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Abstract

Important advances have been made in the fuzzy quantification field. Nevertheless, some prob-

lems remain when we face the decision of selecting the most convenient model for a specific

application. In the literature, several desirable adequacy properties have been proposed, but

theoretical limits impede quantification models from simultaneously fulfilling every adequacy

property that has been defined. Besides, the complexity of model definitions and adequacy prop-

erties makes very difficult for real users to understand the particularities of the different models

that have been presented. In this work we will present several criteria conceived to help in the

process of selecting the most adequate Quantifier Fuzzification Mechanisms for specific practical

applications. In addition, some of the best known well-behaved models will be compared against

this list of criteria. Based on this analysis, some guidance to choose fuzzy quantification models

for practical applications will be provided.
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1. Introduction

The evaluation of fuzzy quantified expressions is a topic that has been widely dealt with in

literature [2, 7, 8, 10, 11, 12, 13, 14, 16, 17, 19, 20, 23, 29, 33, 35, 37, 39, 40]. The range of

applications of fuzzy quantification includes fuzzy control [36], temporal reasoning in robotics

[26], fuzzy databases [5], information retrieval [4, 13, 24, 25], data fusion [21, 37], syllogistic

reasoning [27, 28] and more recently data-to-text applications [15, 30, 31, 32].

Moreover, the definition of adequate models to evaluate quantified expressions is fundamen-

tal to perform ‘computing with words’, topic that was suggested by Zadeh [41] to express the

ability of programming systems in a linguistic way.
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In general, most approaches to fuzzy quantification use the concept of fuzzy linguistic quan-

tifier to represent absolute or proportional fuzzy quantities. Zadeh [40] defined quantifiers of the

first type as quantifiers used for representing absolute quantities (by using fuzzy numbers on N) ,

and quantifiers of the second type as quantifiers used for representing relative quantities (defined

by using fuzzy numbers on [0, 1]).

For analyzing the behavior of fuzzy quantification models different properties of convenient

or necessary fulfillment have been defined [7, 9, 12, 20]. However, most of the approaches fail

to exhibit a plausible behavior as it has been proved through the different reviews that have been

published [2, 7, 8, 9, 20] and only a few [7, 11, 19, 20] seem to exhibit an adequate behavior in

the general case.

In this work, we will follow Glöckner’s approximation to fuzzy quantification [20]. In his

approach, the author generalizes the concept of generalized classic quantifier [3] (second order

predicates or set relationships) to the fuzzy case; that is, a fuzzy quantifier is a fuzzy relation-

ship between fuzzy sets. And then he rewrites the fuzzy quantification problem as the problem

of looking for a mechanism to transform semi-fuzzy quantifiers (quantifiers in a middle point

between generalized classic quantifiers and fuzzy quantifiers, used to specify the meaning of

quantified expressions) into fuzzy quantifiers. The author calls these transformation mechanisms

Quantifier Fuzzification Mechanisms (QFMs). Being based in the linguistic Theory of General-

ized Quantifiers (TGQ) [3], this approach is able to handle most of the quantification phenomena

of natural language. In addition, including quantification into a common theoretical framework

following TGQ, it also allows the translation of most of the analysis that has been made from

a linguistic perspective to the fuzzy case, and facilitates the definition and the test of adequacy

properties.

Glöckner has also defined a rigorous axiomatic framework to ensure the good behavior of

QFMs. Models fulfilling this framework are called Determiner Fuzzification Schemes (DFSs)

and they comply with a broad set of properties that guarantee a good behavior from a linguistic

and fuzzy point of view. See the recent [33] or [20] for a comparison between Zadeh’s and

Glöckner’s approaches.

The DFS framework has supposed a notable advance and several well behaved QFMs have

been identified [20], [9]. However, important problems still remain when we must face the

decision of selecting an specific QFM for a practical application. First, it has been proved that

no model can fulfill every desirable adequacy property that have been proposed [20], and as a

consequence, a ‘perfect model’ cannot exist. Besides, the complexity of the definition of the

models and adequacy properties makes really difficult for a user to decide which one is the most

convenient for a certain application. In addition, as we will show along the exposition, there

are some criteria that have not been previously taken into account for analyzing the plausible

models and, even for the cases in which some criteria had been previously considered, a complete

comparison among the behavior of at least the best-behaved models has not been done.

In this work we will focus in, to the best of our knowledge, the best behaved QFMs: models

F MD, F I , F A [9] and models M, MCX and Fowa [20] with the objective of establishing a set

of criteria that facilitates the understanding of the behavioral differences among them and helps

in the process of selecting the more convenient model for applications. All the selected models,

being QFMs, present a more general definition than models following Zadeh’s framework [40].

Furthermore, some of them generalize other known approaches, as the ones based on the Sugeno

or Choquet integrals. Thus, selected models comprise a really good representation of the ‘state

of the art’ of fuzzy quantification. We refer the reader to the exhaustive and recent revision in [8]

for a thoroughly comparative analysis of fuzzy quantification proposals. Previous state of the art
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revisions about the fuzzy quantification field can be found in [2, 7, 9, 20].

Before continuing, we would remark that only the models F A, M, MCX and Fowa fulfill the

strict DFS framework, being alpha-cut based models like F MD and F I , previously considered

as non plausible from the point of view of the DFS framework [20, section 7.2]. In order to

understand the differences between these models and DFSs, we will first compare the selected

models against the main properties considered into the QFM framework. Once the main differ-

ences derived from the properties described in [20] have been presented, we will introduce the

new set of criteria that will allow us to improve the comparison between the different models and

to prove that, for some problems, alpha-cut based models F MD and F I can be superior to known

DFSs.

Moreover, as we will argue when we analyze the different models against the set of criteria

introduced in this paper, ‘a clear winner’ cannot be identified, being the general situation that

some models are more appropriate for some applications than others.

The paper is organized as follows. Section 2 will summarize Glöckner’s approach to fuzzy

quantification, based on QFMs. In section 3, we will present the definition of the models F MD,

F I , F A, M, MCX and Fowa. Section 4 will present the main properties considered in the QFM

framework [20] and a brief comparison of the modelsF MD, F I , F A,M,MCX andFowa, with the

objective of clearly identifying the behavioral differences of these models with respect to these

properties. Section 5 will be devoted to establish the set of criteria that will allow us to improve

the comparison of the considered models, and to analyze the different models against this new set

of criteria. Section 6 summarizes the results and establishes some criteria to guide in the model

selection for applications. The paper is closed with some conclusions.

2. The fuzzy quantification framework

To overcome Zadeh’s framework to fuzzy quantification Glöckner [20] rewrote the problem

of fuzzy quantification as the problem of looking for adequate ways to convert specification

means (semi-fuzzy quantifiers) into operational means (fuzzy quantifiers).

Fuzzy quantifiers are just a fuzzy generalization of crisp or classic quantifiers. Before giving

the definition of fuzzy quantifiers, we will show the definition of classic quantifiers according to

TGQ.

Definition 1. A two valued (generalized) quantifier on a base set E � ∅ is a mapping Q :

P (E)n −→ 2, where n ∈ N is the arity (number of arguments) of Q, 2 = {0, 1} denotes the set of

crisp truth values, and P (E) is the powerset of E.

Examples of some definitions of classic quantifiers are:

all (Y1, Y2) = Y1 ⊆ Y2

at least80% (Y1, Y2) =

{
|Y1∩Y2 |

|Y1 |
≥ 0.80 Y1 � ∅

1 Y1 = ∅

In a fuzzy quantifier, arguments and results can be fuzzy. A fuzzy quantifier assigns a gradual

result to each choice of X1, . . . , Xn ∈ P̃ (E), where by P̃ (E) we denote the fuzzy powerset of E.

In the case E is finite we will denote |E| = m.

Definition 2. [20, definition 2.6] An n-ary fuzzy quantifier Q̃ on a base set E � ∅ is a mapping

Q̃ : P̃ (E)n −→ I = [0, 1].

3
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For example, the fuzzy quantifier ãll : P̃ (E)2 −→ I could be defined as:

ãll (X1, X2) = inf
{
max

(
1 − μX1

(e) , μX2
(e)

)
: e ∈ E

}
where by μX (e) we denote the membership function of X ∈ P̃ (E) and by in f we are denoting

the infimum.

Although a certain consensus may be achieved to accept the previous expression as a suitable

definition for ãll this has not to be the unique possible one. The problem of establishing consistent

fuzzy definitions for quantifiers (e.g., ‘at least eighty percent’) is faced in [20] by introducing the

concept of semi-fuzzy quantifiers. A semi-fuzzy quantifier represents a medium point between

classic quantifiers and fuzzy quantifiers. Semi-fuzzy quantifiers are similar but far more general

than Zadeh’s linguistic quantifiers [40]. A semi-fuzzy quantifier only accepts crisp arguments,

as classic quantifiers, but let the result range over the truth grade scale I, as for fuzzy quantifiers.

Definition 3. [20, definition 2.8] An n-ary semi-fuzzy quantifier Q on a base set E � ∅ is a

mapping Q : P (E)n −→ I.

Q assigns a gradual result to each pair of crisp sets (Y1, . . . , Yn). Examples of semi-fuzzy

quantifiers are:

about 5 (Y1, Y2) = T2,4,6,8 (|Y1 ∩ Y2|) (1)

at least about80% (Y1, Y2) =

{
S 0.5,0.8

(
|Y1∩Y2 |

|Y1 |

)
X1 � ∅

1 X1 = ∅

where T2,4,6,8 (x) and S 0.5,0.8 (x) represent the common trapezoidal and S fuzzy numbers1.

Semi-fuzzy quantifiers are much more intuitive and easier to define than fuzzy quantifiers, but

they do not solve the problem of evaluating fuzzy quantified sentences. In fact, additional mech-

anisms are needed to transform semi-fuzzy quantifiers into fuzzy quantifiers, i.e., mappings with

domain in the universe of semi-fuzzy quantifiers and range in the universe of fuzzy quantifiers:

Definition 4. [20, definition 2.10]A quantifier fuzzification mechanism (QFM)F assigns to each

semi-fuzzy quantifier Q : P (E)n → I a corresponding fuzzy quantifier F (Q) : P̃ (E)n → I of the

same arity n ∈ N and on the same base set E.

3. Some paradigmatic QFMs

3.1. Standard DFSs based on trivalued cuts

In this section we will present the three main Glöckner’s approaches [20]. All the models that

have been proposed by Glöckner are standard DFSs, and as a consequence they show an excellent

1Functions Ta,b,c,d and S α,γ are defined as

Ta,b,c,d (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x ≤ a
x−a
b−a

a < x ≤ b

1 b < x ≤ c

1 − x−c
d−c

c < x ≤ d

0 d < x

, S α,γ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < α

2
(

(x−α)
(γ−α)

)2
α < x ≤

α+γ

2

1 − 2
(

(x−γ)
(γ−α)

)2 α+γ

2
< x ≤ γ

1 γ < x

4
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theoretical behavior. These models are called standard because they induce the standard tnorm

min and the standard tconorm max.2

Before presenting models M [20, definition 7.22], MCX [20, definition 7.56] and Fowa [20,

definition 8.13] we need to introduce some additional definitions.

Definition 5. [20, definition 7.15]Let E be a referential set, X ∈ P̃ (E) a fuzzy set, and γ ∈ I.

Xmin
γ , X

max
γ ∈ P (E) are defined as:

Xmin
γ =

{
X> 1

2
: γ = 0

X≥ 1
2
+ 1

2
γ : γ > 0

Xmax
γ =

{
X≥ 1

2
: γ = 0

X> 1
2
− 1

2
γ : γ > 0

where X≥α = {e ∈ E : μX (e) ≥ α} is the alpha-cut of level α of X and X>α = {e ∈ E : μX (e) > α}

is the strict alpha-cut of level α.

In previous expression, Xmin
γ represents the elements that without doubt, belong to the fuzzy

set X for the ‘cautiousness’ level γ whilst Xmax
γ includes also the elements whose belongingness

to the cautiousness level γ is undefined. Elements that are not in Xmax
γ do not belong to the cau-

tiousness level γ. The cautiousness cut can be interpreted as a ‘trivalued set’ in which elements

in Xmin
γ have membership function of 1, whilst for elements in Xmax

γ /X
min
γ belongingness is un-

defined (membership degree of 1
2
). Membership function for elements that are not in Xmax

γ is

0.

For the definition of M,MCX and Fowa we also need the fuzzy median operator:

Definition 6. Fuzzy median med 1
2

: I × I −→ I is defined as:

med 1
2

(u1, u2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min (u1, u2) : min (u1, u2) > 1

2

max (u1, u2) : max (u1, u2) < 1
2

1
2

: otherwise

The following definitions extends the fuzzy median to fuzzy sets:

Definition 7. Operator m 1
2

: P (I) → I is defined as

m 1
2
X = med 1

2

(
inf X, sup X

)
for all X ∈ P (I), where by inf X, sup X we are denoting the infimum and supremum of X, respec-

tively.

The set that contains all the possible images of a quantifier over the range defined by a three

valued cut of level γ is defined as [19, page 100]:

Definition 8. Let Q : P (E) → I be a semi-fuzzy quantifier, X1, . . . , Xn ∈ P̃ (E) fuzzy sets and

γ ∈ [0, 1] a cautiousness level. S Q,X1,...,Xn
(γ) : [0, 1] → I is defined as:

S Q,X1,...,Xn
(γ) (X1, . . . , Xn) =

{
Q (Y1, . . . , Yn) : (Xi)

min
γ ⊆ Yi ⊆ (Xi)

max
γ

}
2In [20, section 3.4] it is explained how semi-fuzzy quantifiers can be used ‘to embed’ the classical logical functions.

By means of the application of a QFM F , we can study if F transforms the classical logical functions into appropriate

fuzzy logical functions.

5
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Supremum and infimum of S Q,X1,...,Xn
(γ) are represented by means of the following notation:

Definition 9. Let Q : P̃ (E) → I be a semi-fuzzy quantifier, X1, . . . , Xn ∈ P̃ (E) fuzzy sets and

γ ∈ [0, 1] a cautiousness level. 	Q,X1,...,Xn
(γ) : [0, 1] → I is defined as:

	Q,X1,...,Xn
(γ) = sup S Q,X1,...,Xn

(γ)

Definition 10. Let Q : P̃ (E) → I be a semi-fuzzy quantifier, X1, . . . , Xn ∈ P̃ (E) fuzzy sets and

γ ∈ [0, 1] a cautiousness level. ⊥Q,X1,...,Xn
(γ) : [0, 1] → I is defined as:

⊥Q,X1,...,Xn
(γ) = inf S Q,X1,...,Xn

(γ)

Using previous definitions we present the three paradigmatic DFSs :

Definition 11. [20, definition 7.22] Standard DFS M : (Q : P (E) → I) → (Q̃ : P̃ (E) → I) is

defined as

M (Q) (X1, . . . , Xn) =

∫ 1

0

med 1
2

(
	Q,X1,...,Xn

(γ) ,⊥Q,X1,...,Xn
(γ)

)
dγ

Definition 12. [20, definition 7.56, theorem 7.87] Standard DFS MCX : (Q : P (E) → I) →(
Q̃ : P̃ (E) → I

)
is defined as

MCX (Q) (X1, . . . , Xn) = sup
{
QL

V,W (X1, . . . , Xn) : V1 ⊆ W1, . . . ,Vn ⊆ Wn

}
where

QL
V,W (X1, . . . , Xn) = min

(
ΞV,W (X1, . . . , Xn) , inf {Q (Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi}

)
ΞV,W (X1, . . . , Xn) =

n

min
i=1

min
(
inf

{
μXi

(e) : e ∈ Vi

}
, inf

{
1 − μXi

(e) : e � Wi

})
Definition 13. [20, definition 8.13] Standard DFS Fowa : (Q : P (E) → I) →

(
Q̃ : P̃ (E) → I

)
is

defined as

Fowa (Q) (X1, . . . , Xn) =
1

2

∫ 1

0

	Q,X1,...,Xn
(γ) dγ +

1

2

∫ 1

0

⊥Q,X1,...,Xn
(γ) dγ

3.2. Alpha-cut based QFMs F I and F MD

Now, we will present the two QFMs based on alpha-cuts F I and F MD.

Definition 14. [11, section 2.1], [9, chapter 3]Let Q : P (E)n → I be a semi-fuzzy quantifier

over a base set E. The QFM F MD is defined as:

F MD (Q) (X1, . . . , Xn) =

∫ 1

0

Q
(
(X1)≥α , . . . , (Xn)≥α

)
dα

for every X1, . . . , Xn ∈ P̃ (E).

When fuzzy sets X1, . . . , Xn ∈ P̃ (E) are normalized and we limit ourselves to the unary and

binary quantifiers considered in the Zadeh’s framework, F MD coincides with the quantification

model GD defined in [6, page 281], [34, section 3.3.2. and section 3.4.1.], [7, page 37]. In this

way, F MD generalizes the GD model to the Glöckner’s framework.

Let us now present the definition of the F I model.

6
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Definition 15. [10], [11, section 2.2],[9, chapter 3] Let Q : P (E)n → I be a semi-fuzzy quanti-

fier over a base set E. The QFM F I is defined as:

F I (Q) (X1, . . . , Xn) =

∫ 1

0

. . .

∫ 1

0

Q
(
(X1)≥α1

, . . . , (Xn)≥αn

)
dα1 . . .dαn

for every X1, . . . , Xn ∈ P̃ (E).

3.3. Non standard DFS F A

The definition of the QFM F A is based on a probabilistic interpretation of fuzzy sets in which

we interpret membership degrees as probabilities [9],[12]. However, the F A model can also be

defined by means of fuzzy operators without any reference to probability theory.

The QFM F A fulfills the axioms of the DFS framework but it is not a standard DFS, as

the logic operators induced by the F A model are the product tnorm and the probabilistic sum

tconorm.

Definition 16. Let X ∈ P̃ (E) be a fuzzy set, E finite. The probability of the crisp set Y ∈ P (E)

of being a representative of the fuzzy set X ∈ P̃ (E) is defined as

mX (Y) =
∏
e∈Y

μX (e)
∏

e∈E\Y

(1 − μX (e))

As we have stated above, it is possible to make a similar definition without making any

reference to probability theory. If we consider the product tnorm (∧ (x1, x2) = x1 · x2) and the

Lukasiewicz implication then mX (Y) is the equipotence between Y and X [1]:

Eq (Y, X) = ∧e∈E (μX (e) → μY (e)) ∧ (μY (e) → μX (e))

Using the previous definition we define the F A DFS as:

Definition 17. [14, pag. 1359]Let Q : P (E)n → I be a semi-fuzzy quantifier, E finite. The DFS

F A is defined as

F A (Q) (X1, . . . , Xn) =
∑

Y1∈P(E)

. . .
∑

Yn∈P(E)

mX1
(Y1) . . .mXn

(Yn) Q (Y1, . . . , Yn) (2)

for all X1, . . . , Xn ∈ P̃ (E).

The next expression is an alternative definition of the model F A:

F A (X1, . . . , Xn) =
∨

Y1∈P(E)

. . .
∨

Yn∈P(E)

Eq (Y1, X1) ∧ . . . ∧ Eq (Yn, Xn) ∧ Q (Y1, . . . , Yn)

where ∨ is the Lukasiewicz tconorm (∨ (x1, x2) = min (x1 + x2, 1)), ∧ is the product tnorm

(∧ (x1, x2) = x1 · x2) and Eq (Y, X) is the equipotence between the crisp set Y and the fuzzy

set X. In this way, the definition of F A can be done by means of common fuzzy operators.

7
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4. The DFS axiomatic framework

In this section we will present the DFS axiomatic framework [20]. In the previous reference,

the author has dedicated the whole third and fourth chapters to describe the framework and the

properties that are a consequence of it. For the sake of brevity, we will only give a general

overview of the framework and some intuitions about the set of properties derived from it. We

refer the reader to the previous publication for full detail.

Definition 18. A QFM F is called a determiner fuzzification scheme (DFS) if the following

conditions are satisfied for all semi-fuzzy quantifiers Q : P (E)n → I:

Correct generalization U (F (Q)) = Q if n ≤ 1 (Z-1)

Projection quantifiers F (Q) = π̃e if Q = πe for some e ∈ E (Z-2)

Dualisation F
(
Q�̃

)
= F (Q) �̃ n > 0 (Z-3)

Internal joins F (Q∪) = F (Q) ∪̃ n > 0 (Z-4)

Preservation of monotonicity If Q is nonincreasing in the n-th arg, then (Z-5)

F (Q) is nonincreasing in n-th arg, n > 0

Functional application F

(
Q ◦

n
×

i=1
f̂i

)
= F (Q) ◦

n
×

i=1
F̂ ( fi) (Z-6)

where f1, . . . , fn : E′ → E, E′
� ∅

4.1. Main properties derived from the DFS framework

We will only make a brief exposition of the main properties derived from the DFS framework.

Full detail can be found in the aforementioned reference [20, chapters three and four.].

• Correct generalization (P1): perhaps, the most important property derived from the DFS

framework is the correct generalization property. Correct generalization requires that the

behavior of a fuzzy quantifier F (Q) over crisp arguments is the expected; that is, results

obtained with a fuzzy quantifier F (Q) and with the corresponding semi-fuzzy quantifier

Q must coincide over crisp arguments. It is included in the DFS axiomatic framework for

semi-fuzzy quantifiers of arities 0 and 1 (Z-1).

• Quantitativity (P2): quantitative quantifiers do not depend on any particular characteristic

of the elements of the base set. In the finite case, quantitative quantifiers can always

be defined as a function of the cardinality of the boolean combinations of the argument

sets. A QFMF preserves quantitativity if quantitative semi-fuzzy quantifiers are translated

into quantitative fuzzy quantifiers by F . Most typical examples of quantifiers we find in

the literature are quantitative (e.g., ‘around five’, ‘at least 80%’, etc.). Non-quantitative

quantifiers involve the reference to specific elements of the referential (e.g., ‘John’ in a

set of people).

• Projection quantifier (P3): Axiom Z-2 guarantees that the projection crisp quantifier

πe (Y) (that returns 1 if e ∈ Y and 0 in other case) is generalized to the fuzzy projection

quantifier π̃e (X) (that returns μX (e)).

• Induced propositional logic (P4): we will say that a QFM comply with the induced

propositional logic if crisp logical functions (¬ (x), ∧ (x1, x2), ∨ (x1, x2), → (x1, x2)), that

can be embedded into the definition of semi-fuzzy quantifiers, are generalized to accept-

able fuzzy logical functions; that is, a negation operator, a tnorm, a tconorm and a fuzzy

8
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implication function. For example, the negation function can be embedded in the follow-

ing semi-fuzzy quantifier Q¬ : P ({e}) → {0, 1} such that Q¬ ({e}) = 0 and Q (∅) = 1. We

should expect that F (Q¬) would be a fuzzy negation operator.

• External negation (P5): in the common case, external negation of a semi-fuzzy quantifier

is computed by the application of the standard negation ¬̃ (x) = 1 − x. A QFM fulfilling

the external negation property guarantees that F (¬̃Q) is equivalent to ¬̃F (Q). Thanks to

the external negation property, equivalence of expressions “it is false that at least 80% of

the hard workers are well paid” and “less than 80% of the hard workers are well paid” is

assured.

• Internal negation (P6): the internal negation (antonym) of a semi-fuzzy quantifier is

defined as Q¬ (Y1, . . . , Yn) = Q (Y1, . . . ,¬Yn). For example, ‘no’ is the antonym of ‘all’

because all¬ (Y1, Y2) = all (Y1,¬Y2) = no (Y1, Y2). Fulfillment of the internal negation

property assures that internal negation transformations are translated to the fuzzy case;

that is, we guarantee that F (all¬) (X1, X2) = F (all) (X1, ¬̃X2) = F (no) (X1, X2) where

X1, X2 ∈ P̃ (E) are fuzzy sets. In combination with external negation property, it assures

‘duality transformations’ (see below).

• Dualisation (P7): the dualisation property coincides with the Z-3 axiom of the DFS

framework, being a consequence of the simultaneous fulfillment of the external nega-

tion and internal negation properties. The dual of a semi-fuzzy quantifier Q is defined

as Q�̃ (Y1, . . . , Yn) = ¬̃Q¬ (Y1, . . . , Yn) = ¬̃Q (Y1, . . . ,¬Yn) where Y1, . . . , Yn ∈ P (E) are

crips sets, whilst the corresponding definiton for fuzzy quantifiers is Q̃�̃ (X1, . . . , Xn) =

¬̃Q̃¬̃ (X1, . . . , Xn) = ¬̃Q̃ (X1, . . . , ¬̃Xn) where X1, . . . , Xn ∈ P̃ (E) are fuzzy sets. In con-

junction with previous properties, equivalences in the ‘Aristotelian square’ are maintained

in the fuzzy case. As an example, equivalence of F (all) (hard workers,well paid) and

F (no) (hard workers, ¬̃well paid) is assured, or in words, “all hard workers are well

paid” is equivalent to “no hard worker is not well paid”.

• Union/intersection of arguments (P8): this property guarantees the compliance with

some transformations that allow to construct new quantifiers by means of unions (and

intersections) of arguments. As a particular case, the equivalence between absolute unary

and binary quantifiers is a consequence of this axiom. As an example, the equivalence

between “about 5 hard workers are well paid” and “about 5 people are hard workers and

well paid” is assured. For QFMs fulfilling the DFS framework, the fulfillment of this prop-

erty, in combination with internal and external negation properties, allow the preservation

of the boolean argument structure that can be expressed in natural language when none of

the boolean variables Xi occurs more than once [20, section 3.6].

• Coherence with standard quantifiers (P9): by standard quantifiers we refer to the classi-

cal quantifiers ∃,∀ and their binary versions some and all. We will say that a QFM main-

tains coherence with standard quantifiers if the fuzzy versions of the classical quantifiers

are the expected. For example, a QFM fulfilling this property complies (where ∨̃, ∧̃, →̃ are

9
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the logical operators induced by the QFM):

F (∃) (X) = sup

{
m

∨̃
i=1
μX (ai) : A = {a1, . . . , am} ∈ P (E) , ai � a j if i � j

}

F (all) (X1, X2) = inf

{
m

∧̃
i=1
μX1

(ai) →̃μX2
(ai) : A = {a1, . . . , am} ∈ P (E) , ai � a j if i � j

}

• Monotonicity in arguments (P10): this property assures the translation of monotonicity

in arguments relations from the semi-fuzzy to the fuzzy case. As an example, the binary

semi-fuzzy quantifier ‘most’ is increasing in its second argument (e.g. “most students are

poor”). This property assures that the fuzzy version of ‘most’ is also increasing in its

second argument.

• Monotonicity in quantifiers (P11): this property assures the preservation of monotonicity

relations in quantifiers. For example, ‘between 4 and 6’ is more specific than ‘between 2

and 8’. Fulfilment of this property assures that in the fuzzy case, the specificity relations

between quantifiers are preserved.

• Crisp argument insertion (P12): For a semi-fuzzy quantifier Q : P (E)n → I, crisp

argument insertion allows to construct a new quantifier Q : P (E)n−1 → I by means of

the restriction of Q by a crisp set A; that is, the crisp argument insertion Q � A is defined

as Q � A (Y1, . . . , Yn−1) = Q (Y1, . . . , Yn−1, A). A QFM preserving the property of crisp

argument insertion assures that F (Q � A) = F (Q) � A; that is, it is equivalent to first

restrict the semi-fuzzy quantifier Q by A and then applying the fuzzification scheme F or

to first applying the fuzzification mechanism and then restricting the corresponding fuzzy

quantifier by A. Crisp argument insertion allows to model the ‘adjectival restriction’ of

natural language in the crisp case.

4.2. Some relevant properties non included in the DFS framework

In [20, chapter six] some additional adequacy properties for characterizing DFSs were de-

scribed. These additional properties were not included in the DFS framework in some cases,

for being incompatible with it, and in other cases, in order to not excessively restrict the set of

theoretical models fulfilling the framework, which was important for the author for studying the

full set of classes of standard models and their theoretical limits. We will present now the more

relevant:

• Continuity in arguments (P13): this property assures the continuity of the models with

respect to the argument sets. It is fundamental to guarantee that small modifications in ar-

guments do not provoke high variations in the results of evaluating quantified expressions.

• Continuity in quantifiers (P14): this property assures the continuity of the models with

respect to variations in the quantifiers.

• Propagation of fuzziness (P15): this property assures that fuzzier inputs (understood as

fuzzier input sets) and fuzzier quantifiers produce fuzzier outputs. We will discuss this

property in more detail when we introduce the set of criteria we will use to improve the

characterization of the behavior of the QFMs (see section 5.3).

10
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• Fuzzy argument insertion (P16): this property is the fuzzy counterpart of the crisp argu-

ment insertion. It is a very restrictive property, that will impose great limitations into the

set of models fulfilling the DFS axiomatic framework .

4.3. Comparison of the models against the QFM properties

In this section we will make a brief summary of the theoretical analysis of the QFMs F MD,

F I , the non-standard DFS F A and the standard DFSs M, MCX and Fowa with respect to the

set of previous properties. Table 1 summarizes the fulfillment of the properties for the different

models. A detailed analysis of these models can be found in [20] and [9].

This analysis will allow us to understand the main differences between the models we are

considering. As we will argue in the following section, although the set of properties previously

presented allows for a deep analysis of the models, we consider that they are not enough to under-

stand the behavioral differences between them and to decide which ones can be more appropriate

for specific applications. The introduction of these new criteria and the analysis of the behavior

of the models with respect to it will be the objective of the last two sections of this paper.

Before summarizing the behavior of these models against these properties, we would like to

emphasize that our point of view is that although models F MD and F I are not DFSs, they are

really competitive with respect to models fulfilling the DFS framework. The main differences

between the F MD and F I models when we compare them with DFSs is that they fail to fulfill

some of the linguistic properties derived from the DFS framework. In addition, these models also

fail to fulfill some of the QFM properties in the infinite case, which do not affect to most of the

practical applications of fuzzy quantification3. Finally F MD and F I only fulfill the coherence

with standard quantifiers property in the unary case, although in the specific case of the F I

model fulfillment of the property depends on the mechanism we will use to compute the induced

operators of the model [9, chapter 3].

The competitiveness of F MD and F I models with respect to DFSs will become more clear

when we will present the analysis of the models against the new set of criteria, which from our

point of view will prove that in some cases models F MD andF I present some advantages against

models fulfilling the DFS framework.

4.3.1. M model

Mmodel is one of the first models formulated by Glöckner [18] and it is also one of the three

models for which the author has provided computational algorithms in [20, chapter 11]. Being a

standard DFSMmodel fulfills the properties derived from the DFS framework. Additionally, the

M model is continuous in arguments and in quantifiers and fulfills the properties of propagation

of fuzziness in arguments and in quantifiers.

4.3.2. MCX model

MCX model is also an standard DFS and another model for which the author has provided

a computational implementation in [20, chapter 11]. MCX is continuous in arguments and in

quantifiers and fulfills both fuzziness propagation properties. MCX is considered by Glöckner

3We have the hypothesis that for ‘practical quantifiers’ (i.e., defined by means of continuous fuzzy numbers) models

F MD and F I fulfill the continuous in arguments property. We also have the hypothesis that model F I fulfills the

internal negation property for infinite domains in the same cases. The fulfillment of these properties will guarantee the

convenience of these models for infinite domains in the practical cases.
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M MCX Fowa F MD F I F A

Properties derived from the DFS framework

P1. Correct Generalization Y Y Y Y Y Y

P2. Quantitativity Y Y Y Y Y Y

P3. Projection quantifiers Y Y Y Y Y Y

P4. Induced propositional logic Y Y Y Y Y Y

P6. External negation Y Y Y Y Y Y

P7. Internal negation Y Y Y N finite Y

P8. Dualisation Y Y Y N finite Y

P9. Union/intersection of argument Y Y Y Y N Y

P10. Coherence with standard quantifiers Y Y Y unary unary Y

P11. Monotonicity in arguments Y Y Y Y Y Y

P12. Monotonicity in quantifiers Y Y Y Y Y Y

P13. Crisp Argument Insertion Y Y Y Y Y Y

Additional properties

P14. Continuity in arguments Y Y Y finite finite finite

P15. Continuity in quantifiers Y Y Y Y Y Y

P16. Propagation of fuzziness Y Y N N N N

P17. Fuzzy argument insertion N Y N N Y Y

Table 1: Comparison of the behavior of the models against the set of properties in the QFM framework.

as a model of unique properties: it fulfills the property of fuzzy argument insertion [20, defini-

tion 7.82], it is specially robust against modification of membership degrees and generalizes the

Sugeno integral (see [20, section 7.13] for more details).

4.3.3. Fowa model

Fowa model is the paradigmatic example of an standard DFS that does not propagate fuzziness

in arguments or in quantifiers. Fowa model is also continuous in arguments and in quantifiers.

As it fails to fulfill propagation of fuzziness properties, it is considered as the ideal model for ap-

plications in which an improved discriminative power is necessary [20, section 8.1]. Fowa model

generalizes Choquet integral. It is the third model for which a computational implementation has

been provided in [20, definition 7.82].

4.3.4. F MD model

F MD is the generalization to QFMs of the GD model proposed by Delgado et al. in [6],

[34], [7]. F MD model is not a DFS, failing to fulfill the internal negation property, and as a

consequence, the dualisation axiom of DFSs (Z3). F MD model is continuous in the arguments in

the finite case and also continuous in the quantifiers. F MD fulfills the properties of probabilistic

interpretation of quantifiers and of averaging for the identity quantifier [9, chapter 3], that will be

reintroduced as one of the criteria for comparing the behavior of selected QFMs in the following

section. F MD does not fulfill any of the propagation of fuzziness properties.

4.3.5. F I model

F I model is the second alpha-cut based model analyzed in [9]. F I model does not fulfill the

internal joins property (axiom Z4), and then fails to be a DFS. F I is continuous in the arguments

12



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

in finite domains and also continuous in the quantifiers. F I model fulfills the dualisation property

in the finite case. F I model also fulfills the properties of probabilistic interpretation of quanti-

fiers and averaging for the identity quantifier [9, chapter 3]. F I does not fulfill propagation of

fuzziness properties.

4.3.6. F A model

F A model is, to our knowledge, the unique known non-standard DFS. The fuzzy operators

induced by the model are the product tnorm and the probabilistic sum tconorm, making this

model essentially different of the standard DFSs presented in [20]. By definition F A is a finite

model. Moreover, F A is continuous in arguments and in quantifiers, it does not fulfill fuzziness

propagation properties, but it fulfills the probabilistic interpretation of quantifiers and averaging

for the identity quantifier properties.

5. Some additional criteria to characterize the behavioral differences of the QFMs

We have seen that models F MD, F I , F A, M, MCX and Fowa fulfill most of the adequacy

properties that have been presented in [20]. If we only took into account properties included in

the QFM framework when selecting a model for an application, we would just choose one of the

best-behaved models (e.g., F A or MCX ) and we will use them in every possible application of

fuzzy quantification.

However, as we will see through this section, properties included in the QFM framework are

not enough to fully understand the behavioral differences between the selected models. We will

present an analysis that proves that models here discussed have some strong differences in their

behavior. In addition, an aspect we consider specially relevant is that, from an user viewpoint,

the complexity of the definition of the models and adequacy properties make very difficult, for a

non specialist in fuzzy quantification, to determine which model should be chosen for an specific

application.

Thus, it is essential to establish a set of criteria that help us understand the behavioral differ-

ences between the models and facilitate the selection of the more convenient ones for applica-

tions. In general, the set of criteria that we will take into account would not allow us to select ‘a

perfect model’, or even ‘a preferred one’ for every possible application. But we are convinced

they are important to (1) clarify the differences between the behavior of the QFMs (2) to select

or discard QFMs for specific applications with respect to the behavior we consider more impor-

tant and (3) to understand the problems that the selection of a specific model could have for a

particular application.

The following is a summary of the criteria we will consider:

• Linguistic compatibility. By linguistic compatibility we mean the fulfillment of the most

relevant linguistic properties derived from the DFS framework. In the summary of the be-

havior of the main QFMs we have seen that between the selected models, only DFSs fulfill

the main set of properties that have been established to guarantee an adequate behavior

with respect to the main linguistic expectations.

• Aggregative behavior for low degrees of membership: aggregative behavior makes ref-

erence to the tendency of a model to confuse one ‘high degree’ membership element with a

large quantity of ‘low degree’ membership elements. It has been one of the main critiques

made to the
∑

count model [40].
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• Propagation of fuzziness: Propagation of fuzziness [20, section 5.2 and 6.3] is the main

property used to group the different classes of standard DFSs [20, chapters 7 and 8]. Basi-

cally, models fulfilling the propagation of fuzziness properties ‘transfer’ fuzziness in inputs

to the outputs; that is, they guarantee that fuzzier inputs and/or fuzzier quantifiers produce

fuzzier outputs.

• Identity quantifier: the ‘identity semi-fuzzy quantifier’ is defined by means of the identity

function f (x) = x
m

, x ∈ 1, . . . ,m in the absolute case or by means of f (x) = x, x ∈ [0, 1]

in the proportional case. For this semi-fuzzy quantifier, a linear increase in the number of

elements that belong to the input produces a linear increase in the output. We could expect

that a reasonable fuzzy counterpart of the identity quantifier should also produce a linear

increase in the output for a linear increase in the input.

• Evaluating quantifiers over ‘quantified partitions’. With this criterion we refer us to

the behavior of the models when we apply, simultaneously, a set of quantifiers dividing

the quantification universe (e.g., ‘nearly none’, ‘a few’, ‘several’, ‘many’, ‘nearly all’)

to a fuzzy set. That is, how the degrees of fulfillment of the evaluation of the quantified

expressions are distributed between the labels.

• Fine distinction between objects. In applications of fuzzy quantification for ranking

generation is generally needed that fuzzy quantifiers are able to clearly distinguish between

objects fulfilling a set of criteria with different degrees. Criteria to distinguish the QFMs

with respect to their discriminative power are necessary for these applications.

5.1. Linguistic compatibility

With linguistic compatibility we make reference to the main linguistic properties presented

in [20, chapter 4 and 6]. The DFS framework guarantees that the main linguistic transforma-

tions, including argument permutations, negation of quantifiers, antonym of quantifiers, dual of

quantifiers, argument insertion, internal meets, etc. are transferred from the semi-fuzzy to the

fuzzy case.

5.1.1. Analysis of the models

Models MCX and F A. Being DFSs, both models fulfill all the semantic linguistic properties

derived from the DFS framework. Moreover, these models fulfill the fuzzy argument insertion

property [20, section 6.8], as it can be seen in [20, section 7.13] and in [9, chapter 3].

Models M and Fowa. M and Fowa models fulfill semantic linguistic properties derived from the

DFS framework, but not fuzzy argument insertion.

Model F MD. The main difference of the F MD model with respect to DFSs is the non-fulfillment

of the internal negation property. This fact impedes the F MD model to correctly translate

antonym relationships to the fuzzy case and, as a consequence, duality transformations (see

[9, chapter 3]). As an example, failing to fulfill the internal negation property, the model

cannot guarantee the equivalence of F MD (all) (hard workers,well paid) and F MD (no) (hard

workers, ¬̃well paid). In words, results of evaluating “all hard workers are well paid” and “no

hard worker is not well paid” are different.

F MD fulfills the strong conservativity property [20, section 6.7] that guarantees that conser-

vative semi-fuzzy quantifiers (i.e., quantifiers fulfilling Q (Y1, Y2) = Q (Y1, Y1 ∩ Y2) are correctly

14



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

translated to the fuzzy case [9, chapter 3]. This property is not fulfilled by any DFS. However,

loosing the internal negation property and as a consequence, the maintenance of the relation-

ships of the ‘Aristotelian square’ seems more relevant than the fulfillment of the conservativity

property.

Model F I . Model F I looses the internal meets property. Moreover, the internal negation prop-

erty is only fulfilled in the finite case (see [9, chapter 3]).

Loosing the internal meets property, F I model does not guarantee absolute unary/binary

transformations. For example,F I (about 10) (hard workers,well paid) and F I (about 10) (ha

rd workers∩̃well paid) are not equivalent, and then “about 10 hard workers are well paid”

(evaluated by means of the binary absolute quantifier “about 10”) and “about 10 employees are

hard workers and are well paid” (evaluated by means of the application of the unary version

of the absolute quantifier ‘about 10’ and the induced tnorm of the model used to compute the

intersection of ‘hard workers’ and ‘well paid’) will not produce the same results.

5.2. Aggregative behavior for low degrees of membership

Aggregative behavior for low degrees of membership is one of the main critiques that has

been made to the Zadeh’s
∑

count model [38],[20, section A.3], [2]. The intuition around ag-

gregative behavior is that in evaluating quantified expressions, a large amount of elements ful-

filling a property with ‘low degree’ of membership should not be confused with a small amount

of elements fulfilling a property with ‘high degree’ of membership. In the case of the Zadeh’s

model is easy to understand the meaning of aggregative behavior as:

∑
count (∃) ({0.01/e1, . . . , 0.01/e100}) =

∑
count (∃) ({1/e1, 0/e2, . . . , 0/e100}) = 1

in words, ‘exist one tall person’ can be fulfilled if there exists exactly ‘one tall person’, or if there

exist 100 people being ‘0.01 tall’.

Although intuitions against aggregative behavior seem clear, giving up models presenting

aggregative behavior will force us to discard non-standard DFS F associated to archimedean

tconorms4. Being F (∃) equal to [20, Theorem 4.61]:

F (∃) (X) = sup
{
∨̃

m

i=1 (ai) : A = {a1, . . . , am} ∈ P (E) f inite, ai � a j i f i � j
}

for all X ∈ P̃ (E), then F (∃) (X) will always present aggregative behavior for every non-standard

DFS associated to an archimedean tconorm ∨. Archimedean tconorms are a very relevant class

of tconorm operators, including most of the common examples of tconorm operators.

To the best of our knowledge, a clear definition of aggregative behavior has not been pre-

sented in the literature, that has limited itself to present examples with existential quantifiers

and/or with proportional quantifiers representing small proportions (e.g., ‘about 10%’). In this

discussion, we will limit us to consider aggregative behavior for existential quantifiers, as it is

enough to characterize the models we are considering.

4For an archimedean tconorm, limn−→∞ ∨ (c/e1 , . . . , c/en) = 1. Every continuous tconorm such that ∨ (x, x) > x, x ∈

(0, 1) is archimedean.
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5.2.1. Analysis of the models

Model F A. F A model presents aggregative behavior as a consequence of inducing the non-

standard probabilistic sum tconorm ∨̃ (a, b) = a + b − ab. For the F A model:

F (∃) (X) = ∨̃e∈EμX (e)

Moreover,F A model tends to the Zadeh’s Sigma-count model when the size of the referential

E tends to infinite [12]; that is:

lim
|E|→∞

F A (Q) (X) = μQ

(∑
e∈E μX (e)

|E|

)

In this way, F A shares the critiques of aggregative behavior that has been made to the Zadeh’s

model for large referential sets.

ModelsM,MCX, Fowa, F MD andF I . None of the rest of the models show aggregative behavior.

For all of them, F (∃) (X) = sup {μX (e) : e ∈ E}, E finite. We will give some intuitions about the

reasons for which these models do not present aggregative behavior.

Model MCX has been proved to be extremely stable. In [20, section 7.12] it is proved that a

change in the arguments that does not exceed a givenΔwill not change the result of the quantifier

by more than Δ. Then, F (Q) (∅) and F (Q) ({c/e1, c/e2, . . . , c/eN}), with c ‘small’, will produce

approximately the same results.

With respect to models M, Fowa, F MD and F I we should take into account that all of their

definitions are made by using an integration process over the alpha-cuts or the three-valued cuts

of the argument sets.

In the case of alpha cuts, only alpha cuts in the integration interval (0, c] could be altered

by modifications in degrees of membership of elements with membership degree μX (e) ≤ c that

are maintained in (0, c]. In the case of three-valued cuts, only the integration interval [1 − 2c, 1]

could be altered by modifications in degrees of membership in the same interval. As the results

of the integral do not change out the integration range, effects of modifications lower or equal

than c will be limited to c (in the case of alpha-cuts) or 2c in the case of three-valued cuts5.

5.3. Propagation of fuzziness

Propagation of fuzziness is related with the transmission of imprecision from the inputs (ar-

guments and quantifiers) to the outputs (results of evaluating quantified expressions). We will

reproduce the main definitions in [20, section 5.2 and 6.3].

Let be �c a partial order in I × I defined as

x �c y ⇔ y ≤ x ≤
1

2
or

1

2
≤ x ≤ y

for x, y ∈ I.

�c can be extended to fuzzy sets, semi-fuzzy quantifiers and fuzzy quantifiers in the following

way:

5It can be proved that differences in the integration process for M and FCh are also limited to c, but we are only

interested in giving an intuitive explanation of the reasons for which these models do not present aggregative behaviour.
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X �c X′ ⇔ μX (e) �c μX′ (e) , for all e ∈ E

Q �c Q′ ⇔ Q (Y1, . . . , Yn) �c Q′ (Y1, . . . , Yn) , for all Y1, . . . , Yn ∈ P (E)

Q̃ �c Q̃′ ⇔ Q̃ (X1, . . . , Xn) �c Q̃′ (X1, . . . , Xn) , for all X1, . . . , Xn ∈ P̃ (E)

Definition 19. [20, section 6.3]. Let a QFM F be given.

a. We say that F propagates fuzziness in arguments if the following property is satisfied for

all Q : P (E)n → I and X1, . . . , Xn, X
′
1
, . . . , X′

n ∈ P̃ (E). If Xi �c X′
i

for all i = 1, . . . , n then

F (Q) (X1, . . . , Xn) �c F (Q)
(
X′

1
, . . . , X′

n

)
.

b. We say that F propagates fuzziness in quantifiers if F (Q) �c F (Q′) whenever Q �c Q′.

Propagation of fuzziness in arguments and in quantifiers is considered as optional but really

convenient in [20, section 6.3]. Intuitively, from an user point of view, fuzzier inputs or fuzzier

quantifiers should not produce more specific outputs.

Although both propagation of fuzziness properties seem natural, we should note that most

basic tnorms and tconorms do not fulfill propagation of fuzziness properties (e.g. product tnorm

and Lukasiewicz tnorm and their corresponding tconorms) do not fulfill propagation of fuzzi-

ness. This fact is relevant, as every DFS embeds basic logic operators [20, section 3.4]. More-

over, fulfillment of propagation of fuzziness properties have strong negative consequences for

the ranking of objects (see section 5.6).

5.3.1. Analysis of the models

Models M, MCX. Models M and MCX are the paradigmatic examples of standard DFSs fulfill-

ing propagation of fuzziness properties (see [20, chapter 7]. Using M andMCX assure that when

presented with fuzzier inputs or quantifiers, we will always obtain fuzzier outputs.

Models Fowa,F
A,F MD and F I . Model Fowa is the paradigmatic example of an standard DFSs

that does not fulfill both propagation of fuzziness properties.

F A model does not fulfill propagation of fuzziness in arguments, as it is not fulfilled by the

induced product tnorm and the induced probabilistic sum tconorm of the model (see [9, chapter

3]) and it is easy to find counterexamples for propagation of fuzziness in quantifiers. F MD and

F I do not fulfill the property of propagation of fuzziness in arguments (see [9, chapter 3]) and it

is also trivial to find counterexamples for the property of propagation of fuzziness in quantifiers.

5.4. Identity quantifier: as many as possible

First, we will define the identity semi-fuzzy quantifier. We will limit us to the proportional

case:

Definition 20. The unary semi-fuzzy quantifier identity: P (E) → I is defined as

identity (Y) =
|Y |

|E|
, Y ∈ P (E)

For the identity semi-fuzzy quantifier, adding one element increments the result in 1
m

. Thus,

the increase in the output obtained with the addition of elements to the argument set is linear,

making possible to interpret identity (Y) as ‘as many as possible’ or ‘the more the better’. In
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other way, the identity semi-fuzzy quantifier measures the relative weight of the input set Y with

respect to the referential set E. That is, identity (Y) = |Y | / |E|.

A plausible fuzzy counterpart of the identity quantifier should also produce a linear increase

in the output for a linear increase in the input.

Definition 21. [9, chapter 3] We will say that a QFM F fulfills the average property for the

identity quantifier if:

F (identity) (X) =
1

m

m∑
j=1

μX

(
e j

)

As a result of the fulfillment of the average property for the identity quantifier, the improve-

ment obtained in F (identity) (X) is linear with respect to the increases of the membership de-

grees of the argument fuzzy set. This property allows us to enquire if this intuition is translated

to the fuzzy case, assuring that in the fuzzy case we will obtain a measure of the relative weight

of X ∈ P̃ (E) with respect to E.

5.4.1. Analysis of the models

Models Fowa, F MD, F I and F A. Model Fowa [20, chapter 8], and models F MD, F I [9] gener-

alize the OWA approach, and then they trivially fulfill the property of averaging for the identity

quantifier. Model F A also fulfills this property [9],[12].

ModelsM andMCX. ModelsM andMCX do not fulfill this property, as a direct consequence of

fulfilling the propagation of fuzziness in the arguments. For M and MCX models, if M (X) = a

or MCX (X) = a, a ≥ 0.5, then M (X′) ,MCX (X′) ∈ [0.5, a] for X′ �c X (X′ fuzzier than X).

More clearly:

M (identity) (({1/e1, 1/e2, 0/e3, 0/e4})) =MCX (identity) (({1/e1, 1/e2, 0/e3, 0/e4}))

=MCX (identity) (({0.5/e1, 0.5/e2, 0.5/e3, 0.5/e4}))

=MCX (identity) (({1/e1, 1/e2, 0.5/e3, 0.5/e4}))

=MCX (identity) (({0.5/e1, 0.5/e2, 0/e3, 0/e4}))

= 0.5

that is, as M (identity) (({1/e1, 1/e2, 0/e3, 0/e4})) = 0.5 then for every possible X′ such that

X′ �c X the result will be at least as fuzzier as 0.5, but as 0.5 is the fuzzier possible output,

M (identity) (X′) = 0.5.

In figure 1 we show a graphic representation of this behavior. Although we would expect a

high degree of fulfillment for the identity quantifier in case 1 and a low degree in case 2, results

of applyingM or MCX to the identity quantifier for both inputs is 0.5 and for every intermediate

case between case 1) and case 2) is also 0.5.

5.5. Evaluating quantifiers over ‘quantified partitions’

In this section we will analyze the behavior of the models when we simultaneously evaluate

a set of fuzzy quantifiers associated to a ‘quantified partition’ of the quantification universe. Let

us consider the set of quantification labels presented in figure 2.

For reasons we will see later on, we will restrict us to a set of labels such that μQi
(x) +

μQi+1
(x) = 1 for some i. In any case, this is a very common way of dividing the reference
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Case 1) Case 2)

Figure 1: Indiscernible situations for the identity quantifier

Figure 2: Partition of the quantified universe.

universe in practical applications. We will refer to quantified partitions fulfilling this property as

‘Ruspini quantified partitions’.

When we consider the simultaneous evaluation of a set of quantifiers defined by means of

a quantified partition, the behavior of standard DFSs (M, MCX Fowa) and QFMs (F A, F I and

F MD) present strong differences. For some situations, modelsM,MCX andFowa tend to produce

the 0.5 output for every quantifier in the partition. Contrasting with this behavior, models F A,

F I and F MD guarantee that the sum of the evaluation results equals 1, producing ‘a distribution’

of the truth between the set of quantified labels.

5.5.1. Analysis of the models

Models M, MCX and Fowa. As a consequence of being based in trivalued cuts modelsM, MCX

andFowa present a tendency to produce 0.5 evaluation results for some situations. Let us consider

a fuzzy set X such that

X = {0.5/e1, 0.5/e2, . . . , 0.5/em}

then, if for a semi-fuzzy quantifier Qi is fulfilled that there exist r, j such that qi (r) = 1 and

qi ( j) = 0 (note that every quantifier in figure 2 fulfill this property) then

M (X) =MCX (X) = Fowa (X) = 0.5

as it can be easily checked.

This behavior is independent of the granularity of the partition. That is, finer partitions will

continue to produce a 0.5 output in each situation in which we could find some i, j such that

qi (i) = 1 and qi ( j) = 0.
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Model F A. Before presenting the behavior of the F A model, we need to introduce some defini-

tions to precise the meaning of a ‘Ruspini quantified partition’.

Definition 22. We will say that a set of semi-fuzzy quantifiers Q1, . . . ,Qr : Pn (E) → I forms a

Ruspini partition of the quantification universe if for all Y1, . . . , Yn ∈ P (E) it holds that

Q1 (Y1, . . . , Yn) + . . . + Qr (Y1, . . . , Yn) = 1

Example 23. The next set of quantifiers form a Ruspini partition of the quantification universe:

Qi (Y1, Y2) =

{
labeli

(
|Y1∩Y2 |

|Y1 |

)
Y1 � ∅

1
5

Y1 = ∅

where labeli represents the ‘i-th’ fuzzy number in the partition. This set of fuzzy numbers forms

a Ruspini partition of the quantification universe as
∑

i Qi (Y1, Y2) = 1 for all Y1, Y2 ∈ P (E).

Definition 24. [9, chapter 3]We will say that a QFM F fulfills the property of probabilis-

tic interpretation of quantifiers if for all the Ruspini partitions of the quantification universe

Q1, . . . ,Qr : P (E)n → I it holds that

F (Q1) (X1, . . . , Xn) + . . . + F (Qr) (X1, . . . , Xn) = 1

This property is very interesting because it allows us to interpret the result of evaluating fuzzy

quantified expressions as probabilities over the labels related to the quantifiers6. F A,F MD and

F I models fulfill this property [9, chapter three], [12]. Thus, we can interpret that these models

tend to distribute the truth between the set of labels of the partition, assuring that the sum of the

evaluation results associated to each label adds to 1.

In addition, in [12] it has been proved that for unary quantifiers the F A model tends to the

Zadeh’s Sigma-count model when the size of the referential E tends to infinite; that is:

lim
|E|→∞

F A (Q) (X) = μQ

(∑
e∈E μX (e)

|E|

)

In this way, for a big |E| we have F A (Q) (X) ≈ μQ

(∑
e∈E μX(e)

|E|

)
. As

∑
e∈E μX(e)

|E|
is a punctual

value, when we apply this result to a Ruspini quantified partition like the one presented in figure

2, the weights of the evaluation of the quantified expressions tend to concentrate themselves in

one quantified label qi (being F A (Qi) (X) ≈ 1) or two contiguous ones qi, qi+1 (being F A (Qi) +

F A (Qi+1) ≈ 1).

Models F MD and F I . Models F MD and F I also fulfill the property of probabilistic interpre-

tation of quantifiers. Hence, the result of evaluating a set of quantifiers Q1, . . . ,Qr forming a

Ruspini quantified partition can be interpreted as a probability defined over the quantified la-

bels of the quantifiers. Thus, we can interpret that these models tend to distribute the weight of

evaluating quantified sentences over the set of labels used to define the fuzzy quantifiers.

6In [22] a probabilistic interpretation of quantifiers is also used under the label semantics interpretation of fuzzy sets.

20



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Moreover, the following result proves that in the unary case, for a ‘perfectly’ distributed fuzzy

set, models F MD and F I tend to assign to each quantifier a probability weight proportional to its

area. Let us define an equispaced fuzzy set over [0, 1] as:

μX (a1) = 0 < μX (a2) = h < μX (a2) = 2h, . . . , μX (am) = 1

Then, if we restrict ourselves to piecewise continuous functions, it is fulfilled that:

lim
m→∞

∫ 1

0

Q (X≥α) dα = lim
m→∞
μQ

(
1

m

)
h + μQ

(
2

m

)
h + . . . + μQ

(
m − 1

m

)
h =

∫ 1

0

μQ (x) dx

as we are simply computing the area of the quantifier.

As a consequence, when we evaluate a set of unary quantifiers Q1, . . . ,Qr : P (E) → I over

a fuzzy set following an identity function (μX (ei) =
i
m

) we obtain:

F MD (Qi) (X) = F I (Qi) (X) ≈ area
(
μQi

)
This property is related to the probabilistic alpha-cut interpretation of models F MD and F I .

In this interpretation, if membership values of X are perfectly distributed, then ‘weights’ of the

alpha cuts are perfectly distributed over the quantification universe. In this way, quantifiers of

greater areas tend to ‘collect’ more weight than quantifiers with smaller areas. This also means

that, for ‘finer’ quantifier partitions, weights tend to be more distributed between the quantifiers

of the partition.

5.6. Fine distinction between objects

In applications of fuzzy quantifiers for ranking generation, we generally have a set of ob-

jects o1, . . . , oN for which the fuzzy fulfillment of a set of criteria p1, . . . , pm is known Xoi =

{μXi (p1) /p1, . . . , μXi (pm) /pm}, where μXi

(
p j

)
/p j represents the fulfillment of the criteria p j by

the object oi. Additionally, we generally have a set of weights W = {μW (p1) /p1, . . . , μW (pm) /pm}

indicating the relative importance of the criteria p1, . . . , pm.

Fuzzy quantification can be used to generate a ranking by means of the assignment of a

weight to each object, computed using an unary proportional quantified expression, roi = Q̃ (Xoi )

when a vector of weights is not involved, or computed using a binary proportional quantified

expression roi = Q̃ (W, Xoi) when there exists a vector of weights W to indicate the relative

importance of each criteria. Hence, when we compute roi for each i = 1, . . . ,N, we can rank

each object with respect to ‘how Q̃’ criteria it fulfills (e.g., for Q̃ = many, ‘how many’).

Fuzzy quantifiers seem specially convenient for ranking applications. As roi indicates ‘how

good’ is the object i in fulfilling ‘Q̃ criteria’. We can easily adjust the quantifiers to prioritize

objects fulfilling ‘most of the criteria’, ‘some of them’, ‘at least 10’, etc.

Ranking applications usually demand a great discriminative power between objects. In gen-

eral, we should expect that even small variations in the inputs would produce some effect in the

outputs. In order to analyze the discriminative power of QFMs, we will need some definitions:

Definition 25. Let h (x) : [0, 1] → I an strictly increasing continuous mapping; i.e., h (x) > h (y)

for every x > y. We define the unary and binary semi-fuzzy quantifiers Qh : P (E) → I and
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Qh : P (E)2 → I as

Qh (Y) = h (|Y |) , Y ∈ P (E)

Qh (Y1, Y2) =

{
h
(
|Y1∩Y2 |

|Y1 |

)
Y1 � ∅

1 Y1 = ∅

For assuring the discriminative power of QFMs, we will require that in the case of unary

quantifiers, any increase in the fulfillment of a criteria will increase F (Qh). In the binary case,

we will require that any increase in the fulfillment of a criteria associated with a strictly positive

weight will also increase F (Qh). That is, as h is strictly increasing, we expect that an increase

in the values of the inputs is translated into an increase in the result of the evaluation.

Definition 26. Let us consider X1, X2 ∈ P̃ (E), i = 1, . . . ,m, j ∈ {1, . . . ,m} such that μX1
(ei) =

μX2
(ei) , i � j, μX1

(ei) < μX2
(ei) , i = j. We say that a QFM F fulfills the property of discrimina-

tive ranking generation for unary quantifiers if:

F (Qh) (X2) > F (Qh) (X1)

for h (x) strictly increasing.

Definition 27. Let us consider W, X1, X2 ∈ P̃ (E), i = 1, . . . ,m, j ∈ {1, . . . ,m} such that μX1
(ei) =

μX2
(ei) , i � j, μX1

(ei) < μX2
(ei) , μW (i) > 0, i = j. We say that a QFM F fulfills the property of

discriminative ranking generation for binary quantifiers if it fulfills:

F (Qh) (W, X2) > F (Qh) (W, X1)

for h (x) strictly increasing.

5.6.1. Analysis of the models

Models M and MCX. Fulfillment of propagation of fuzziness properties makes M and MCX

very inconvenient for ranking applications. Examples presented in section 5.4 have shown that

these models are piecewise constant, and that they are not able to differentiate between really

large regions of the input space. As a consequence, these models are incapable of making fine

distinction between objects.

ModelFowa. ModelFowa have been presented in [20, chapter 8] as the paradigmatic example of a

standard DFS non-fulfilling the properties of propagation of fuzziness. Thus, the author consider

the Fowa model convenient for applications needing an ‘enhanced discriminatory force’.

As Fowa model generalizes OWA, it adequately deals with the fine distinction between objects

in the unary case. But in the binary case, Fowa is piecewise constant, as it proves the following

example:

Fowa (Qid) ({1/e1, 1/e2, 0.5/e3, 0.5/e4} , {1/e1, 1/e2, 0/e3, 0/e4})

= 0.75

= Fowa (Qid) ({1/e1, 1/e2, 0.5/e3, 0.5/e4} , {1/e11/e2, 0.5/e3, 0.5/e4})

In previous example, for 0.5 weights of e3, e4, we can modify object fulfillment in the [0, 0.5]

range without obtaining any difference in the output.
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Model F MD. A similar problem happens with the F MD model. As the F MD fulfills the strong

conservativity property (see [9, chapter 3]) we have

F MD (Qid) (W, Xoi ) = F MD (Qid)
(
W,W∩̃Xoi

)
and then,

F MD (Qid) ({1/e1, 1/e2, 0.5/e3, 0.5/e4} , {1/e1, 1/e2, 1/e3, 1/e4})

= F MD (Qid) ({1/e1, 1/e2, 0.5/e3, 0.5/e4} , {1/e1, 1/e2, 0.5/e3, 0.5/e4})

= 1

Coinciding with the F I QFM in the unary case, F MD model fulfills the property for unary

quantifiers (see below).

Model F I . Model F I fulfills the property of discriminative ranking generation. The proof is

shown in the Apendix.

Model F A. The F A model also fulfills the property of discriminative ranking generation. The

proof is shown in the Apendix.

5.7. Some recommendations for selecting QFMs for applications

In table 2 we synthesize the behavior of the QFMs F MD, F I , F A, M, MCX and Fowa with

respect to the set of additional criteria we have presented. We summarize some recommendations

for the selection of convenient models for applications:

1. In applications that require a fine distinction between objects (e.g., ranking applications)

only models F I and F A should be used for non unary quantifiers. In the unary case F MD

and Fowa coincide with the F I model for increasing quantifiers, and are also acceptable.

2. In applications in which aggregative behavior is not acceptable, F A should be avoided.

3. For maximal coherence with linguistic criteria, models MCX and F A are the preferred

ones. Models M and Fowa show a good behavior as well. Model F I , being inferior

to DFSs with respect to linguistic coherence, conserves linguistic transformations of the

‘Aristotelian square’ in the finite case.

4. If propagation of fuzziness is required, the only viable options are M and MCX .

5. In order to preserve the intuitions underneath the identity quantifier, guaranteeing that a

linear increase in the inputs produces a linear increase in the outputs, models F A,F MD, F I

or Fowa should be selected.

6. When taken into account the behavior of QFMs over quantified partitions, if we expect

more undefined results for fuzzier fuzzy sets, standard DFSs should be used. In the case of

prefering that QFMs could be interpreted as probabilities over quantified labels, distribut-

ing the ‘degree of fulfilment’ between the different labels, the convenient models are F MD,

F I and F A.

Summing up, the model F A is a really convenient model for all the applications in which

aggregative behavior is not an impediment. MCX is the perfect model for applications in which

preservation of fuzziness properties are required, but presents the handicap that is very inadequate

for ranking applications and it does not maintain the linguistic intuitions under the ‘identity
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F MD F I F A M MCX Fowa

Linguistic Compatibility partial partial DFS+FAI DFS DFS+FAI DFS

Aggregative behavior No No Yes No No No

Identity Quantifier Yes Yes Yes No No Yes

Propagation of Fuzziness No No No Yes Yes No

Quantified Partitions Pr Pr Pr Ind Ind Ind

Fine differentiation No Yes Yes No No No

Table 2: Summary of the behaviour of the QFMs. FAI: Fuzzy Argument Insertion, Pr: probability interpretation of

quantified labels, Ind: tendency to 0.5 in the evaluation results over quantified labels.

quantifier’. Additionally, it has been proved that the MCX model presents a very stable behavior

[20, section 7.12], which assures a certain insensitivity against modifications in the memberships

degrees.

If we need a model guaranteeing a fine distinction between objects but avoiding aggregative

behavior, the best option is the F I model. F I also guarantees linguistic intuitions associated

to the identity quantifier, allows to interpret quantified partitions as probabilities, and for fuzzy

sets whose membership degrees are maximally distributed over the referential set, evaluation

results provided by F I tend to the area of the quantifier. Moreover, F I preserves internal an

external negation properties (this last property in the finite case), assuring the conservation of

the linguistic relations of the ‘Aristotelian square’. Although F I is not a DFS, it is a remarkable

model that presents a great equilibrium between the fulfillment of the different criteria.

F MD, sharing some of the behavior of the F I model, is not adequate for achieving a fine

differentiation of objects in the binary case. We consider linguistic behavior ofF I model superior

to the linguistic behavior of F MD, as this last model does not preserve linguistic transformations

of the Aristotelian square.

M model shares most of the behavior of the MCX model, presenting the same problems but

loosing some properties, as Fuzzy Argument Insertion.

Fowa model has been presented as the paradigmatic example of a standard DFS convenient

for ranking applications, but we have seen that this model is not adequate for achieving a fine

differentiation between objects with binary quantifiers. However, if we were interested in pre-

serving the properties of standard DFSs guaranteeing some discriminative power, then the Fowa

model is the convenient option.

Finally, the way in which QFMs behave over quantified partitions can guide us in our decision

between standard DFSs and the remaining models. Standard DFS will tend to produce more

undefined results (in the sense of closeness to 1
2
) for fuzzier fuzzy sets (in the sense of closeness

to 1
2

of their membership degrees). F A, F MD and F I generate results that can be interpreted as

probabilities, dividing the ‘evaluation weight’ between the different quantifiers in the partition.

F MD and F I also preserve the intuition of ‘weight of the quantifier’ (in the sense of the coverage

of the quantification universe by the labels) for a perfect distribution of membership degrees.

That is, F MD and F I tend to produce a result proportional to the area of the quantifier for fuzzy

sets whose membership degrees tend to be equally distributed over [0, 1].
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6. Conclusions

In this work we have advanced in the definition of some criteria to provide a better under-

standing of the behavior of the most significant QFMs. First, we have compared the selected

QFMs against the main set of properties presented in [20], with the objective of clarifying the

differences that these models present with respect to the properties proposed in the QFM frame-

work.

After that, we argued that previous considered properties, while being really convenient to

separate ‘good quantification models’ from ‘bad ones’, are not sufficient to clearly distinguish be-

tween the set of analyzed QFMs, and specially, to help potential users in the process of selecting

the most convenient model for a specific application.

In order to advance in this problem, we have introduced a new set of criteria, specially de-

signed to differentiate the behavior of the analyzed models. An in-depth comparative analysis of

the main models has been performed with respect to this new set of criteria. Based on this anal-

ysis we have established some recommendations to guide in the selection of the more adequate

model.

As future work, we consider relevant the possibility of defining new oriented criteria, focused

on specific types of applications.
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Apendix

Discriminative ranking generation, model F I

Proof. Intuitively, when we increase the fulfillment of a property μXoi

(
p j

)
associated to a weight

greater than 0 from a to b, we are adding an element to the alpha-cuts in the range (a, b]. As

the weight of p j is greater than 0, the relative cardinality with respect to the alpha-cuts of W

containing p j will increase.

In detail, let be μW

(
p j

)
= c > 0 and μXoi

(
p j

)
= a the fulfillment of the criteria p j for the object

i. Let us consider a second fuzzy set Xo′
i such that μXoi (pz) = μXoi′ (pz) for every z � j, and

μXoi ′

(
p j

)
= b > a.

Then,

F I (Qh) (W, Xoi ) =

∫ 1

0

∫ 1

0

Qh

(
W≥α1

, X
oi

≥α2

)
dα1dα2

=

∫ 1

0

∫ a

0

Qh

(
W≥α1

, X
oi

≥α2

)
dα1dα2 +

∫ 1

0

∫ b

a

Qh

(
W≥α1

, X
oi

≥α2

)
dα1dα2

+

∫ 1

0

∫ 1

b

Qh

(
W≥α1

, X
oi

≥α2

)
dα1dα2

Expressions
∫ 1

0

∫ a

0
Qh

(
W≥α1

, X
oi

≥α2

)
dα1dα2 and

∫ 1

0

∫ 1

b
Qh

(
W≥α1

, X
oi

≥α2

)
dα1dα2 are equal for oi

and o
′

i
. With respect to

∫ 1

0

∫ b

a
Qh

(
W≥α1

, X
oi

≥α2

)
dα1dα2, for alpha-cuts in (0, c] × (a, b]:

Qh

(
W≥α1

, X
oi

≥α2

)
< Qh

(
W≥α1

, X
o′

i

≥α2

)

as p j ∈ W≥α1
, and p j ∈ X

o′
i

≥α2
but p j � X

oi

≥α2
. And then F I (Qh) (W, Xoi ) < F I (Qh)

(
W, Xo′

i

)
.

Discriminative ranking generation, model F A

Proof.

Again, let be μW

(
p j

)
= c > 0 and μXoi

(
p j

)
= a the fulfillment of the criteria p j by the object

i. Let us consider a second fuzzy set Xo′
i such that μXoi (pz) = μXoi′ (pz) for every z � j, and

μXoi ′

(
p j

)
= b > a. We are trying to prove that:

F A (Qh) (W, Xoi ) =
∑

Y1∈P(E)

∑
Y2∈P(E)

mW (Y1) mXoi (Y1) Qh (Y1, Y2)

<
∑

Y1∈P(E)

∑
Y2∈P(E)

mW (Y1) mXoi′ (Y1) Qh (Y1, Y2) = F A (Qh)
(
W, Xo′

i

)
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Making some computations with F A (Qh) (W, Xoi) we obtain7:

F A (Qh) (W, Xoi)

=
∑

Y1∈P(E)

∑
Y2∈P(E)

mW (Y1) mXoi (Y2) Qh (Y1, Y2)

=
∑

Y1∈P(E\{pj})

∑
Y2∈P(E\{pj})

(1 − c) mW\{pj} (Y1) (1 − a) mXoi\{pj} (Y2) Qh (Y1, Y2) (3)

+
∑

Y1∈P(E\{pj})

∑
Y2∈P(E)|pj∈Y2

a (1 − c) mW\{pj} (Y1) mXoi\{pj} (Y2) Qh (Y1, Y2) (4)

+
∑

Y1∈P(E)|pj∈Y1

∑
Y2∈P(E\{pj})

c (1 − a) mW\{pj} (Y1) mXoi\{pj} (Y2) Qh (Y1, Y2) (5)

+
∑

Y1∈P(E)|pj∈Y1

∑
Y2∈P(E)|pj∈Y2

ca × mW\{pj} (Y1) mXoi\{pj} (Y2) Qh (Y1, Y2) (6)

but if p j � Y1, then the relative cardinality
|Y1∩C|

|Y1 |
=
|Y1∩(C∪{pj})|

|Y1 |
for C ∈ P

(
E\

{
p j

})
. Then, the

sum of expressions 3 and 4:∑
Y1∈P(E\{pj})

∑
Y2∈P(E)\{pj}

(1 − c) mW\{pj} (Y1) (1 − a) mXoi\{pj} (Y2) Qh (Y1, Y2)

+
∑

Y1∈P(E\{pj})

∑
Y2∈P(E)|pj∈Y2

a (1 − c) mW\{pj} (Y1) mXoi\{pj} (Y2) Qh (Y1, Y2)

=
∑

Y1∈P(E\{pj})

∑
C∈P(E\{pj})

(1 − c) mW\{pj} (Y1) mXoi\{pj} (C) Qh (Y1,C)

is not affected by the modification of μXoi

(
p j

)
; that is, it will coincide with the equivalent expres-

sion for F A (Qh) (W, Xoi′).

We will focus now in 5 and 6. ForF A (Qh) (W, Xoi′), equivalent expression of 5 and 6 are obtained

by substituting (1 − a) and a by (1 − b) and b, respectively; that is, we reduced (1 − a) by an

(b − a) factor and we increase a by an (b − a) factor. As h (x) is increasing, (1 − a) h (x)+ah (y) <

(1 − b) h (x) + bh (y) for b > a, y > x. Thus, it is trivial to see that 5 and 6 are lesser than the

equivalent expressions for F A (Qh) (W, Xoi′).

7By E\
{
e j

}
we denote E ∩

{
e j

}
; that is, the set E without the element e j . For fuzzy sets, X\

{
pj

}
is the projection of

X eliminating the pj element. Then, in mX\{p j}
(Y) the element pj is not taken into account in the computation of the

probability mass of Y .
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