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Abstract

A key issue in cluster analysis is determining a proper dissimilarity measure between two data objects, and many pairwise 
dissimilarities have been proposed to deal with time series. Assuming that the clustering purpose is to group series according to the 
underlying dependence structures, a detailed study of the behavior in clustering of a dissimilarity based on comparing estimated 
quantile autocovariance functions (QAF) is carried out. Quantile autocovariances provide information about the serial dependence 
structure that other conventional features are not able to capture, which suggests great potential to perform clustering of series. 
The asymptotic behavior of the sample quantile autocovariances is studied and an algorithm to determine optimal combinations 
of lags and pairs of quantile levels to perform clustering is introduced. The proposed metric is used to perform hard and soft 
partitioning-based clustering. First, a broad simulation study examines the behavior of the proposed metric in crisp clustering with 
the PAM procedure. A novel fuzzy C-medoids algorithm based on the QAF-dissimilarity is then proposed and compared with 
other fuzzy procedures in a new simulation study conducted to cluster fuzzy scenarios involving AR and GARCH models. In all 
cases, the QAF-based procedures outperform or are highly competitive with a range of dissimilarities reported in the literature, 
particularly exhibiting high capability to cluster conditionally heteroskedastic time series and robustness to the distributional form 
of the errors. Two specific applications involving air quality data and financial time series illustrate the usefulness of the proposed 
procedures.
© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Time series clustering is aimed at splitting a set of unlabeled time series into homogeneous groups, which is a 
central problem to many knowledge discovery tasks. Its applications span an extensive assortment of fields, including 
economics, finance, marketing, genetics, biology, medicine, environmental studies, machine learning and bioinfor-
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matics, among others. Determining products with similar selling patterns, identifying user profiles according to the 
browsing behavior on a website, classifying banks on the basis of share price series, grouping countries with similar 
population growth or regions with similar temperature are some typical applications where the similarity searching 
between time series arises in a natural way. Due to the growing interest of researchers from different disciplines, time 
series clustering has become a very active research area nowadays, being especially significant the huge number of 
contributions on the topic provided in the last two decades. A comprehensive overview of time series clustering is 
provided by Liao [1] and more recently by Fu [2], Rani and Sikka [3] and Caiado, Maharaj and D’Urso [4], including 
recent advances, significant references and specific application areas.

In the present study, the focus is on the so-called partitioning-based clustering methods, which are aimed at the iter-
ative relocation of data objects between clusters so that the dispersion within clusters decreases at each iteration. Two 
important decisions must be taken to perform these methods, namely how dissimilarity between objects is measured 
and how the assignment of objects to the groups is carried out.

The choice of a proper dissimilarity measure mainly relies on the specific purpose of the clustering. By dealing 
with time series, we must be aware of their dynamic nature. If, for example, the target is to group series with similar 
underlying dependence structures, then a conventional dissimilarity based on static objects and overlooking tempo-
ral features will likely produce unsatisfactory results. Many approaches to measure dissimilarity between series have 
been proposed in the literature (see e.g. Montero and Vilar [5] and references therein). For practitioners, the R pack-
age TSclust [6] presents a large set of well-established peer-reviewed time series dissimilarity measures, including 
measures based on raw data, extracted features, underlying models, complexity levels, and forecast behaviors. Some 
papers reporting experimental comparisons of several dissimilarity measures are also available [7–9]. Nevertheless, 
many of the proposed dissimilarities require regularity conditions on the generating models (linearity, gaussianity, 
homoscedasticity, . . . ), which are not always satisfied in practice. Hence there are still important challenges to be 
addressed in relation to this point, and this is one of the topics considered in this work.

As far as the cluster assignment, two different paradigms are usually considered depending on whether a “hard” 
or “soft” partition is constructed. Traditional clustering methods assign each data object to exactly one cluster, thus 
producing a hard partition of the data into non-empty and disjoint subsets. This approach can result too rigid in 
situations with data objects equidistant from two or more groups or in presence of overlapping clusters. Fuzzy cluster 
techniques [10,11] provide a more versatile approach by allowing gradual membership of data objects to clusters. 
In the resulting soft partition, the objects can belong to several clusters with specific membership levels indicating 
the amount of confidence in the assignment of each data to the clusters. Adoption of the fuzzy logic in time series 
clustering is interestingly motivated by some authors. D’Urso and Maharaj [12] and D’Urso et al. [13,14] argue that the 
dynamic of a time series may change over time in such a way that it could belong to distinct clusters during different 
periods of time, i.e. in a fuzzy way. Aielli and Caporin [15] motivate a soft clustering based on mixture models arguing 
that whether similarity is based on estimated dynamic parameters, then the error estimation generates variability 
causing overlapping clusters. Although the hard procedures have received greater attention in the time series clustering 
literature, a number of recent contributions have adopted the fuzzy approach combined with different dissimilarity 
criteria between series, including distances based on autocorrelation functions [12], features extracted in the frequency 
domain (normalized periodograms and cepstral coefficients, among others) [16], autoregressive approximations [13,
17], wavelet analysis [18–20], analysis of extreme values [21] and estimated GARCH coefficients [22,23].

This paper is aimed at assessing the behavior of a distance based on estimated quantile autocovariances (QA) in 
partitional clustering of time series, considering both crisp and fuzzy clustering procedures. We assume that the target 
is to group series according to the underlying dependence structures, i.e. similarity between series is measured in terms 
of similarity between generating processes. This criterion makes sense if, for example, one wishes to identify a few 
temporal behavior patterns hidden behind long time series observed with a high amount of noise. In this framework, 
using a metric robust to the generating mechanism of the series is necessary to attain a suitable cluster solution. 
Unlike other extracted features, quantile autocovariances account for important dynamic features of time series and 
are well-defined for a broad class of processes, including non-linear and heteroskedastic processes [24,25], which 
suggests that a dissimilarity comparing quantile autocovariances could report satisfactory results. This intuition was 
corroborated in our previous work [26], where results from an extensive simulation study showed that the QA-based 
metric outperforms or is highly competitive with a range of alternative dissimilarities, also exhibiting high capability 
to cluster time series generated from a broad range of dependence models. Nevertheless, our study in [26] was limited 
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to hierarchical procedures and non-fuzzy data, and an automatic criterion to select the input parameters required by 
the metric was not provided, remaining as an open issue to be addressed in further research.

The contribution of this work consists of three points. First, the simulation study carried out in [26] is extended 
to cover a hard non-hierarchical procedure, the partitioning around medoids (PAM) algorithm [27], which returns a 
subset of series (medoids) representative of the identified clusters. The attained results show the good behavior of the 
QA-based metric compared to other commonly used dissimilarities. In particular, excellent scores are reported by clas-
sifying heteroskedastic processes, which are frequently used with economic or financial indicators [22,28–30]. Further, 
since heteroskedastic Gaussian models cannot often capture the asymmetry and leptokurtosis exhibited by some fi-
nancial time series (e.g. log-return series of stock indices) [31,32], additional simulations based on heteroskedastic 
models with non-normal errors are performed attaining even better results.

Second contribution concerns the optimal selection of input parameters, i.e. establishing how many and which 
combinations of lags and quantile levels must be used to define the QA metric in order to optimize the clustering 
process. A proper adjustment of the variable selection algorithm proposed by Andrews and McNicholas [33] for 
clustering and classification allows us to address this problem. Nevertheless, it is worth remarking that using a small 
number of quantiles with probability levels regularly spaced is enough to reach satisfactory results.

Third contribution consists of introducing a novel fuzzy procedure to cluster time series. We adopt a fuzzy 
C-medoids approach where the QA-based metric is considered to compute distances between series and medoids. 
In this way, the proposed approach inherits the advantages of the fuzzy methods (flexibility to describe complex 
cluster structures with overlapping clusters), the partitioning around medoids technique (selection of particular se-
ries representing the underlying cluster patterns) and the QA-based metric (high capability to discriminate between a 
broad range of dependence structures). Here, our experiments mainly focused on the classification of heteroskedastic 
models, a complex scenario but frequently realistic when analyzing financial, industrial or environmental indicators, 
among others. We assess the capability of our proposal to clustering GARCH models, and its performance is tested 
against two fuzzy clustering algorithms considering distances between GARCH approximations [22], and therefore 
specifically designed to work in the simulated scenario. Lastly, two specific applications to environmental and financial 
data sets are presented to illustrate the usefulness of the proposed clustering procedure.

The rest of the paper is organized as follows. Section 2 proposes to measure dissimilarity between a pair of ob-
served series by comparing sequences of estimated quantile autocovariances. The estimation procedure is detailed, 
the asymptotic behavior established, and the dissimilarity defined and motivated. Section 3 introduces an algorithm to 
select the optimal combinations of lags and pairs of quantile levels in order to perform clustering using the QA-based 
dissimilarity. In Section 4, the QA-based dissimilarity is used to perform crisp clustering with the PAM procedure in 
different simulation scenarios. Three classification scenarios featured by the kind of generating process are considered, 
namely linear, non-linear and conditional heteroskedastic models, also including different distributional forms for the 
errors. The results are compared with the ones obtained using other dissimilarity measures. Section 5 focuses on the 
fuzzy clustering approach. The fuzzy C-medoids algorithm based on the QA-dissimilarity is analyzed and compared 
with other alternative fuzzy procedures in a new simulation study conducted to cluster different fuzzy structures of 
autoregressive and generalized autoregressive conditional heteroskedasticity models. Applications to real data sets are 
presented in Section 6 and some concluding remarks are summarized in Section 7.

2. Distance between time series based on quantile autocovariances

2.1. The quantile autocovariance function

Let {Xt ; t ∈ Z} be a strictly stationary process and denote by F the marginal distribution of Xt and by qτ =
F−1(τ ), τ ∈ [0, 1], the corresponding quantile function. Fixed l ∈ Z and an arbitrary couple of quantile levels (τ, τ ′) ∈
[0, 1]2, consider the cross covariance of the indicator functions I (Xt ≤ qτ ) and I (Xt+l ≤ qτ ′) given by

γl(τ, τ
′) = cov {I (Xt ≤ qτ ) , I (Xt+l ≤ qτ ′)} = P (Xt ≤ qτ ,Xt+l ≤ qτ ′) − τ τ ′. (1)

Function γl(τ, τ ′), with (τ, τ ′) ∈ [0, 1]2, is called quantile autocovariance function (QAF) of lag l and can be seen 
as a generalization of the classical autocovariance function. While the latter measures linear dependence between dif-
ferent lags by evaluating covariability with respect to the average, the former studies the joint variability of the events 
{Xt ≤ qτ } and {Xt+l ≤ qτ ′ }, i.e. examines how a part of the range of variation of Xt helps to predict whether the series 
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will be below quantiles in a future time. By definition, QAF captures the sequential dependence structure of a time 
series, thus accounting for serial features related to the joint distribution of (Xt, Xt+l) that the simple autocovari-
ances cannot detect. Unlike the usual autocovariance function, QAF is well-defined even for processes with infinite 
moments and takes advantage from the local distributional properties inherent to the quantile methods, in particular 
showing a greater robustness against heavy tails, dependence in the extremes and changes in the conditional shapes 
(skewness, kurtosis) [25,34–38]. Based on these nice properties, QAF and its representations in the frequency domain 
(quantile periodogram and quantile spectral density) have been considered in several inference problems, including 
evaluation of directional predictability between time series [24,39] and testing procedures for specific aspects of serial 
dependence such as interrelatedness, conditional homoscedasticity or conditional symmetry [40–42].

An estimator of γl(τ, τ ′) can be constructed replacing the theoretical quantiles by the corresponding empirical 
quantiles q̂τ and q̂τ ′ based on T realizations {Xt, 1 ≤ t ≤ T } of the process. This way, the estimated QAF is given by

γ̂l(τ, τ
′) = 1

T − l

T −l∑
t=1

I
(
Xt ≤ q̂τ

)
I
(
Xt+l ≤ q̂τ ′

)− τ τ ′, (2)

where the empirical quantiles q̂α , for 0 ≤ α ≤ 1, can be formally seen as the solution of the minimization problem 
[43, page 7] given by

q̂α = arg minq∈R
T∑

t=1

ρα (Xt − q) ,

with ρα(x) = x(α − I (x < 0)).

2.2. Asymptotic behavior

The asymptotic behavior of the sample quantile autocovariances defined by (2) is established in Theorem 2.1 of 
this section following the asymptotic analysis developed by Han et al. [39]. Specifically, consider a two-dimensional 
strictly stationary process Xt = {(X1t ,X2t ) ; t ∈ Z} with marginal distribution functions Fi(·) and quantiles qi,τ , for 
i = 1, 2 and τ ∈ (0, 1). Under general weak dependence conditions on Xt , Han et al. [39, Th. 1] obtain the asymptotic 
distribution of the sample cross-correlation between the events I

(
X1t ≤ q̂1,τ

)
and I

(
X2(t+l) ≤ q̂2,τ ′

)
, for an arbitrary 

lag l and quantile levels τ and τ ′. Adapting this result to the univariate setting and considering the non-normalized 
version of the mentioned cross-correlations, the limiting distribution stated in Theorem 2.1 for the sample quantile 
autocovariances is directly derived. First, some useful notation and the required assumptions are introduced.

Given an arbitrary lag l, let A ≡ At × At+l be a compact subset in (0, 1)2, where At and At+l denote quantile 
ranges of interest for Xt and Xt+l , respectively. Denote by Fl(·, ·) the joint distribution of (Xt , Xt+l ), and for t =
1, . . . , T and (τ, τ ′) ∈ A, consider the vector given by

ξ t,l

(
τ, τ ′)= (

I (Xt ≤ qτ ,Xt+l ≤ qτ ′) − Fl (qτ , qτ ′) , I (Xt ≤ qτ ) − τ, I (Xt+l ≤ qτ ′) − τ ′)t .
Now, define the three-dimensional mean-zero Gaussian process {Bl

(
τ, τ ′) ; (τ, τ ′) ∈ (0, 1)2} having covariance 

matrix given by

�l

((
τ1, τ

′
1

)
,
(
τ2, τ

′
2

))= E
(
Bl

(
τ1, τ

′
1

)
B

t
l

(
τ2, τ

′
2

))=
∞∑

t=−∞
cov

(
ξ t,l

(
τ1, τ

′
1

)
, ξ t

0,l

(
τ2, τ

′
2

))
, (3)

for (τi, τ ′
i ) ∈ A, i = 1, 2.

The following conditions are assumed to hold.

A1. {Xt ; t ∈ Z} is a strictly stationary and strongly mixing process with α-mixing coefficients satisfying α(n) =
O(n−a), for a > 1.

A2. The marginal distribution F(·) has continuous density f (·), which is bounded away from 0 and ∞ at q(τ) over 
τ ∈At ∪At+l .

A3. For any ε > 0 there exists a ν(ε) such that supτ∈At∪At+l
sup|s|≤ν(ε) |f (qτ )f (qτ + s)| < ε.

A4. The joint distribution Fl(·, ·) is continuously differentiable over the neighborhood of quantiles of interest.
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Assumptions A1–A4 are mild regularity conditions and not too restrictive. While A1 entails a mixing condition 
for the dependence structure of Xt , A2 ensures that the quantile function is uniquely determined, and A3 and A4 
impose enough smoothness and regularity for f and Fl , respectively. The weak convergence of the sample quantile 
autocovariance processes indexed by (τ, τ ′) ∈ (0, 1)2 is stated in Theorem 2.1 below.

Theorem 2.1. Suppose that assumptions A1–A4 hold for a particular lag l. Then we have
√

T
(
γ̂l(τ, τ

′) − γl(τ, τ
′)
)=⇒ λt

l,(τ,τ ′)Bl

(
τ, τ ′)

with

λl,(τ,τ ′) = diag

(
1,

1

f (qτ )
,

1

f (qτ ′)

)(
1

∇Fl (qτ , qτ ′)

)
, (4)

where ∇Fl (qτ , qτ ′) denotes the gradient vector of Fl(·, ·) computed at (qτ , qτ ′) and Bl

(
τ, τ ′) is the above-mentioned 

zero-mean Gaussian process with covariance matrix given by (3).

The convergence stated in Theorem 2.1 is established proceeding as in the proof of Theorem 1 of Han et al. [39], 
but for the convenience of the reader, the main steps of the proof are outlined in Appendix A.

2.3. QAF-based dissimilarity

The great sensitivity of QAF to capture complex dynamic features also suggests high capability to discriminate 
between generating processes, and hence an interesting potential to be applied on clustering and classification prob-
lems [26]. To illustrate this point, we have obtained the sample QAF and the sample ordinary autocovariances for 
series simulated from a Gaussian white noise process, a GARCH-type process and an exponential GARCH process 
with Gaussian innovations. Plots of the sample autocovariance function and γ̂1(τ, τ ′), for τ = 0.1, 0.5 and 0.9, are 
simultaneously depicted in Fig. 1 for the three series.

As the three processes are uncorrelated, the sample autocovariances in (a) are close to zero with differences simply 
due to the noise, and therefore the conventional autocovariances are not useful to discriminate between the generating 
processes. By contrast, QAF plots in panels (b)–(d) show structural differences enabling us to discriminate between 
the underlying processes. The graphs for the white noise are flat due to the independence, but this is not the case for 
the GARCH models, which are uncorrelated but not independent. For instance, the symmetry of the GARCH model 
produces a flat profile for γ̂1(0.5, ·), indicating that if {Xt ≤ q0.5} then {Xt+1 ≤ q0.5} and {Xt+1 > q0.5} are events with 
equal probability. However, the asymmetry of the EGARCH model leads to a different profile for γ̂1(0.5, ·) indicating 
that Xt+1 likely takes values higher than Xt . On the other hand, unlike of the white noise, the heavy tails of the 
GARCH model are recognizable from γ̂1(0.1, ·) and γ̂1(0.9, ·) since large and small values at time t tend to remain 
that way at time t + 1. In short, this simple example involving GARCH processes brings insight into the potential of 
the quantile autocovariances to detect distinct underlying processes, providing a more comprehensive understanding 
on the dependence structure than the traditional autocovariances.

These considerations strongly support the idea of measuring dissimilarity between a pair of times series X(1)
t and 

X
(2)
t by comparing estimates of their quantile autocovariances over a common range of selected quantiles, such as we 

propose in [26]. Specifically, each time series X(u)
t , u = 1, 2, is characterized by means of the vector �(u) constructed 

as follows. For prefixed ranges of L lags, l1, . . . , lL, and r quantile levels, 0 < τ1 < . . . < τr < 1, the vector �(u) is 
given by

�(u) =
(
�

(u)
l1

, . . . ,�
(u)
lL

)
, (5)

where each �(u)
li

, i = 1, . . . , L, consists of a vector of length r2 formed by re-arranging by rows the elements of the 
r × r matrix(

γ̂
(u)
li

(τj , τj ′)
)

j,j ′=1...,r
, (6)

being γ̂ the sample quantile autocovariance given in (2). This way, the dissimilarity between X(1)
t and X(2)

t is defined 
as the squared Euclidean distance between the corresponding representations �(1) and �(2), i.e.
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Fig. 1. Sample autocovariances (a) and sample quantile autocovariances γ̂1(τ, τ ′) for τ = 0.1 (b), 0.5 (c) and 0.9 (d), obtained from simulated 
realizations of a Gaussian white noise process, a GARCH-type process and an exponential GARCH with Gaussian innovations.

dQAF

(
X

(1)
t ,X

(2)
t

)
=
∥∥∥�(1) − �(2)

∥∥∥2 =
L∑

i=1

r∑
j=1

r∑
j ′=1

(
γ̂

(1)
li

(τj , τj ′) − γ̂
(2)
li

(τj , τj ′)
)2

(7)

By definition, dQAF belongs to the class of dissimilarities based on comparing features extracted of the series 
instead of directly comparing the observed series. Other authors have proposed feature-based dissimilarities consid-
ering distances between simple or partial autocorrelations [12,44,45], ARMA representations [46–48], periodograms 
or log-periodograms [49], cepstral coefficients [16] and other spectral features [8,50], among others. Obviously, all 
of these dissimilarities take advantage from the properties of the considered feature, and thus dQAF inherits the nice 
properties of the quantile autocovariances. In particular, as mentioned in Subsection 2.1, the quantile autocovariance 
function is able to capture many types of serial dependence (including models with zero autocorrelation or presenting 
tail dependence) and exhibits robustness against outliers and heavy tails. From a practical point of view, it is also 
worthy remarking that dQAF presents an efficient implementation at a very low cost in terms of computing time. 
Further, by construction, dQAF can be evaluated on time series with unequal length. All of these interesting proper-
ties suggest that dQAF has an enormous potential to perform time series clustering, and the results in this paper will 
corroborate this fact throughout a broad simulation study considering partitional cluster analysis, with both crisp and 
fuzzy clustering procedures.

3. Optimal selection of input parameters for clustering

According to definition (7), computation of dQAF requires setting a number of input parameters, namely the num-
ber L of significant lags and the set of quantile levels {τ1, . . . , τr}. Since our target is to use this metric to perform 
time series clustering, our concern is to determine how many and which combinations of lags and quantile lev-
els (li , τj , τj ′) must be considered to optimize the clustering process. The light computational complexity of dQAF

enables us to employ a reasonably large number of lags and quantiles without a significant loss of efficiency. Nev-
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ertheless, working with a large set of inputs does not necessarily improve the clustering performance. In practice, 
introducing non-significant lags or very close quantiles means to supply noise to the classification process, thus gen-
erating worse results. Therefore, the goal is simple: starting from a preset grid of input parameters, determining a 
reasonably small subset that conveys the more relevant information on the underlying clustering structure.

To reach this goal, we follow a novel approach proposed by Andrews and McNicholas [33]. In a general context, 
Andrews and McNicholas introduce a variable selection stepwise algorithm for clustering and classification (called 
VSCC) based on determining the variables that simultaneously minimize the within-group variance and maximize 
the between-group variance. Indeed, if the variables have been standardized to have the same variance, then the 
minimization of the within-group variance also implies the maximization of the between-group variance. Besides this 
criterion in terms of “within” and “between” variances, the algorithm imposes that the correlation between the selected 
variables drops below a threshold. The purpose is to ignore highly correlated variables, which does not provide new 
information and may introduce noise. The correlation threshold is not a prefixed value but a sliding threshold allowed 
to be larger as the within-group variance is small. Specifically, if S denotes the subset of selected variables at a 
particular step of the algorithm, then a new variable s is added to S if for all r ∈ S we have

|ρsr | < 1 −W α
s (8)

where ρsr is the correlation between the variables s and r , Ws denotes the within-group variance for the variable s, 
and α is a preset parameter determining the shape of the relationship between the within-group variance and the 
between-variable correlation. Note that the smaller α, more stringent is the correlation threshold.

Compared to other variable selection techniques in clustering, the VSCC algorithm is intuitive, competitive and 
computationally efficient [33]. Based on these arguments, we decided to adapt this algorithm to address the optimal 
selection of lags and quantiles in order to perform clustering using dQAF .

Consider a set of n realizations of time series subjected to clustering. Starting from a grid of r regularly spaced 
quantile levels and a number L of lags, an initial set of vectors of length Lr2, �(u) for u = 1, . . . , n, is computed 
according to (5), i.e. the observed series are replaced by vectors of estimated quantile autocovariances. These vectors 
are arranged by rows in a n × Lr2 matrix, A, whose columns represent the variables used to perform clustering. The 
dissimilarity between two series X(u) and X(v) is given by the squared Euclidean distance between the rows u and v

of A, that is dQAF

(
X

(u)
t ,X

(v)
t

)
= ∥∥�(u) − �(v)

∥∥2
, and the clustering procedure relies on this dissimilarity criterion 

(details are given in Sections 4 and 5 later).
Therefore, we start with Lr2 variables characterized by combinations of a lag and a pair of quantile levels (

li , τj , τ
′

j

)
, and our intention is to apply the VSCC algorithm to obtain an optimal selection of these combinations. 

First, the columns of A are standardized to have zero mean and unit variance, which allows us to concentrate our 
attention on minimizing the within-group variance. Then, the VSCC procedure is carried out as follows.

Step 1. Set the initial grid of r regularly spaced quantile levels and L lags, the number C of clusters and the value of 
α governing the relationship (8).

Step 2. Perform a partitional clustering procedure of the set of time series based on the matrix A = (
�(u) t

)
1≤u≤n

of 
estimated quantile autocovariances and dQAF (see Sections 4 and 5 for hard and fuzzy algorithms, respec-
tively).

Step 3. For each column of A, i.e. for each combination 
(
li , τj , τ

′
j

)
, with i = 1, . . . , L and j, j ′ = 1, . . . , r , compute 

the within-group variance W(
li ,τj ,τ ′

j

) defined by

W(
li ,τj ,τ ′

j

) = 1

n

C∑
c=1

n∑
s=1

zsc

(
γ̂

(s)
li

(τj , τj ′) − γ̂
(c)

li
(τj , τj ′)

)2
,

where zsc is the group membership indicator function and γ̂
(c)

li
(τj , τj ′) is the average of the corresponding 

estimated quantile autocovariances over the group c, that is γ̂
(c)

li
(τj , τj ′) = 1

n

n∑
s=1

zscγ̂
(s)
li

(τj , τj ′). By dealing 

with a hard partition, zsc = I
(
�(s) ∈ c

)
is the indicator function taking the value 1 if the series s belongs to 
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the cluster c and 0 otherwise. In the case of a fuzzy partition, zsc takes the value 1 for the cluster c where the 
series s presents the highest membership degree and 0 otherwise.

Step 4. Sort W(
li ,τj ,τ ′

j

) in ascending order. Denote this sorted list by W = {
W(1), . . . ,W(Lr2)

}
and the combination 

of lag and quantile levels associated with W(k) by 
(
lik , τjk

, τ ′
jk

)
.

Step 5. W(1) minimizes W and hence 
(
li1, τj1, τ

′
j1

)
is automatically placed into the subset of selected variables, 

denoted by S. Set count k = 2.

Step 6. If |ρsk| < 1 −W α
(2), for all s ∈ S, then the combination associated with W(2), 

(
li2, τj2, τ

′
j2

)
is added to S.

Step 7. While k < Lr2, set k = k + 1 and return to Step 6. Then end algorithm.

In our experiments, we have considered up to five different values for α, namely α = 1, . . . , 5, exactly as proposed 
in [33]. Overall, the most stringent choice α = 1 led to a small number of variables and good clustering behavior. In 
the following section, the results from a sensitivity analysis conducted to test the efficacy of the proposed procedure 
against the use of different sequences of quantile levels are presented.

4. Partitioning around medoids clustering based on quantile autocovariances

This section is devoted to examine the behavior of dQAF in hard clustering assuming that the grouping principle is 
to bring together series with the same generating process, thus the clustering task is governed by the dynamic of the 
series. Our previous work [26] tackled this issue by considering hierarchical clustering procedures, and dQAF led to 
highly competitive results compared to other alternative metrics. Now, we extend this analysis to cover partitioning-
based clustering methods. Assuming the existence of C clusters and starting from an initial partition, these methods 
proceed by iteratively relocating objects between clusters until an optimal partition is attained. At each iteration, 
C cluster centers (usually referred to as prototypes or centroids) are estimated and a reassignment of objects based 
on the updated centers is carried out. The most popular partitioning-based algorithm is the k-means procedure, where 
the centroids are the means of objects in the clusters and the objective is to minimize the within-cluster squared error. 
Nevertheless, k-means is not a proper choice in our framework because the average of quantile autocovariances does 
not necessarily characterize a time series model. For instance, if ARMA or GARCH models are considered, then there 
are no guarantees that the centroids represent one of these models. In fact, the resulting centroid could not satisfy 
the constraints required on the coefficients defining these models. This way the centroids may be “fictitious” time 
series, which leads to serious drawbacks. First, the distance dQAF between observed time series objects and centroids 
could not be properly defined. On the other hand, time series clustering is often aimed at finding “representative” time 
series for each cluster, let us say a set of C patterns summarizing the different underlying dynamics, and again this is 
not guaranteed and the resulting centroids could fail in providing a suitable characterization of the cluster dynamics. 
A natural way to overcome these drawbacks is to perform a k-medoids-based algorithm where the prototypes are 
restricted to be chosen among the data points. The goal is to find k representative objects minimizing the average 
dissimilarity of all objects to their closest representative object. This way, dQAF (or whatever is the selected distance) 
directly determines the efficacy of the clustering. In fact, the k-medoid algorithms can be run using the pairwise dis-
tances without requiring the data records. Unlike the k-means procedure, where optimization involves minimization 
of variance and therefore a L2 analysis, the k-medoids-based algorithms are L1 methods and therefore more robust 
to outliers and noise. Regarding these nice properties, we have carried out an extensive simulation study using the 
standard version of the well-known PAM algorithm (from “Partitioning Around Medoids”) [27], which is currently 
available in R code.

Simulations were conducted to assess the performance of dQAF compared to a wide selection of model-free and 
model-based dissimilarity measures, and considering up to three different classification setups, namely classifica-
tion of (i) ARMA models, (ii) non-linear models, and (iii) several structures of conditional heteroskedasticity. The 
generating models selected at each case are enumerated below.
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Scenario 4.1 Classification of ARMA processes.

(a) AR(1) Xt = 0.9Xt−1 + εt

(b) MA(1) Xt = −0.7εt−1 + εt

(c) AR(2) Xt = 0.3Xt−1 − 0.1Xt−2 + εt

(d) MA(2) Xt = 0.8εt−1 − 0.6εt−2 + εt

(e) ARMA(1,1) Xt = 0.8Xt−1 + 0.2εt−1 + εt

Scenario 4.2 Classification of non-linear processes.

(a) NLMA Xt = −0.5εt−1 + 0.8ε2
t−1 + εt

(b) EXPAR Xt = [
0.3 − 10 exp

(−X2
t−1

)]
Xt−1 + εt

(c) TAR Xt = 0.5Xt−1I (Xt−1 ≤ 0) − 2Xt−1I (Xt−1 > 0) + εt

To make more complex the clustering task in this scenario, we have added series generated from the 
following linear model.

(d) MA Xt = −0.4εt−1 + εt

Scenario 4.3 Classification of conditional heteroskedastic processes. Consider the linear model Xt = 0.5at−1 + at , 
with the error term satisfying at = σtεt , where the variance at time t , σ 2

t , is conditional on observations at 
t − 1 by means of some of the following models.

(a) ARCH σ 2
t = 0.2 + 0.95a2

t−1
(b) GARCH σ 2

t = 0.2 + 0.05a2
t−1 + 0.9σ 2

t−1
(c) GJR–GARCH σ 2

t = 0.2 + (0.05 + 1.2Nt−1) a2
t−1 + 0.1σ 2

t−1, with Nt−1 = I (at−1 < 0)

Likewise the above scenario, we included a linear model MA(1) given by
(d) MA Xt = 0.5εt−1 + εt

The error process εt consisted of independent and identically distributed variables following different distributions, 
namely Gaussian innovations with unit variance, Student-t innovations with 1 degree of freedom, and exponential 
Exp(0.75) innovations. Using these distributions, we intend to assess the behavior of the clustering procedure also 
when kurtosis or skewness are present.

While clustering of linear models (Scenario 4.1) has been intensively studied and there are metrics specifically 
designed to deal with this kind of models, Scenario 4.2 introduces a major difficulty by including models with dif-
ferent conditional means that gradually depart from linearity. The models involved in Scenario 4.1 were previously 
considered by Maharaj [47] by performing clustering of ARMA processes, and the models in Scenario 4.2 were used 
in a linearity test context by Tong and Yeung [51]. Scenario 4.3 proposes a more challenging task by involving mod-
els with non-constant volatility. The autoregressive conditional heteroskedasticity models ARCH and GARCH are 
able to capture both time-varying volatility clustering and some amount of fat-tailedness of the distribution, features 
frequently exhibited for returns on assets. Unlike the GARCH models, the Glosten–Jagannathan–Runkle GARCH 
(GJR–GARCH) models allow to capture asymmetric effects on the conditional variance due to positive or negative 
past values, taking into account the leverage effect observed in many financial series.

As far as the dissimilarities to be compared, our selection must take into account the clustering purpose. We are 
not interested in measuring proximity between geometric profiles of series, thus shape-based dissimilarities (e.g. Lp

distances) are not useful here because of clustering would be governed by local fluctuations, that is by the noise. Our 
aim is to bring together series generated from the same model. Hence, the selected metrics must capture differences 
between high level dynamic structures, which describe the global performance of the series. We decided to examine a 
wide range of dissimilarities, including measures comparing: estimated autocorrelations and partial autocorrelations, 
cross-correlations, periodograms, nonparametric spectral estimators, fitted ARMA models and cepstral coefficients, 
among others. All of these measures were computed using the R package TSclust [6]. Because of space reasons, 
we limit our report to the set of dissimilarities producing the best results in our numerical experiments, which are 
enumerated below.

• Periodogram-based distances [49]. Euclidean distances between periodograms, log-periodograms, normalized 
periodograms and log-normalized periodograms were checked, reporting in this section the results for the Eu-
clidean distance between log-periodograms, denoted by dLP .
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• Autocorrelation-based distances [49]. Direct and weighted Euclidean distances between simple and partial au-
tocorrelations using a number of significant lags were taken into consideration. Here we present the results 
considering the weighted Euclidean distance between partial autocorrelations (dPACFG) based on a number of 10 
lags and with weights ωi decaying with the lag in the form ωi = π(1 − π)i , with π = 0.5.

• Model-based distances. The AR metric introduced by Maharaj [47] and denoted by dM .
• Nonparametric dissimilarities in the frequency domain. Although several metrics were considered within this 

group, we focus on the results attained with the integrated squared difference between estimated log-spectra 
(dISD) proposed by Pértega and Vilar [8].

Note that given the parametric models chosen to set up the simulation scenarios, it is expected that some of the 
selected distances work fine in Scenario 4.1. All of them were compared with the proposed metric dQAF . The quantile 
levels were determined by means of the variable selection algorithm VSCC introduced in Section 3. As a starting point, 
the VSCC algorithm was implemented over a grid of regularly spaced quantile levels formed by all the combinations 
(0.05j, 0.05j ′), with j and j ′ ranging from 1 to 19.

For each scenario, five time series of equal length T were generated from each model, thus providing a sample set 
of labeled series available to perform clustering. The experiments were carried out for three different series lengths, 
T = 200, 500 and 1000. Note that all models are stationary in mean but they present differences in scale. To avoid 
that these differences dominate the clustering, the series were previously normalized to have unit variance.

Each set of simulated series was subjected to partitional clustering using the PAM algorithm together with each of 
the studied metrics. The inputs were the true number C of clusters, the pairwise dissimilarity matrix, and the initial 
medoids randomly selected among all the series. The output was the resulting partition, let us say R = {R1, . . . , RC}. 
The quality of the clustering procedure was evaluated by means of two indexes of agreement between the true cluster 
partition, T = {T1, . . . , TC}, and the experimental partition R. Note that, according to the clustering target, each 
element Ti in T is a cluster formed by all the series generated from the same model, and hence the true partition is 
known. The two selected criteria take into account this fact and are described below.

The first agreement index [1,52] is defined by

Ind1 (T ,R) = 1

C

C∑
i=1

max
1≤j≤C

Ind1
(
Ti,Rj

)
, (9)

where

Ind1
(
Ti,Rj

)= 2
∣∣Ti ∩ Rj

∣∣
|Ti | +

∣∣Rj

∣∣ ,
and |V | denotes the cardinality of a set V . Index Ind1 accounts for the number of series sharing a same cluster in 
both partitions, taking exactly the value 0 if both partitions are completely dissimilar and the value 1 if they are 
identical. The second index, Ind2, is the adjusted Rand index [53], a corrected-for-chance version of the Rand index 
[54] which computes the proportion of pairs of series that are located together in the same or different clusters for 
both partitions. The adjusted Rand index modifies the Rand index in such a way that its expected value is equal to zero 
when the partitions are picked up at random (according to a generalized hypergeometric model) and the number of 
series in the clusters remain fixed. Likewise Ind1, the maximum value of Ind2 is 1 and it is attained when partitions 
agree perfectly. Nevertheless, the adjusted Rand index typically takes values substantially lower than other agreement 
indexes, even occasionally negative values, and it is known to exhibit a greater sensitivity on the cluster stability than 
other indexes.

Besides Ind1 and Ind2, we have also calculated a third index (Ind3) using the one-nearest-neighbor (1-NN) clas-
sifier evaluated by leave-one-out cross-validation. Ind3 returns the proportion of series correctly classified when each 
series has been assigned to the element of T containing the nearest series according to the considered dissimilarity. 
Notice that Ind3 does not evaluate the clustering algorithm, but providing insight into the efficacy of the used dis-
similarity. This evaluation criterion has been intensively used in a broad range of pattern recognition applications, 
including time series clustering (see e.g. [7]).

The simulation procedure was replicated N = 100 times for each scenario and the obtained indexes were averaged 
over the 100 trials. The averages and standard deviations (in brackets) obtained for the different lengths of the series 
are reported in Tables 1, 2 and 3, including results for the considered innovation distributions.



JID:FSS AID:7184 /FLA [m3SC+; v1.253; Prn:21/03/2017; 12:10] P.11 (1-35)

J.A. Vilar et al. / Fuzzy Sets and Systems ••• (••••) •••–••• 11
Table 1
Indexes of clustering quality in the Monte-Carlo simulation with series of length T = 250.

Dissimilarity Scenario 4.1 Scenario 4.2 Scenario 4.3

Ind1 Ind2 Ind3 Ind1 Ind2 Ind3 Ind1 Ind2 Ind3

Gaussian innovations
dLP 0.729 0.596 0.736 0.483 0.109 0.381 0.414 −0.002 0.204

(.098) (.102) (.092) (.069) (.106) (.110) (.046) (.062) (.097)

dPACFG 0.873 0.775 0.883 0.714 0.444 0.683 0.437 0.017 0.233
(.070) (.098) (.077) (.088) (.138) (.114) (.061) (.073) (.105)

dM 0.875 0.811 0.937 0.749 0.554 0.789 0.428 0.018 0.258
(.102) (.139) (.068) (.095) (.145) (.132) (.051) (.066) (.095)

dISD 0.906 0.821 0.908 0.726 0.517 0.722 0.421 0.027 0.256
(.063) (.095) (.070) (.094) (.137) (.117) (.052) (.067) (.100)

dQAF 0.767 0.600 0.709 0.995 0.986 0.997 0.622 0.268 0.496
(.090) (.100) (.117) (.014) (.039) (.014) (.070) (.078) (.109)

Non-symmetric innovations

dLP 0.741 0.593 0.742 0.522 0.263 0.438 0.509 0.181 0.413
(.083) (.079) (.107) (.059) (.103) (.120) (.101) (.144) (.114)

dPACFG 0.876 0.779 0.884 0.627 0.401 0.560 0.625 0.398 0.619
(.073) (.103) (.070) (.089) (.091) (.137) (.103) (.166) (.120)

dM 0.888 0.817 0.945 0.631 0.433 0.623 0.569 0.286 0.599
(.092) (.126) (.054) (.093) (.078) (.156) (.089) (.145) (.145)

dISD 0.896 0.802 0.911 0.586 0.412 0.614 0.598 0.359 0.691
(.062) (.089) (.058) (.086) (.082) (.131) (.079) (.133) (.117)

dQAF 0.830 0.728 0.838 1.000 1.000 1.000 0.663 0.409 0.575
(.060) (.071) (.087) (.000) (.000) (.000) (.084) (.103) (.150)

Heavy-tailed innovations

dLP 0.614 0.514 0.714 0.416 0.070 0.535 0.483 0.138 0.391
(.043) (.050) (.104) (.076) (.122) (.107) (.051) (.076) (.103)

dPACFG 0.872 0.815 0.953 0.723 0.556 0.834 0.424 0.050 0.351
(.097) (.124) (.051) (.046) (.077) (.084) (.059) (.069) (.087)

dM 0.838 0.772 0.965 0.738 0.576 0.866 0.438 0.062 0.367
(.087) (.111) (.037) (.073) (.110) (.093) (.064) (.083) (.100)

dISD 0.743 0.641 0.905 0.652 0.428 0.757 0.481 0.144 0.458
(.100) (.111) (.060) (.086) (.146) (.105) (.055) (.067) (.101)

dQAF 0.830 0.735 0.846 0.998 0.996 0.999 0.676 0.392 0.600
(.067) (.084) (.087) (.009) (.024) (.007) (.077) (.110) (.123)

In the case of Gaussian innovations, the dissimilarity based on quantile autocovariances dQAF led to the highest 
average scores in clustering of non-linear and heteroskedastic models, Scenarios 4.2 and 4.3 respectively. In fact, the 
results in these scenarios based on dQAF were substantially better than the ones obtained with the rest of metrics 
for the three indexes. In the linear framework (Scenario 4.1), dQAF produced reasonably high indexes although a 
little worse than dPACFG, dM and dISD . It is worthy to point out the outstanding behavior of dQAF in clustering 
of non-linear models, with average agreement indexes always above 0.985 for the smallest length, and exactly 1 
with series of length 1000 for all the experiments (since sd = 0). Beyond the efficacy of the PAM algorithm, the 
scores of the 1-NN classifier (Ind3) illustrate the high capability of dQAF to discriminate between these processes, 
fairly superior to the other metrics. The worst clustering results were obtained in the Scenario 4.3, thus showing the 
complexity of clustering heteroskedastic structures. Only dQAF is able to draw out good classification rates in this 
hard clustering framework, specially with large series. Note even that, except for dQAF , the clustering results do not 
improve as the length of the series increases.

Similar conclusions derive from the results obtained with non-symmetric and heavy-tailed disturbances, although 
dQAF reported additional nice properties. First, dQAF was again the best-performed metric in Scenarios 4.2 and 4.3, 
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Table 2
Indexes of clustering quality in the Monte-Carlo simulation with series of length T = 500.

Dissimilarity Scenario 4.1 Scenario 4.2 Scenario 4.3

Ind1 Ind2 Ind3 Ind1 Ind2 Ind3 Ind1 Ind2 Ind3

Gaussian innovations

dLP 0.804 0.674 0.812 0.530 0.188 0.442 0.406 −0.002 0.206
(.093) (.115) (.100) (.070) (.107) (.122) (.046) (.048) (.088)

dPACFG 0.949 0.899 0.951 0.858 0.694 0.862 0.428 0.014 0.249
(.066) (.107) (.052) (.091) (.152) (.078) (.051) (.069) (.103)

dM 0.952 0.928 0.977 0.905 0.812 0.922 0.416 0.020 0.253
(.085) (.118) (.041) (.103) (.171) (.074) (.046) (.067) (.118)

dISD 0.952 0.896 0.958 0.869 0.748 0.895 0.405 0.016 0.246
(.047) (.084) (.044) (.108) (.170) (.078) (.039) (.057) (.125)

dQAF 0.855 0.730 0.832 0.999 0.999 1.000 0.714 0.459 0.643
(.089) (.131) (.099) (.005) (.014) (.000) (.075) (.135) (.117)

Non-symmetric innovations

dLP 0.775 0.637 0.789 0.556 0.342 0.459 0.554 0.263 0.495
(.083) (.092) (.096) (.079) (.101) (.116) (.098) (.135) (.111)

dPACFG 0.953 0.903 0.955 0.678 0.458 0.660 0.657 0.463 0.742
(.056) (.092) (.051) (.107) (.120) (.130) (.075) (.141) (.111)

dM 0.956 0.934 0.985 0.714 0.544 0.744 0.521 0.226 0.681
(.081) (.113) (.027) (.124) (.135) (.140) (.072) (.119) (.120)

dISD 0.945 0.888 0.960 0.664 0.492 0.770 0.647 0.436 0.797
(.054) (.089) (.042) (.099) (.104) (.137) (.070) (.119) (.090)

dQAF 0.877 0.791 0.916 1.000 1.000 1.000 0.777 0.592 0.737
(.084) (.117) (.062) (.000) (.000) (.000) (.109) (.146) (.154)

Heavy-tailed errors

dLP 0.620 0.523 0.727 0.435 0.100 0.553 0.503 0.175 0.419
(.042) (.050) (.101) (.089) (.140) (.133) (.045) (.047) (.103)

dPACFG 0.934 0.900 0.984 0.757 0.611 0.890 0.415 0.040 0.379
(.091) (.126) (.030) (.080) (.117) (.070) (.052) (.051) (.077)

dM 0.901 0.860 0.987 0.756 0.611 0.607 0.421 0.046 0.388
(.105) (.141) (.023) (.079) (.124) (.062) (.051) (.055) (.082)

dISD 0.784 0.704 0.942 0.658 0.445 0.810 0.503 0.180 0.507
(.128) (.154) (.051) (.101) (.161) (.079) (.045) (.041) (.099)

dQAF 0.877 0.796 0.897 1.000 1.000 1.000 0.726 0.523 0.731
(.083) (.111) (.078) (.000) (.000) (.000) (.088) (.125) (.125)

increasing the average quality indexes with respect to the Gaussian setting. Particularly noteworthy was the improve-
ment with heavy-tailed innovations where significantly high scores are now attained. The rest of metrics presented 
different behaviors in these two scenarios, exhibiting an improvement with heavy-tailed innovations (although fairly 
below dQAF ) but becoming substantially worse with non-symmetric innovations. Thus, we can conclude that asymme-
try has an important influence over these metrics. Lastly, except for dQAF , all the metrics are affected by asymmetry 
and kurtosis when classifying ARMA models, particularly the non-parametric dissimilarity dISD . On the contrary, 
dQAF presents better results, being very close to the best metrics also in the linear scenario.

In short, our numerical experiments illustrate the good performance of the proposed metric in partitional clustering 
for a wide range of time series models. Specifically, dQAF outperformed the rest of analyzed metrics in clustering of 
non-linear and heteroskedastic models, and exhibited clustering quality indexes reasonably high with linear models 
although somewhat lower than the ones obtained with metrics designed to deal with these models. Furthermore, unlike 
the rest of metrics, quality of the clustering results based on dQAF showed robustness to the kind of disturbance 
distribution.
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Table 3
Indexes of clustering quality in the Monte-Carlo simulation with series of length T = 1000.

Dissimilarity Scenario 4.1 Scenario 4.2 Scenario 4.3

Ind1 Ind2 Ind3 Ind1 Ind2 Ind3 Ind1 Ind2 Ind3

Gaussian innovations

dLP 0.843 0.727 0.864 0.575 0.267 0.512 0.418 0.013 0.225
(.084) (.104) (.084) (.088) (.133) (.120) (.052) (.057) (.073)

dPACFG 0.995 0.988 0.994 0.976 0.936 0.978 0.420 0.015 0.252
(.018) (.040) (.016) (.038) (.091) (.041) (.050) (.065) (.104)

dM 0.998 0.995 0.998 0.989 0.973 0.987 0.426 0.044 0.273
(.009) (.023) (.011) (.031) (.063) (.032) (.051) (.060) (.107)

dISD 0.986 0.965 0.991 0.979 0.945 0.977 0.416 0.032 0.300
(.027) (.060) (.019) (.033) (.082) (.037) (.046) (.055) (.106)

dQAF 0.926 0.845 0.920 1.000 1.000 1.000 0.765 0.605 0.716
(.070) (.118) (.069) (.000) (.000) (.000) (.058) (.083) (.105)

Non-symmetric innovations

dLP 0.855 0.746 0.877 0.388 0.053 0.305 0.584 0.315 0.543
(.084) (.114) (.093) (.057) (.117) (.082) (.094) (.144) (.127)

dPACFG 0.991 0.978 0.992 0.726 0.552 0.812 0.657 0.476 0.832
(.022) (.050) (.023) (.114) (.142) (.094) (.063) (.125) (.106)

dM 0.997 0.995 0.996 0.781 0.674 0.920 0.518 0.217 0.750
(.023) (.033) (.016) (.149) (.175) (.073) (.063) (.107) (.091)

dISD 0.979 0.949 0.990 0.692 0.564 0.856 0.658 0.448 0.875
(.032) (.070) (.022) (.120) (.118) (.079) (.074) (.124) (.080)

dQAF 0.931 0.876 0.953 1.000 1.000 1.000 0.890 0.777 0.861
(.082) (.126) (.050) (.000) (.000) (.000) (.084) (.128) (.111)

Heavy-tailed innovations

dLP 0.615 0.526 0.740 0.426 0.086 0.554 0.520 0.199 0.459
(.044) (.043) (.101) (.084) (.134) (.153) (.043) (.039) (.113)

dPACFG 0.972 0.959 0.996 0.805 0.670 0.928 0.411 0.035 0.389
(.069) (.096) (.012) (.104) (.153) (.059) (.047) (.045) (.090)

dM 0.941 0.919 0.998 0.759 0.612 0.926 0.412 0.033 0.402
(.093) (.125) (.010) (.082) (.123) (.057) (.053) (.048) (.088)

dISD 0.789 0.708 0.948 0.665 0.453 0.837 0.519 0.201 0.540
(.112) (.131) (.046) (.098) (.159) (.092) (.043) (.039) (.087)

dQAF 0.957 0.920 0.963 1.000 1.000 1.000 0.702 0.515 0.766
(.068) (.107) (.056) (.000) (.000) (.000) (.083) (.110) (.126)

In addition, a sensitivity analysis experimenting with different sequences of regularly spaced quantile levels 
was conducted, including a comparison with the results based on the variable selection VSCC algorithm. This 
way, we intend to analyze the effect of the selection of quantile levels on the clustering results. Table 4 reports 
the averages of the cluster similarity indexes obtained from 100 trials of the simulation procedure for Scenar-
ios 4.1, 4.2 and 4.3, with Gaussian innovations, series of length T = 250, and the metric dQAF based on the 
following combinations of quantile levels: (i) τ1 = (0.1,0.5,0.9), (ii) τ 2 = (0.1,0.3,0.5,0.7,0.9), and (iii) τ 3 =
(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9).

Table 4 reveals that the results get better as the number of quantiles is increased. Nevertheless, no large differences 
are observed and acceptable results are reached using only three quantile levels (τ1). Except for Ind3 in Scenario 4.3, 
the VSCC algorithm leads to the highest scores, with the additional advantage of determining a proper trade-off 
between number of quantile levels and clustering quality on the basis of an objective criterion. Anyway, results from 
Table 4 suggest that dQAF should produce satisfactory results in clustering with a small number of regularly spaced 
quantile levels. Although this is indeed a noteworthy property, it is also worth remarking that dQAF is computationally 
efficient because of an increase in the number quantiles does not mean a substantial cost in terms of computing time.
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Table 4
Influence of the selection of quantile levels.

Vector of quantile levels Scenario 4.1 Scenario 4.2 Scenario 4.3

Ind1 Ind2 Ind3 Ind1 Ind2 Ind3 Ind1 Ind2 Ind3

τ1 0.766 0.583 0.688 0.986 0.961 0.989 0.595 0.231 0.535

τ2 0.753 0.586 0.696 0.993 0.982 0.996 0.607 0.256 0.537

τ3 0.767 0.600 0.716 0.993 0.982 0.997 0.610 0.251 0.560

VSCC 0.767 0.600 0.709 0.995 0.986 0.997 0.622 0.268 0.496

5. Fuzzy clustering of time series based on quantile autocovariances

So far, we have analyzed the behavior of the QA-based distance in hard partitional clustering, where the observed 
time series are split into C mutually exclusive groups. By dealing with realizations of time series, a fuzzy clustering 
approach might provide a solution much more attractive and interpretable. Fuzzy clustering allows the objects to 
belong simultaneously to several groups. More precisely, a fuzzy partition associates to each object a label vector with 
C membership degrees, ranging from zero to one and indicating the partial membership to each group. This way, an 
object located on the boundary between several groups may be assigned to all of them with different confidence levels, 
but without necessarily forcing it to be in only one of these groups. In the time series framework, besides enriching the 
cluster solution by recognizing the vague nature of the prototypes, the adoption of a fuzzy approach allows the time 
series to share different dynamic patterns. This could be perfectly supported by changes in the dynamic of the series 
or by the existence of time series exhibiting patterns with intermediate features respect to several clusters [12,13]. 
If a suitable distance is able to capture differences between the underlying dynamic patterns, then a fuzzy clustering 
algorithm based on such a distance should gain adaptivity to construct the prototypes, and hence to obtain a better 
characterization of the temporal pattern of the series (see discussion in [12]). Therefore, the versatility of the fuzzy 
logic combined with the high capability of dQAF to discriminate between different generating processes motivate the 
study of a fuzzy clustering model based on this distance, such as we carry out throughout the present section.

5.1. QAF-based fuzzy C-medoids clustering model (QAF–FCMdC model)

As in previous sections, consider a set S of n realizations of univariate time series 
{
X

(1)
t , . . . ,X

(n)
t

}
and denote 

by � = {
�(1), . . . ,�(n)

}
the corresponding vectors of estimated quantile autocovariances computed as defined in 

(5). Assume that all vectors �(i) have the same length Lr2, being L and r the numbers of lags and quantile levels 
considered for all the series, respectively. This way, the pairwise dQAF distances between two arbitrary series can be 
computed according to (7). In this framework, we propose to perform partitional fuzzy clustering on S by means of 
the QAF-based Fuzzy C-Medoids Clustering model (QAF–FCMdC), which aims at finding the subset of � of size C, 

�̃ =
{
�̃

(1)
, . . . , �̃

(C)
}

, and the n × C matrix of fuzzy coefficients � = (uic) , i = 1, . . . , n, c = 1, . . . , C, that lead to 
solve the minimization problem:

min
�̃,�

n∑
i=1

C∑
c=1

um
ic

∥∥∥�(i) − �̃
(c)
∥∥∥2

, subject to the constraints:
C∑

c=1

uic = 1 and uic ≥ 0, (10)

where uic ∈ [0,1] represents the membership degree of the i-th series in the c-th cluster, ̃�(c)
is the vector of quantile 

autocovariances associated to the medoid series for the cluster c, and m > 1 is a weighting exponent that controls the 
fuzziness of the partition. Constraints on uic are standard requirements in fuzzy clustering. In particular, that the sum 
of the membership degrees for each series equals 1 implies that all of them contribute with the same weight to the 
clustering process. Parameter m determines the level of fuzziness introduced in the clustering procedure. In the naive 
case m = 1, we have uic = 1 if the i-th series is the medoid for the cluster c and 0 otherwise so that the crisp version 
of the procedure is obtained. As the value of m increases, the boundaries between clusters become softer and therefore 
the classification is fuzzier.

In a nutshell, the aim of QAF–FCMdC model is to determine a fuzzy partition into C clusters such that the 
QA-distance between the clusters and their prototypes is minimized. Likewise the crisp approach in Section 4, the 
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clustering quality strongly depends on the capability of dQAF to identify different dependence structures, but now the 
non-stochastic uncertainty inherent to the assignment of series to clusters is incorporated to the procedure by means 
of the membership degrees.

An iterative algorithm that alternately optimizes the membership degrees and the medoids is used to solve the 
optimization problem in (10). First, the membership degrees are optimized for a set of fixed medoids. The iterative 
solutions for the membership degrees take the form [55]:

uic =

⎡⎢⎢⎣ C∑
c′=1

⎛⎜⎝
∥∥∥�(i) − �̃

(c)
∥∥∥2

∥∥∥�(i) − �̃
(c′)

∥∥∥2

⎞⎟⎠
1

m−1
⎤⎥⎥⎦

−1

, for i = 1, . . . , n and c = 1, . . . ,C. (11)

Then, based on the membership degrees obtained from (11), the C series minimizing (10) are selected as new 
medoids. This two-step procedure is iterated until there is no change in the medoids or a maximum number of iterations 
is achieved. The QAF-based fuzzy C-medoids clustering algorithm (QAF–FCMdC) is implemented as outlined in 
Algorithm 1.

Algorithm 1 The QAF-based Fuzzy C-Medoids Clustering Algorithm (QAF–FCMdC).
1: Fix C, m and max.iter
2: Set iter = 0
3: Pick the initial medoids ̃� =

{
�̃

(1)
, . . . , �̃

(C)
}

4: repeat
5: Set ̃�OLD = �̃ {Store the current medoids}
6: Compute uic , i = 1, . . . , n, c = 1, . . . , C, using (11)
7: For each c ∈ {1, . . . , C}, determine the index jc ∈ {1, . . . , n} satisfying:

jc = argmin
1≤j≤n

n∑
i=1

um
ic

∥∥∥�(i) − �(j)
∥∥∥2

8: return �̃
(c) = �(jc), for c = 1, . . . , C {Update the medoids}

9: iter ← iter + 1
10: until �̃OLD = �̃ or iter = max.iter

5.2. Simulation study

A new simulation study was conducted to evaluate the performance of the proposed QAF–FCMdC algorithm. 
We intended to recreate fuzzy scenarios with different time series models, including realizations of AR, ARCH and 
GARCH processes. In all cases, the base scenario consisted of two clusters with five series each, let us say C1 and 
C2, and one additional time series located at equal distance from both clusters. Moreover, we add uncertainty to the 
classification procedure by two ways: (i) introducing variability over the parameters defining the underlying model 
for each cluster, and (ii) considering different levels of separation between the clusters. Variability within clusters was 
generated by drawing out the parameters at random according to uniform distributions with different support for each 
cluster. The distance between clusters is given by the distance between the means of the uniform distributions. The 
specific scenarios and the generation schemes for each scenario are described in detail in Table 5.

For all scenarios, innovations εt follow a Gaussian distribution with zero mean and unit variance. Compared to 
scenarios denoted by B, scenarios A exhibit greater distance between the clusters C1 and C2, and hence less balanced 
memberships are expected. In other terms, the five series generated from one specific cluster should group all together 
with membership degrees more markedly close to one in scenarios A. As far as the time series located at an interme-
diate situation between C1 and C2, it is expected that these series belong simultaneously to the two clusters showing 
membership degrees close to 0.5.

The QAF–FCMdC algorithm was compared with other fuzzy clustering models based on alternative dissimilarities. 
For Scenario 5.1, a fuzzy C-medoids algorithm considering Euclidean distances between estimated autoregressive 
representations was used. According to the fuzzy approach based on features extracted of the time series, a fuzzy 
model can be formalized as solution of the general optimization problem:
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Table 5
Simulation scenarios for evaluation of the QAF–FCMdC algorithm.

Generating process Scenario Elements and structure

Scenario 5.1: Fuzzy clustering of autoregressive processes AR(1)

Xt = φXt−1 + εt 5.1.A Cluster C1: 5 series with φ ∼ U(0,0.2)

Cluster C2: 5 series with φ ∼ U(0.8,1)

One equidistant series with: φ = 0.5

5.1.B Cluster C1: 5 series with φ ∼ U(0.2,0.4)

Cluster C2: 5 series with φ ∼ U(0.6,0.8)

One equidistant series with: φ = 0.5

Scenario 5.2: Fuzzy clustering of autoregressive conditional heteroskedastic processes ARCH(1)

Xt = σt εt , with σ 2
t = 0.1 + αX2

t−1 5.2.A Cluster C1: 5 series with α ∼ U(0,0.1)

Cluster C2: 5 series with α ∼ U(0.9,1)

One equidistant series with: α = 0.5

5.2.B Cluster C1: 5 series with α ∼ U(0,0.2)

Cluster C2: 5 series with α ∼ U(0.8,1)

One equidistant series with: α = 0.5

Scenario 5.3: Fuzzy clustering of general autoregressive conditional heteroskedastic processes GARCH(1,1)

Xt = σt εt , with σ 2
t = 0.1 + αX2

t−1 + 0.1σ 2
t−1 5.3.A Cluster C1: 5 series with α ∼ U(0,0.15)

Cluster C2: 5 series with α ∼ U(0.85,0.9)

One equidistant series with: α = 0.5

5.3.B Cluster C1: 5 series with α ∼ U(0.1,0.2)

Cluster C2: 5 series with α ∼ U(0.8,0.9)

One equidistant series with: α = 0.5

min : Fm

(
�̃,�

)=
n∑

i=1

C∑
c=1

um
ic

∥∥∥�(i) − �̃
(c)
∥∥∥2

, subject to the constraints:
C∑

c=1

uic = 1 and uic ≥ 0, (12)

where �(i) represents the vector of estimated features for the i-th series, i = 1, . . . , n, and �̃ denotes an arbitrary 
subset of C vectors �(i) denoted by �̃(c)

, c = 1, . . . , C. The subset �̃ minimizing the objective function Fm involves 
the solution with the C medoids or prototype time series. The solution is iteratively reached by optimizing alternately 
medoids and membership degrees. At each iteration, the membership degrees for fixed medoids are obtained by using 
the Lagrangian multipliers method, resulting the update formula:

uic =

⎡⎢⎢⎣ C∑
c′=1

⎛⎜⎝
∥∥∥�(i) − �̃

(c)
∥∥∥2

∥∥∥�(i) − �̃
(c′)∥∥∥2

⎞⎟⎠
1

m−1
⎤⎥⎥⎦

−1

, for i = 1, . . . , n and c = 1, . . . ,C. (13)

The use of different features in the class of fuzzy clustering models defined by (12) and (13) leads to distinct fuzzy 
algorithms. We have considered various features including single and partial autocorrelations but our best results were 
obtained by using autoregressive representations, which leads to the following fuzzy model.

• AR–FCMdC: Fuzzy C-medoids clustering model based on the AR-metric [56]. When the extracted features �(i), 
i = 1, . . . , n, are the autoregressive representations of the time series, we take into consideration the distance 
introduced by Piccolo [46] to deal with ARIMA models [8,46,48,57,58]. Each series X(i)

t is identified by the 
AR(∞) operator approximating its ARIMA structure. In practice, the truncated AR(∞) representations are used, 

and thus X(i)
t is characterized by the vector of AR(ri ) parameter estimates, π̂ (i) =

(
π̂

(i)
1 , . . . , π̂

(i)
ri

)
, where the 

ri significant lags are obtained by means of a model selection criterion such as Akaike’s Information Criterion 
(AIC). Then �(i) ≡ π (i), and we have in (12) and (13):∥∥∥�(i) − �̃

(c)
∥∥∥2 =

ric∑(
π̂ (i)

u − ˜̂π(c)
u

)2
, (14)
u=1



JID:FSS AID:7184 /FLA [m3SC+; v1.253; Prn:21/03/2017; 12:10] P.17 (1-35)

J.A. Vilar et al. / Fuzzy Sets and Systems ••• (••••) •••–••• 17
where ric = max(ri , rc). When ri �= rc , the shortest AR coefficient vector is completed by adding zeros up to have 
two vectors with the same length.

Scenarios 5.2 and 5.3 involve conditionally heteroskedastic models and the clustering task is substantially more 
complex due to the peculiar features exhibited for these processes (results in experiments of Section 4 illustrate 
this assertion). As in Scenario 5.1, it is desirable to examine our procedure against fuzzy clustering models based 
on suitable distances regarding the underlying heteroskedastic structures. At this aim, we select two partitioning 
around medoids algorithms based on GARCH modeling recently proposed by D’Urso et al. [22]. Both models rely on 
distances employing the autoregressive representation of a GARCH(p,q) process. More precisely, the GARCH(p,q) 
model allows to model the serial dependence of the volatility by assuming that Xt = σtεt , where the innovations εt are 
independent and identically distributed variables and the squared disturbances σ 2

t satisfy the following ARMA(p,q) 
representation:

σ 2
t = Var (Xt |Jt−1 ) = γ +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j , (15)

where Jt−1 = σ (Xt−1,Xt−2, . . .) represents the information available up to time (t − 1), γ > 0, 0 ≤ αi < 1 and 
0 ≤ βj < 1, for i = 1, . . . , p and j = 1, . . . , q , and (

∑p

i=1 αi +∑q

j=1 βj ) < 1. Based on expression (15), two distance 
measures between heteroskedastic processes are introduced and plugged into the fuzzy C-medoids clustering model 
as described below.

• GARCH–FCMdC: Fuzzy C-medoids clustering model based on the AR distance between GARCH approxima-
tions [22]. Starting from (15) and after some algebra, it can be shown that

X2
t = γ +

p�∑
i=1

(αi + βi)X2
t−i +

q∑
j=1

βjηt−j + ηt , (16)

with p� = max(p, q), αi = 0 for i > p, βi = 0 for i > q , and ηt = X2
t − σ 2

t a zero-mean error uncorrelated with 
the past. Equation (16) establishes an ARMA(p�,q) representation for X2

t , which can be approximated by an 
AR(∞) structure with autoregressive coefficients πG

u given by

πG
u = (αu + βu) +

min(q,u)∑
j=1

βjπ
G
u−j

where πG
0 = −1, αu = 0 for u > p, and βu = 0 for u > q . Then, GARCH–FCMdC model proceeds in the same 

line as AR–FCMdC but using estimators of these new autoregressive coefficients to compute the AR distance, i.e. 

replacing 
(
π̂

(i)
1 , . . . , π̂

(i)
ri

)
by 

(
π̂

G,(i)
1 , . . . , π̂

G,(i)
ri

)
in (14).

• GARCH–FCMdCC: Fuzzy C-medoids clustering model based on the Caiado and Crato distance between 
GARCH approximations [22]. Caiado and Crato [59] proposed an alternative approach to measure distance be-
tween GARCH models by taking into account the covariance between the fitted GARCH coefficients. Specifically, 
the distance between a pair of series X(u)

t and X(v)
t is defined by

dGARCH

(
X

(u)
t ,X

(v)
t

)
=
(
L(u) − L(v)

) t (
V (u) + V (v)

)−1 (
L(u) − L(v)

)
, (17)

where L(u) =
(
α̂(u), β̂

(u)
)t

is the estimated vector of parameters in the GARCH representation (15) for X(u)
t , and 

V (u) = E 
(
L(u)L(u), t

)
denotes the corresponding covariance matrix between the estimated parameters. Based on 

dGARCH , the GARCH–FCMdCC model is derived by solving the minimization problem:

min
L̃,�

n∑ C∑
um

ic

(
L(i) − L̃

(c)
) t (

V (i) + Ṽ
(c)
)−1 (

L(i) − L̃
(c)
)

,

i=1 c=1
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subject to the constraints:
C∑

c=1

uic = 1 and uic ≥ 0,

where L̃ is a subset of cardinality C of estimated GARCH vectors for the series in study.

By comparing QAF–FCMdC with AR–FCMdC in Scenario 5.1 and with GARCH–FCMdC and GARCH–
FCMdCC in Scenarios 5.2 and 5.3, we choose competitors based on distances properly adjusted to the dependence 
structures from each simulated scenario, and therefore valuable insight into the usefulness of the proposed model and 
its robustness to the generating process should be obtained.

The experiments were carried out with different lengths for the time series, namely T = 250, 500 and 1000 for 
Scenario 5.1, and T = 500, 1000 and 2000 for Scenarios 5.2 and 5.3. The size of the series is increased for the 
heteroskedastic scenarios to face the high variability of the estimated GARCH parameters. Based on a controlled 
simulation experiment, Aielli and Caporin [15] assert that the standard quasi maximum likelihood GARCH estimates 
obtained from simulated realizations of a GARCH(1,1) process are characterized by higher dispersion for smaller 
sample sizes. These arguments account for choosing large sample sizes by treating with this kind of processes, and in 
fact the chosen lengths are commonly used in the literature [15,28,60]. Furthermore, large sample sizes are also usual 
in applications. A typical example of heteroskedastic series are the financial time series, which usually include longer 
sequences formed by daily or intra-daily data. Some experiments were also performed in Scenarios 5.2 and 5.3 with 
short series, but the results showed poor results, being particularly affected the fuzzy algorithms using GARCH-based 
distances due to inaccurate estimations of the GARCH parameters.

The fuzziness parameter m also has an important role, and in practice its value must be determined in advance. 
As already mentioned, m = 1 leads to a crisp partition, but very large values for m are not recommendable. Kamdar 
and Joshi [61] argue that very high values for m may imply to lose mobility of the medoids because all membership 
degrees would become very small except the one corresponding to the current medoid, which always equals 1 within 
its cluster. To our knowledge, there are no theoretical arguments supporting an optimal choice of m (see discussion 
in [62]). A popular choice is m = 2, although based on different heuristic arguments various authors suggest that the 
value of the proper level of fuzziness should be between 1.5 and 2.5 [63–65]. An interesting discussion on this point 
including related references is given in Section 3.1.6 of Maharaj and D’Urso [16]. We were very interested in checking 
the effect of moving the fuzzifier m, and based on the previous considerations we decided to take the values m = 1.5, 
2.0, 2.2 and 2.5, which is also a consistent choice with other recent experimental studies [16,66].

The number of clusters was set at C = 2, and hence the equidistant series are forced to belong simultaneously 
to both clusters. At all scenarios, ten sets of 100 simulations were carried out. For each set was first calculated the 
percentage of times in which time series were correctly classified, and then these success rates were averaged over the 
ten replications. At each trial, the correct classification occurs when the five series generated from the model defining 
C1 are located together in one cluster, the five series coming from C2 are grouped together in another cluster, and 
the single series generated from an equidistant model is simultaneously located in both clusters. Since grouping is 
performed in a fuzzy framework, a cut-off value for the membership degrees must be fixed to decide when a time 
series is assigned to a specific cluster or to both clusters simultaneously. Our assignment rule was to place the i-th 
series into the c-th if uic > 0.7. In other case, the series is simultaneously located in the two clusters because of its 
membership degrees are reasonably similar (both of them between 0.3 and 0.7). It is worthy remarking that the chosen 
cut-off point is compatible with the indications suggested in the literature [12,13,16,19,67,68].

The average percentages of correct classification were obtained with all the fuzzy models in order to be compared. 
In the case of the QAF–FCMdC model, the distance dQAF between estimated quantile autocovariances was evaluated 
over a grid of regularly spaced quantile levels formed by all the combinations (0.05j, 0.05j ′), with j and j ′ ranging 
from 1 to 19. Concerning the GARCH-based models, it is important to remark that the right number of GARCH 
parameters was provided as an input in the computation of dAR and dGARCH . Indeed, this is a substantial advantage 
in favor of these models since the significant number of GARCH parameters must be estimated in real scenarios. 
Table 6 shows the results for Scenario 5.1.

The influence of the fuzziness parameter m is evident from Table 6. The value m = 1.5 produced uniformly the 
worst percentages, and it is observed that the results seem to improve progressively when m increases. Note that 
using a high fuzzifier means to smooth the boundary between clusters, thus making more difficult to separate them. 
In particular, a reasonably high value for m implies a more uniform distribution of the membership degrees, thus 
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Table 6
Average percentage of correct classification in Scenario 5.1.

Algorithm Scenario 5.1.A Scenario 5.1.B

T = 250 T = 500 T = 1000 T = 250 T = 500 T = 1000

m = 1.5 AR–FCMdC 31.5 45.1 52.0 17.2 26.6 31.5
QAF–FCMdC 29.6 34.3 35.2 9.7 17.9 23.2

m = 2.0 AR–FCMdC 67.5 83.9 93.0 22.5 45.2 59.9
QAF–FCMd 69.1 76.2 77.6 28.7 44.1 58.3

m = 2.2 AR–FCMdC 76.9 91.8 97.5 21.1 44.3 65.2
QAF–FCMdC 80.8 84.3 88.0 33.8 51.2 67.5

m = 2.5 AR–FCMdC 84.0 97.1 99.7 16.6 40.1 65.6
QAF–FCMdC 88.8 93.7 96.1 34.1 56.0 75.7

Table 7
Average percentage of correct classification in Scenario 5.2.

Algorithm Scenario 5.2.A Scenario 5.2.B

T = 1000 T = 2000 T = 5000 T = 1000 T = 2000 T = 5000

m = 1.5 GARCH–FCMdC 32.5 48.5 64.3 30.1 40.1 64.4
GARCH–FCMdCC 20.4 17.8 10.1 20.4 21.8 20.0
QAF–FCMdC 15.8 26.9 44.0 12.1 19.4 44.2

m = 2.0 GARCH–FCMdC 71.9 86.3 86.6 64.2 76.2 86.0
GARCH–FCMdCC 47.1 51.3 53.4 48.5 51.2 53.1
QAF–FCMdC 47.6 70.0 88.2 36.9 57.6 88.2

m = 2.2 GARCH–FCMdC 79.7 91.2 87.7 72.5 82.7 87.1
GARCH–FCMdCC 56.5 65.7 69.3 56.9 62.0 70.7
QAF–FCMdC 58.9 81.5 94.9 42.4 69.8 95.2

m = 2.5 GARCH–FCMdC 88.2 93.9 87.7 78.9 88.5 87.5
GARCH–FCMdCC 70.6 82.4 85.2 67.6 75.4 84.4
QAF–FCMdC 59.8 89.5 99.0 37.0 79.0 99.2

benefiting the correct classification of the equidistant series. As expected, the success rates substantially decreased 
for the Scenario 5.1.B. By increasing the level of proximity between clusters, both procedures are more sensitive to 
the noise and frequently the equidistant series present a membership degree uic > 0.7 for some c, thus producing 
an important number of failed trials and reducing noticeably the global success rate (even though the series of each 
cluster are really well-classified). Lastly, Table 6 also shows that QAF–FCMdC produces competitive results compared 
to AR–FCMdC. In spite of AR–FCMdC is designed to deal with ARMA series, the proposed algorithm QAF–FCMdC 
exhibited a similar performance, drawing out a little worse success rates in the easiest Scenario 5.1.A, but somewhat 
higher ones in the most difficult Scenario 5.1.B, where the clusters are closer each other.

Now, we focus on Tables 7 and 8 where the results using ARCH(1) (Scenarios 5.2) and GARCH(1,1) (Scenar-
ios 5.3) processes are presented, respectively.

The above considerations on the effect of the fuzziness parameter m also apply in these scenarios, and it is ob-
served that the success rates improve when m increases. In the simplest Scenario 5.2, involving ARCH(1) models, 
the GARCH-based algorithms outperform the QAF-based procedure when T = 1000. Nevertheless, by dealing with 
series of length T = 2000, QAF–FCMdC is clearly competitive, exhibiting better behavior than GARCH–FCMdCC 
and only a little worse than GARCH–FCMdC. As expected, again the success rates in Scenario 5.2.B are worse then 
the ones in Scenario 5.2.A. For the largest length of series (T = 5000) and regardless of the amount of separability of 
the clusters (Scenarios 5.2.A or 5.2.B), QAF–FCMdC is fairly the best procedure by attaining percentages of correct 
classification moving from 88% to 99%, while its competitors produced percentages always below 88%. Therefore, 
in spite of the GARCH-based algorithms take advantage of knowing the underlying parametric dependence structure 
(also the number of significant parameters in our simulations), QAF–FCMdC showed a similar behavior when high 
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Table 8
Average percentage of correct classification in Scenario 5.3.

Algorithm Scenario 5.3.A Scenario 5.3.B

T = 1000 T = 2000 T = 5000 T = 1000 T = 2000 T = 5000

m = 1.5 GARCH–FCMdC 17.9 18.3 19.3 14.5 18.5 19.4
GARCH–FCMdCC 5.0 13.5 15.0 5.3 11.9 14.1
QAF–FCMdC 12.9 23.8 39.2 10.4 18.7 40.0

m = 2.0 GARCH–FCMdC 39.5 47.1 52.1 33.6 45.6 51.9
GARCH–FCMdCC 4.7 15.9 33.5 4.5 11.5 27.3
QAF–FCMdC 38.9 66.2 84.4 30.1 56.9 84.5

m = 2.2 GARCH–FCMdC 46.0 59.5 62.2 40.9 54.5 64.0
GARCH–FCMdCC 3.6 9.3 32.2 3.3 7.4 22.4
QAF–FCMdC 47.5 77.7 93.9 32.7 70.0 93.8

m = 2.5 GARCH–FCMdC 51.4 76.5 81.6 48.8 70.7 82.7
GARCH–FCMdCC 2.7 2.8 20.2 1.9 3.4 15.7
QAF–FCMdC 43.3 84.9 98.6 29.4 76.2 98.1

values of T were considered, and particularly excellent results (percentages of correct classification close to 100%) 
for series of length T = 5000.

This good performance of the proposed fuzzy algorithm is still more noticeable in Scenario 5.3, with GARCH(1, 1) 
models. In fact, Table 8 shows that QAF–FCMdC produced very similar (slightly lower) results as the ones obtained in 
Table 7, thus exhibiting an interesting robustness to the generating models. On the contrary, the fuzzy algorithms based 
on the GARCH metrics were strongly affected by the high variability in the estimation procedure of the GARCH pa-
rameters, corresponding to the GARCH–FCMdCC model the worst behavior. It must be noted that GARCH–FCMdCC 
requires the additional estimation of the covariance structure between GARCH parameters. The fuzzy approach based 
on the distance between quantile autocovariances is free of determining the underlying parametric structure and takes 
advantage of its enormous potential to detect complex types of dependence. These arguments account for the best 
results achieved by the proposed algorithm in this scenario. Only with T = 1000, GARCH–FCMdC seems to outper-
form QAF–FCMdC, but here is worthy to point out the importance of the length of the series in these heteroskedastic 
scenarios. In fact, the success rates for T = 1000 were substantially lower than using lengths 2000 and 5000, and 
always below 50%. Thus it is evident that larger lengths should be used. In short, although the good behavior of the 
QAF-based distance in clustering of heteroskedastic series was already observed by performing hard cluster analysis, 
the results presented in this section also illustrate how the fuzzy nature of time series presenting features intermediate 
between different conditionally heteroskedastic models is well-captured by a fuzzy algorithm based on dQAF .

6. Applications

In this section, two study cases considering air quality data and daily returns of stocks are presented to illustrate 
the usefulness of the fuzzy C-medoids clustering algorithm based on quantile autocovariances. In both applications, 
results from different fuzzy clustering models are discussed and compared to obtain a valuable insight into the behavior 
of our proposal.

6.1. Application to air quality data

The first study case is related to the non-supervised classification of geographical zones in terms of their temporal 
records of air pollutants. Specifically, we have considered time series of daily averages of concentrations of nitrogen 
dioxide (NO2) and ozone (O3), from 1st November 2006 to 31st December 2009. All data are sourced from the official 
website of the Air Quality Monitoring Network of Madrid Community.1

1 http :/ /gestiona .madrid .org /azul _internet /run /j /AvisosAccion .icm.

http://gestiona.madrid.org/azul_internet/run/j/AvisosAccion.icm
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Fig. 2. Location of the stations forming the Air Quality Monitoring Network of Madrid Community.

For monitoring of emission levels, the Community of Madrid, which is an autonomous community of Spain, has a 
Network Control Air Quality consisting of a set of 21 fixed automatic stations and two mobile reference laboratories 
(a mobile unit and a bus). These 23 stations provide data on the air pollutant concentration along time and are dis-
tributed on 7 homogeneous areas that can be grouped in urban areas (Madrid, Urban North, Urban South and Henares 
Corridor) and rural areas (Northern Sierra, Alberche basin and Tajuña basin). We have used information extracted 
from 19 of the 23 stations (four stations were discarded because the database was not complete), namely Alcalá 
de Henares, Alcobendas, Torrejón de Ardoz, Arganda del Rey, Rivas Vaciamadrid, Leganés, Fuenlabrada, Móstoles, 
Aranjuez, Valdemoro, Majadahonda, Colmenar Viejo, Collado Villalba, Guadalix de la Sierra, El Atazar, S. Martín de 
Valdeiglesias, Villa del Prado, Villarejo de Salvanés and Orusco de Tajuña. Fig. 2 shows the geographical distribution 
of the stations forming the network.

Several studies have revealed serious health effects associated with the continuous exposure to high concentrations 
of nitrogen dioxide and ozone, and for this reason we have focused on them. While some works have considered the 
problem of checking by significant differences between the mean levels of these pollutants on different areas of the 
community (see e.g. [69]), our concern is to analyze the capability of the fuzzy clustering approach to identify loca-
tions with similar daily changes in levels of NO2 and O3. Nevertheless, it is important to remark that our motivation 
is only to illustrate the usefulness of the proposed fuzzy algorithm, without seeking to give any type of environmental 
implications.

The 19 time series available are formed by T = 1,154 records and are non-stationary in mean, thus we proceeded 
to transform them taking one regular difference. Figs. 3 and 4 show plots of the transformed series for the levels 
of O3 and NO2, respectively. It is observed that the variance is not constant over time. There are periods of time in 
which the series strongly fluctuate, while in others fluctuation is less marked. On the other hand, it is reasonable to 
think that a fuzzy behavior might be present, with time series sharing features of different and well-defined patterns of 
daily changes of concentrations of NO2 and O3. According to our simulations results, the proposed fuzzy C-medoids 
clustering algorithm, QAF–FCMdC, should lead to a proper fuzzy partition of the stations. Just as in simulations, 
distance dQAF was computed by considering one lag (L = 1, with l1 = 1) and a grid of quantile levels formed 
by all the combinations (0.05j, 0.05j ′), with j, j ′ ∈ {1, . . . , 19}. For the purpose of comparison, the AR–FCMdC 
and GARCH–FCMdC fuzzy algorithms were also carried out. Given the underlying heteroskedasticity (particularly 
evident in the NO2 case), the latter is expected to produce better results than the former.
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Fig. 3. Daily series of O3 levels transformed by taking one regular difference.
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Fig. 4. Daily series of NO2 levels transformed by taking one regular difference.
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Fig. 5. Crisp and fuzzy silhouette width values for a different number partitions using QAF–FCMdC.

A fuzzy extension of the classical silhouette width criterion was used to determine the optimal number of clusters. 
This fuzzy version takes into consideration the membership degrees matrix and consists in selecting the number of 
clusters maximizing the so-called Fuzzy Silhouette Width [70], defined by

FSW =
∑n

i=1 (uir − uiv)
α si∑n

i=1 (uir − uiv)
α

where si is the standard silhouette width for the i-th element, uir and uiv are the first and the second largest elements 
of the i-th row of the fuzzy partition matrix and α ≥ 0 is a weighting coefficient. This way, FSW provides a weighted 
average of the individual silhouette widths, thus permitting to underweight series belonging to overlapping clusters. 
The value α = 1 is commonly considered, and it was also used in our application.

Fig. 5 shows the values of the standard (crisp) and fuzzy silhouette indexes for a range of partition sizes using 
the QAF–FCMdC algorithm. In all cases, the existence of two major groups is concluded. Focusing on the fuzzy 
approach, the highest FSW indexes were 0.854 for O3 and 0.773 for NO2, corresponding to partitions of two clusters 
in both cases. Note that these high values suggest a strong clustering structure. On the contrary, considering more than 
two clusters substantially reduces the values of the FSW indexes, particularly in the case of NO2. On the other hand, 
a two-cluster partition is intuitively consistent with a natural grouping of the stations according to their location in 
urban or rural areas. Based on these arguments we decide to set the number of clusters at C = 2.

The 2-cluster solutions for the series of daily changes in levels of O3 using a fuzziness parameter m = 2 are 
shown in Table 9. For each single series, the shaded cells enhance the highest membership degrees obtained with 
each procedure, i.e. the cluster assignments from a crisp perspective. Stations with both membership degrees within 
(0.3, 0.7) are fuzzy allocated between the two clusters and their memberships are shown in bold font.

In essence, the model QAF–FCMdC produces the expected classification by grouping the series of daily changes 
in O3 according to the kind of location where they were monitored, i.e. stations placed in urban (cluster C1) and rural 
(cluster C2) areas. The group C2 brings together all the stations located in rural areas with memberships always above 
0.798, but also including the stations of Aranjuez, Majadahonda and Colmenar Viejo. Actually, Aranjuez presents a 
vague location which might be explained because, despite being in an urban area, Aranjuez is located far from the rest 
of stations, just in the boundary of the Community. Also, in terms of ozone records, Majadahonda is set as a suburban 
location (see website of the Air Quality Monitoring Network of Madrid Community), which might account for its 
allocation in C2. All the stations in cluster C1 belong to urban areas presenting very high membership degrees for this 
cluster.

The results obtained with the models AR–FCMdC and GARCH–FCMdC cannot be meaningfully interpreted, at 
least in terms of rural and urban locations. While the model GARCH–FCMdC draws out a solution where just one 
cluster gathers almost all the series with memberships very close to one, the model AR–FCMdC identifies the two 



JID:FSS AID:7184 /FLA [m3SC+; v1.253; Prn:21/03/2017; 12:10] P.25 (1-35)

J.A. Vilar et al. / Fuzzy Sets and Systems ••• (••••) •••–••• 25
Table 9
Membership degrees in clustering of the daily change series in levels of O3 (C = 2 and m = 2.2).

Station Area AR–FCMdC GARCH–FCMdC QAF–FCMdC

C1 C2 C1 C2 C1 C2

Alcalá de Henares Urban 0.740 0.260 0.992 0.008 0.961 0.039
Alcobendas Urban 0.787 0.213 1.000 0.000 0.891 0.109
Torrejón de Ardoz Urban 0.819 0.181 0.973 0.027 0.809 0.191
Arganda del Rey Urban 0.724 0.276 1.000 0.000 0.832 0.168
Rivas Vaciamadrid Urban 0.708 0.292 0.971 0.029 0.893 0.107
Leganés Urban 0.526 0.474 0.993 0.007 0.954 0.046
Fuenlabrada Urban 1.000 0.000 0.985 0.015 1.000 0.000
Móstoles Urban 0.511 0.489 0.998 0.002 0.920 0.080
Aranjuez Urban 0.634 0.366 0.932 0.068 0.356 0.644
Valdemoro Urban 0.791 0.209 1.000 0.000 0.934 0.066
Majadahonda Urban 0.556 0.444 1.000 0.000 0.225 0.775
Colmenar Viejo Urban 0.529 0.471 0.995 0.005 0.000 1.000
Collado Villalba Urban 0.532 0.468 0.995 0.005 0.781 0.219
Guadalix de la Sierra Rural 0.000 1.000 0.000 1.000 0.191 0.809
El Atazar Rural 0.383 0.617 0.549 0.451 0.132 0.868
San Martín de Valdeiglesias Rural 0.299 0.701 0.988 0.012 0.074 0.926
Villa del Pardo Rural 0.312 0.688 0.932 0.068 0.202 0.798
Villarejo de Salvanés Rural 0.449 0.551 0.991 0.009 0.117 0.883
Orusco de Tajuña Rural 0.469 0.531 0.950 0.050 0.112 0.888

Fig. 6. Membership degrees for cluster C1 in clustering of the daily changes in levels of O3.

areas but in a very fuzzy manner in most of the series. A simple way to visualize and compare the 2-cluster solutions 
obtained with the three models is provided by Fig. 6, where the membership degrees for cluster C1 are depicted and 
the final assignment indicated.

The 2-cluster solutions for the series of daily changes in levels of NO2 are shown in Table 10 and Fig. 7. Note that 
GARCH–FCMdC and QAF–FCMdC lead to a very similar partition. With both models the distribution of the stations 
in rural and urban areas is still more evident than in the case of the ozone records. Among the rural locations, only 
Villarejo de Salvanés presents a pattern congruent with the urban locations, exhibiting the highest membership degree 
for C1 with both algorithms. Again Majadahonda station is unexpectedly placed into C2 and the only discrepancy is 
the classification of Colmenar Viejo. In contrast, AR–FCMdC again increases the fuzziness of the resulting partition, 
which is fairly no congruent with the grouping in urban and rural areas. It is worth noting that C = 2 is also the value 
maximizing the FSW index when AR–FCMdC is used, but in this case FSW = 0.66, substantially lower than the 
values 0.83 and 0.77 obtained with GARCH–FCMdC and QAF–FCMdC, respectively.

The main conclusions from this study case can be summarized as follows. Our fuzzy clustering approach, QAF–
FCMdC, led to partitions with a meaningful interpretation for the two considered pollutants by grouping almost all 
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Table 10
Membership degrees in clustering of the daily change series in levels of NO2 (C = 2 and m = 2.2).

Station Area AR–FCMdC GARCH–FCMdC QAF–FCMdC

C1 C2 C1 C2 C1 C2

Alcalá de Henares Urban 0.591 0.409 0.982 0.018 0.799 0.201
Alcobendas Urban 0.512 0.488 0.850 0.150 0.866 0.134
Torrejón de Ardoz Urban 0.480 0.520 0.965 0.035 1.000 0.000
Arganda del Rey Urban 0.598 0.402 0.841 0.159 0.808 0.192
Rivas Vaciamadrid Urban 0.197 0.803 0.828 0.172 0.791 0.209
Leganés Urban 0.840 0.160 1.000 0.000 0.679 0.321
Fuenlabrada Urban 0.872 0.128 1.000 0.000 0.812 0.188
Móstoles Urban 1.000 0.000 0.815 0.185 0.794 0.206
Aranjuez Urban 0.000 1.000 0.894 0.106 0.797 0.203
Valdemoro Urban 0.726 0.274 0.975 0.025 0.828 0.172
Colmenar Viejo Urban 0.778 0.222 0.249 0.751 0.760 0.240
Majadahonda Urban 0.828 0.172 0.063 0.937 0.286 0.714
Collado Villalba Urban 0.840 0.160 0.999 0.001 0.848 0.152
Guadalix de la Sierra Rural 0.737 0.263 0.000 1.000 0.000 1.000
El Atazar Rural 0.303 0.697 0.082 0.918 0.275 0.725
San Martín de Valdeiglesias Rural 0.729 0.271 0.162 0.838 0.141 0.859
Villa del Pardo Rural 0.710 0.290 0.120 0.880 0.218 0.782
Villarejo de Salvanés Rural 0.287 0.713 0.957 0.043 0.823 0.177
Orusco de Tajuña Rural 0.270 0.730 0.171 0.829 0.262 0.738

Fig. 7. Membership degrees for cluster C1 in clustering of the daily changes in levels of O3.

stations according to their urban or rural location. The approach based on GARCH approximations, GARCH–FCMdC, 
performed in a similar way for the NO2 series, but produced an unexpected and anomalous partition for the ozone 
records, thus showing less accuracy than QAF–FCMdC. Since the observed series exhibit heteroskedasticity, the AR–
FCMdC approach relies on misspecified models, which might account for the obtained partitions, with lower quality 
indexes and hardly interpretable for the two air pollutants. Lastly, it is worth enhancing that all the procedures have 
determined some series showing fuzzy nature, which supports the usefulness of the fuzzy approach.

6.2. Application to daily stocks returns in IBEX-35 index

The second application considers daily returns of stocks included in the IBEX-35, which groups the thirty-five 
companies with the highest liquidity and trading volume in the Spanish stock market. Specifically, we manage a 
database formed by the daily returns of twenty-four stocks located in the TOP-30 ranking according to the finance 
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section of the Yahoo website.2 The period of observation of the series spans from 1st January 2008 to 19th December 
2016, thus resulting realizations of length T = 2337. The daily adjusted closing prices for all the stocks were sourced 
from the mentioned website and used to obtain the daily returns by considering the first differences of their natural 
logarithms. The time series are depicted in Fig. 8.

Heteroskedasticity is again observed although less pronounced for several stocks. The largest fuzzy silhouette 
widths are obtained with a partition in three clusters (C = 3) but with different strength for each model. While QAF–
FCMdC drawn out a value FSW= 0.636, the models AR–FCMdC and GARCH–FCMdC led to lower FSW indexes 
of 0.424 and 0.293, respectively. Therefore, all the models suggest the existence of three clusters but QAF–FCMdC 
indicates in a more conclusive way that a well-defined cluster structure lies behind data. It is worthy noting that the 
best FSW is reached using m = 1.5 for AR–FCMdC, while m = 2 is the fuzziness level producing the highest FSW 
for the GARCH- and QAF-based models. As in this application we lack of an intuitive idea on the underlying par-
tition, we decided to corroborate our result by using an alternative index. Specifically, we calculated the Xie–Beni 
index [71] which is given by the ratio between the total variance and the minimum separation between clusters so that 
the optimal C is reached when this ratio is minimized. The minimum values of the Xie–Beni index corresponded to 
C = 3, with values 0.4804, 0.5537 and 0.6890 for QAF–FCMdC, AR–FCMdC and GARCH–FCMdC, respectively, 
again concluding that a 3-cluster solution seems the most adequate and that QAF–FCMdC produces the best-defined 
partition. Based on these arguments, cluster analysis using the three fuzzy models and setting C = 3 was carried out. 
The resulting membership degrees are shown in Table 11. As in previous application, the shaded cells enhance the 
highest membership degrees with each procedure and the stocks allocated in a fuzzy way between two or three clusters 
are indicated with memberships in bold font.

The 3-cluster solution generated by the QAF–FCMdC model identifies a large cluster, C1, gathering together 
most of the stocks, including the ones of the sectors of Energy and Materials, Industry and Construction (except 
for Arcelormittal-MTE), and also the three banks with the highest capitalization level in the Financial services sec-
tor, namely BBVA, Santander-SAN and Caixabank-CABK. The cluster C3 groups the company Arcelormittal-MTE 
together with the smaller banks Banco Popular-POP, Banco Sabadell-SAB and Bankinter-BKT, although SAB and 
BKT could be allocated in C1 by exhibiting similar memberships for both clusters. The cluster C2 groups together two 
important companies of the consumer goods industry (Viscofan-VIS and Inditex-ITX), the only insurance company 
(Mapfre-MAP), and a technological company related to the travel sector (Amadeus-AMS). In sum, the fuzzy partition 
provided by the QAF–FCMdC model seems to be congruent with features like company size and business area. Nev-
ertheless, our concern is not to obtain conclusions in financial terms such as searching proper model specifications 
or accurate predictions for the daily return series. These targets go beyond the scope of this work. Our motivation 
is to illustrate the capability of the proposed fuzzy clustering approach to identify similar dependence structures. In 
this sense, a relevant point by treating with daily returns is to analyze their dispersion, i.e. the underlying volatility 
patterns. To bring insight into this issue, nonparametric approximations of the variance between returns were ob-
tained. The estimated volatility curves grouped according the three clusters identified with the QAF–FCMdC model 
are depicted in Fig. 9.

Note that all the curves in Fig. 9 (a) present a very similar fluctuation pattern, with some bumps of different size 
in similar periods of time. The curves in Fig. 9 (b) corresponding to the cluster C2 are characterized by a flat profile 
throughout the second half of the sample period. In fact, only Mapfre-MAP showed a few periods with moderate 
rise in the level of volatility. The cluster C3 brings together stocks exhibiting a marked pickup in volatility in the last 
year, particularly Arcelormittal-MTE and Banco Popular-POP. This effect is less evident for Banco Sabadell-SAB, 
which could account for its vague allocation in this cluster (with a membership of 0.516). It is worthy noting that 
Arcelormittal-MTE presented a sharp rising of volatility during the first year and a half of the sample period, fairly 
above the rest of the analyzed stocks. This significant behavior might determine the atypical character of this time 
series. Overall, Fig. 9 allows us to describe representative volatility patterns for each of the clusters determined by the 
QAF–FCMdC model.

The AR–FCMdC model led to a reasonable cluster solution although a bit less intuitive than the one obtained 
with QAF–FCMdC. For instance, it is unexpected that the companies Enagás-ENG, Iberdrola-IBE and Ferrovial-FER 
are separated from the rest of companies belonging to the same market sectors. Also, according to the volatility 

2 https :/ /finance .yahoo .com/.

https://finance.yahoo.com/
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Fig. 8. Daily returns of 24 stocks included in the IBEX-35. Sample period: 1st January 2008 to 19th December 2016.
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Table 11
Membership degrees in clustering of the daily returns of 24 stocks included in the IBEX-35 (C = 3, m = 1.5 for AR–FCMdC and m = 2 for 
GARCH–FCMdC and QAF–FCMdC).

AR–FCMdC GARCH–FCMdC QAF–FCMdC

C1 C2 C3 C1 C2 C3 C1 C2 C3

Sector: Energy
Enagás ENG 0.142 0.002 0.856 0.482 0.447 0.071 0.558 0.275 0.167
Endesa ELE 0.996 0.000 0.004 0.038 0.546 0.416 0.684 0.072 0.244
Gas Natural GAS 1.000 0.000 0.000 0.031 0.943 0.026 0.946 0.013 0.041
Iberdrola IBE 0.193 0.023 0.784 0.997 0.002 0.001 0.579 0.052 0.369
Red Eléctrica REE 0.869 0.029 0.102 0.532 0.278 0.190 0.814 0.054 0.132

Sector: Materials, Industry and Construction
Gamesa GAM 0.616 0.020 0.364 0.001 0.003 0.996 0.703 0.079 0.218
Acciona ANA 0.930 0.001 0.069 0.000 0.001 0.999 1.000 0.000 0.000
ACS ACS 1.000 0.000 0.000 1.000 0.000 0.000 0.816 0.020 0.164
Ferrovial FER 0.269 0.003 0.728 0.031 0.324 0.645 0.754 0.095 0.151
FCC FCC 1.000 0.000 0.000 0.821 0.145 0.034 0.821 0.025 0.154
Técnicas Reunidas TRE 0.340 0.230 0.430 0.014 0.105 0.881 0.710 0.147 0.143
Arcelormittal MTS 0.000 1.000 0.000 0.001 0.003 0.996 0.084 0.020 0.896

Sector: Consumer goods
Viscofan VIS 0.204 0.049 0.747 0.027 0.095 0.878 0.087 0.849 0.064
Inditex ITX 0.239 0.052 0.709 0.083 0.210 0.707 0.000 1.000 0.000
Grifols GRF 0.429 0.022 0.549 0.008 0.054 0.938 0.539 0.070 0.391

Sector: Financial services
BBVA BBVA 0.876 0.009 0.115 0.063 0.895 0.042 0.860 0.017 0.123
Santander SAN 0.863 0.002 0.135 0.000 1.000 0.000 0.801 0.076 0.123
Caixabank CABK 0.052 0.002 0.946 0.000 0.000 1.000 0.860 0.037 0.103
Banco Sabadell SAB 0.963 0.007 0.030 0.007 0.030 0.963 0.316 0.168 0.516
Banco Popular POP 0.999 0.000 0.001 0.001 0.997 0.002 0.000 0.000 1.000
Bankinter BKT 0.829 0.004 0.167 0.024 0.867 0.109 0.501 0.040 0.459

Sector: Insurance
Mapfre MAP 0.096 0.014 0.890 0.002 0.013 0.985 0.118 0.821 0.061

Sector: Technology and Telecommunications
Telefónica TEF 0.325 0.054 0.621 0.970 0.023 0.007 0.955 0.006 0.039
Amadeus AMS 0.000 0.000 1.000 0.038 0.597 0.365 0.185 0.708 0.107

profiles shown in Figs. 9 (a) and (b) for the banks, it seems inappropriate to locate all of them together at the same 
cluster, particularly the Banco Popular-POP. These arguments support the better clustering quality indexes obtained 
by the QAF–FCMdC model. Lastly, the GARCH–FCMdC model produced a cluster partition hardly interpretable and 
substantially different from those obtained with the two other procedures. As in the case of the ozone records in the 
first application, the GARCH approximations have not been accurate enough to properly discriminate between the 
generating models.

7. Concluding remarks and future perspectives

In this paper we have shown that the sample quantile autocovariances are a useful tool to perform hard and soft 
partitional clustering of times series when the target is to group series generated from the same stochastic process. 
Quantile autocovariances provide valuable insight into the serial dependence and present a much richer view than other 
extracted features about the underlying dependence structure. Robustness to nonexistence of moments and capability 
to deal with heavy-tailed marginal distributions, to analyze dependence of extreme values, and to detect nonlinear 
features and changes in conditional shapes are appealing properties of the quantile autocovariances, which suggest 
their usefulness to classify a wide range of time series models. This intuition has been illustrated by means of a 
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Fig. 9. Nonparametric estimators of the volatility for the daily returns of the 24 analyzed stocks grouped according to the cluster solution provided 
by the QAF–FCMdC model: C1 (a), C2 (b) and C3 (c).

motivating example addressed to discriminate between realizations of Gaussian white noise, GARCH and exponential 
GARCH processes.

To perform hard clustering, we focus on the partitioning around C-medoids technique, and the results of a broad 
simulation study have shown the good performance of the C-crisp model based on the squared Euclidean distance 
between sample quantile autocovariances, dQAF . Compared to other distances measuring discrepancy between gen-
erating models and other extracted features, our approach led to the best classification rates by grouping non-linear 
and heteroskedastic models in well-separated clusters. Clustering linear models, our proposal produced competitive 
success rates, in general close to the ones obtained with metrics specifically designed to deal with ARMA models. The 
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C-crisp model combined with dQAF also exhibited a remarkable property of robustness against the kind of innovation 
distribution, unlike the rest of examined metrics which have been noticeably affected by skewness and kurtosis. In 
order to provide an automatic tool for clustering, an iterative algorithm to select the lags and quantile levels optimizing 
the clustering process has been introduced. Overall, a small number of quantiles is selected, and a further sensitiv-
ity analysis has illustrated that a few quantiles are enough to obtain satisfactory results. Summing up, the proposed 
crisp clustering procedure inherits the nice properties of the quantile autocovariances to discriminate between gen-
erating processes, and simultaneously presents the advantages of the partitioning around medoids approach, such as 
determining time series characterizing the clusters and robustness to noise and outliers, among others. These optimal 
properties and the outstanding behavior shown in simulations suggest the usefulness and interest of our proposal in 
hard partitional clustering of time series.

Soft partitional clustering has been considered by introducing a fuzzy C-medoids clustering model for time series 
based on the sample quantile autocovariances (QAF–FCMdC). Fuzzy paradigm enriches the cluster solution by per-
mitting overlapping clusters, i.e. identifying time series with dynamics close to more than one prototype. To evaluate 
the QAF–FCMdC algorithm, we have carried out numerical experiments including clusters with different levels of 
separability and time series equidistant from several clusters. Our assessment criterion took into account the capa-
bility of the examined algorithms to detect the fuzzy nature of the equidistant series. Regardless of the considered 
models and compared with other fuzzy algorithms based on distances between estimates of the underlying paramet-
ric structures, the proposed fuzzy algorithm produced good results. Overall, QAF–FCMdC reported better results 
in the most complex scenarios, where the clusters are closer each other. The most noticeable differences in favor of 
QAF–FCMdC were observed by clustering GARCH(1, 1) processes, particularly for large sample sizes. In this frame-
work, the GARCH-based algorithms were affected by the inaccurate estimation of the GARCH structure. By contrast, 
QAF–FCMdC is free of determining the underlying parametric structure and takes advantage of the capability of the 
quantile autocovariances to detect changes in conditional shapes, thus permitting to discriminate between volatility 
structures and identify series showing fuzzy behavior. Furthermore, QAF–FCMdC can be applied to series with dif-
ferent lengths, and it is simple to implement and computationally lighter than the analyzed competitors. According 
to these properties, the proposed fuzzy algorithm is a promising tool to be applied in many situations where it is 
unrealistic to assume homoscedasticity, such as we have illustrated by means of a specific case-study.

There are indeed some interesting issues for further research in relation to the use of quantile autocovariances in 
time series clustering. For instance, consistency of the sample quantile autocovariances has been established assuming 
strictly stationary processes, which can be a constraint in practice. Although stationarity is a quite common require-
ment in time series clustering, introducing suitable approaches to encompass non-stationary models has great interest 
in applications, particularly when the series in study are not easy to be transformed or such transformation does not 
make sense. Also notice that quantile autocovariances are well-defined for time series taking ordinal values. There-
fore, it is worth analyzing the behavior of the proposed procedures in clustering of temporal sequences of ordinal data 
or mixed-type (metric-ordinal) data, which typically arise in social stratification and generally in social science [72]. 
Although we have tackled the clustering task in the time domain, an alternative approach to be addressed in future 
works is to consider the frequency domain by using a distance between proper estimators of the quantile spectral 
densities [25] defined by

G(x,y,ω) = 1

2π

∑
l

cov {I (X0 ≤ x) , I (Xl ≤ y)} exp (ilω).

The quantile spectral density G (x, y,ω) specifies the frequency decomposition of the quantile autocovariances so 
that it can be seen as the cross spectral density of the bivariate time series (I (Xt ≤ x) , I (Xt ≤ y)). Like the quantile 
autocovariances, G (x, y,ω) provides all the information about the serial dependence structure but now from the 
spectral point of view. Different approaches to estimate the quantile spectral density considering L1 and L2 procedures 
and their asymptotic properties have been provided in several works [25,36–38]. In particular, Lee and Rao [25]
propose to check the equality of serial dependence of two stationary time series by using the test statistic given by

PT = 1

T

T∑∫ ∣∣Ĝ1,T (x, y,ωk) − Ĝ2,T (x, y,ωk)
∣∣2 dF(x)dF (y)
k=1
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where ωk denote the k-th Fourier frequency, Ĝ1,T and Ĝ2,T are the quantile spectral density estimators and F is 
any distribution function. This way, PT statistic might be considered as an innovative spectral dissimilarity measure 
between two time series.

Other additional issue deserving particular attention is to obtain robust versions of the fuzzy QAF–FCMdC algo-
rithm to neutralize the effect of anomalous fuzzy data. Currently, we are studying generalizations of the robustness 
techniques considered by [73], namely the metric approach (by smoothing the distance), the noise approach (by intro-
ducing an artificial noise cluster) and the trimmed approach (by trimming away a small fraction of series).
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Appendix A

Outline of the proof of Theorem 2.1. The arguments employed to establish Lemma A.1 (a), Lemma A.2 and Theo-
rem 1 in Han et al. [39] directly lead to the asymptotic result in Theorem 2.1. Hence, a general overview of the proof 
is just outlined in order to provide readers insight into the key steps.

Consider an arbitrary lag l and a pair of levels of probability (τ, τ ′) ∈ A ≡ At × At+l , where At is a compact 
subset in (0, 1) denoting the quantile range of interest for Xt . According to the definition of quantile autocovariance 
in (1) and the corresponding estimator given in (2), we have

√
T
(
γ̂l(τ, τ

′) − γl(τ, τ
′)
)= √

T

[
T −1

T −l∑
t=1

I
(
Xt ≤ q̂τ ,Xt+l ≤ q̂τ ′

)− Fl (qτ , qτ ′)

]
. (A.1)

By adding and subtracting the term T −1/2Fl

(
q̂τ , q̂τ ′

)
in (A.1), we obtain

√
T
(
γ̂l(τ, τ

′) − γl(τ, τ
′)
)=VT ,l

(
q̂τ , q̂τ ′

)+ √
T
[
Fl

(
q̂τ , q̂τ ′

)− Fl (qτ , qτ ′)
]
, (A.2)

where VT ,l is the empirical process indexed by 
(
u,u′) t ∈R

2 given by

VT ,l

(
u,u′)= T −1/2

T −l∑
t=1

ϕt

(
u,u′, l

)
, with ϕt

(
u,u′, l

)= I
(
Xt ≤ u,Xt+l ≤ u′)− Fl

(
u,u′) . (A.3)

As Fl(·, ·) is differentiable by Assumption A4, the mean value expansion leads to
√

T
[
Fl

(
q̂τ , q̂τ ′

)− Fl (qτ , qτ ′)
]= ∇Fl

(
qτ , qτ ′

) t √
T
(
q̂τ − qτ , q̂τ ′ − qτ ′

)
. (A.4)

Also, following arguments by [39], it is shown that

lim
T →∞P

(
sup

(τ,τ ′)∈A

∣∣VT ,l

(
q̂τ , q̂τ ′

)−VT ,l (qτ , qτ ′)
∣∣)= 0. (A.5)

Combining (A.4) and (A.5), we can write (A.2) as follows.
√

T
(
γ̂l(τ, τ

′) − γl(τ, τ
′)
)=VT ,l (qτ , qτ ′) + ∇Fl (qτ , qτ ′) t

√
T
(
q̂τ − qτ , q̂τ ′ − qτ ′

)+ op(1), (A.6)

uniformly in (τ, τ ′) ∈ A.

Now, define WWWT ,l (u1, u2) =
(
W

(1)
T ,l (u1) ,W

(2)
T ,l (u2)

) t

, where W(1)
T ,l (u1) = limu2→∞ VT ,l (u1, u2) and W(2)

T ,l (u2) =
limu1→∞ VT ,l (u1, u2). Based on the Bahadur representation of the sample quantiles, it holds
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√
T
(
q̂α − qα

)= 1

f (qα)
W

(i)
T ,l (qα) + op(1), (A.7)

for i = 1, 2 and uniformly in α. Expression (A.7) combined with (A.6) leads to
√

T
(
γ̂l(τ, τ

′) − γl(τ, τ
′)
)= λt

l,(τ,τ ′)νT ,l

(
τ, τ ′)+ op(1), (A.8)

uniformly in (τ, τ ′) ∈ A, where νT ,l

(
τ, τ ′)= [

VT ,l (qτ , qτ ′) ,WWWT ,l (qτ , qτ ′)t
]t , and λl,(τ,τ ′) is given in (4).

Under Assumptions A1–A4 required in Theorem 2.1, the set of constraints allowing to establish Lemma A.1 in 
Han et al. [39] for the particular case of a one-dimensional process are satisfied. Therefore, according to Lemma A.1 
(a) in [39], the process VT ,l

(
u,u′) defined by (A.3) converges weakly to the mean zero Gaussian process V∞,l

(
u,u′)

with covariance matrix given by

�l

((
u1, u

′
1

)
,
(
u2, u

′
2

))= E
(
V∞,l

(
u1, u

′
1

)
V∞,l

(
u2, u

′
2

))=
∞∑

t=−∞
cov

[
ϕt

(
u1, u

′
1, l

)
, ϕ0

(
u2, u

′
2, l

)]
. (A.9)

Result (A.9) together with the uniform boundedness of λl,(τ,τ ′) (which follows from Assumption A2 and A4) 
ensure the finite dimensional distributions convergence of λt

l,(τ,τ ′)νT ,l

(
τ, τ ′) over (τ, τ ′) ∈ A. This way, it suffices 

to establish the stochastic equicontinuity of λt
l,(τ,τ ′)νT ,l

(
τ, τ ′), which is derived from the stochastic equicontinuity of 

λl,·, VT ,l (·) and WWWT ,l (·). �
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