be given (see [6] and [9]). Each BL-algebra 
has a structure of commutative integral and bounded residuated lattice ([10]). The latter definition will also be used in 
the course of the paper.

We recall the subdirect representation theorem for BL-algebras, which is crucial for our study.

Theorem 2.1 ([10]). Each BL-algebra is a subdirect product of totally ordered BL-algebras (BL-chains).

Let 〈I, ≤〉 be a totally ordered set. For each i ∈ I let Ai = 〈Ai, ∗i , →i , �〉 be a hoop such that for every i �= j , 
Ai ∩ Aj = {�}. Then we can define the ordinal sum as the hoop 

⊕
i∈I Ai = 〈∪i∈IAi, ∗, →, �〉 where the operations 

∗, → are given by:

x ∗ y =
⎧⎨
⎩

x ∗i y if x, y ∈ Ai ;
x if x ∈ Ai \ {�}, y ∈ Aj and i < j ;
y if y ∈ Ai \ {�}, x ∈ Aj and i < j ;

x → y =
⎧⎨
⎩

� if x ∈ Ai \ {�}, y ∈ Aj and i < j ;
x →i y if x, y ∈ Ai ;
y if y ∈ Ai , x ∈ Aj and i < j .

Definition 2.2. A totally ordered hoop is irreducible if it cannot be written as the ordinal sum of two non-trivial 
totally ordered hoops.

A Wajsberg hoop is a hoop that satisfies the equation:

(x → y) → y = (y → x) → x.

A basic hoop is cancellative if it satisfies the equation:

x → (x · y) = y.

Notice that cancellative hoops are Wajsberg. A Wajsberg algebra is a bounded Wajsberg hoop. It is well-known that 
Wajsberg algebras are term-equivalent to MV-algebras. The following result may be found in [2].

Theorem 2.3. For a totally ordered hoop (BL-chain) A the following are equivalent:

(1) A is irreducible;
(2) A is a Wajsberg hoop.
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Example 2.4. We introduce here some Wajsberg hoops that we shall use later to build examples and counterexamples. 
Let

N∂ = 〈N,+,�,0) ,

where N = {0, 1, . . .} is the set of natural numbers and x � y = max{0, y − x}. Then N∂ is a cancellative hoop which 
is unbounded.

The disconnected rotation of N∂ is the structure

C = 〈{0,1} ×N,∗,→, (0,0), (1,0)〉 ,

where

(a, b) ∗ (c, d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, b + d) if a = 1 = c ,

(0, b � d) if a = 1, c = 0 ,

(0, d � b) if a = 0, c = 1 ,

(0,0) if a = 0 = c ,

(a, b) → (c, d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, b � d) if a = 1 = c ,

(0, b + d) if a = 1, c = 0 ,

(1,0) if a = 0, c = 1 ,

(1, d � b) if a = 0 = c .

The algebra C is an MV-algebra, called Chang’s MV-algebra.
For each integer n > 1 we let

Ln =
〈{

0,
1

n − 1
,

2

n − 1
, . . . ,

n − 2

n − 1
,1

}
,max{0, x + y − 1},min{1,1 − x + y},0,1

〉
.

The structure Ln is an MV-algebra, called the Łukasiewicz n-valued chain. Observe that if n = 2, L2 is the two 
elements Boolean chain.

The representation theorem for BL-chains states:

Theorem 2.5 ([2,4]). Each non-trivial BL-chain admits a unique decomposition into an ordinal sum of non-trivial 
totally ordered Wajsberg hoops.

While bounded Wajsberg chains coincide with MV-chains, unbounded totally ordered Wajsberg hoops coincide 
with cancellative totally ordered hoops (see [3]). Another result that we will be using throughout the paper is that for 
each cancellative totally ordered hoop W, it follows that L2 ⊕ W is the product chain that arises by adding an extra 
bottom element to the Wajsberg hoop W.

2.1. Implicative filters

An implicative filter of a BL-algebra (basic hoop) A is a subset F ⊆ A satisfying the following conditions:

(1) � ∈ F ,
(2) If x ∈ F and x → y ∈ F , then y ∈ F .

An implicative filter is called proper provided F �= A. Note that every implicative filter F of a BL-algebra A is the 
universe of a subhoop of A. Implicative filters characterize congruences in BL-algebras. If F is an implicative filter 
of a BL-algebra A, then the binary relation ≡F on A defined by:

x ≡F y iff x → y ∈ F and y → x ∈ F
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is a congruence of A (see [10, Lemma 2.3.14]). Moreover, F = {x ∈ A | x ≡F �}. Conversely, if ≡ is a congruence 
relation on A, then the set F = {x ∈ A | x ≡ �} is an implicative filter, and x ≡ y iff x → y ≡ � and y → x ≡ �. 
Therefore, the correspondence

F �→ ≡F

is an order isomorphism from the set of implicative filters of A onto the set of congruences of A, both ordered by 
inclusion.

Given a BL-algebra A and a filter F of A, we will denote the quotient algebra A/≡F by A/F .
We also recall that a prime filter of a BL-algebra (basic hoop) A is a proper filter F of A such that for all a, b ∈ A, 

if a ∨ b ∈ F , then either a ∈ F , or b ∈ F . It is readily seen that the quotient of a BL-algebra (basic hoop) modulo a 
prime filter is totally ordered. The set of prime filters of A is called the spectrum of A and it is denoted by Spec(A). 
In the present paper we shall only consider BL-algebras A such that Spec(A) is finite.

Abuse of notation. If A is a BL-algebra and F is a prime filter of A, following (1) we identify the elements of the 
quotient A/F with the elements in the ordinal sum. Therefore we shall sometimes say that for each b ∈ WF there is 
a ∈ A such that a/F = b, meaning that b is the image of a/F under the isomorphism.

Let us fix a BL-algebra A with finite spectrum. If F ∈ Spec(A) then the quotient A/F can be uniquely decomposed 
into the ordinal sum of non-trivial totally ordered Wajsberg hoops, i.e.,

A/F ∼=
⊕
i∈I

Wi (1)

for some totally ordered lower bounded set I . Since for each j ∈ I , if j is not the lower bound of I the hoop ⊕
i∈I ;i≥j Wi is a prime filter of A, I has to be finite and with a greatest element �. Under these conditions we 

define two parameters that will be crucial for what follows:

(1) The Wajsberg hoop corresponding to F is the last (i.e., uppermost) nontrivial Wajsberg hoop in the decomposition 
of A/F as ordinal sum, and we denote it as WF .

(2) The index of F , denoted IF , is the cardinality of the finite set I , i.e., the number of non-trivial Wajsberg hoops in 
the decomposition of A/F as ordinal sum.

Notice that if F, G ∈ Spec(A) then F ⊆ G implies IG ≤ IF .

Example 2.6. Recall Chang’s MV-algebra C from Example 2.4. Consider the direct product (L2 ⊕ L2) × C, where C
is Chang’s MV-algebra, and let A be its subalgebra whose universe is given by

{〈a, b〉 | a �= ⊥, b > b → ⊥} ∪ {〈⊥, b〉 | b < b → ⊥}.
Then Spec(A) = {F1, F2, F3}, where F1 = {〈a, b〉 | a �= ⊥, b > b → ⊥}, F2 = {〈a, �〉 | a �= ⊥} and F3 = {〈�, b〉 |
b > b → ⊥}. Then A/F1 ∼= L2, A/F2 ∼= C, and A/F3 ∼= L2 ⊕ L2. Whence, WF1

∼= L2 ∼= WF3 , WF2
∼= C, and IF1 =

IF2 = 1 < IF3 = 2. The lattice structure and the prime spectrum of A are sketched in Fig. 1(a).

Lemma 2.7. Following the previous notation, for each F ∈ Spec(A), WF is either the hoop reduct of an MV-chain, 
or a cancellative totally ordered hoop.

Finally we list some results that will be needed later:

Lemma 2.8 ([2, Proposition 3.2]). Let W1, . . . , Wn be hoops and for each i let H(Wi ) be the set of homomorphic 
images of Wi . The set of homomorphic images of W1 ⊕ . . . ⊕ Wn is

H(W1) ∪ {W1 ⊕ B : B ∈H(W2)} ∪ . . . ∪ {W1 ⊕ . . . ⊕ Wn−1 ⊕ B : B ∈H(Wn)}.

Lemma 2.9. Let A be a BL-algebra and F a proper filter of A. The correspondence

G �→ G/F
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Fig. 1. Hasse diagrams and prime filters of the algebras from Example 2.6 (a) and Example 3.2 (b).

is a bijective order preserving map between the set of proper filters of A that include F and the set of filters of A/F , 
both sets ordered by inclusion. Moreover,

Spec(A/F ) ∼= {P ∈ Spec(A) : F ⊆ P }.

Lemma 2.10. Let A be a BL-algebra and F and G proper filters of A, such that F ⊆ G. Then

A/G ∼= A/F/(G/F).

3. BL-algebras with finite independent spectrum

Let A be a BL-algebra with a finite spectrum Spec(A). A triplet (F1, F2, F3) of elements of Spec(A) is said to be 
a V-formation whenever F2 and F3 are properly included in F1, F2 � F3 and F3 � F2.

Definition 3.1. A triplet (F1, F2, F3) of elements of Spec(A) is said to be dependent if they form a V-formation and 
IF1 = IF2 or IF1 = IF3 .

Example 3.2. Let A be the subalgebra of the direct product (L2 ⊕ L2) × C introduced in Example 2.6. Then 
(F1, F2, F3) is a dependent triplet.

Consider now the MV-algebra C × C and let A be its subalgebra whose universe is given by

{〈a, b〉 | a > a → ⊥, b > b → ⊥} ∪ {〈a, b〉 | a < a → ⊥, b < b → ⊥}.
Then Spec(A) = {F1, F2, F3}, where F1 = {〈a, b〉 | a > a → ⊥, b > b → ⊥}, F2 = {〈a, �〉 | a > a → ⊥} and F3 =
{〈�, b〉 | b > b → ⊥}. Clearly, (F1, F2, F3) is a V-formation. Moreover, A/F1 ∼= L2 and A/F2 ∼= C ∼= A/F3. Whence 
WF1

∼= L2, WF2
∼= C ∼= WF3 and IF1 = IF2 = IF3 = 1. Then (F1, F2, F3) is a dependent triplet. The lattice structure 

and the prime spectrum of A are sketched in Fig. 1(b).

Lemma 3.3. Let A be a BL-algebra with finite spectrum and no dependent triplets. Let (G, H, F) be a V-formation 
such that:

• A/G ∼= WG is a Wajsberg hoop and
• A/F ∼= WG ⊕ WF .

Then A/H ∼= WG ⊕ · · · ⊕ WH .
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Proof. Since IG = 1 and the triplet (G, H, F) is not dependent, both IF and IH are greater than 1. Thus

A/H ∼= W1 ⊕ · · · ⊕ Wn ⊕ WH

for some n > 0. Because of Lemma 2.10 we know that A/G is a homomorphic image of A/H . Following Lemma 2.8, 
the Wajsberg hoop WG is a homomorphic image of W1.

Let K be the prime filter of A/H given by K = W2 ⊕ . . . ⊕ Wn ⊕ WH . By Lemma 2.9, there is a correspondence 
between Spec(A/H) and {P ∈ Spec(A) : H ⊆ P }. Hence, there is H ′ in Spec(A) with H ⊆ H ′ such that A/H ′ =
A/H/(K/H) ∼= W1.

Assume by contradiction that WG �= W1. Since H ⊆ G we have that WG is a homomorphic image of W1 and H ′
is included in G. Observe that F and H ′ are not comparable, because of the decomposition of A/F . Then we have:

(1) G properly includes F and H ′,
(2) H ′ and F are incomparable,
(3) IG = IH ′ < IF .

Thus the triplet (G, H ′, F) of prime filters is dependent. The contradiction implies that W1 ∼= WG, thus

A/H ∼= WG ⊕ · · · ⊕ WH . �
The following example shows that Lemma 3.3 fails in general if the condition on the absence of dependent triplets 

is dropped.

Example 3.4. Let A be the BL-algebra in Example 2.6 and (F1, F2, F3) be its dependent triplet. Then A/F1 ∼= L2 ∼=
WF1 and A/F3 ∼= L2 ⊕ L2 ∼= WF1 ⊕ WF3 . Moreover, F2 and F3 are properly included in F1, and form an uncompa-
rable pair with respect to inclusion. Direct inspection shows that A/F2 ∼= C is not isomorphic to any ordinal sum of 
the form WF1 ⊕ · · · ⊕ WF2 .

Definition 3.5. A BL-algebra A with finite spectrum is said to have independent spectrum if it has no triplets of 
dependent prime filters.

We recall that a hoop is simple if its only congruences are the one containing all pairs and the identity. Equivalently, 
if its only proper homomorphic image is the singleton algebra.

Proposition 3.6. Let A be a BL-algebra with finite spectrum. If WF is a simple Wajsberg hoop for each F ∈ Spec(A)

then A has independent spectrum.

Proof. We prove the contrapositive. Assume (F1, F2, F3) is a dependent triplet of A. Let n = IF1 = IF2 . Then A/F2
uniquely decomposes as an ordinal sum of irreducible Wajsberg hoops as A/F2 ∼= W1 ⊕ · · · ⊕ Wn−1 ⊕ Wn with 
Wn

∼= WF2 . By Lemma 2.10, A/F1 is a homomorphic image of A/F2. Then, by Lemma 2.8, for some 1 ≤ m ≤ n

we have A/F1 ∼= W1 ⊕ · · · ⊕ Wm−1 ⊕ W′
m with W′

m
∼= WF1 , and W′

m being a homomorphic image of Wm. Since 
IF1 = n and by uniqueness of the decomposition of A/F1 as ordinal sum of irreducible Wajsberg hoops, we have 
m = n, whence we conclude WF1 is a homomorphic image of WF2 , that is, WF2 is not simple. �
Lemma 3.7. Let A be an algebra with finite independent spectrum. Let F1 ∈ Spec(A) and F2 be an implicative filter 
of A such that F1 ∩ F2 = {�}. For every b ∈ WF1 there is an a ∈ A such that a/F1 = b and a/F2 = �.

Proof. Let G be the filter generated by F1 and F2. Following [7, Theorem 7.5, page 52], F1 and F2 define a pair of 
factor congruences of G, thus G is isomorphic as a hoop to the direct product G/F1 × G/F2 via the isomorphism 
given by

g �→ (g/F1, g/F2).

Recall that
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A/F1 ∼= W1 ⊕ . . . ⊕ Wn

with Wn = WF1 . Then if G = A the result of the theorem follows.
Otherwise, by Lemma 2.10 we know that A/G ∼= A/F1/(G/F1), thus A/G ∈ H(A/F1). This implies that G is a 

prime filter. According to Lemma 2.8 we have

A/G ∼= W1 ⊕ . . . ⊕ W′
k

where W′
k is a homomorphic image of Wk and k ≤ n. Since the spectrum of A is independent, F1 and F2 are not 

comparable and G is generated by these two filters, necessarily k is strictly less than n. Thus we can identify G/F1
with the hoop

G/F1 ∼= Bk ⊕ Wk+1 ⊕ . . . ⊕ Wn = WF1

with Bk a (possibly trivial) filter of Wk such that Wk/Bk
∼= W′

k . Therefore given b ∈ WF1 , there is g ∈ G such that 
(g/F1, g/F2) = (b, �). �
Lemma 3.8. Let A be a BL-algebra with independent spectrum and H a filter of A. Then Spec(A/H) is independent.

Proof. The proof of this result strongly relies on Lemma 2.9. Given a BL-algebra A and a filter H of A we are going 
to denote F̃ the filter of A/H corresponding to F ∈ Spec(A).

Assume on the contrary that there is a V-formation (F̃1, F̃2, F̃3) in Spec(A/H) such that I
F̃1

= I
F̃2

.

Let F1, F2 and F3 be the filters in Spec(A) corresponding to F̃1, F̃2 and F̃3 using Lemma 2.9, i.e., F̃1 ∼= F1/H , 
F̃2 ∼= F2/H and F̃3 ∼= F3/H . Therefore (F1, F2, F3) is a V-formation.

Using Lemma 2.10 we have that A/F1 ∼= A/H/(F1/H) and A/F2 ∼= A/H/(F2/H). So,

A/F1 ∼= A/H/(F1/H) ∼= W1 ⊕ . . . ⊕ WI
F̃1

A/F2 ∼= A/H/(F2/H) ∼= W′
1 ⊕ . . . ⊕ W′

I
F̃2

where I
F̃1

= I
F̃2

, thus A/F1 and A/F2 have the same number of non-trivial totally ordered Wajsberg hoops in their 
decomposition, that is IF1 = IF2 .

So we have a dependent triplet (F1, F2, F3) in Spec(A), which contradicts the fact that Spec(A) was independent. 
Therefore Spec(A/H) must be independent. �
3.1. Necessary spectrum

We shall work only with BL-algebras with finite independent spectrum.

From now on, when we say BL-algebra we mean an algebra of this type.

Definition 3.9. Given a BL-algebra A we call the necessary spectrum of A, denoted by Spec∗(A), the subset of 
Spec(A) characterized by the following:

G ∈ Spec∗(A) if and only if

F � G implies {x ∈ A : x/F ∈ WF } ⊆ G, for all F ∈ Spec(A) .

Equivalently, G ∈ Spec∗(A) iff for no F ∈ Spec(A) properly contained in G we have IF = IG (which in turns 
would imply that WF is not simple and WG is one of its homomorphic images).

Example 3.10. For each n > 1 let Ln denote the n-element Łukasiewicz chain. Let A be an ordinal sum of the form ⊕k
i=1 Lji

where ji ≥ 1 for all i = 1, 2, . . . , k. Then Spec∗(A) = Spec(A).
Consider now Chang’s MV-algebra C. It is immediate to check that Spec∗(C) �= Spec(C), as the prime filter G =

{b | b > b → ⊥} of C is such that it contains properly the prime filter F = {�}, but {x ∈ C | x/F ∈ WF } = C � G. 
Analogously, the algebra A of Example 2.6 has a prime filter, namely F1, which does not belong to its necessary 
spectrum, as it contains properly F2 and the set {x ∈ A | x/F2 ∈ WF2

∼= C} is clearly not contained in F1, as it bijects 
onto the universe of C.
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Lemma 3.11. Let A be a BL-algebra and let F ∈ Spec∗(A) be maximal. Then IF = 1, i.e., A/F is the MV-chain WF .

Proof. Assume on the contrary that IF > 1 and A/F ∼= W1 ⊕ . . . ⊕ WF , with each Wi a non-trivial Wajsberg hoop. 
Then there is a filter G of A such that G properly includes F and A/G ∼= W1. Clearly G is a prime filter. From 
the maximality of F we have that G /∈ Spec∗(A). Let H ∈ Spec(A) be such that H ⊆ G. The possibilities are the 
following:

(1) F and H are comparable. Either if F ⊆ H or H ⊆ F , if we assume that H is properly contained in G we have 
that A/H ∼= W1 ⊕ . . . ⊕ WH . Then {x ∈ A : x/H ∈ WH } ⊆ G.

(2) F and H are not comparable. In this case, since the spectrum of A is independent IH > 1. Following Lemma 3.3
we can assert that A/H ∼= W1 ⊕ . . . ⊕ WH . Thus {x ∈ A : x/H ∈ WH } ⊆ G.

This contradicts the fact that G /∈ Spec∗(A), and therefore IF must be 1. �
Lemma 3.12. Let A be a BL-algebra and let Spec∗(A) be its necessary spectrum. For each a, b ∈ A such that a �= b, 
there is G ∈ Spec∗(A) such that a/G �= b/G.

Proof. From [10, Lemma 2.3.15], if a �= b are elements of A we know that there is a prime filter G of A such 
that a/G �= b/G. If G ∈ Spec∗(A) we are done. Otherwise there is a prime filter F � G such that {x ∈ A :
x/F ∈ WF } � G. Observe that a/F �= b/F (because otherwise (a → b)/F = �/F implies a → b ∈ F ⊆ G and 
(b → a)/F = �/F implies b → a ∈ F ⊆ G and we get a/G = b/G). Thus if F ∈ Spec∗(A) we are done. If this is 
not the case the finiteness of the spectrum of A implies the existence of H ∈ Spec∗(A) such that H is included in G
and a/H �= b/H as desired. �
Corollary 3.13. 

⋂
F∈Spec∗(A) F = {�}.

We present two results that will be useful in subsequent chapters:

Lemma 3.14. Let F ∈ Spec∗(A) be such that IF = n and let S = {G ∈ Spec∗(A) : F ⊆ G}. Then S is a totally 
ordered set of cardinality n and if F = Fn � Fn−1 � . . .� F1 is an ordered list of the elements of S we have

A/F ∼= WF1 ⊕ WF2 ⊕ . . . ⊕ WFn.

Proof. First we observe that if IF = 1 then the definition of necessary spectrum implies the maximality of F in 
Spec∗(A), and Lemma 3.11 does the rest. For the nontrivial case, we set

A/F ∼= W1 ⊕ W2 ⊕ . . . ⊕ Wn

with Wn = WF . For each k < n the set Wk+1 ⊕ Wk+2 ⊕ . . . ⊕ Wn is a filter of A/F that according to Lemma 2.9
corresponds to a filter Fk of A. Then we have a list of prime filters F = Fn � Fn−1 � . . . � F1 such that for each k,

A/Fk
∼= W1 ⊕ W2 ⊕ . . . ⊕ Wk.

Since for each k, Wk = WFk
, it only remains to see that for each 1 ≤ k ≤ n the filter Fk is in the necessary spectrum 

and that these are the only filters greater than F in Spec∗(A).
Consider F ⊆ T ⊆ Fk for some k ≤ n. From Lemma 2.8 and Lemma 2.10 the only possibility is that

A/T ∼= W1 ⊕ W2 ⊕ . . . ⊕ Wk ⊕ . . . ⊕ WT

with WT ∈ H(Wt ) for some t > k. Then {x ∈ A : x/T ∈ WT } ⊆ Fk and Fk ∈ Spec∗(A).
Lastly, assume that H is a prime filter such that F = Fn � H and H �= Fk for all k. From Lemma 2.8 and 

Lemma 2.10 we know that there is k ≤ n such that

A/H ∼= W1 ⊕ . . .Wk−1 ⊕ WH

with WH ∈ H(Wk) and WH �= Wk . Then Fk ⊆ H and there is a proper prime filter T of Wk such that H/F ∼=
T ⊕ Wk+1 ⊕ . . . ⊕ Wn. Let x ∈ A be such that x/F ∈ Wk \ T . Then x /∈ H and H /∈ Spec∗(A). �
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Lemma 3.15. Let A be a BL-algebra and H a filter of A. Then

Spec∗(A/H) ∼= {P/H : P ∈ Spec∗(A) and H ⊆ P }.

Proof. Let G ∈ Spec∗(A) be such that H ⊆ G. We verify that G̃ = G/H is in Spec∗(A/H).
Assume that F̃ ∈ Spec(A/H) is such that F̃ ⊆ G̃. By Lemma 2.9 we know that F̃ = F/H , where F is a prime 

filter such that F ⊆ G.
If x̃ ∈ A/H is such that x̃/F̃ ∈ W

F̃
, then x̃/F̃ ∈ (A/H)/F̃ = (A/H)/(F/H). Since A/F ∼= (A/H)/(F/H), there 

is x ∈ A such that x/F ∈ A/F corresponds via the isomorphism to x̃/F̃ ∈ (A/H)/F̃ , i.e., (x/H)/(F/H) = x̃/F̃ . But 
as x̃/F̃ ∈ W

F̃
, x/F must be in WF , and then x ∈ G (using that G is necessary in Spec(A)).

Therefore x̃ = x/H ∈ G/H = G̃, and G̃ ∈ Spec∗(A/H). �
4. Embedding into the poset product

Definition 4.1. Let P = 〈P, ≤〉 be a poset and let {Bp | p ∈ P } be a collection of commutative, integral and bounded 
residuated lattices. Up to isomorphism we can (and we will) assume that all Bp share the same neutral element � and 
the same minimum element ⊥, only. The poset product

⊗
p∈P Bp is the algebra B defined as follows:

(1) The domain of B is the set of all maps h ∈ {k ∈ (
⋃

p∈P Bp)P | k(p) ∈ Bp} ∼= ∏
p∈P Bp such that for all p ∈ P if 

h(p) �= ⊥, then for all q < p, h(q) = �.
(2) The monoid operation and the lattice operations are defined pointwise.
(3) The residual is as follows:

(h → g)(p) =
{

h(p) →p g(p) if for all q < p h(q) ≤q g(q),

⊥ otherwise,

where the subscript p denotes realization of operations and of order in Bp.

The following results, that can be found in [6] are slight modifications of the ones in [12].

Theorem 4.2.

(1) Suppose that P is a forest and that for all p ∈ P , Bp is a BL-chain. Then 
⊗

p∈P Bp is a BL-algebra.
(2) Every BL-algebra can be embedded into a poset product of a family of MV-chains and product chains.

Let A be a BL-algebra of finite and independent spectrum and let Spec∗(A) be the necessary spectrum of A. Since 
Spec∗(A) is ordered by inclusion, we consider the poset P = (Spec∗(A))∂ the dual of Spec∗(A).

The dual spectrum of any BL-algebra is a forest, that is, the downward closure of any of its elements forms 
a totally ordered subposet. Since the necessary spectrum Spec∗(A) is a subposet of Spec(A) it is then clear that 
(Spec∗(A))∂ enjoys the property that the downward closure of each one of its elements is a finite subchain. Whence, 
P = (Spec∗(A))∂ is a finite forest.

For each F ∈ Spec∗(A) we have the corresponding element pF ∈ P (given by the identity mapping from Spec∗(A)

anti-isomorphically onto P ). Analogously, the identity associates with each p ∈ P a filter Fp ∈ Spec∗(A). Thus, if 
p = pF , we denote interchangeably by WF or Wp the Wajsberg hoop corresponding to F , and for each a ∈ A we 
write a/p or a/F to indicate the equivalence class of a modulo the congruence determined by p.

For each p ∈ P we define W′
p to be the bounded hoop given by

W′
p =

{
Wp, if Wp is lower bounded;
L2 ⊕ Wp, otherwise,

where L2 is the two-elements Boolean algebra. It is easy to see that in case Wp is cancellative (unbounded), then W′
p

is the product chain that arises by adding an extra bottom ⊥p to Wp . Under these conditions and notation we have:
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Theorem 4.3. A can be embedded into the poset product 
⊗

p∈P W′
p .

Proof. We adapt some of the ideas of the proof of [12, Theorem 3.3]. We define ψ : A → ⊗
p∈P W′

p by

ψ(a)p =
{

a/p if a/p ∈ Wp;
⊥p otherwise,

for each p ∈ P . We first recall that for each p ∈ P , the quotient A/Fp is a BL-chain. Either A/Fp
∼= Wp or there are 

totally ordered nontrivial Wajsberg hoops W1, . . .Wn such that

A/Fp
∼= W1 ⊕ . . .Wn ⊕ Wp.

Thus either a/p ∈ Wp or there is a prime filter Fq ⊃ Fp (i.e., q < p) and a/q ∈ Wq .
We need to check that ψ goes into the poset product and that ψ is an injective morphism.

• ψ(A) ⊆ ⊗
p∈P W′

p . Indeed, assume that ψ(a)p �= ⊥p and let q < p. Then Fp is properly included in Fq . From 
the definition of necessary spectrum we have that {x ∈ A : x/p ∈ Wp} ⊆ Fq , thus a ∈ Fq yields ψ(a)q = �.

• ψ is a morphism of BL-algebras. It is clear that ψ(⊥) is the bottom element of 
⊗

p∈P W′
p and that ψ(�) is the 

top of 
⊗

p∈P W′
p . We leave to the reader the proof of the preservation of the lattice operations and the monoidal 

operation, which are easy to corroborate, and we embark on the proof that ψ(a → b) = ψ(a) → ψ(b), taking 
into consideration that → is not defined coordinatewise in the poset product. Thus for each p ∈ P we shall see 
that ψ(a → b)p equals the p coordinate of ψ(a) → ψ(b). We split the proof into four cases:
Case 1: a/p and b/p are in Wp . In this case, using again the definition of necessary spectrum we obtain that for 
each q < p, a/q = b/q = �, thus ψ(a)q = ψ(b)q . From the definition of the implication in the poset product we 
get that (ψ(a) → ψ(b))p = ψ(a)p → ψ(b)p = a/p → b/p. On the other hand, since Wp is closed under → we 
have that ψ(a → b)p = (a → b)/p = a/p → b/p as desired.
Case 2: a/p /∈ Wp and b/p ∈ Wp . Therefore a/p < b/p and ψ(a → b)p = �. Observe that for each q < p, 
ψ(b)q = �, once more the definition of the implication in the poset product yields (ψ(a) → ψ(b))p = ψ(a)p →
ψ(b)p = ⊥p → b/p = �.
Case 3: a/p and b/p are not in Wp . This possibility also splits into two cases. If a/p ≤ b/p then (a → b)/p = �
and ψ(a → b)p = �. Observe that in this case, if q < p then a/q ≤ b/q , thus ψ(a)q ≤ ψ(b)q . This implies that 
(ψ(a) → ψ(b))p = ψ(a)p → ψ(b)p = ⊥p → ⊥p = �. The other case would be a/p > b/p. Since a/p and 
b/p are not in Wp the definition of ordinal sum of Wajsberg hoops implies that a → b/p is not in Wp . Hence 
ψ(a → b)p = ⊥p . Also observe that there is q < p such that a/q > b/q . The definition of the implication in the 
poset product implies that (ψ(a) → ψ(b))p = ⊥p .
Case 4: a/p ∈ Wp and b/p /∈ Wp . In this case b/p < a/p and clearly a → b /∈ Wp . Therefore ψ(a → b)p = ⊥p . 
Observe that for all q < p, ψ(a)q = � and there is q < p such that ψ(b)q < �. Then (ψ(a) → ψ(b))p = ⊥p

and we are done.
• We now check that ψ is injective. Because of Lemma 3.12 for each a, b ∈ A with a �= b there is a prime filter 

G ∈ Spec∗(A) such that a/G �= b/G. Let IG = n and let G = Gn � ... � G1 be the finite sequence of prime 
filters in Spec∗(A) given by Lemma 3.14 such that

A/G ∼= WG1 ⊕ . . . ⊕ WGn.

Without loss of generality assume that a/G < b/G, and let 1 ≤ k ≤ n be such that a/G ∈ WGk
\ {�}. If b/G ∈

WGk
then it is immediate that a/Gk �= b/Gk and then ψ(a)Gk

= a/Gk �= b/Gk = ψ(b)Gk
. Otherwise b/Gk =

�/Gk and we also obtain ψ(a)Gk
= a/Gk �= b/Gk = ψ(b)Gk

. �
Example 4.4. In general, the embedding ψ : A → ⊗

p∈P W′
p is not onto. As an instance of this fact consider the 

product chain A := L2 ⊕N∂ . Now, Spec(A) consists of two distinct prime filters, F1 =N∂ , and F2 being the singleton 
containing just the top element of A. Moreover, A/F1 ∼= L2, WF1

∼= L2 and IF1 = 1, and A/F2 ∼= L2 ⊕N∂ , WF2
∼=N∂

and IF2 = 2. Then Spec∗(A) ∼= Spec(A). Since WF2 is not bounded, we have W′
F2

∼= L2 ⊕N∂ , while W′
F1

∼= WF1
∼=

L2 ∼= {⊥, �}. A direct computation shows that the universe of W′ ⊗ W′ is {(⊥, ⊥), (�, ⊥)} ∪ {(�, n) | n ∈ N∂}. 
F1 F2
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Fig. 2. Given a poset P , P ′ can be the domain of a BL-function while Q cannot.

Now, for each n ∈N∂ , we have ψ(n) = (�, n), and ψ(⊥) = (⊥, ⊥). It follows that the element (�, ⊥) ∈ W′
F1

⊗ W′
F2

has no counterimage under ψ .

5. BL-functions

Let P be a finite forest. We say that p ∈ P is a leaf if p is maximal in P . We say that two elements p, q ∈ P are 
mildly incomparable and we write p <> q if they are incomparable in the order, i.e., p � q and q � p but there is 
k ∈ P such that k ≤ p and k ≤ q .

Let W denote the class of all nontrivial totally ordered Wajsberg hoops. A BL-pair is a pair (P, w), with P a finite 
forest and w : P → W a function such that for each minimal element p ∈ P then w(p) is bounded. We say that a 
function f is a BL-function defined by the BL-pair (P, w) if f : P ′ → ⋃

p∈P w(p) is such that P ′ ⊆ P and it satisfies:

(1) P ′ is downwards closed and for each minimal element q ∈ P we have q ∈ P ′.
(2) For every i ∈ P ′, if j ∈ P is such that i <> j , then there is k ∈ P ′ such that k ≤ j and k <> i.
(3) f (p) ∈ w(p) for each p ∈ P ′.
(4) If p ∈ P ′ is not a leaf of P ′ (there is q ∈ P ′ such that q > p), then f (p) = �.
(5) If P ′ �= P , p is a leaf of P ′ and p is not a leaf of P , then f (p) ∈ w(p) \ {�}.

We denote by R(P, w) the set of all BL-functions defined by the BL-pair (P, w) and for any f ∈ R(P, w) we let 
Pf be the domain of f .

To understand condition (2) in the definition of the domain of a BL-function, observe that if P is a poset as in 
Fig. 2, then the poset P ′ of the figure can be the domain of a BL-function, while Q cannot, because it does not satisfy 
the condition. Intuitively speaking, if P ′ is the domain of a BL-function it cannot be the case that k, p ∈ P ′, q ∈ P \P ′
with k ≤ p, k ≤ q and for all j ∈ P if k ≤ j < q then j = k. Then condition (2) is equivalent to requiring that each 
maximal (that is, not extendable) antichain in P ′ is a maximal antichain in P , too.

Given f, g ∈ R(P, w) we define:

(1) Pf ∗g = Pf ∩ Pg

(2) Pf ∧g = Pf ∩ Pg

(3) Pf ∨g = Pf ∪ Pg

Observe that all these sets are downwards subsets of P and they contain the minimal elements of P . Therefore we 
define the structure 〈R(P, w), ∗R, ∧R, ∨R, ⊥R, �R〉 to be the algebra of type 〈2, 2, 2, 0, 0〉 where the constants ⊥R

and �R are the BL-functions defined as follows

P�R
= P and �R(p) = � for each p ∈ P

P⊥R
= {p ∈ P : p is minimal in P } and ⊥R(p) = ⊥ for each p ∈ P⊥R

and the operations ∗R, ∧R, ∨R are given, for all p ∈ Pf ∩ Pg , by:

(f ∗R g)(p) = f (p) ∗ g(p) (f ∧R g)(p) = f (p) ∧ g(p)
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and

(f ∨R g)(p) =
⎧⎨
⎩

f (p) ∨ g(p), if p ∈ Pf ∩ Pg;
f (p), if p ∈ Pf \ Pg;
g(p), if p ∈ Pg \ Pf .

Remarks:

• ⊥R is well defined because if p is minimal in P , ⊥ ∈ w(p).
• Since w is a leaf of Pf ∩ Pg if and only if w is a leaf of Pf or w is a leaf of Pg or both, it is easy to see that 

f ∗R g ∈ R(P, w) and f ∧R g ∈ R(P, w).
• It is also easy to check that f ∨R g ∈ R(P, w).

The following are consequences of the definitions of the operations:

Lemma 5.1. For each BL-pair (P, w) the algebra 〈R(P, w), ∗R, ∧R, ∨R, ⊥R, �R〉 satisfies:

(1) 〈R(P, w), ∗R, �R〉 is a commutative monoid.
(2) 〈R(P, w), ∧R, ∨R, ⊥R, �R〉 is a bounded lattice.

Remark 5.2. Let � be the order of R(P, w) given by the lattice structure. Observe that

f � g if and only if Pf ⊆ Pg and f (p) ≤ g(p) for each leaf p ∈ Pf .

We will dedicate the rest of the section to define the implication of R(P, w). Unfortunately, unlike the cases of 
∗R, ∧R and ∨R the domain of f → g will not only depend on the domains of f and g.

5.1. Implication of BL-functions

For simplicity we consider BL-pairs (P, w) with P a tree, i.e. there is a minimum element 0 ∈ P . Then the 
definition of the implication naturally extends to a forest, that is, a disjoint union of trees. As usual, for a subset S of 
a poset P the sets S↑ and S↓ are defined as

S↑ = {y ∈ P : ∃x ∈ S such that x ≤ y}
and

S↓ = {y ∈ P : ∃x ∈ S such that y ≤ x}.
Let f, g ∈ R(P, w). We consider the following subsets of Pg:

(1) Hg = {p ∈ Pg : p is a leaf of Pg} = {p ∈ Pg : ∀q ∈ Pg if q ≥ p then q = p}.
(2) H+

g = {p ∈ Hg : p /∈ Pf or f (p) ≤ g(p)}.
(3) H−

g = {p ∈ Hg : f (p) > g(p)} = Hg \ H+
g .

Then

Pf →g =
{

P if f � g;
(H+

g ↑ ∪ H−
g )↓ otherwise.

Remark 5.3. We list some observations that will be needed later.

(1) If f � g then H−
g �= ∅.

(2) Since P is a tree, H+
g ↑ and H−

g are disjoint subsets.
(3) (H+

g ↑ ∪ H−
g )↓ = (H+

g ↑)↓ ∪ (H−
g )↓.

(4) (H+
g ↑)↓ ∪ (((H−

g )↓)↑) = P .
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Fig. 3. Example of the domain of the implication of two BL-functions f and g with respect to a tree P .

Example 5.4. In Fig. 3 we present an example of the domain of an implication of two BL-functions. Assume that 
Wp = L3 = {0, 12 , 1} for all p ∈ P . Let f, g have their domains Pf and Pg as in the figure. Assume that both f and g
take the value 1

2 in every leaf of their domain. Then the domain of f → g is as given in Fig. 3.

Now we define f →R g as

(f →R g)(p) =
{

f (p) → g(p) if p ∈ Pf ∩ Pg;
� otherwise.

Remark 5.5. Observe that for every p ∈ (H+
g ↑)↓, we have (f →R g)(p) = �. Also if f � g then H+

g = Hg therefore 
Pf →g = P and f →R g = �R .

Lemma 5.6. Let (P, w) be a BL-pair where P is a tree. The implication f →R g of two BL-functions f, g ∈ R(P, w)

is a BL-function defined on the tree Pf→g .

Proof. The statement of the lemma is true in case f � g. Otherwise, it is clear that conditions (1), (2) and (3) in 
the definition of BL-function hold. To check conditions (4) and (5) recall that H−

g and H+
g ↑ are disjoint subsets. 

Therefore p is a leaf of Pf →g if and only if p ∈ H−
g or p is a leaf of H+

g ↑, in this last case it is also a leaf of P . 
Observe also that:

∀p ∈ H+
g ↑ we have f →R g(p) = �,

∀p ∈ H−
g we have f →R g(p) �= �

and any p ∈ Pf →g \ (H+
g ↑ ∪ H−

g ) was already an element of Pg which was not a leaf. Therefore

∀p ∈ Pf →g \ (H+
g ↑ ∪ H−

g ) f →R g(p) = �.

After these observations we can conclude that:

(1) if p is a leaf of Pf→g which is not a leaf of P , then p ∈ H−
g and f →R g(p) �= �, which is condition 5.

(2) if p is not a leaf of Pf →g , then either p is less or equal to a leaf q of H−
g , in which case g(p) = � and thus 

f →R g(p) = � or p is less or equal to some element in H+
g ↑ and this also implies that f →R g(p) = �. This 

is condition 4. �
Lemma 5.7. The operations (∗R, →R) form a residuated pair in R(P, w), i.e., for every f, g, h ∈ R(P, w), we have

h ∗R f � g if and only if h � f →R g

Proof. Assume first that h ∗R f � g. Recall that this means that Ph ∩ Pf ⊆ Pg and that for every leaf p of Ph ∩ Pf

then (h ∗R f )(p) ≤ g(p). We have to check that h � f →R g, which amounts to verify that Ph ⊆ Pf →g and for each 
leaf p of Ph, h(p) ≤ (f →R g)(p).

• Ph ⊆ Pf →g . Let p ∈ Ph. By way of contradiction, assume p /∈ Pf →g . From the definition of Pf→g , since P is 
a tree, an element is not in Pf→g only if it is greater than a leaf of H−

g . This means that there is t ∈ Pf ∩ Pg

such that t < p and f (t) > g(t). Since p > t we have that t ∈ Ph and t is not a leaf, therefore h(t) = �. Then 
(h ∗R f )(t) = h(t) ∗ f (t) = f (t) > g(t) contradicting our hypothesis.
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• Assume that p ∈ Ph is a leaf. If p ∈ Pf then p ∈ Ph ∩ Pf ⊆ Pg and clearly p is a leaf of Ph ∩ Pf . Thus 
h(p) ∗ f (p) = (h ∗R f )(p) ≤ g(p) implies that (f →R g)(p) = f (p) → g(p) ≥ h(p). If p /∈ Pf , since p ∈
Pf →g we get that f →R g(p) = � ≥ h(p).

Now assume that h � f →R g. Thus Ph ⊆ Pf →g and for each leaf p of Ph, h(p) ≤ (f →R g)(p). We need to 
see that Ph ∩ Pf ⊆ Pg and that for every leaf p of Ph ∩ Pf then h ∗R f (p) ≤ g(p).

• Ph ∩ Pf ⊆ Pg . Let p ∈ Ph ∩ Pf , and from our hypothesis we also know that p ∈ Pf →g . From the definition of 
Pf →g one of the following cases occurs. Either p ≤ t with t a leaf of Pg in H−

g , in which case p ∈ Pg , and we are 
finished, or there is t ∈ (H+

g )↑, such that p ≤ t . If p /∈ Pg then the definition of (H+
g )↑ implies the existence of 

a leaf k of Pg such that k < p. Observe that k is not a leaf of P , thus g(k) < �. Since p ∈ Ph ∩ Pf we conclude 
that k ∈ Ph ∩ Pf and it is clear that k is not a leaf of Ph and it is not a leaf of Pf . Therefore h(k) = �, f (k) = �. 
Then h(k) = � > � → g(k) = f (k) → g(k) = (f →R g)(k), contradicting our hypothesis. The contradiction 
arises from the assumption that p /∈ Pg , thus we conclude that p ∈ Pg .

• Assume that p ∈ Ph ∩ Pf is a leaf. We know that p ∈ Pg . Hence h(p) ≤ (f →R g)(p) = f (p) → g(p) thus 
(h ∗R f )(p) = h(p) ∗ f (p) ≤ g(p) as desired. �

Corollary 5.8. For each BL-pair (P, w) the algebra

R(P,w) = 〈R(P,w),∗R,→R,∧R,∨R,⊥R,�R〉
is a commutative, integral and bounded residuated lattice.

5.2. Embedding R(P, w) into a poset product

As before, let (P, w) be a BL-pair. For each p ∈ P let w′(p) be the bounded hoop given by

w′(p) =
{

w(p), if w(p) is lower bounded;
L2 ⊕ w(p), otherwise,

where L2 is the two-elements Boolean algebra.
Since for each p ∈ P the chain w(p) is either the hoop reduct of an MV-chain or a cancellative totally ordered 

hoop, then for each p ∈ P , w′(p) is either the hoop reduct of an MV-chain or a product chain. Observe that (P, w′), 
with w′ defined as above, is not necessary a BL-pair, since if there is p ∈ P such that w(p) is unbounded, then w′(p)

is not a Wajsberg hoop.
Consider the algebra of BL-functions R(P, w) = 〈R(P, w), ∗R, →R, ∧R, ∨R, ⊥R, �R〉. Now we will embed 

R(P, w) into the poset product B = ⊗
p∈P w′(p). Because of Theorem 4.2, B is a BL-algebra. We define ϕ :

R(P, w) → B as follows:

ϕ(f )(p) =
{

f (p) if p ∈ Pf ;
⊥ otherwise.

Lemma 5.9. For every pair of functions f, g ∈ R(P, w) we have ϕ(f →R g) = ϕ(f ) → ϕ(g).

Proof. If p /∈ Pf →g , on one side we have ϕ(f →R g)(p) = ⊥. Observe that in this case, p /∈ (H+
g ↑ ∪ H−

g )↓. Since 
P is a forest, we have that there is t ∈ P such that t ∈ H−

g and p > t . From the definition of H−
g we know that 

f (t) > g(t), t ∈ Pg ∩ Pf and ϕ(f )(t) = f (t) and ϕ(g)(t) = g(t). The definition of → in a poset product yields 
(ϕ(f ) → ϕ(g))(p) = ⊥.

Now assume that p ∈ Pf →g . From Remark 5.3 (3) we have p ∈ (H+
g ↑)↓ or p ∈ H−

g ↓.

(1) p ∈ H−
g ↓. Then p ∈ Pg ∩ Pf and ϕ(f →R g)(p) = (f →R g)(p) = f (p) → g(p). There is a leaf t ∈ H−

g such 
that f (t) > g(t) and p ≤ t . From the fact that t is a leaf of Pg and the definition of BL-functions, for every j < t

we have that f (j) = �, g(j) = � and ϕ(f )(j) = ϕ(g)(j) = �. Therefore (ϕ(f ) → ϕ(g))(p) = ϕ(f )(p) →
ϕ(g)(p) = f (p) → g(p).
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(2) p ∈ (H+
g ↑)↓. From Remark 5.5 we have (f →R g)(p) = � and then ϕ(f →R g)(p) = �. To check that 

(ϕ(f ) → ϕ(g))(p) also equals � we verify the following cases:
• p ∈ H+

g . In this case ϕ(f )(p) ≤ ϕ(g)(p) (because either p /∈ Pf or f (p) ≤ g(p)). For every j < p, g(j) =
ϕ(g)(j) = �, thus ϕ(f )(j) ≤ ϕ(g)(j) and we conclude that (ϕ(f ) → ϕ(g))(p) = ϕ(f )(p) → ϕ(g)(p) = �.

• p ∈ H+
g ↑. In this case p ≥ t with t ∈ H+

g . From the previous item observe that ϕ(f )(j) ≤ ϕ(g)(j) for every 
j < t and for every t ≤ j ≤ p we have that ϕ(f )(j) ≤ ϕ(g)(j) (we are using again that either t /∈ Pf or 
f (t) ≤ g(t) and the definition of BL-function). Since {p}↓ is totally ordered we conclude that for every j ≤ p, 
ϕ(f )(j) ≤ ϕ(g)(j), hence (ϕ(f ) → ϕ(g))(p) = ϕ(f )(p) → ϕ(g)(p) = �.

• p is less than some t ∈ H+
g . Then ϕ(g)(j) = � for each j ≤ p and we have that (ϕ(f ) → ϕ(g))(p) =

ϕ(f )(p) → ϕ(g)(p) = �. �
Theorem 5.10. ϕ is an injective homomorphism from the residuated lattice R(P, w) into the poset product B =⊗

p∈P w′(p).

Proof. We have already proved that implication is preserved. Trivially ∗ is preserved, because it is coordinatewise. 
One can easily check that ⊥ and � are preserved, therefore it only remains to see that the function ϕ is injective.

Then let f and g be two BL-functions such that f �= g. If Pf �= Pg , let p ∈ Pf \ Pg . Since all minimal elements 
of P are in both, Pf and Pg , there is q ∈ Pg such that q < p and q is a leaf of Pg . Because of the definition of 
BL-function we have f (q) = � and g(q) �= �. Then ϕ(f )(q) �= ϕ(g)(q).

If Pf = Pg , since we are assuming that f �= g, there is p ∈ Pf such that f (p) �= g(p). Then ϕ(f )(p) �= ϕ(g)(p)

and ϕ is injective. �
6. Representation theorem

Let A be a BL-algebra of finite and independent spectrum. We denote by P A the dual of Spec∗(A), and recall that 
for every p, q ∈ P A,

p ≤ q if and only if Fq ⊆ Fp

for the corresponding filters of Spec∗(A). For each p ∈ P A let

wA(p) = WFp .

Since P A is a finite forest and from Lemma 3.11 for each minimal p ∈ P A the algebra WFp is an MV-chain, then 
(P A, wA) is a BL-pair. We shall see that A is isomorphic to R(P A, wA). First we verify some technical lemmas.

Lemma 6.1. Assume that f ∈ R(P A, wA) with domain Pf . Then there is a ∈ A such that a/Fp = f (p) for every 
filter p ∈ Pf .

Proof. Recall that Hf is the set of leaves of Pf , i.e.,

Hf = {p ∈ Pf : p is maximal in Pf } = {p1, . . . , pn}.
Consider the filter F = ∩n

i=1Fpi
. From Lemma 2.10 we shall use the identification

(A/F )/(Fpi
/F ) ∼= A/Fpi

∼= W1 ⊕ . . . ⊕ WFpi
.

Because of Lemma 2.9 the filters

F̃i = Fpi
/F, for i = 1, . . . , n

are minimal in Spec(A/F ). By Lemma 3.8, Spec(A/F ) is independent. We define F̃i
′

to be the filter ∩n
j=1,j �=i F̃i of 

A/F . Then for each i ∈ {1, . . . , n} the pair F̃i , F̃ ′
i satisfies F̃i ∩ F̃ ′

i = {�}. Since f (pi) ∈ WFpi
, Lemma 3.7 implies 

that there is an element ai ∈ A/F such that

ai/F̃i = f (pi) and ai/F̃
′ = �.
i
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Let

ã = a1 · a2 · . . . an

i.e., ã ∈ A/F is the product of ai for i = 1, . . . , n. This element satisfies ã/F̃i = f (pi) for every i ∈ {1, . . . , n}. 
Therefore there is an element a ∈ A such that a/F = ã and then f (pi) = a/Fpi

for every pi ∈ Hf .
Lastly, if p ∈ Pf \ Hf , then there is an element q ∈ Hf such that q ≥ p, and using Lemma 2.10, A/Fp

∼=
A/Fq/(Fp/Fq). Then a/Fq = f (q) ∈ Wq = w(q) and q > p, and there must be the case that a/Fp = �. �
Theorem 6.2. Let A be a BL-algebra of finite and independent spectrum. Then A ∼= R(P A, wA).

Proof. We will prove that both algebras are the same subalgebra of a poset product. As before, for each p ∈ P A we 
define w′(p) to be the bounded hoop given by

w′(p) =
{

wA(p), if wA(p) is lower bounded;
L2 ⊕ wA(p), otherwise.

Again, in case wA(p) is cancellative (unbounded), then w′(p) is the product chain that arises by adding an extra 
bottom ⊥p to wA(p). If wA(p) is bounded we call ⊥p the bottom element of wA(p). Let B be the BL-algebra given 
by the poset product 

⊗
p∈P A w′(p). Recall that for each p ∈ P A, wA(p) = WFp that we simply denote by Wp. 

Following Theorem 4.3, the function ψ : A → B given by

ψ(a)(p) =
{

a/p if a/p ∈ Wp;
⊥p otherwise,

is an embedding of A into the poset product B. On the other hand, by Theorem 5.10, the application ϕ : R(P A, wA) →
B defined by

ϕ(f )(p) =
{

f (p) if p ∈ Pf ;
⊥p otherwise,

is an embedding into the same poset product. We shall show that ψ(A) = ϕ(R(P A, wA)).

Assume first that a ∈ A. Let Pa ⊆ P A be defined as

Pa = {p ∈ P A : a/p ∈ Wp}.
Observe that if p ∈ Pa then for all q ∈ P A such that q < p we have that a ∈ Fq . Moreover, Pa is a downwards closed 
subset of P A.

Consider the function fa(p) = ψ(a)(p) for each p ∈ Pa . We shall check that fa is a BL-function.

(1) For each minimal element p ∈ P A, the filter Fp is maximal. Then A/Fp = Wp . Thus a/p ∈ Wp . This implies 
that Pa contains every minimal element of P A. It is easy to verify that Pa is downwards closed.

(2) Assume p ∈ Pa and q <> p. If q is not in the same tree as p, condition (2) in the definition of BL-function follows 
from the previous item. Otherwise there is k ≤ p, k ≤ q and k is maximum with this property. Lemma 3.14 yields

A/Fp = W1 ⊕ . . . ⊕ Wk ⊕ Wk+1 ⊕ . . . ⊕ Wp = A/Fk ⊕ Wk+1 ⊕ . . . ⊕ Wp

and

A/Fq = W1 ⊕ . . . ⊕ Wk ⊕ W′
k+1 ⊕ . . . ⊕ Wq = A/Fk ⊕ W′

k+1 ⊕ . . . ⊕ Wq .

Clearly if a/p ∈ Wp then there is s > k such that a/s ∈ Ws and s <> p.
(3) fa(p) = a/p ∈ Wp for each p ∈ Pa .
(4) If p ∈ Pa is not a leaf of Pa , then there is q > p such that q ∈ Pa . From the definition of Pa , a ∈ Fp . Thus 

a/p = �, and � = ψ(a)(p) = fa(p).
(5) If Pa �= P and w is a leaf of Pa which is not a leaf of P , then a /∈ Fw but for all p < w, a ∈ Fp . Then a/w �= �

and � �= ψ(a)(w) = fa(w).

Therefore fa is in R(P A, wA) and ϕ(fa) = ψ(a).
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Now assume that f ∈ R(P A, wA) and let Pf be the domain of f . Because of Lemma 6.1 we know that there is 
af ∈ A such that af /p = af /Fp = f (p) for each filter p ∈ Pf . Therefore to check that ϕ(f ) = ψ(af ) we need to 
see that for each p ∈ P A \ Pf , af /p /∈ Wp .

Take p ∈ P A \ Pf . By item (2) in the definition of BL-function, there is a leaf q ∈ Pf such that q < p. Since 
Fp ⊆ Fq are both in the necessary spectrum of A from Lemma 3.14 we have

A/Fp
∼= W1 ⊕ . . . ⊕ Wq ⊕ . . . ⊕ Wp

∼= A/Fq ⊕ . . . ⊕ Wp.

Recall that f is a BL-function, therefore (5) in the definition of BL-function asserts that f (q) = af /q �= �. Thus 
af /q ∈ Wq \ {�}, what implies that af /p /∈ Wp , as desired. �
Example 6.3. Theorem 6.2 cannot be generalized dropping the request on the independence of the spectrum. As a 
matter of fact, consider again the BL-algebra A of Example 2.6, and its prime spectrum {F1, F2, F3}. Recall that 
(F1, F2, F3) is a dependent triplet. As we have seen in Example 3.10, Spec∗(A) = {F2, F3}. If we denote by (P, w)

the BL-pair corresponding to A, then R(P, w) ∼= L2 × C � A, as it can be readily verified.
The reader must by now be convinced that this situation is hardly remediable with the algebraic tools used in the 

paper. Actually, direct inspection shows that there is no way to reconstruct A only knowing its spectrum as a poset, 
and using as building blocks the hoops WF1 , WF2 and WF3 .

Lastly, note that from the information given above one can construct the BL-algebra formed as the ordinal sum 
L2 ⊕ (L2 × C) (with necessary spectrum {F1, F2, F3}), but again, this algebra is not isomorphic with A.
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