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Abstract

In this work, we propose a new notion of monotonicity: strengthened ordered

directional monotonicity. This generalization of monotonicity is based on di-

rectional monotonicity and ordered directional monotonicity, two recent weaker

forms of monotonicity. We discuss the relation between those different notions

of monotonicity from a theoretical point of view. Additionally, along with the

introduction of two families of functions and a study of their connection to the

considered monotonicity notions, we define an operation between functions that

generalizes the Choquet integral and the  Lukasiewicz implication.
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1. Introduction

Monotonicity with respect to each argument is one of the axioms around

which the concept of aggregation function is built (see [1, 9]). Aggregation

functions’ goal is to fuse information, generating a representative value from a

number of inputs, and these functions are used in a very vast and diverse field5

of applications [7, 8, 10, 14]. However, the mentioned condition of monotonicity

with respect to every argument is sometimes excessively restrictive, which causes

to drop from the theoretical framework functions that otherwise are sound for

certain applications, such as fuzzy implication operators, the mode, the Gini

and Lehmer means, etc. (see [3]).10

With the purpose of creating a wider framework of functions that are valid

to fuse information, recently some weaker forms of monotonicity have arised (see

[2]). In [16], Wilkin and Beliakov introduced the notion of weak monotonicity,

which can be seen as monotonicity along the ray (1, 1, . . . , 1). This interpretation

led to a generalization of that notion of monotonicity, considering monotonicity15

along any ray in Rn and originating directional monotonicity [6]. The possibility

of choosing any vector ~r allows to pick a function that increases accordingly to

the needs of a certain application, with no need of it being increasing with

respect to each of its arguments.

However, both of the aforementioned notions require that the direction of20

increasingness or decreasingness is fixed beforehand and does not vary accord-

ing to the point of the domain that is being considered. Based on Yager’s ideas

([17]), in [5] ordered directionally monotone functions were introduced. This no-

tion of monotonicity enables the direction of increasingness (or decreasingness)

to vary from one point to another. Specifically, the direction of monotonicity de-25

pends on the relative size of the inputs, provided that a certain comonotonicity

condition is fulfilled.

The relaxation of the monotonicity condition for aggregation functions is

listed as a recent trend in Aggregation Theory [13]. One of the main advances of

the introduction of directional monotonicity is the formation of the so called pre-30
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aggregation functions [12], which have been successfully applied in fuzzy rule-

based classification problems [11]. Furthermore, ordered directionally monotone

functions have been used in the field of computer vision, see [5, 15] for an

application of ordered directionally monotone functions in edge detection.

The restriction that comes from the comonotonicity condition in the defini-35

tion of ordered directional monotonicity makes us limit to the cases in which the

input vector and the result of increasing it along a direction are comonotone,

making the family of ordered directionally monotone functions larger than if the

condition were removed. This work attempts to achieve the following goals:

• To introduce a new generalization of monotonicity based on ordered di-40

rectional monotonicity but with no comonotonicity condition.

• To study the properties and relations between the different notions of

monotonicity.

• To define two classes of functions and an operation between them that

enable to generalize the Choquet integral and the  Lukasiewicz implication.45

We call the new notion of monotonicity strengthened ordered directional

monotonicity. This generalization of monotonicity is based on that of ordered

directional monotonicity, but removing the comonotonicity condition from the

definition. The family of strengthened ordered directionally monotone functions

is embedded in that of ordered directionally monotone functions, i.e., every50

strengthened directionally monotone function is ordered directionally monotone,

but not the other way around.

Moreover, we carry out a deep study of the properties that the different

families of functions satisfy, as well as the relations among them. We show the

conditions for which it is equivalent for a function to be increasing with respect55

to all its arguments and to be increasing in the sense of the discussed different

notions of monotonicity.

As to the third goal, we also present two classes of functions - linear fusion

functions and ordered linear fusion functions - and show their main properties
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in terms of the distinct types of monotonicity. Additionally, we introduce an60

operation between functions from [0, 1]2 to [0, 1] that, when applied to ordered

linear fusion functions, generalizes the Choquet integral and the  Lukasiewicz

implication.

This work is organized as follows. In the next section we recall some pre-

liminary notions that are used throughout the paper, including the definition of65

strengthened ordered directionally monotone functions and some introductory

properties. In Section 3 we study a set of properties about the three different

notions of monotonicity - directional monotonicity, ordered directional mono-

tonicity and strengthened ordered directional monotonicity - and we show how

these concepts are related. In Section 4 we introduce the family of linear fu-70

sion functions and the family of ordered linear fusion functions and we show

the behaviour of these families of functions in terms of the discussed notions

of directional monotonicity. In Section 5 we introduce the operation ∗ between

functions for n = 2 and show how Choquet integrals and the  Lukasiewicz impli-

cation can be derived from this operation. In Section 6 we present the relation75

of every notion of monotonicity that is considered throughout the paper and we

finish the work with some concluding remarks.

2. Preliminaries

Let n ∈ N, n > 1. We use an arrow to refer to vectors of Rn, ~r =

(r1, . . . , rn) ∈ Rn and we set ~r d = (rn, . . . , r1).80

We use bold letters to specify points of the hypercube [0, 1]n, so we set x =

(x1, . . . , xn) ∈ [0, 1]n. In particular, we write 0 = (0, . . . , 0) and 1 = (1, . . . , 1).

If x, y ∈ [0, 1]n, we set x ≤ y if xi ≤ yi for each i ∈ {1, . . . , n}.

Sn denotes the symmetrical group of degree n. Given a permutation σ ∈

Sn we denote the inverse permutation by σ−1, i.e., σσ−1 = id, and if a =85

(a1, . . . , an) and σ ∈ Sn, we set aσ = (aσ(1), . . . , aσ(n)).

If H ⊆ Rn, we set H(≥) = {(h1, . . . , hn) ∈ H | h1 ≥ · · · ≥ hn} (we occasion-

ally refer to H(≤), H(>), H(<), H(=) with the obvious meanings).
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Let us recall the concepts of directional monotonicity and ordered directional

monotonicity, which were introduced in [6] and [5], respectively.90

Definition 2.1 ([6]). Let F : [0, 1]n → [0, 1] and ~r ∈ Rn, we say that F is
~r-increasing (resp. ~r-decreasing), if for all c > 0 and x ∈ [0, 1]n such that
x + c~r ∈ [0, 1]n it holds that F (x + c~r) ≥ F (x) (resp. F (x + c~r) ≤ F (x)). If
F (x + c~r) = F (x), then we say that F is ~r-constant.

Definition 2.2 ([5]). Let F : [0, 1]n → [0, 1] and ~r ∈ Rn, we say that F is95

ordered directionally (OD) ~r-increasing (resp. OD ~r-decreasing) if for all x ∈
[0, 1]n, σ ∈ Sn and c > 0 such that xσ ∈ [0, 1]n(≥) and xσ + c~r ∈ [0, 1]n(≥), it holds

that F (x+c~rσ−1) ≥ F (x) (resp. F (x+c~rσ−1) ≤ F (x)). If F (x+c~rσ−1) = F (x),
then we say that F is OD ~r-constant.

We now introduce the central concept of this work, strengthened ordered100

directional monotonicity.

Definition 2.3. Let F : [0, 1]n → [0, 1] and ~r ∈ Rn, we say that F is strength-
ened ordered directionally (SOD) ~r-increasing (resp. SOD ~r-decreasing) if for
all x ∈ [0, 1]n, σ ∈ Sn and c > 0 such that xσ ∈ [0, 1]n(≥) and xσ + c~r ∈ [0, 1]n, it

holds that F (x+c~rσ−1) ≥ F (x) (resp. F (x+c~rσ−1) ≤ F (x)). If F (x+c~rσ−1) =105

F (x), then we say that F is SOD ~r-constant.

For brevity, to refer to a function F that is monotone according to each

of the defined types, we say that F is T ~r-increasing for T ∈ {∅, SOD, OD}.

Moreover, we say that F is T ~r-monotone if it is either T ~r-increasing or T

~r-decreasing for T ∈ {∅, SOD, OD}.110

Note that the case in which ~r = ~0 is trivial, as every function is T ~0-

increasing, T ~0-decreasing and T ~0-constant, for T ∈ {∅, SOD, OD}.

Of course SOD ~r-increasingness implies OD ~r-increasingness and we will see

that the reciprocal statement is not true in general. A first flash of the differences

between these classes of monotonicity can be done by the observation of the115

points in [0, 1]n for which a function F : [0, 1]n → [0, 1] trivially satisfies the

conditions from the different classes of monotonicity. We refer to these points

as special.

For instance, for a function F : [0, 1]n → [0, 1] to be increasing (if x, y ∈

[0, 1]n such that x ≤ y, then F (x) ≤ F (y)), the unique special point is 1, as120

with x = 1 only the trivial situation y = 1 is to be considered (and if F is in

fact increasing, then F (1) = max{F (x) | x ∈ [0, 1]n }).
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The conditions that characterize the special points x ∈ [0, 1]n for the con-

sidered types of increasingness, associated to vectors ~r ∈ Rn, appear in Table

1.125

Table 1: Conditions that characterize the specials points x ∈ [0, 1]n for each type of increas-
ingness.

F if 0 < c ∈ R, σ ∈ Sn, then

~r-increasing x + c~r 6∈ [0, 1]n

SOD ~r-increasing xσ ∈ [0, 1]n(≥) =⇒ xσ + c~r 6∈ [0, 1]n

OD ~r-increasing xσ ∈ [0, 1]n(≥) =⇒ xσ + c~r 6∈ [0, 1]n(≥)

Set O = (0, 0), X1 = (1, 0), X2 = (0, 1) and U = (1, 1). In Figure 1 we see

an example of a special point x for ~r-increasingness.

α
~r

α
~r

X2

X1

U

O

x

x + c~r

O + c~r

Figure 1: Example of special point x ∈ [0, 1]2 for a direction ~r ∈ R2.

It is clear that for each ~0 6= ~r ∈ Rn whose angle α with OX1 satisfies α ∈

(0, π/2) the corresponding special points form the join of the closed segments

X2U and UX1. We illustrate this situation in Figure 2.130
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X2

X1

U

O

Figure 2: Directions ~0 6= ~r ∈ R2 whose angle with OX1 satisfies α ∈ (0, π/2) and their
corresponding special points; the join of the closed segments X2U and UX1.

If α = 0 however only the points of the closed segment UX1 are special, and

for α ∈ (3π/2, 2π), the special points form the joint of the closed segments OX1

and UX1. In this sense, α = 0 marks a transition (as also do α = π/2, α = π

and α = 3π/2).

We depict the different situations by means of schemes which associate,135

through the use of colors, vectors of transition and corresponding special points

in the case n = 2. For a vector ~r lying between two consecutive transition

vectors, the set of special points is the join of the special points corresponding

to the consecutive transition vectors. Figure 3 shows the transition vectors and

sets of special points for the case of directional monotonicity and Figures 4 and140

5 for the cases of SOD monotonicity and OD monotonicity, respectively.
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X2

X1

U

O

Figure 3: Left: Transition vectors for directional monotonicity. Right: Sets of special points
in [0, 1]2 for directional monotonicity.

X2

X1

U

O

Figure 4: Left: Transition vectors for SOD monotonicity. Right: Sets of special points in
[0, 1]2 for SOD monotonicity.

Observe, for instance, the case of Figure 4 in which F is SOD ~r-increasing.

For α = π/2 the only special point is U and for α = π the only one is O.

If α ∈ (3π/2, 2π), then the special points draw the perimeter of the square

OX1UX2. If α ∈ (π/2, π), only the points O and U are special.145
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X2

X1

U

O

Figure 5: Left: Transition vectors for OD monotonicity. Right: Sets of special points in [0, 1]2

for OD monotonicity.

In the case of Figure 5, in which F is OD ~r-increasing, for π/2 ≤ α ≤ π the

special points form the diagonal OU .

Remark 2.4. An obvious generalization of the introduced concepts of (S)OD
~r-increasingness appears changing in the definitions the triangle [0, 1]n(≥) for any

subset S of [0, 1]n.150

3. Basic facts

We begin by developing some basic properties on T ~r-monotonicity for T ∈

{∅, SOD, OD}.

First of all we remark that in the definitions corresponding to SOD and

OD, instead of having required that xσ ∈ [0, 1]n(≥), we could set xσ ∈ [0, 1]n(≤).155

The corresponding developments would be equivalent, as the following remark

states for the OD case (the SOD case is similar).

Proposition 3.1. For all x ∈ [0, 1]n, ~r ∈ Rn, 0 < c ∈ R and σ ∈ Sn the
following assertions are equivalent:

(1) xσ, xσ + c~r ∈ [0, 1]n(≥) =⇒ F (x + c~rσ−1) ≥ F (x) .160

(2) xσ, xσ + c~r d ∈ [0, 1]n(≤) =⇒ F (x + c(~r d)σ−1) ≥ F (x) .

Proof. We must deal with permutations and in this case it is useful to handle
permutation matrices. For σ ∈ Sn, the permutation matrix Pσ denotes the n×n
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matrix resulting from the application of the permutation σ to the indices of the
rows of the identity matrix In. With this it is immediate that

xσ = (xσ(1), . . . , xσ(n)) = (x1, . . . , xn)Pσ = xPσ .

With the permutation matrix D =


0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0

, we have ~r d = ~rD.

Let us show that (1) =⇒ (2). Assume that xσ, xσ + c~r d ∈ [0, 1]n(≤), that

is, xPσ, xPσ + c~rD ∈ [0, 1]n(≤). Then obviously xPσD, xPσD+ c~r ∈ [0, 1]n(≥), as

D2 = In. Then, by (1), F (x + c~r(PσD)−1) ≥ F (x). As (PσD)−1 = D−1P−1σ =165

DPσ−1 , and ~rDPσ−1 = ~r dPσ−1 = (~r d)σ−1 , we have the thesis. Analogously one
shows that (2) =⇒ (1).

Let F : [0, 1]n → [0, 1] and let us set, for T ∈ {∅, SOD, OD}, the notation

CT(F ) = {~r ∈ Rn | F is T ~r-constant }

D↑T(F ) = {~r ∈ Rn | F is T ~r-increasing }

particularizing C(F ) = C∅(F ) and D↑(F ) = D↑∅(F ).

We next result follows immediately.

Proposition 3.2. Let F : [0, 1]n → [0, 1] be a function. Then170

(1) CT(F ) ⊆ D↑T(F ) for T ∈ {∅, SOD, OD}.

(2) CSOD(F ) ⊆ COD(F ).

(3) D↑SOD(F ) ⊆ D↑OD(F ).

Proposition 3.3. If ~r ∈ Rn(≥), then F is SOD ~r-increasing if and only if F is

OD ~r-increasing, and F is SOD ~r-constant if and only if F is OD ~r-constant.175

Observe that the statements of Propositions 3.2 and 3.3 changing increas-

ingness by decreasingness are valid.

Proposition 3.4. Let F : [0, 1]n → [0, 1] be a function and k > 0.

(1) For T ∈ {∅, SOD, OD}, F is simultaneously T ~r-increasing and T ~r-
decreasing if and only if F is T ~r-constant.180

(2) For T ∈ {∅, SOD, OD}, F is T ~r-increasing (resp. decreasing) if and only
if F is T (k~r)-increasing (resp. decreasing).
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(3) For T ∈ {∅, OD}, F is T ~r-increasing if and only if F is T (−k~r)-
decreasing.

Proof. (1) and (2) They are immediate.185

(3) By (2) we may assume that k = 1. Suppose that F is OD ~r-increasing.
Let x ∈ [0, 1]n, k > 0 and σ ∈ Sn such that xσ, xσ + k(−~r) ∈ [0, 1]n(≥). Set y =

x +k(−~r)σ−1 . We have that yσ = xσ +k(−~r) ∈ [0, 1]n(≥) (hence y ∈ [0, 1]n) and

yσ+k~r = xσ ∈ [0, 1]n(≥). As F is OD ~r-increasing, we have F (y) ≤ F (y+k~rσ−1),

that is F (x + k(−~r)σ−1) ≤ F (x), hence F is OD (−~r)-decreasing. Analogously190

one has the converse statement.
Similarly one shows that F is ~r-increasing if and only if it is (−k~r)-decreasing.

Item (2) of Proposition 3.4 shows that the vectors used for determining

directions in all considered cases T ∈ {∅, SOD, OD} can be normalized. Item195

3 shows that for T ∈ {∅, OD}, the developments which result by considering

T increasingness and decreasingness are equivalent. However, in Section 5 we

show that, in general, this is false for T = SOD.

Proposition 3.5. Let F : [0, 1]n → [0, 1] and ~r ∈ Rn. Let F c : [0, 1]n → [0, 1]
be defined by F c(x) = 1− F (x).Then200

(1) For T ∈ {∅, SOD, OD}:

(a) F is T ~r-increasing if and only if F c is T ~r-decreasing.

(b) CT(F ) = CT(F c).

(c) F is T ~r-constant if and only if both F and F c are T ~r-increasing.

(2) For T ∈ {∅, OD}, F is T ~r-increasing if and only if F c is T (−~r)-increasing.205

Proof. (1) The claims in (a) are direct. For instance, for T = ∅, if c ∈ R+ and
x, x + c~r ∈ [0, 1]n, then F (x) ≤ F (x + c~r) if and only if F c(x) = 1 − F (x) ≥
1− F (x + c~r) = F c(x + c~r).

(b) and (c) follow from (a) as (F c)c = F .
(2) F is T ~r-increasing if and only if F is T (−~r)-decreasing by Proposition210

3.4 and this is equivalent to F c being T (−~r)-increasing by (1).

In Section 5 we show that Proposition 3.5(2) is in general not true for T =

SOD.

Proposition 3.6. Let F : [0, 1]n → [0, 1] and ~r ∈ Rn. Let G : [0, 1]n → [0, 1]
defined by G(x) = F (1− x).215

(1) F is ~r-increasing if and only if G is (−~r)-increasing.

11



(2) For T ∈ {SOD, OD}, F is T ~r-increasing if and only if G is T (−~r) d-
increasing.

Proof. (1) It is straightforward.
(2) Let F be OD ~r-increasing and let x ∈ [0, 1]n. Consider σ ∈ Sn such that220

xσ ∈ [0, 1]n(≥) and c > 0 such that xσ − c~r d ∈ [0, 1]n(≥).

Put y = 1 − x. Then σd ∈ Sn, given by σd(i) = σ(n − i + 1) for all
i = 1, . . . , n, is a permutation such that yσd ∈ [0, 1]n(≥) and yσd + c~r ∈ [0, 1]n(≥).

Due to the OD ~r-increasingness of F , we have F (y+c~r(σd)−1) ≥ F (y), and from

σd(i) = σ(n− i+ 1) = k we have (σd)−1(k) = i and σ−1(k) = n− i+ 1, hence225

(σd)−1(k) = n− σ−1(k) + 1, and finally, (~r d)σ−1 = ~r(σd)−1 .
Therefore, we get

G
(
x + c

(
−~r d

)
σ−1

)
= F

(
1− x + c~r dσ−1

)
= F

(
y + c~r(σd)−1

)
≥ F (y) = F (1− x) = G(x),

which means that G is OD (−~r) d-increasing.

The converse follows from the fact that −
(
−~r d

) d
= ~r.

The case of T = SOD is analogous.230

The dual function F d of a function F : [0, 1]n → [0, 1] is defined for each

x ∈ [0, 1]n by F d(x) = 1−F (1−x). Propositions 3.5 and 3.6 arise the following

result.

Proposition 3.7. Let F : [0, 1]n → [0, 1], ~r ∈ Rn and F d : [0, 1]n → [0, 1] be235

the dual function of F defined by F d(x) = 1− F (1− x).

(1) F is ~r-increasing if and only if F d is ~r-increasing.

(2) F is OD ~r-increasing if and only if F d is OD ~r d-increasing.

(3) F is SOD ~r-increasing if and only if F d is SOD −~r d-decreasing.

The next result follows from the definition of each notion of monotonicity.240

Proposition 3.8. Let F : [0, 1]n → [0, 1] be a T ~r-monotone function for T ∈
{∅, SOD, OD}. Then, if ϕ : [0, 1] → [0, 1] is an increasing (resp. decreasing)
function, then the function ϕ ◦ F : [0, 1]n → [0, 1] is an T ~r-monotone function
of the same (resp. reversed) type as F .

Lemma 3.9. Assume that the function F : [0, 1]n → [0, 1] satisfies F (xσ) =245

F (x) for all x ∈ [0, 1]n and σ ∈ Sn. Then
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(1) D↑(F ) ⊆ D↑SOD(F ) and C(F ) ⊆ CSOD(F ).

(2) ~r ∈ D↑(F ) if and only if ~rσ ∈ D↑(F ) ∀σ ∈ Sn. Analogously for C(F ).

Proof. (1) Let ~r ∈ Rn, x ∈ [0, 1]n, σ ∈ Sn, c ∈ R+ with xσ ∈ [0, 1]n(≥), xσ + c~r ∈
[0, 1]n. Assume that F is ~r-increasing. Then

F (x + c~rσ−1) = F (xσ + c~r) (as (x + c~rσ−1)σ = xσ + c~r)

≥ F (xσ) (as F is ~r-increasing)

= F (x) ,

hence F is SOD ~r-increasing. Analogously one has C(F ) ⊆ CSOD(F ).
(2) Let ~r ∈ D↑(F ). If x, x + c~rσ ∈ [0, 1]n, then xσ−1 , xσ−1 + c~r ∈ [0, 1]n,250

hence F (x) = F (xσ−1) ≤ F (xσ−1 + c~r) = F (x + c~rσ) and so ~rσ ∈ D↑(F ).
Analogously for C(F ).

Proposition 3.10. Let F : [0, 1]n → [0, 1] be a function and define the function

F̂ : [0, 1]n → [0, 1] as follows: if x ∈ [0, 1]n, take σ ∈ Sn such that xσ ∈ [0, 1]n(≥)

and put F̂ (x) = F (xσ). If ~r ∈ Rn is such that F is ~r-increasing, then F̂ is OD255

~r-increasing.

Proof. Let x ∈ [0, 1]n, σ ∈ Sn and c ∈ R+ such that xσ, xσ + c~r ∈ [0, 1]n(≥).

Then, with y = x + c~rσ−1 , we have that yσ = xσ + c~r ∈ [0, 1]n(≥). So, by

definition of F̂ ,

F̂ (x + c~rσ−1) = F̂ (y) = F (yσ) = F (xσ + c~r) ≥ F (xσ) = F̂ (x) ,

as F is ~r-increasing.

In Section 5 we show that in the hypothesis of Proposition 3.10, F̂ is not

necessarily SOD ~r-increasing.

Remark 3.11. Consider a function F : [0, 1]n → [0, 1]. Then260

a. (̂F̂ ) = F̂ .

b. F̂ = F if and only if F (xσ) = F (x) for all x ∈ [0, 1]n and σ ∈ Sn.

c. (F̂ )c = F̂ c.

For (F̂ )c(x) = 1− F̂ (x) = 1− F (xσ) = F c(xσ) = F̂ c(x) if x ∈ [0, 1]n and
σ ∈ Sn is such that xσ ∈ [0, 1]n(≥).265
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4. Linearity and ordered linearity

In this section we study a relevant class of functions that are useful in order

to introduce some examples and to describe some well-known functions (like the

 Lukasiewicz implication and the discrete Choquet integral).

Given µ ∈ R and ~v ∈ Rn, let us consider the function F : Rn → R given by270

F (x) = µ+ x · ~v for all x ∈ Rn, where · denotes the usual scalar product, i.e.,

x ·~v =
∑n
i=1 xivi. The restriction of F to [0, 1]n is a function when F ([0, 1]n) ⊆

[0, 1].

Definition 4.1. We say that a pair (µ,~v) ∈ R × Rn generates a linear fusion
function if µ + x · ~v ∈ [0, 1] for all x ∈ [0, 1]n. In such a case, we denote by
L[µ,~v] the function

L[µ,~v] (x) = µ+ x · ~v for all x ∈ [0, 1]n,

which we call the [µ,~v]-linear fusion function (or the fusion function generated
by the pair (µ,~v) ∈ R× Rn).275

Remark 4.2. We use the term fusion function to explicitly distinguish this
class of functions from that of linear functions.

Lemma 4.3. Let ~v ∈ Rn and consider the map F : [0, 1]n → R given by F (x) =
x · ~v. Set

M = {(x1, . . . , xn) ∈ [0, 1]n | xi ∈ {0, 1}, i = 1, . . . , n} .

Then, there exist a,b ∈M such that F (a) = maxF and F (b) = minF .

Proof. Set P = {λi | λi > 0, 1 ≤ i ≤ n}, N = {λi | λi < 0, 1 ≤ i ≤ n}, where
~v = (λ1, . . . , λn). The claim follows from the obvious facts that maxF = 0 if280

P = ∅, maxF =
∑
λ∈P λ if P 6= ∅ and minF = 0 ifN = ∅ and minF =

∑
λ∈N λ

if N 6= ∅.

Proposition 4.4. The pair [µ,~v] ∈ R × Rn defines a linear fusion function if
and only if 0 ≤ µ+

∑
i∈S λi ≤ 1 for all S ⊆ {1, . . . , n}, where ~v = (λ1, . . . , λn).

Proof. It follows immediately from Lemma 4.3.285

Corollary 4.5. If [µ,~v] ∈ R × Rn satisfies the conditions in Proposition 4.4,
then also [1 − µ,−~v] satisfies them and F = L[µ,~v] if and only if F c = L[1 −
µ,−~v].

Proof. Note that 0 ≤ µ+
∑
i∈S λi ≤ 1 if and only if 1 ≥ (1−µ)+

∑
i∈S(−λi) ≥ 0,

where ~v = (λ1, . . . , λn) and S ⊆ {1, . . . , n}.290
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Proposition 4.6. Assume that [µ,~v] ∈ R × Rn defines the [µ,~v]-linear fusion
function F : [0, 1]n → [0, 1].Then

(1) D↑(F ) = {~r ∈ Rn | ~r · ~v ≥ 0} ,

(2) C(F ) = {~r ∈ Rn | ~r · ~v = 0} ,

(3) D↑OD(F ) = D↑SOD(F ) = {~r ∈ Rn | ~rσ · ~v ≥ 0 for all σ ∈ Sn} ,295

(4) COD(F ) = CSOD(F ) = {~r ∈ Rn | ~rσ · ~v = 0 for all σ ∈ Sn} .

Proof. (1) and (2) follow from the fact that F (x + c~r) − F (x) = c~r · ~v and (3)
and (4) from F (x + c~rσ−1)− F (x) = c~rσ−1 · ~v, if x ∈ [0, 1]n, c > 0, σ ∈ Sn and
xσ + c~r ∈ [0, 1]n.

Example 4.7.300

(1) The constant function F : [0, 1]n → [0, 1], given by F (x) = k for all x ∈
[0, 1]n, where k ∈ [0, 1], is the [k,0]-linear fusion function.

(2) If w = (w1, . . . , wn) ∈ [0, 1]n satisfies
∑n
i=1 wi = 1, the corresponding

weighted average F : [0, 1]n → [0, 1] given by F (x) = x ·w if x ∈ [0, 1]n is
the [0,w]-linear fusion function.305

Definition 4.8. We say that a pair (µ,~v) ∈ R × Rn generates a ordered (O)
linear fusion function if µ + xσ · ~v ∈ [0, 1] for all x ∈ [0, 1]n and σ ∈ Sn such
that xσ ∈ [0, 1]n(≥). In such a case, we denote by OL[µ,~v] the function

OL[µ,~v] (x) = µ+ xσ · ~v for all x ∈ [0, 1]n,

which we call the ordered [µ,~v]-linear fusion function.

Remark 4.9. Note that if F = OL[µ,~v], then F (xσ) = F (x) for all σ ∈ Sn. In
particular, F ([0, 1]n) = F ([0, 1]n(≥)).

Lemma 4.10. Let ~v = (λ1, . . . , λn) ∈ Rn and consider the function F :
[0, 1]n → R given by F (x) = xσ · ~v if x ∈ [0, 1]n, where σ ∈ Sn satisfies
xσ ∈ [0, 1]n(≥). Set

u0 = 0, ur = (1, . . . , 1
_
r

, 0, . . . , 0) ∈ [0, 1]n, for r ∈ {1, . . . , n}.

Then there exist j, k ∈ {0, 1, . . . , n} such that maxx F (x) = F (uj) and minx F (x) =
F (uk).310

Proof. Set M = max0≤i≤n F (ui) and m = min0≤i≤n F (ui). Proceed by in-
duction on n. Let n = 1. If λ1 ≥ 0, then M = F (1) = maxx F (x) and
m = F (0) = minx F (x). If λ1 ≤ 0, then M = F (0) = maxx F (x) and
m = F (1) = minx F (x).

Let now n > 1 and consider the case of the maximum. Let us suppose that
there exists x ∈ [0, 1]n such that M < F (x). Since F (u0) = 0, we have that
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F (x) > 0. We may assume, without loss of generality, that x1 ≥ . . . ≥ xn,
where =(x1, . . . , xn). As F (x) > 0, then x1 > 0, and

x · ~v = x1λ1 + . . .+ xnλn

= x1

(
λ1 +

x2
x1
λ2 + . . .+

xn
x1
λn

)
≤ λ1 +

x2
x1
λ2 + . . .+

xn
x1
λn

=
1

x1
x · ~v,

as λ1 + x2

x1
λ2 + . . .+ xn

x1
λn > 0 and x1 ∈ [0, 1]. Set now y = (y1, . . . , yn) = 1

x1
x,315

and observe that 1 = y1 ≥ . . . ≥ yn.
If we consider z = (z2, . . . , zn) ∈ [0, 1]n−1, then by the induction hypothesis,

the scalar product (z2, . . . , zn) · (λ2, . . . , λn) reaches an absolute maximum for
some

t = (t2, . . . , tn) ∈ {(1, . . . , 1
_
r

, 0, . . . , 0) ∈ [0, 1]n−1 | 0 ≤ r ≤ n− 1}.

Thus,

M < F (x) = λ1 + (y2, . . . , yn) · (λ2, . . . , λn)

≤ λ1 + t · (λ2, . . . , λn) = (1, t2, . . . , tn) · (λ1, . . . , λn),

where (1, t2, . . . , tn) ∈ {u0,u1, . . . ,un}, which contradicts the election of M .
Observe that (−F )(x) = xσ · (−~v). So minF = max(−F ).

Remark 4.11. In the conditions of Lemma 4.10, as F is a continuous function
on a compact set of Rn, we know of the existence of a maximum and a minimum,320

but this fact is not used in the proof of Lemma 4.10. (A similar remark can be
made about Proposition 4.4.).

Proposition 4.12. The pair [µ,~v] ∈ R × Rn, where ~v = (λ1, . . . , λn), defines
an O linear fusion function if and only if 0 ≤ µ ≤ 1 and 0 ≤ µ +

∑r
i=1 λi ≤ 1

for all r ∈ {1, . . . , n}.325

Proof. It is an immediate consequence of Lemma 4.10.

Corollary 4.13. If F : [0, 1]n → [0, 1] is the [µ,~v]-linear fusion function, then

F̂ is the O [µ,~v]-linear fusion function.

Analogously as for Corollary 4.5 we have the following result.

Corollary 4.14. Let [µ,~v] ∈ R × Rn satisfying the conditions of Corollary330

4.12. Then, the pair [1 − µ,−~v] also satisfies the conditions of Corollary 4.12
and F = OL[µ,~v] if and only if F c = OL[1− µ,−~v].

Proposition 4.15. Let [µ,~v] ∈ R × Rn satisfying the conditions of Corollary
4.12 and F = OL[µ,~v]. Then
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(1) D↑OD(F ) = {~r ∈ Rn | ~r · ~v ≥ 0} .335

(2) COD(F ) = {~r ∈ Rn | ~r · ~v = 0} .

Proof. Let x ∈ [0, 1]n, c > 0 and σ ∈ Sn such that xσ, xσ + c~r ∈ [0, 1]n(≥). Then

F (x + c~rσ−1) = µ+ (xσ + c~r) · ~v = F (x) + c~r · ~v and the thesis follows.

In several occasions we focus on the particular case n = 2. Observe that if

σ ∈ S2, we have that σ−1 = σ.340

The following auxiliary result follows immediately from a simple geometric

approach.

Lemma 4.16. Let ~r = (r1, r2) ∈ R2.

(1) There exist y ∈ [0, 1]
2
(≥) and c > 0 such that y + c~r ∈ [0, 1]

2
(≥).

(2) There exist y ∈ [0, 1]
2
(≤) and c > 0 such that y + c~r ∈ [0, 1]

2
(≤).345

(3) If ~r ∈ R2
(>) there exist y ∈ [0, 1]

2
(<) and c > c′ > 0 such that y+c~r ∈ [0, 1]

2
(>)

and y + c′~r ∈ [0, 1]
2
(=).

(4) If ~r ∈ R2
(<) there exist y ∈ [0, 1]

2
(>) and c > c′ > 0 such that y+c~r ∈ [0, 1]

2
(<)

and y + c′~r ∈ [0, 1]
2
(=).

Proposition 4.17. Let [µ,~v] ∈ R × R2 satisfying the conditions of Corollary350

4.12 and F = OL[µ,~v]. Then

(1) D↑OD(F ) = {~r ∈ R2 | ~r · ~v ≥ 0} .

(2) COD(F ) = {~r ∈ R2 | ~r · ~v = 0} .

(3) D↑SOD(F ) = {~r ∈ R2
(≥) | ~r · ~v ≥ 0} ∪ {~r ∈ R2

(≤) | ~r · ~v ≥ 0 and ~r · ~v d ≥ 0} .

(4) CSOD(F ) = {~r ∈ R2
(≥) | ~r · ~v = 0} ∪ {~r ∈ R2

(≤) | ~r · ~v = ~r · ~v d = 0} .355

(5) D↑(F ) = {~r ∈ R2 | ~r · ~v ≥ 0 and ~r · ~v d ≥ 0} .

(6) C(F ) = {~r ∈ R2 | ~r · ~v = ~r · ~v d = 0} .

Proof. (1) and (2) are particular cases of Proposition 4.15.
Let x ∈ [0, 1]2, c > 0 and σ ∈ S2 such that xσ ∈ [0, 1]2(≥) and xσ+c~r ∈ [0, 1]2.

If actually xσ + c~r ∈ [0, 1]2(≥), then we have

F (x + c~rσ)− F (x) = c~r · ~v . (A)

17



Let us assume that xσ(1) + cr1 < xσ(2) + cr2 (then necessarily is r1 < r2). Then
F (x + c~rσ) = µ+ (xσ(2) + cr2)λ1 + (xσ(1) + cr1)λ2. Thus

F (x + c~rσ)− F (x) = (xσ(1) − xσ(2))(λ2 − λ1) + c~r · ~v d . (B)

Observe that
~r · ~v d = ~r · ~v + (r2 − r1)(λ1 − λ2) . (C)

(3) Let us assume that F is SOD ~r-increasing. If r1 ≥ r2, then we are in
(A). By Lemma 4.16, if r1 < r2 both situations (A) and (B), in the last case
also with xσ(1) = xσ(2), can occur. Therefore

D↑SOD(F ) ⊆ {~r ∈ R2
(≥) | ~r · ~v ≥ 0} ∪ {~r ∈ R2

(≤) | ~r · ~v ≥ 0 and ~r · ~v d ≥ 0} .

Conversely, if r1 ≥ r2 and ~r · ~v ≥ 0 then (see A) F (x + c~rσ) ≥ F (x).
Let r1 < r2, ~r · ~v ≥ 0, ~r · ~v d ≥ 0.360

If λ1 ≤ λ2, then (see (A) and (B)) F (x + c~rσ) ≥ F (x).
Suppose that λ1 > λ2. If xσ(1) = xσ(2), then F (x + c~rσ) ≥ F (x). Suppose

further that xσ(1) > xσ(2). With xσ(1) − xσ(2) = x, c(r2 − r1) = r, we have

0 < x < r. So c~r · ~v d = c~r · ~v + r(λ1 − λ2) (see (C)) and

F (x + c~rσ)− F (x) = x(λ2 − λ1) + c~r · ~v + r(λ1 − λ2)

= (r − x)(λ1 − λ2) + c~r · ~v > 0 ,

hence F is SOD ~r-increasing.
(4) Arguing as in (3) we deduce that

CSOD(F ) ⊆ {~r ∈ R2
(≥) | ~r · ~v = 0} ∪ {~r ∈ R2

(≤) | ~r · ~v = ~r · ~v d = 0} .

If r1 ≥ r2 and ~r ·~v = 0, then F (x+ c~rσ) = F (x) (see (A)). Assume now that
r1 < r2, ~r · ~v = ~r · ~v d = 0. We have so (r2 − r1)(λ1 − λ2) = 0 (see (C)) and
therefore it must be λ1 = λ2 and so F (x + c~rσ) = F (x) (see (B)) also in this365

case.
Let now x ∈ [0, 1]2 and c > 0 such that x+c~r ∈ [0, 1]2. We have the following

possibilities (set d = F (x + c~r)− F (x)):

• x ∈ [0, 1]2(≥) and

(a) x + c~r ∈ [0, 1]2(≥), when d = c~r · v, or370

(b) x1 + cr1 ≤ x2 + cr2, when d = (x1 − x2)(λ2 − λ1) + c~r · ~v d (and
necessarily r1 ≤ r2), or

• x ∈ [0, 1]2(≤) and

(c) x1 + cr1 ≥ x2 + cr2, when d = (x2 − x1)(λ2 − λ1) + c~r · ~v (and
necessarily r1 ≥ r2), or375

(d) x + c~r ∈ [0, 1]2(≤), when d = c~r · ~v d.

18



(5) Therefore if F is ~r-increasing, necessarily ~r · ~v ≥ 0 and ~r · ~v d ≥ 0. Let
us assume that this happens. If we are in the case (a) or (d), then d ≥ 0. If we
are in the case (b) and λ2 ≥ λ1, then d ≥ 0. If λ2 < λ1 then (see (C))

d = [c(r2 − r1)− (x1 − x2)](λ1 − λ2) + c~r · ~v ≥ 0

since c(r2 − r1) ≥ x1 − x2 because x2 + cr2 ≥ x1 + cr1. Proceed analogously in
the case (c).

(6) Proceed analogously as in (4).

Remark 4.18. Let [µ, (λ1, λ2)] ∈ R×R2 satisfying the conditions of Corollary
4.12 and let F the corresponding O linear fusion function. We may simplify
some expressions of Proposition 4.17 in some cases. From (C) in Proposition
4.17 we deduce that if λ1 ≥ λ2 then r1 ≤ r2 implies ~r ·~v d ≥ ~r ·~v. So if λ1 ≥ λ2,
then

D↑SOD(F ) = D↑OD(F ) = {~r ∈ R2 | ~r · ~v ≥ 0} .

Analogously, if ~r · ~v = 0, then ~r · ~v d = (r2 − r1)(λ1 − λ2). So, in this case,380

~r · ~v d = 0 if and only if either r1 = r2 or λ1 = λ2. Therefore

• If λ1 6= λ2 then CSOD(F ) = C(F ) = {~r ∈ R2
(≥) | ~r · ~v = 0} .

• If λ1 = λ2 then CSOD(F ) = COD(F ) = C(F ) = {~r ∈ R2 | ~r · ~v = 0} .

Example 4.19. Let us present some examples of O linear fusion functions. We
omit the mentions x ∈ [0, 1]n and σ ∈ Sn is such that xσ ∈ [0, 1]n(≥).385

(1) If a = (a1, . . . , an) ∈ [0, 1]n(≥), put ã = (a1,−a2, . . . , (−1)n−1an). Then we

have the O [0, ã]-linear fusion function Fa : [0, 1]n → [0, 1] given by

Fa(x) = xσ(1)a1 − xσ(2)a2 + · · ·+ (−1)n−1xσ(n)an .

(2) If λ ∈ [0, 1], the O [0, (1,−λ)]-linear fusion function F : [0, 1]2 → [0, 1] given
by

F (x) = max(x1, x2)− λmin(x1, x2) .

Observe that F c : [0, 1]2 → [0, 1] is the O [1, (−1, λ)]-linear fusion function
given by

F c(x) = 1−max(x1, x2) + λmin(x1, x2) .

(3) The O [0, (1,−1)]–linear fusion function F : [0, 1]2 → [0, 1] given by

F (x) = |x1 − x2| .

Then F c : [0, 1]2 → [0, 1] is the O [1, (−1, 1)]–linear fusion function given by

F c(x) = 1− |x1 − x2| ,

which is a restricted equivalence function (see [4]).
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(4) The O
[
1
2 , (

1
2 ,−1)

]
-linear fusion function F : [0, 1]2 → [0, 1] given by

F (x) =
1

2
(1 + max(x1 − x2)− 2 min(x1 − x2)) .

(5) The O
[
1, (−1, 12 )

]
-linear fusion function F : [0, 1]2 → [0, 1] given by

F (x) = 1−max(x1, x2) +
1

2
min(x1, x2) .

(6) Let w ∈ [0, 1]n with
∑n
i=1 wi = 1, the OWA operator A : [0, 1]n → [0, 1]

with respect to the weighting vector w, given by

A(x) = xσ ·w

is the O [0,w]-linear fusion function. Observe that if F : [0, 1]n → [0, 1] is

the weighted average corresponding to w, then A = F̂ (see Example 4.7 (2)
and Corollary 4.13).

Example 4.20. Let p > 0 and ~r = (t, . . . , t, s) ∈ Rn, where s ≤ t. The function
F : [0, 1]n → [0, 1] given by

F (x) =
1

n− 1

n∑
j=2

|x1 − xj |p ,

if x = (x1, . . . , xn) ∈ [0, 1]n, is SOD ~r-increasing.390

Indeed, given x ∈ [0, 1]n, σ ∈ Sn and c ∈ R+ such that xσ ∈ [0, 1]n(≥),

xσ + c~r ∈ [0, 1]n. Observe that

x + c~rσ−1 = (x1 + ct, . . . , xi−1 + ct, xi + cs, xi+1 + ct, . . . , xn + ct) ,

where i = σ(n) and that xσ(n) = min {x1, . . . , xn}, so that x1 ≥ xi. As t ≥ s,

we have

F (x + c~rσ−1) =
1

n− 1

 n∑
j=2
j 6=i

|x1 − xj |p + |(x1 − xi) + c(t− s)|p


≥ 1

n− 1

n∑
j=2

|x1 − xj |p = F (x) ,

as required. Note that, in the case where σ(n) = 1, the result follows readily

since x1 ≤ xj and s ≤ t. Thus,

|x1 − xj + cs− ct| ≥ |x1 − xj |.
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Corollary 4.21. Let 0 < p ∈ R, ~r = (r1, r2) ∈ R2 and consider the function
F : [0, 1]2 → [0, 1] given by

F (x1, x2) = |x1 − x2|p

if (x1, x2) ∈ [0, 1]2. Then

(1) D↑SOD(F ) = D↑OD(F ) = {~r ∈ R2 | r1 ≥ r2}.

(2) D↑(F ) = C(F ) = CSOD(F ) = COD(F ) = {~r ∈ R2 | r1 = r2}.

Proof. Consider ϕ : [0, 1] → [0, 1] given by ϕ(x) = xp if x ∈ [0, 1]. Then F =
ϕ ◦ F1, where F1(x) = |x1 − x2|, so it is consequence of Propositions 3.8 and395

4.17.

Proposition 4.22. Let 0 < p ∈ R and consider the function F : [0, 1]2 → [0, 1]
given by

F (x) = 1− |x1 − x2|p

if x = (x1, x2) ∈ [0, 1]2. Set ~r = (r1, r2). Then

(1) D↑(F ) = D↑SOD(F ) = C(F ) = CSOD(F ) = COD(F ) =

= {~r ∈ R2 | r1 = r2}.

(2) D↑OD(F ) = {~r ∈ R2 | r1 ≤ r2}.400

Proof. LetM : [0, 1]2 → [0, 1] given byM(x) = |x1−x2|p if x = (x1, x2) ∈ [0, 1]2.
Then F = M c, hence, by Proposition 3.5 and Corollary 4.21, it only rests to
show the assertion on D↑SOD(F ). By Lemma 3.9, {~r ∈ R2 | r1 = r2} = D↑(F ) ⊆
D↑SOD(F ). Assume that F is SOD ~r-increasing. Take 0 < x < 1 and x = (x, x),
so x ∈ [0, 1]2(≥); take c > 0 such that x + c~r ∈ [0, 1]2. Then F (x + c~r) =405

1− |c(r1 − r2)|p. As F is SOD ~r-increasing, it must be F (x + c~r) ≥ F (x) = 1,
hence r1 = r2.

5. An operation between functions

We introduce here an operation between functions from [0, 1]2 to [0, 1] which

generalizes, when applied to O linear fusion functions, for n = 2, the Choquet410

integral and the  Lukasiewicz implication.

Definition 5.1. Let Fi : [0, 1]2 → [0, 1], i = 1, 2, be two functions such that
F1(x, x) = F2(x, x) for all x ∈ [0, 1]. Define F1 ∗ F2 : [0, 1]2 → [0, 1] by

(F1 ∗ F2)(x) =

{
F1(x) if x ∈ [0, 1]2(≥) ,

F2(x) if x ∈ [0, 1]2(≤) .
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Proposition 5.2. Let Fi : [0, 1]2 → [0, 1], i = 1, 2, be two functions such that
F1(x, x) = F2(x, x) for all x ∈ [0, 1]. Then, for T ∈ {∅, SOD, OD}, the follow-
ing hold.

(1) D↑T(F1) ∩ D↑T(F2) ⊆ D↑T(F1 ∗ F2).415

(2) CT(F1) ∩ CT(F2) ⊆ CT(F1 ∗ F2).

Proof. Set in this proof F = F1 ∗ F2.

• (1) and (2) for T=OD.

Let x ∈ [0, 1]2, σ ∈ S2, c > 0 such that xσ, xσ + c~r ∈ [0, 1]2(≥). These
assertions follow immediately taking the following into account.420

(a) If σ = id, F (x + c~r) = F1(x + c~r), F (x) = F1(x).

(b) If σ = (1 2), F (x + c~rσ) = F2(x + c~rσ), F (x) = F2(x).

• (1) and (2) for T= ∅.
Let x ∈ [0, 1]2 and c > 0 such that x + c~r ∈ [0, 1]2.

Assume that ~r ∈ D↑(F1) ∩ D↑(F2). If x, x + c~r ∈ [0, 1]2(≥), then F (x) =

F1(x) ≤ F1(x+c~r) = F (x+c~r) and ~r ∈ D↑(F ). Analogously if x, x+c~r ∈
[0, 1]2(≤). Suppose x ∈ [0, 1]2(≥), x+c~r ∈ [0, 1]2(<). Then r2 > r1. By Lemma

4.16 there exists c′ > 0, c > c′, such that, with z = (z1, z2) = x+ (c− c′)~r,
we have z1 = z2; as z + c′~r = x + c~r, one has, with c′′ = c− c′,

F (x) = F1(x) ≤ F1(x + c′′~r) = F1(z) = F2(z) ≤ F2(z + c′~r) = F (x + c~r) .

Analogously for (2).425

• (1) and (2) for T=SOD.

Assume that ~r ∈ D↑SOD(F1)∩D↑SOD(F2). Let x ∈ [0, 1]2, σ ∈ S2 and c > 0
such that xσ ∈ [0, 1]2(≥), xσ + c~r ∈ [0, 1]2.

(a) Suppose that σ = id, so x ∈ [0, 1]2(≥).

– If x+c~r ∈ [0, 1]2(≥), then F (x+c~r) = F1(x+c~r) ≥ F1(x) = F (x).430

– If x + c~r ∈ [0, 1]2(<), then r1 < r2 and we may proceed as in the

case T= ∅.
(b) Suppose that σ = (1 2), so x ∈ [0, 1]2(≤).

– If x + c~rσ ∈ [0, 1]2(≤), F (x + c~rσ) = F2(x + c~rσ) ≥ F2(x) = F (x).

– Assume that x + c~rσ ∈ [0, 1]2(>). Apply Lemma 4.16 to ~s = ~rσ435

and argue analogous to the case T= ∅.

Analogously for (2).
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Lemma 5.3. Let G = OL[µ,~a] and H = OL[ν,~b], where [µ,~a], [ν,~b] belong
to R × R2 and satisfy the conditions of Corollary 4.12, and set ~a = (a1, a2),440

~b = (b1, b2). We have that G(x, x) = H(x, x) for all x ∈ [0, 1] if and only if
µ = ν and a1 + a2 = b1 + b2.

Proof. (⇒) With x = 0 we have µ = ν. Take now for instance x = 1 and obtain
a1 + a2 = b1 + b2.

(⇐) Follows immediately.445

Proposition 5.4. Let ~a = (a1, a2) ,~b = (b1, b2) ∈ R2 be such that s = a1 +a2 =

b1+b2 and suppose that [µ,~a ], [µ,~b ] ∈ R×R2 satisfy the conditions of Proposition

3.7. Let G = OL[µ,~a ] and H = OL[µ,~b ] and consider G ∗ H (recall Lemma
4.3). Then the following statements hold.

(1) D↑OD (G ∗H) = {~r ∈ R2 |~r · ~a ≥ 0, ~r ·~b ≥ 0 }.450

(2) COD (G ∗H) = {~r ∈ R2 |~r · ~a = ~r ·~b = 0 }.

(3) D↑SOD (G ∗H) = {~r ∈ R2
(≥) |~r · ~a, ~r ·~b ≥ 0 } ∪

∪ {~r ∈ R2
(≤) |~r · ~a, ~r · ~a

d, ~r ·~b, ~r ·~b d ≥ 0 }.

(4) CSOD (G ∗H) = {~r ∈ R2
(≥) |~r · ~a = ~r ·~b = 0 } ∪

∪ {~r ∈ R2
(≤) |~r · ~a = ~r · ~a d = ~r ·~b = ~r ·~b d = 0 }.455

(5) D↑ (G ∗H) = {~r ∈ R2 |~r · ~a ≥ 0, ~r ·~b d ≥ 0 }.

(6) C (G ∗H) = {~r ∈ R2 |~r · ~a = ~r ·~b d = 0 }.

Proof. Set F = G ∗H,
(1) Let us assume that ~r ∈ D↑OD(F ). By Lemma 4.16 we can find x ∈ [0, 1]2(≥)

and c > 0 such that x + c~r ∈ [0, 1]2(≥), where µ + (x + c~r) · ~a = G(x + c~r) =460

F (x+c~r) ≥ F (x) = G(x) = µ+x·~a, hence ~r·~a ≥ 0 and ~r ∈ D↑OD(G). Equally we

can find x ∈ [0, 1]2(≤) and c > 0 with x+c~rσ ∈ [0, 1]2(≤), from where ~r ∈ D↑OD(H).

Therefore, by Proposition 5.2 we have D↑OD(F ) = D↑OD(G) ∩ D↑OD(H).
(2) Proceed analogously as in (1).

(3) By Proposition 3.3, D↑SOD(F ) ∩ R2
(≥) = D↑OD(F ) ∩ R2

(≥).465

Let us assume that ~r ∈ R2
(≤) satisfies ~r · ~a, ~r · ~b, ~r · ~a d, ~r · ~b d ≥ 0. Let us

see that F is SOD ~r-increasing. Let x ∈ [0, 1]2, c > 0 and σ ∈ S2 such that
xσ ∈ [0, 1]2(≥), xσ + c~r ∈ [0, 1]2.

Suppose first that σ = id, then x ∈ [0, 1]2(≥). We must show that F (x+c~r) ≥
F (x).470

(a) If x + c~r ∈ [0, 1]2(≥), then F (x + c~r )− F (x) = c~r · ~a ≥ 0.
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(b) If x + c~r ∈ [0, 1]2(<), then by Lemma 5.3 there exists c′ ∈ (0, c) such that

x + c′~r ∈ [0, 1]2(=). Therefore, if we put y = x + c′~r, then y + (c − c′)~r =

x + c~r ∈ [0, 1]2(≥). Thus, since y ∈ [0, 1]2(=),

F (x + c~r )− F (x) = F (x + c~r )− F (y) + F (y)− F (x)

= F (y + (c− c′)~r )− F (y) + F (x + c′~r)− F (x)

= (c− c′)~r d ·~b+ c′ ~r · ~a ≥ 0.

Suppose now that σ = (1 2). We can assume that x ∈ [0, 1]2(<) and so

F (x) = µ+ xσ ·~b.

(c) If xσ + c~r ∈ [0, 1]2(≥), then F (x + c~rσ)− F (x) = c~r ·~b ≥ 0.

(d) If xσ + c~r ∈ [0, 1]2(<), then by Lemma 5.3 there exists c′ ∈ (0, c) such that

x+c′~rσ ∈ [0, 1]2(=). Therefore, if we put y = x+c′~rσ, then y+(c−c′)~rσ =

x + c~rσ ∈ [0, 1]2(≥). Thus, since y ∈ [0, 1]2(=),

F (x + c~rσ )− F (x) = F (x + c~rσ )− F (y) + F (y)− F (x)

= F (y + (c− c′)~rσ )− F (y) + F (x + c′~rσ)− F (x)

= (c− c′)~rσ · ~a+ c′ ~r ·~b ≥ 0.

Therefore F is SOD ~r-increasing.475

Let us assume now that F is SOD ~r-increasing, where ~r ∈ R2
(≤). In particu-

lar, by Proposition 3.2, F is OD ~r-increasing, hence ~r ·~a, ~r ·~b ≥ 0 by 1. It rests
to show that if r1 < r2 then ~r · ~a d, ~r ·~b d ≥ 0. Indeed, from cases (b) and (d),

the definition of SOD ~r-increasingness for y ensures that ~r · ~a d, ~r ·~b d ≥ 0.
(4) Proceed as in the preceding item with equalities instead of inequalities.480

(5) Let ~r ∈ D↑ (F ). By Lemma 5.3, there exist x ∈ [0, 1]
2
(≥) and c > 0 such

that x + c~r ∈ [0, 1]
2
(≥). Thus, 0 ≤ F (x + c~r) − F (x) = c~r · ~a, so ~r · ~a ≥ 0.

Similarly, by Lemma 5.3, there exist x ∈ [0, 1]
2
(≤) and c > 0 such that x + c~r ∈

[0, 1]
2
(≤). Therefore, 0 ≤ F (x + c~r)− F (x) = c~r ·~b d, so ~r ·~b d ≥ 0.

Conversely, let ~r ∈ R2 be a vector such that ~r ·~a ≥ 0 and ~r ·~b d ≥ 0. In order485

to prove that ~r ∈ D↑ (F ), let x ∈ [0, 1]
2

and c > 0 such that x,x + c~r ∈ [0, 1]
2
.

We have four cases.

• If x,x + c~r ∈ [0, 1]
2
(≥), then F (x + c~r)− F (x) = c~r · ~a ≥ 0.

• If x,x + c~r ∈ [0, 1]
2
(≤), then F (x + c~r)− F (x) = c~r ·~b d ≥ 0.

• If x ∈ [0, 1]
2
(>) and x+ c~r ∈ [0, 1]

2
(<), there is c′ ∈ (0, c) such that x+ c′~r ∈

[0, 1]
2
(=). If y = x + c′~r, then y + (c− c′)~r = x + c~r. As x,y = x + c′~r ∈

[0, 1]
2
(≥) and y,y + (c− c′)~r = x + c~r ∈ [0, 1]

2
(≤), then

F (x + c~r )− F (x) = F (x + c~r )− F (y) + F (y)− F (x)
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= F (y + (c− c′)~r )− F (y) + F (x + c′~r)− F (x)

= (c− c′)~r · ~a+ c′ ~r ·~b d ≥ 0.

• If x ∈ [0, 1]
2
(<) and x+ c~r ∈ [0, 1]

2
(>), there is c′ ∈ (0, c) such that x+ c′~r ∈

[0, 1]
2
(=). If y = x + c′~r, then y + (c− c′)~r = x + c~r. As x,y = x + c′~r ∈

[0, 1]
2
(≤) and y,y + (c− c′)~r = x + c~r ∈ [0, 1]

2
(≥), then

F (x + c~r )− F (x) = F (x + c~r )− F (y) + F (y)− F (x)

= F (y + (c− c′)~r )− F (y) + F (x + c′~r)− F (x)

= (c− c′)~r ·~b d + c′ ~r · ~a ≥ 0.

In any case, F (x + c~r ) ≥ F (x) so ~r ∈ D↑ (F ).490

(6) Proceed as in the preceding item with equalities instead of inequalities.

Example 5.5. Consider the  Lukasiewicz implication IL : [0, 1]2 → [0, 1] given
by IL(x) = min{1, 1− x1 + x2} if x = (x1, x2) ∈ [0, 1]2. Then we have

IL = OL[1, (−1, 1)] ∗OL[1, (0, 0)]

(by Corollary 4.12, [1, (−1, 1)] and [1, (0, 0)] define ordered linear fusion func-
tions; as 1 = 1 and −1 + 1 = 0 + 0, we may consider its (∗)-product by Lemma
5.3). As an application of Proposition 5.4 we have:495

(1) D↑(IL) = D↑OD(IL) = {~r ∈ R2 | r1 ≤ r2}.

(2) D↑SOD(IL) = C(IL) = CSOD(IL) = COD(IL) = {~r ∈ R2 | r1 = r2}.

Definition 5.6. Set A = {1, . . . , n} and, if α ∈ Sn, Aα = (Aα1 , . . . , A
α
n), where

Aαi = {α(i), α(i+ 1), . . . , α(n)} = A \ {α(1), . . . , α(i− 1)}

Let now m : 2A → [0, 1] be a fuzzy measure (that is, m satisfies m(∅) = 0,
m(A) = 1, and m(X) ≤ m(Y ) if X,Y ∈ 2A and X ⊆ Y ). If (X1, . . . , Xn) ∈
(2A)n, we put m̃ (X1, . . . , Xn) = (m(X1), . . . ,m(Xn))500

We set

C =


1 −1 0 . . . 0
0 1 −1 . . . 0

. . .
. . .

0 0 . . . 1 −1
0 0 . . . 0 1


for the n× n matrix obtained from the identity matrix In by putting −1 above
the main diagonal and CT for its transpose. Observe that, if x, y ∈ Rn, then
xC · y = x · yCT.
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The discrete Choquet integral of x ∈ [0, 1]n with respect to m is the function

Cm : [0, 1]n → [0, 1]

given by, if x ∈ [0, 1]n and α ∈ Sn is such that xα ∈ [0, 1]n(≤),

Cm(x) = xαC · m̃(Aα) = xα · m̃(Aα)CT .

Proposition 5.7. Let m : 2A → [0, 1] be a fuzzy measure and consider the
associated Choquet integral Cm : [0, 1]n → [0, 1].Then

D↑OD(Cm) = {~r ∈ Rn | ~r · m̃(Aα)CT ≥ 0 ∀α ∈ Sn} ,
COD(Cm) = {~r ∈ Rn | ~r · m̃(Aα)CT = 0 ∀α ∈ Sn} .

Proof. Let x ∈ [0, 1]n, α ∈ Sn and c ∈ R+ with xα, xα + c~r ∈ [0, 1]n(≤). Then,

with y = x + c~rα−1 , we have yα = xα + c~r ∈ [0, 1]n(≤) and so505

Cm(y) = yα · m̃(Aα)CT

= xα · m̃(Aα)CT + c~r · m̃(Aα)CT

= Cm(x) + c(~r · m̃(Aα)CT) ,

whence the thesis.

Corollary 5.8. Let m : 2A → [0, 1] be a fuzzy measure. Then the associated
Choquet integral Cm : [0, 1]n → [0, 1] is SOD ~r-increasing for each ~r ∈ Rn such
that ri ≥ 0, 1 ≤ i ≤ n.

Proof. The i-th term of m̃(Aα)CT, with the convention m(Aαn+1) = 0, is m(Aαi )−510

m(Aαi+1) ≥ 0 as m is a fuzzy measure, whereby the thesis.

Let us consider the Choquet integral for n = 2 in some detail. A fuzzy

measure m : {1, 2}2 → L corresponds to∅ {1} {2} {1, 2}
0 q1 q2 1

 ,

where 0 ≤ q1, q2 ≤ 1, so that m is totally determined by the pair (q1, q2). We

set m ≡ (q1, q2). We have

m̃(Aα)CT =



(1, q2)

 1 0

−1 1

 = (1− q2, q2) if α = id ,

(1, q1)

 1 0

−1 1

 = (1− q1, q1) if α = (1 2) .
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And the conditions of Proposition 5.7 ~r · m̃(Aα)CT ≥ 0 ∀α ∈ S2 translate

here to (r1, r2) · (1− q1, q1) ≥ 0 ,

(r1, r2) · (1− q2, q2) ≥ 0 .

(1)

This corresponds in the plane R2 to the intersection of the semiplanes right-

wards and/or upwards the borders (1− qi)x1 + qix2 = 0, i = 1, 2. For instance,

the case m ≡ (1/2, 1/8) is shown in Figure 6.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

0

Figure 6: Intersection of the semiplanes from the conditions in (1) for the case m ≡ (1/2, 1/8).

Clearly, COD(1/2, 1/2) corresponds to the line x1 + x2 = 0. If q1 6= q2, then515

COD(q1, q2) = {(0, 0)}.

Let us set qi = (1−qi, qi), i = 1, 2. So ~r ·m̃(Aα)CT ≥ 0 is ~r ·qi ≥ 0, i = 1, 2.

Observe that

C(q1,q2) x =

x · q2 if x1 ≤ x2 ,

x · q1 if x1 ≥ x2 .

Example 5.9. Let µ ∈ [0, 1), η ∈ [0, 1−µ], q1, q2 ∈ [0, η] and set qi = (1−qi, qi),
i = 1, 2. For the corresponding Choquet integral we have

µ+ ηC(q1, q2) = OL[µ, ηq1] ∗OL[µ, ηq2]
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(by Corollary 4.12, each [µ, η(1−qi, qi)] defines an ordered linear fusion function,
i = 1, 2; and as µ = µ and η − ηq1 + ηq1 = η − ηq2 + ηq2, we may consider its
(∗)-product by Lemma 5.3). As a direct application of Proposition 5.4:520

(1) D↑OD
(
µ+ ηC(q1,q2)

)
= {~r ∈ R2 | η~r · (1− qi, qi) ≥ 0, i = 1, 2 }.

(2) COD
(
µ+ ηC(q1,q2)

)
= {~r ∈ R2 | η~r · (1− qi, qi) = 0, i = 1, 2 }.

(3) D↑SOD
(
µ+ ηC(q1,q2)

)
= {~r ∈ R2

(≥) | η~r · (1− qi, qi) ≥ 0, i = 1, 2 , } ∪
∪ {~r ∈ R2

(≤) | η~r · (1− qi, qi) ≥ 0, η~r · (qi, 1− qi) ≥ 0, i = 1, 2 }.

(4) CSOD
(
µ+ ηC(q1,q2)

)
= {~r ∈ R2

(≥) | η~r · (1− qi, qi) = 0, i = 1, 2 } ∪525

∪ {~r ∈ R2
(≤) | η~r · (1− qi, qi) = η~r · (qi, 1− qi) = 0, i = 1, 2 }.

(5) D↑
(
µ+ ηC(q1,q2)

)
= {~r ∈ R2 | η~r · (1− q1, q1) ≥ 0, η~r · (q2, 1− q2) ≥ 0 }.

(6) C
(
µ+ ηC(q1,q2)

)
= {~r ∈ R2 | η~r · (1− q1, q1) = η~r · (q2, 1− q2) = 0 }.

For µ = 0 and η = 1 we get the Choquet integral and let us observe that
OL[0,qi] is an OWA operator, i = 1, 2.530

Remark 5.10.

(1) Let x = (x1, x2) ∈ [0, 1]2 and ~r = (r1, r2) ∈ R2.

Let M : [0, 1]2 → [0, 1] be given by M(x) = |x1 − x2|. Then, M is OD ~r-
increasing if and only if r1 ≥ r2 (see Corollary 4.21). We have that I0M (x) =

max{0, x1 − x2} defines an ~r-increasing function such that Î0M = M .535

Consider now M c : [0, 1]2 → [0, 1], that is M c(x) = 1 − |x1 − x2| = 1 −
max(x1, x2)+min(x1, x2), an OD ~r-increasing function if and only if r1 ≤ r2
(see Proposition 4.22). Then I1Mc = IL (the  Lukasiewicz implication) is ~r-

increasing and ÎL = M c.

As ÎL = M c we can deduce that in the hypothesis of Proposition 3.10 it540

is not true in general that F̂ is SOD ~r-increasing: take ~r = (r1, r2) with

r1 < r2; then IL is ~r-increasing by Example 5.5 but ÎL is not SOD ~r-
increasing by Proposition 4.22.

(2) Let M : [0, 1]2 → [0, 1] as in (1). We have seen in Corollary 4.21 and Propo-

sition 4.22 that D↑SOD(M) = {~r ∈ R2 | r1 ≥ r2} and D↑SOD(M c) = {~r ∈ R2 |545

r1 = r2}, hence Proposition 3.5(2) is not true for T = SOD. And taking
into account the proof of Proposition 3.5(2), neither is valid Proposition
3.4(3) for T = SOD.
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6. General properties

In this section we present some results that characterize classical and weak550

monotonicity in terms of directional, SOD and OD monotonicity. Thus, they are

a link between the different notions of monotonicity. Additionally, we extend

a general property of OD monotone functions from [5] to the case of SOD

monotone functions. We finish the section with two results on how OD and

SOD monotone functions can be constructed by means of an aggregation of a555

series of functions with the same type of monotonicity.

Proposition 6.1. Let F : [0, 1]n → [0, 1] be a function and set (~e1, . . . , ~en) for
the natural basis of Rn. Then the following are equivalent.

(1) F is increasing.

(2) F is ~ei-increasing ∀i ∈ {1, . . . , n}.560

(3) F is SOD ~ei-increasing ∀i ∈ {1, . . . , n}.

(4) F is OD ~ei-increasing ∀i ∈ {1, . . . , n}.

Proof. It is obvious that (1) ⇐⇒ (2), and (1) =⇒ (3) as x ≤ x + c(~ei)σ−1 for
all c > 0 and σ ∈ Sn).

(3) =⇒ (1) Let x,y ∈ [0, 1]n such that x ≤ y. We must show that565

F (x) ≤ F (y) and so we may assume that x < y. Let σ ∈ Sn be such that
xσ ∈ [0, 1]n(≥). Observe that x < y is equivalent to xσ < yσ. Let i = max{ j ∈
{1, . . . , n} | xσ(j) < yσ(j) }.

So we have the following scheme (it could be i = n):

(xσ) : xσ(1) ≥ . . . ≥ xσ(i−1) ≥ xσ(i) ≥ xσ(i+1) ≥ . . . ≥ xσ(n)≤

. . .

≤ < =

. . .

=

(yσ) : yσ(1) . . . yσ(i−1) yσ(i) yσ(i+1) . . . yσ(n)

Let c = yσ(i) − xσ(i). We have

xσ + c~ei = (xσ(1), . . . , xσ(i−1), xσ(i) + c, xσ(i+1), . . . , xσ(n))

= (xσ(1), . . . , xσ(i−1), yσ(i), yσ(i+1), . . . , yσ(n)) ∈ [0, 1]n .

Hence, as F is SOD ~ei-increasing, F (x) ≤ F (z), where z = x+c(~ei)σ−1 . We have
z = x + c~ej = (x1, . . . , xj + c, . . . , xn) = (x1, . . . , yj , . . . , xn), where j = σ(i).570

Set now, if v = (v1, . . . , vn) , w = (w1, . . . , wn) ∈ [0, 1]n and v ≤ w,

d(v, w) = |{k | vk < wk}| .

We have that z ≤ y and d(z,y) = d(x,y)−1, hence, if we reiterate the process,
we conclude F (x) ≤ F (z) ≤ · · · ≤ F (y), as required.
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(3) ⇐⇒ (4) By the definitions it suffices to show (4) =⇒ (3). Let
x ∈ [0, 1]n, σ ∈ Sn, c > 0 and i ∈ {1, . . . , n} such that xσ ∈ [0, 1]n(≥) and

xσ + c~ei ∈ [0, 1]n. Let us see that F (x) ≤ F (x + c(~ei)σ−1).575

Proceed by induction. If i = 1, then xσ ∈ [0, 1]n(≥) implies xσ+c~e1 ∈ [0, 1]n(≥)
and the thesis follows as F is OD ~e1-increasing.

Assume that the result is true for i− 1, where 2 ≤ i ≤ n.
If xσ(i−1) ≥ xσ(i) + c, then xσ + c~ei ∈ [0, 1]n(≥) and the thesis follows as F is

OD ~ei-increasing. Assume that xσ(i−1) < xσ(i) + c.580

Set t = xσ(i−1) − xσ(i). We have

xσ + t~ei = (xσ(1), . . . ,
i−1
^

xσ(i−1),
i
^

xσ(i−1), xσ(i+1), . . . ) ∈ [0, 1]n(≥) ,

hence F (x) ≤ F (x + t(~ei)σ−1) as F is OD ~ei-increasing.
Set y = x + t(~ei)σ−1 , so F (x) ≤ F (y).
Consider the transposition τ = (i−1 i). Observe that y(στ) = (yσ)τ = yσ.

Set s = c− t. As xσ(i−1) + c− t = xσ(i) + c we have

y(στ) + s~ei−1 = (xσ(1), . . . ,

i−1
^

xσ(i) + c,
i
^

xσ(i−1), xσ(i+1), . . . ) ∈ [0, 1]n.

By the induction hypothesis, F is OD ~ei−1-increasing, hence

F (y) ≤ F (y + s(~ei−1)(στ)−1) .

As

y + s(~ei−1)(στ)−1 = y + s(~ei−1)(τσ−1) = y + s(~ei)σ−1 =

= x + (t+ s)(~ei)σ−1 = x + c(~ei)σ−1 ,

we have F (x) ≤ F (y) ≤ F (x + c(~ei)σ−1) and the proof is finished.

Corollary 6.2. Let F : [0, 1]n → [0, 1] be a function. Then the following asser-
tions are equivalent:585

(1) F is increasing.

(2) F is SOD ~r-increasing for each ~r ∈ [0,∞)n.

(3) F is OD ~r-increasing for each ~r ∈ [0,∞)n.

Recall that a function F : [0, 1]n → [0, 1] is said to be weakly increasing if

λ ∈ R and (x1, . . . , xn) , (x1 + λ, . . . , xn + λ) ∈ [0, 1]n implies F (x1, . . . , xn) ≤590

F (x1 + λ, . . . , xn + λ).

Proposition 6.3. Let F : [0, 1]n → [0, 1] and ~1 = (1, . . . , 1) ∈ Rn. The following
assertions are equivalent.
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(1) F is weakly increasing.

(2) F is ~1-increasing.595

(3) F is SOD ~1-increasing.

(4) F is OD ~1-increasing.

Proof. The fact that (1) ⇐⇒ (2) is simply the definition of weakly increasing-
ness and, by Proposition 3.3, (3) ⇐⇒ (4).

(2) =⇒ (3) Let x ∈ [0, 1], σ ∈ Sn and c ∈ R+ such that xσ ∈ [0, 1]n(≥) and600

xσ + c~r ∈ [0, 1]n. Then F (x + c~1σ−1) = F (x + c~1) ≥ F (x) as F is ~1-increasing.
(3) =⇒ (2) Let x = (x1, . . . , xn) ∈ [0, 1]n and c ∈ R+ such that x + c~1 ∈

[0, 1]n. Take σ ∈ Sn such that xσ ∈ [0, 1]n(≥). We have that

xσ + c~1 = xσ + c~1σ = (x + c~1)σ ∈ [0, 1]n

as x + c~r ∈ [0, 1]n. So, by hypothesis,

F (x) ≤ F (x + c~1σ−1) = F (x + c~1) ,

and F is ~1-increasing.

The following theorem (see [5]) deals with OD increasingness along the linear

combination of two directions.

Theorem 6.4 ([5]). Let ~r,~s ∈ Rn and a, b ∈ R+. Let us assume that if x ∈
[0, 1]n, c ∈ R+, σ ∈ Sn, then

xσ, xσ + c(a~r + b~s) ∈ [0, 1]n(≥)

=⇒ either xσ + ca~r ∈ [0, 1]n(≥) or xσ + cb~s ∈ [0, 1]n(≥)

Then if a function is both OD ~r- and OD ~s-increasing then it is also OD (a~r+b~s)-605

increasing.

We present its extension to the case of SOD monotone functions. The proof

is straightforward.

Theorem 6.5. Let ~r,~s ∈ Rn and a, b ∈ R+. Let us assume that if x ∈ [0, 1]n,
c ∈ R+, σ ∈ Sn, then

xσ ∈ [0, 1]n(≥), xσ + c(a~r + b~s) ∈ [0, 1]n

=⇒ either xσ + ca~r ∈ [0, 1]n or xσ + cb~s ∈ [0, 1]n

Then if a function is both SOD ~r- and SOD ~s-increasing then it is also SOD
(a~r + b~s)-increasing.610
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Finally, the next theorem shows a construction method of OD and SOD

monotone functions, based on aggregating functions with the same type of mono-

tonicity.

Theorem 6.6. Let ~r ∈ Rn, let A : [0, 1]n → [0, 1] be an aggregation function
and Fi : [0, 1]n → [0, 1], 1 ≤ i ≤ m, functions. Define

A (F1, . . . , Fm) : [0, 1]n → [0, 1]

by A (F1, . . . , Fm) (x) = A(F1(x), . . . , Fm(x)). Then

(1) If Fi is OD ~r-increasing ∀i ∈ {1, . . . ,m}, then A (F1, . . . , Fm) is also OD615

~r-increasing.

(2) If Fi is SOD ~r-increasing ∀i ∈ {1, . . . ,m}, then A (F1, . . . , Fm) is also SOD
~r-increasing.

Proof. It is straightforward.

As a consequence, the sets of all SOD ~r-increasing functions and of all OD620

~r-increasing functions for a given ~r ∈ Rn are convex.

Corollary 6.7. Let λ1, . . . , λn ∈ [0, 1] be such that λ1 + · · · + λn = 1. Let
T ∈ {SOD, OD} and ~r ∈ Rn. Then, if Fi : [0, 1]n → [0, 1], 1 ≤ i ≤ n, are T
~r-increasing functions, then their convex combination λ1F1 + · · ·+ λnFn is also
T ~r-increasing.625

Proof. The result follows from Theorem 6.6, as A (x1, . . . , xn) = λ1x1 + · · · +
λnxn defines an aggregation function.

7. Conclusions

We have defined the concept of strengthened ordered directional (SOD)

monotonicity and studied some properties of the functions that are SOD mono-630

tone. We have also studied the relation between three notions of weaker forms of

monotonicity, that of directional monotonicity, ordered directional monotonicity

and strengthened ordered directional monotonicity. Additionally, we have intro-

duced the family of linear fusion functions, the family of ordered linear fusion

functions and an operation between functions that recover Choquet integrals635

and the  Lukasiewicz implication.
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