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Abstract

This paper generalizes (fuzzifies) actions of a monoid or group on
a set to deal with situations where imprecision and uncertainty are
present. Fuzzy actions can handle the granularity of a set or even
create it by defining a fuzzy equivalence relation on it.
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1 Introduction

Actions of a group or monoid G on a set I are a very useful tool in many
branches of Mathematics and Computer Science. Paradigmatic examples
are the actions of subgroups of the general linear group GL(n, R) on the
vector space Rn, the action of the projective linear group PGL(n + 1, R) on
the projective space Pn(R) and the action of the symmetry groups of regular
polygons, friezes and wallpapers [10]. These examples are of geometric nature
and are special cases of the concept of Geometry introduced by Klein in his
Erlangen Program [6], where a Geometry is defined as a set and a group
acting on it.
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Actions are also useful in abstract algebra. In group theory, for example,
translation and conjugation of a group on itself help prove important results
such as the Lagrange Theorem [8].

In Computer Science, actions appear in Automata Theory and in Pattern
Recognition, especially in character recognition problems [4] [11], where an
image x can be compared with a prototype p by searching for an element g of
a specific group such that the action of g on x transforms it into p (gx = p).

There are situations where imprecision, lack of accuracy or noise have to
be taken into account or must be added to the problems to be solved. In the
last example of character recognition, for instance, it is unlikely that we could
find g of a ”reasonable” group acting on the set of images or characters in
such a way that gx is exactly p. In fact we expect to say that x corresponds
to the character p when we can find g with gx only close or similar to p. In
these cases, the action must be relaxed and allow it to consider imprecision
and inaccuracy.

In this paper we present and develop the concept of fuzzy action that
generalizes the idea of action of a group or monoid G on a set I. The action
of an element g ∈ G on an element x ∈ I is not a precise element of I,
but a fuzzy set encapsulating the imprecision given by the granularity of the
system. According to Zadeh, granularity is one of the basic concepts that
underlie human cognition [18] and the elements within a granule ’have to be
dealt with as a whole rather than individually’ [17].

Informally, granulation of an object A results in a collection of
granules of A, with a granule being a clump of objects (or points)
which are drawn together by indistinguishability, similarity, prox-
imity or functionality [18].

In fact, it will be proved that a fuzzy action α on a set I generates a fuzzy
equivalence relation (an indistinguishability operator) EI on I in a natural
way and that from a crisp action on I and an indistinguishability operator on
I satisfying an invariant condition with respect to the action (see Definition
3.19) a fuzzy action derives.

There are a few number of attempts to fuzzify actions on sets previous
to this paper. Haddadi [5] and Roventa and Spircu [16] study fuzzy actions
of fuzzy submonoids and fuzzy subgroups from an algebraic point of view.
Lizasoain and Moreno [9] generalize results of [4] and [11] for the comparison
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of deformed images. In these papers the approach is rather different to the
one proposed here.

The paper is organized as follows: After this introductory section, a sec-
tion of preliminaries contains the basic definitions and properties of fuzzy
subgroups, indistinguishability operators and fuzzy mappings needed on the
paper. The composition of two mappings differs from the usual one in the
sense that compatibility with the intermediate indistinguishability operator
is required (cf. Definition 2.9). Consequently, subsequent properties of Sec-
tion 2 are new. Section 3 contains the main results of the paper. The first
subsection of Section 4 generalizes fuzzy actions of a group or monoid to
fuzzy actions of fuzzy groups or monoids and specializes it to the restriction
of a crisp action of G to a fuzzy subgroup or submonoid of G. The second
subsection of Section 4 contains a couple of examples.

2 Preliminaries

This section contains some definitions and properties related to fuzzy sub-
groups and T -indistinguishability operators that will be needed later. Some
definitions and properties of fuzzy maps needed in the paper will be stated.

Throughout the paper T will denote a given t-norm.

Fuzzy subgroups were introduced by Rosenfeld [15] as a natural general-
ization of the concept of subgroup and have been widely studied [12].

Definition 2.1. Let G be a group and µ a fuzzy subset of X. µ is a T -fuzzy
subgroup of G if and only if T (µ(g), µ(h)) ≤ µ(gh−1) ∀g, h ∈ G.

Proposition 2.2. Let G be a group, e its identity element and µ a fuzzy
subset of G such that µ(e) = 1. Then µ is a T -fuzzy subgroup of G if and
only if ∀g, h ∈ G the following properties hold

1. µ(g) = µ(g−1)

2. T (µ(g), µ(h)) ≤ µ(gh).

Proof.

⇒)
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If µ is a T -fuzzy subgroup with µ(e) = 1, then

µ(g) = T (µ(e), µ(g)) ≤ µ(g−1).

By symmetry, µ(g) = µ(g−1) holds.

Also T (µ(g), µ(h)) = T (µ(g), µ(h−1)) ≤ µ(gh).

⇐)
T (µ(g), µ(h)) = T (µ(g), µ(h−1)) ≤ µ(gh−1).

Proposition 2.3. Let G be a group, e its identity element and µ a fuzzy
subgroup of G such that µ(e) = 1. Then the core H of µ (i.e.: the set of
elements g of G such that µ(g) = 1) is a (crisp) subgroup of G.

Proof. Let g, h ∈ H.

1 = T (µ(g), µ(h)) = T (µ(g), µ(h−1)) ≤ µ(gh−1).

and therefore gh−1 ∈ H.

Definition 2.4. A fuzzy relation E on a set X is a T -indistinguishability
operator on X if and only for all x, y, z of X satisfies the following properties

• E(x, x) = 1 (Reflexivity)

• E(x, y) = E(y, x) (Symmetry)

• T (E(x, y), E(y, z)) ≤ E(x, z) (Transitivity)

T -indistinguishability operators extend the concept of equivalence rela-
tion and equality to the fuzzy framework and they are also called fuzzy
equivalence and fuzzy equality relations. E(x, y) can be viewed as the degree
of similarity or indistinguishability between x and y. A general panorama on
T -indistinguishability operators can be found in [14].

We recall the sup−T product between fuzzy relations that will be needed
in the study of fuzzy mappings.
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Definition 2.5. Let X, Y, Z be sets and R : X×Y → [0, 1] and S : Y ×Z →
[0, 1] fuzzy relations. The sup−T product R ◦T S of R and S is the fuzzy
relation R ◦T S : X × Z → [0, 1] defined for all x ∈ X, z ∈ Z by

R ◦T S(x, z) = sup
y∈Y

T (R(x, y), S(y, z)).

Fuzzy mappings generalize the concept of mapping between two sets X
and Y . The sets are supposed to be endowed with T -indistinguishability
operators and compatibility of the fuzzy mappings with them is imposed.
Interesting properties of fuzzy mappings can be found in [2] [3].

Definition 2.6. Let EX and EY be T -indistinguishability operators on two
sets X and Y respectively. R : X × Y → [0, 1] is a fuzzy mapping from X
onto Y if and only if for all x, x′ ∈ X and for all y, y′ ∈ Y

• T (R(x, y), EX(x, x′), EY (y, y′)) ≤ R(x′, y′)

• T (R(x, y), R(x, y′)) ≤ EY (y, y′).

R is perfect if and only if

• For all x ∈ X there exists y ∈ Y such that R(x, y) = 1.

Definition 2.7. A fuzzy mapping R from X onto Y is injective if and only
if for all x, x′ ∈ X and for all y, y′ ∈ Y

T (R(x, y), R(x′, y′), EY (y, y′)) ≤ EX(x, x′).

Definition 2.8. Given a fuzzy mapping R from X onto Y , The degree Im(y)
in which y ∈ Y is in the image of R (Im(R)) is

Im(y) = sup
x∈X,y′∈Y

T (R(x, y′), EY (y′, y)) = sup
x∈X

(R ◦T EY (x, y)).

The infimum of the last expression for y ∈ Y , infy∈Y {Im(y)}, is the degree
of surjectivity of R.

R is strong surjective if and only if its degree of surjectivity is 1.

Definition 2.9. Let R : X × Y → [0, 1] and S : Y × Z → [0, 1] be fuzzy
mappings. The composition of R and S is the fuzzy mapping M = R ◦ S :
X × Z → [0, 1] defined for all x ∈ X, z ∈ Z by

M(x, z) = (R ◦T EY ◦T S)(x, z) = sup
y,y′∈Y

T (R(x, y), EY (y, y′), S(y′, z)).
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N.B. This definition of composition of fuzzy maps is different from the
usual one (please compare R ◦ S with R ◦T S) as it considers the T -indis-
tinguishability EY on Y .

Proposition 2.10. If the composition mapping M = R ◦ S is injective and
S is a perfect mapping, then R is injective.

Proof. Injectivity of M means

EX(x, x′) ≥ T (M(x, z), M(x′, z′), EZ(z, z′))

for all x, x′, z, z′ ∈ Z. In particular, for z′ = z we get

EX(x, x′)

≥ sup
y,y′,y′′,y′′′∈Y

T (R(x, y), EY (y, y′), S(y′, z), R(x′, y′′), EY (y′′, y′′′), S(y′′′, z), EZ(z, z))

≥ sup
y,y′∈Y

T (R(x, y), EY (y, y′), S(y′, z), R(x′, y′), EY (y′, y′), S(y′, z))

the last inequality following by considering y′ = y′′ = y′′′. Now, since S is
perfect, for y′ there exists zy′ with S(y′, zy′) = 1 and the last expression is
greater than or equal to

T (R(x, y), R(x′, y′), EY (y, y′))

which means injectivity of R.

Definition 2.11. Let R : X × Y → [0, 1] and S : Y × X → [0, 1] be fuzzy
mappings. R is the inverse of S (and vice versa) if and only if

• T (R(x, y), EY (y, y′), S(y′, x′)) ≤ EX(x, x′)

• T (S(y, x), EX(x, x′), R(x′, y′)) ≤ EY (y, y′).

In other words, R is the inverse of S if and only if both compositions are
respectively smaller than or equal to EX and EY .

Definition 2.12. Let R be a fuzzy relation R : X × Y → [0, 1]. The inverse
relation S of R (usually denoted by R−1) is the fuzzy relation S : Y ×X →
[0, 1] defined for all x ∈ X, y ∈ Y by S(y, x) = R(x, y).

Proposition 2.13. If R : X × Y → [0, 1] and R−1 : Y ×X → [0, 1] are both
fuzzy mappings, then
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a) R is the inverse mapping of R−1.

b) R and R−1 are injective.

Proof.

a)

T (R(x, y), EY (y, y′), R−1(y′, x′))

= T (R(x, y), EY (y, y′), R(x′, y′))

≤ EX(x, x′)

T (R−1(y, x), EX(x, x′), R(x′, y′))

= T (R−1(y, x), EX(x, x′), R(x′, y′))

≤ EY (y, y′).

b)

T (R(x, y), R(x′, y′), EY (y, y′))

= T (R(x, y), R−1(y′, x′), EY (y, y′))

≤ EX(x, x′)

T (R−1(y, x), R−1(y′, x′), EX(x, x′))

= T (R−1(y, x), R(x′, y′), EX(x, x′))

≤ EY (y, y′).

3 Fuzzy Actions

An action of a group or monoid G on a set I gives a way to transform the
elements if I by assigning to every g ∈ G and x ∈ I another element gx of
I. In geometry it generalizes the concept of symmetry and this abstraction
allows us to consider and apply geometrical ideas to general and more ab-
stract frameworks. Here is the formal definition of the action of a monoid on
a set [8].
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Definition 3.1. Let G be a monoid with neutral element e and I a non-
empty set. α : G × I → I is an action of G on I if and only if for all
g, h ∈ G, x ∈ I

1. (hg)x = h(gx)

2. ex = x

where α(g, x) is denoted by gx.

There is a number of applications of actions of monoids on sets. Some of
them are presented below.

Example 3.2.

• In a monoid G, left multiplication α(g, h) = gh is an action of G on
itself.

• In a group G, conjugation α(g, h) = ghg−1 is an action of G on itself.

• The symmetry group of a regular polygon acts on its vertices.

• The general linear group GL(n, R), special linear group SL(n, R), or-
thogonal group O(n, R), special orthogonal group SO(n, R) and sym-
plectic group Sp(n, R) act on the vector space Rn, the action being mul-
tiplication of the vectors of Rn by the corresponding matrices.

There are situations where either there is no possibility to define an action
in a precise way or due to the nature of the problem it is convenient to
consider imprecise actions. To mention only one example, consider the case
of character or letter recognition. In a first step we try to match the character
x to be identified with a designed prototype p by acting on x with an element
g of, for example, the general linear group GL(2, R). In an ideal case we could
find g ∈ GL(2, R) with gx = p but in general we will only be able to find
g ∈ GL(2, R) with gx similar or close to p.

In other cases, there may be granularity on the set I that does not permit
defining precise concepts such as crisp actions. This can happen for example
by the presence of an indistinguishability operator on I.

In these cases, the fuzzification of the action of monoids on sets is needed.

Definition 3.3. Let G be a monoid with neutral element e, I a non-empty
set and T a t-norm. α : G× I × I → [0, 1] is a T -fuzzy action (or simply a
fuzzy action) of G on I if and only if for all g, h ∈ G, x ∈ I
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1a) T (α(hg, x, y), α(g, x, z)) ≤ α(h, z, y)

1b) T (α(g, x, z), α(h, z, y)) ≤ α(hg, x, y)

2. α(e, x, x) = 1.

α(g, x, y) can be interpreted as the degree to which y is the image of x
under the action of g ∈ G.

NB. Properties 1a) and 1b) fuzzify the conditions

(hg)x = y ⇒ h(gx) = y

and
h(gx) = y ⇒ (hg)x = y

respectively.

Definition 3.4.

• A fuzzy action α is quasi-perfect if and only if for all g ∈ G, x ∈ I
there exists y ∈ I such that α(g, x, y) = 1.

• α is perfect if and only if the previous y is unique.

Lemma 3.5. Let α be a fuzzy action of G on X. If for g ∈ G and x, y, y′ ∈ I
α(g, x, y) = α(g, x, y′) = 1, then α(e, y, y′) = 1.

Proof. From 1a),

1 = T (α(g, x, y), α(g, x, y′)) ≤ α(e, y, y′).

Given a quasi-perfect fuzzy action α of G on I we can consider the (crisp)
equivalence relation ∼ on I defined by x ∼ y if and only if α(e, x, y) = 1.
and the fuzzy action α of G on I = I/∼ defined by α(g, x, y) = α(g, x, y).

Proposition 3.6. ∼ is an equivalence relation, α is well defined and is a
fuzzy action of G on I = I/∼.
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Proof.
Reflexivity
x ∼ x, because α(e, x, x) = 1.
Symmetry

1 = α(e, x, y) = T (α(e, x, x), α(e, x, y)) ≤ α(e, y, x)

by Property 1b).
Transitivity
f x ∼ y and y ∼ z, then

1 = T (α(e, x, y), α(e, y, z)) ≤ α(e, x, z)

by Property 1b).
In order to prove that α is well defined, we must show that if α(e, x, x′) = 1

and α(e, y, y′) = 1, then α(g, x, y) = α(g, x′, y′).

α(g, x, y) = T (α(g, x, y), α(e, x, x′), α(e, y, y′))

= T (α(g, x, y), α(e, x′, x), α(e, y, y′))

≤ α(g, x′, y′)

and the result follows by symmetry.

It is straightforward to prove that α is a fuzzy action.

This result allows us to restrict the study of quasi-perfect fuzzy actions
to perfect ones.

Proposition 3.7. If α is a perfect fuzzy action of G on I and, for g ∈ G
and x ∈ I, yx ∈ I is the unique element of I such that α(g, x, yx) = 1, then
gx = yx is a crisp action.

Proof. Straightforward.

Reciprocally it will be shown in Proposition 3.24 how to fuzzify crisp
actions to obtain perfect fuzzy ones.

From now on, we will assume that G is a group.

Lemma 3.8. If α is a fuzzy action of G on I, h ∈ G and x, z ∈ I, then
α(h−1, x, z) = α(h, z, x).
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Proof. From 1.a) in Definition 3.3,

T (α(hh−1, x, y), α(h−1, x, z)) ≤ α(h, z, y)

or
T (α(e, x, y), α(h−1, x, z)) ≤ α(h, z, y)

In particular, taking y = x,

T (α(e, x, x), α(h−1, x, z)) = α(h−1, x, z) ≤ α(h, z, x)

and the result follows by symmetry.

α(e, x, y) provides the degree to which y is the transformed of x by the
identity element e of G. It will then measure the degree in which we can
consider x and y as equivalent or indistinguishable objects and will reflect
the granularity on I. In fact this relation is a T -indistinguishability operator
as it will be proved in Proposition 3.10.

Definition 3.9. Let α be a fuzzy action of G on I. EI is the fuzzy relation
on I defined for all x, y ∈ I by EI(x, y) = α(e, x, y).

Proposition 3.10. EI is a T -indistinguishability operator.

Proof.

• Reflexivity:
EI(x, x) = α(e, x, x) = 1.

• Symmetry:

EI(x, y) = α(e, x, y) = α(e, y, x) = EI(y, x).

• T -transitivity:

T (EI(x, y), EI(y, z)) = T (α(e, x, y), α(e, y, z))

≤ α(e, x, z) = EI(x, z)

the inequality following from 1.b) in Definition 3.3.
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For a crisp action, fixing g, the map fg : I → I defined by fg(x) = gx is
a bijection. The fuzzification of this result is the next Proposition 3.12.

Definition 3.11. Let α : G× I × I → [0, 1] be a fuzzy action. Fixing g ∈ G,
the fuzzy relation Rg : I × I → [0, 1] is defined for all x, y ∈ I by

Rg(x, y) = α(g, x, y).

Proposition 3.12. The fuzzy relation Rg is an injective fuzzy mapping with
respect to the T -indistinguishability operator EI .

Proof.

•

T (Rg(x, y), EI(x, x′), EI(y, y′))

= T (α(g, x, y), α(e, x, x′), α(e, y, y′))

= T (α(g, x, y), α(e, x′, x), α(e, y, y′))

≤ α(g, x′, y′) = Rg(x
′, y′).

•

T (Rg(x, y), Rg(x, y′))

= T (α(g, x, y), α(g, x, y′))

= T (α(g−1, y, x), α(g, x, y′))

≤ α(e, y, y′) = EI(y, y′).

• Injectivity:

T (Rg(x, y), Rg(x
′, y′), Eα(y, y′))

= T (α(g, x, y), α(g, x′, y′), Eα(y, y′))

= T (α(g, x, y), α(g−1, y′, x′), α(e, y, y′))

≤ T (α(g, x, y′), α(g−1, y′, x′)

≤ α(e, x, x′) = EI(x, x′).

Proposition 3.13. Rg and Rg−1 are inverse mappings.
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Proof.

•

T (Rg(x, y), EI(y, y′), Rg−1(y′, x′))

= T (α(g, x, y), α(e, y, y′), α(g−1, y′, x′))

≤ T (α(g, x, y), α(g−1, y, x′))

≤ α(e, x, x′) = EI(x, x′).

•

T (Rg−1(y, x), EI(x, x′), Rg(x
′, y′))

= T (α(g−1, y, x), α(e, x, x′), α(g, x′, y′))

≤ T (α(g−1, y, x′), α(g, x′, y′))

≤ α(e, y, y′) = EI(y, y′).

In a (crisp) action, we intend to consider as equivalent the elements that
are equal but for the action of an element g ∈ G, so that two elements x and
y of I are considered equivalent if and only if there exists g ∈ G such that
y = gx. The next definition fuzzifies this idea.

Definition 3.14. Given a fuzzy action α, we define the fuzzy relation Eα on
I by Eα(x, y) = supg∈G α(g, x, y) for all x, y ∈ I.

Proposition 3.15. If T is a left continuous t-norm, then Eα is a T -indis-
tinguishability operator on I.

Proof.

• Reflexivity:

Eα(x, x) = sup
g∈G

α(g, x, x) ≥ α(e, x, x) = 1.

• Symmetry:

Eα(y, x) = sup
g∈G

α(g, y, x) = sup
g∈G

α(g−1, x, y) = sup
g∈G

α(g, x, y) = Eα(x, y).
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• T -transitivity:

T (Eα(x, y), Eα(y, z)) = T (sup
g∈G

α(g, x, y), sup
h∈G

α(h, y, z))

= sup
g,h∈G

T (α(g, x, y), α(h, y, z))

≤ sup
g,h∈G

α(hg, x, z)

= Eα(x, z)

the inequality following from 1.b) in Definition 3.3.

Definition 3.16. Fixing x ∈ I, the column µx of Eα (i.e. the fuzzy set
µx(y) = Eα(x, y)) is the fuzzy orbit of x.

The fuzzy orbit of x ∈ I is therefore the fuzzy equivalence class of x with
respect to Eα.

Proposition 3.17. Let α : G×I×I → [0, 1] be a fuzzy action. The fuzzy rela-
tion Rg is an injective fuzzy mapping with respect to the T -indistinguishability
operator Eα.

Proof.

•

T (Rg(x, y), Eα(x, x′), Eα(y, y′))

≤ T (sup
l∈G

α(l, x, y), sup
h∈G

α(h, x, x′), sup
k∈G

α(k, y, y′)))

= T (Eα(x, y), Eα(x, x′), Eα(y, y′))

≤ Eα(x′, y′).

•

T (Rg(x, y), Rg(x, y′))

= T (α(g, x, y), α(g, x, y′))

≤ T (Eα(x, x′), Eα(x, y′))

≤ Eα(y, y′).
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• Injectivity:

T (Rg(x, y), Rg(z, t), Eα(y, t))

= T (α(g, x, y), α(g, z, t), Eα(y, t))

≤ T (Eα(x, y), Eα(z, t), Eα(y, t))

≤ Eα(x, z).

Considering an action α on a set I, useful (fuzzy or crisp) relations on
I should be compatible with it in the sense that they should be invariant
under the effect of the action α.

Definition 3.18. Let α be a crisp action on I. A fuzzy relation R on I is
invariant under α if and only if

R(x, y) = R(α(g, x), α(g, y))

for all g ∈ G, x, y ∈ I.

For fuzzy actions, the previous definition can be generalized as follows.

Definition 3.19. Let α be a fuzzy action of G on I and R a fuzzy relation
on I. R is invariant under α if and only if

T (R(x, y), α(g, x, x′), α(g, y, y′)) ≤ R(x′, y′)

for all g ∈ G x, y, x′, y′ ∈ I.

Proposition 3.20. EI is invariant under α.

Proof.

T (EI(x, y), α(g, x, x′), α(g, y, y′))

= T (α(e, x, y), α(g, x, x′), α(g, y, y′))

≤ T (α(g, x, y′), α(g, x, x′))

= T (α(g−1, y′, x), α(g, x, x′))

≤ α(e, y′, x′) = EI(x
′, y′).
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Proposition 3.21. EI is the smallest T -indistinguishability operator on X
invariant under α.

Proof. If E is a T -indistinguishability operator on I invariant under α, then

T (E(x, y), α(g, x, x′), α(g, y, y′)) ≤ E(x′, y′)

In particular,

T (E(x, y), α(e, x, x′), α(e, y, y′)) ≤ E(x′, y′)

T (E(x, y), EI(x, x′), EI(y, y′)) ≤ E(x′, y′).

Putting x = y = x′,

T (E(x, x), EI(x, x), EI(x, y′)) ≤ E(x, y′)

and hence EI(x, y′) ≤ E(x, y′).

NB. In fact we have only used reflexivity of E in the proof, so that
Proposition 3.21 states that EI is smaller than or equal to any reflexive
fuzzy relation of I invariant under α.

Proposition 3.22. Eα is invariant under α.

Proof.

α(g, x, x′) ≤ Eα(x, x′) and α(g, y, y′) ≤ Eα(y, y′)

and hence

T (Eα(x, y), α(g, x, x′), α(g, y, y′))

≤ T (Eα(x, y), Eα(x, x′), Eα(y, y′))

≤ Eα(x′, y′).

Corollary 3.23. EI ≤ Eα.

In Proposition 3.7 we have proved that a perfect fuzzy action generates
a crisp action in a natural way. Reciprocally, from a crisp fuzzy action and
a T -indistinguishability operator invariant under this action a fuzzy action
can be obtained in again a natural way.
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Proposition 3.24. Let E be a T -indistinguishability operator on a set X
invariant under the (crisp) action x → gx of a group G on I. The mapping
α : G× I × I → [0, 1] defined for all g ∈ G and for all x, y ∈ I by

α(g, x, y) = E(gx, y)

is a perfect fuzzy action of G on I. Moreover, E(x, y) = α(e, x, y) = EI(x, y).

Proof.

• 1a)

T (α(hg, x, y), α(g, x, z)) = T (E(hgx, y), E(gx, z))

= T (E(hgx, y), E(hgx, hz))

≤ E(hz, y) = α(h, z, y).

• 1b)

T (α(g, x, z), α(h, z, y)) = T (E(gx, z), E(hz, y))

= T (E(hgx, hz), E(hz, y)

≤ E(hgx, y) = α(hg, x, y).

• 2.
α(e, x, x) = 1 = E(ex, x) = E(x, x) = 1.

• α is perfect.
α(g, x, gx) = E(gx, gx) = 1.

• E(x, y) = α(e, x, y) = EI(x, y).

Proposition 3.25. Fixing x ∈ I, the fuzzy subset µ of G defined by

µ(g) = α(g, x, x)

is a fuzzy subgroup of G with µ(e) = 1, where e is the identity element of G.
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Proof.

•

T (µ(g), µ(h)) = T (α(g, x, x), α(h, x, x)) ≤ α(gh, x, x) = µ(gh).

•
µ(g) = α(g, x, x) = α(g−1, x, x) = µ(g−1).

•
µ(e) = α(e, x, x) = 1.

Definition 3.26. µ is the isotropy fuzzy subgroup of x ∈ I.

Proposition 3.27. If µ is the isotropy fuzzy subgroup of x ∈ I, then the
fuzzy relation Ex on G defined for all g, h ∈ G by

Ex(g, h) = µ(gh−1)

is a T -indistinguishability operator on G.

Proof. It is a particular case of Proposition 3.5 in [3].

Definition 3.28. Let α be a fuzzy action of G on I. If the t-norm is left
continuous, then the fuzzy subset µ of G defined by

µ(g) = inf
x∈I

α(g, x, x)

is a fuzzy subgroup of G with µ(e) = 1 where e is the identity element of G.

Proof.

•

T (µ(g), µ(h)) = T (inf
x∈I

α(g, x, x), inf
y∈I

α(h, y, y))

= inf
x,y∈I

T (α(g, x, x), α(h, y, y))

≤ inf
x∈I

T (α(g, x, x), α(h−1, x, x))

≤ inf
x∈I

α(gh−1, x, x) = µ(gh−1).

•
µ(e) = inf

x∈I
α(e, x, x) = 1.
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4 Concluding Remarks

The proposed definition of fuzzy action seems to be a good tool to consider
the effect of a monoid or group on a set in settings where imprecision and
uncertainty are present. In Subsection 4.1 we propose its generalization (re-
striction) to fuzzy actions of fuzzy subgroups and its specification when the
action is crisp. In Subsection 4.2 a couple of examples show the potential of
fuzzy actions.

4.1 Restriction of Fuzzy Actions to Fuzzy Subgroups

The definition of fuzzy action and the results of the previous section can be
easily generalized or restricted to fuzzy subgroups.

Definition 4.1. If α : G × I × I → [0, 1] is a fuzzy action of G on I and
µ is a fuzzy subgroup of G with µ(e) = 1 (e the identity element of G), then
the restriction αµ of α to µ is the mapping αµ : G × I × I → [0, 1] defined
for all g ∈ G and x, y ∈ I by

αµ(g, x, y) = T (α(g, x, y), µ(g)).

αµ satisfies most of the properties of the preceding section.

If the action is crisp, then we obtain a fuzzy action defined by a fuzzy
subgroup. Definition 4.1 becomes then

Definition 4.2. Let gx be a (crisp) action of G on I and µ a fuzzy subgroup
of G with µ(e) = 1 (e the identity element of G). The restriction of the
action to µ is the fuzzy action α : G× I × I → [0, 1] defined by

α(g, x, y) =

{
µ(g) if gx = y
0 otherwise.

4.2 Examples

The following two examples illustrate the use of fuzzy actions in two different
contexts.
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Example 4.3. Consider the special orthogonal group S(2, R) acting on R2.
The elements of S(2, R) can be represented by matrices gθ of the form

gθ =

(
cos θ − sin θ
sin θ cos θ

)
.

The action of g on a vector (x, y) of R2 is

gθ(x, y) =

(
cos θ − sin θ
sin θ cos θ

) (
x
y

)
= (x cos θ − y sin θ, x sin θ + y cos θ).

We can add imprecision to R2 by considering, for example, the T -indis-
tinguishability operator (T the  Lukasiewicz t-norm) on R2 defined for all
(x, y), (x′, y′) ∈ R2 by E((x, y), (x′, y′)) = max(1−

√
(x− x′)2 + (y − y′)2, 0).

From the action and E we can define the fuzzy action α of S(2, R) on R2 for
all gθ ∈ S(2, R) and (x, y), (x′, y′) ∈ R2 by

α(gθ, (x, y), (x′, y′)) = E(gθ(x, y), (x′, y′))

= max(1−
√

(x cos θ − y sin θ − x′)2 + (x sin θ + y cos θ − y′)2, 0).

Example 4.4. A challenging and probably insolvable problem in Music The-
ory is the selection of a good scale [1]. Nowadays, there is a consensus to
divide the scale in twelve semitones having equal ratios when tuning key-
boards. This means that starting from a note of a given frequency f , the
next note above in the scale will have frequency 2

1
12 × f while the frequency

of the one below will be 2−
1
12 × f . Given a melody I, by multiplying the

frequency of all its notes by 2
k
12 for a fixed k ∈ Z we will obtain the same

melody transposed by k semitones. Transposition gives then a group action
G× I → I (g, x) → gx of the multiplicative group G = {2 k

12 | k ∈ Z} on the
melody I. Other instruments than keyboards may use a different scale and
the transpositions performed by these instruments may not exactly coincide
with its performance by a keyboard. So we must be flexible with the action
of G by allowing imprecision. The T -indistinguishability operator E on I (T
the Product t-norm) defined by E(x, y) = (min(fx

fy
, fy

fx
))128 1 where fx denotes

the frequency of the note x ∈ I is invariant under the action of G on I and
can be used to fuzzify the previous action to α(g, x, y) = E(gx, y) of G on I

(if g = 2
k
12 , then α(2

k
12 , x, y) = (min(2

k
12×fx

fy
, fy

2
k
12×fx

))128) and so introducing

the needed imprecision.

1The exponent is meant to fit the values of E with heuristics of the Just-noticeable
difference of pitches in experimental psychology [7], [13].
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