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Abstract

The paper deals mainly with a fuzzification of the classical Tarski’s theorem
for commutative sets of isotone maps (the so-called generalized theorem) in a suf-
ficiently rich fuzzy setting on general structures called L-complete propelattices.
Our concept enables a consistent analysis of the validity of single statements of
the generalized Tarski’s theorem in dependence on assumptions of relevant ver-
sions of transitivity (weak or strong). The notion of the L-complete propelattice
was introduced in connection with the fuzzified more famous variant of Tarski’s
theorem for a single L-fuzzy isotone map, whose main part holds even without
the assumption of any version of transitivity. These results are here extended
also to the concept of the so-called L-fuzzy relatively isotone maps and then
additionally compared to the results, which are achieved for the generalized
theorem and which always need a relevant version of transitivity. Wherever it
is possible, facts and differences between both the theorems are demonstrated
by appropriate examples or counterexamples.
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1. Introductory remark

Alfred Tarski in his paper [14] in 1955 presented two important theorems
on fixed points of isotone maps on complete lattices. The first one was for a
single map (named lattice-theoretical fixpoint theorem) and the second one for
a commutative set of maps (generalized lattice-theoretical fizpoint theorem). A
fuzzification of the first theorem and its generalization in a sufficiently rich fuzzy
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setting were considered in the paper [16]. There we proved that major parts of
this theorem remain valid even under the absence of any version of transitivity.
In this paper, we consider mainly a fuzzification of the generalized theorem. Our
previous results are extended onto the concept of L-fuzzy relatively isotone maps
(Definition 15) and compared to newly obtained results. The basic structure to
work with is going to be the so-called L-complete propelattice (Definition 14) in
addition with some other necessary assumptions.

We will not repeat all connections to other results from the literature, as they
were presented in [16], we only remark that different fuzzifications of Tarski’s
theorem started to appear in literature shortly after Lotfi A. Zadeh in [17] in
1971 introduced the notion of fuzzy ordering. These attempts were more or less
successful according to the strength of chosen assumptions on the supporting
structure and on the fuzzy setting. In our case, we consider weak, resp. strong
version of transitivity (Definition 13). Antisymmetry (Definition 11) is always
used in the weakest possible version. At the same time, it is known that elimi-
nation of antisymmetry is not possible in general, otherwise undesirable cycles
could appear, which could result in the nonexistence of fixed points.

In the paper, we adopt the notional apparatus from [16], where we considered
the question if the very fundamental assumption of transitivity can be possibly
fully eliminated. The answer, which is for the case of a single L-fuzzy isotone
map (Definition 15) given in [16], is surprisingly positive. The set of fixed points
of an L-fuzzy isotone map is nonempty and forms a so-called complete propelat-
tice (Definition 10), i.e., a structure which has all the properties of a complete
lattice except transitivity. Nevertheless, the strong version of transitivity is nec-
essary for the validity of the complete fuzzification of Tarski’s theorem including
the validity of explicit formulas for the least and the greatest fixed point. We
show that the same also holds for the generalized theorem (Theorem 4).

What can be observed is that literature is very stingy with fuzzifications of
the generalized Tarski’s theorem for a commutative set of isotone maps, unfor-
tunately, we are not able to provide any references (which, however, can be only
an imperfection of the authors). Therefore this paper is devoted mainly to the
fuzzification of the generalized Tarski’s theorem. Simultaneously, our approach
to a fuzzy setting is framed by the acceptance or generalizations of standard
definitions known from literature [2—4, 8]. We also observe differences between
necessary assumptions in the case of a single L-fuzzy isotone map and in the case
of a commutative set (Definition 1) of L-fuzzy isotone maps. Mainly, we show
that now we cannot get by with at least some version of transitivity (Theorem 3).
Further, we deal with the validity or invalidity of single statements about fuzzi-
fications of both Tarski’s theorems for L-fuzzy relatively isotone maps, which
generalize the so-called relatively isotone maps (Definition 8) [5, 7].

Before we recall the original generalized Tarski’s theorem, let us remind the
following simple but here fundamental definition.

Definition 1. A set of maps ) # F C XX, i.e., maps of the form f: X — X,
is commutative if f o g = go f holds for every f,g € F, i.e., f(g(x)) = g(f(x))
for any x € X.



Now we present the original version of the generalized Tarski’s theorem (only
with adapted symbolism).

Theorem 1. ([14]) Let

(i) X = (X, <) be a complete lattice,
(ii) F be any commutative set of increasing functions on X to X,
(iii) P be the set of all common fixpoints of all the functions f € F.

Then
the set P is not empty (1)
and
the system (P, <) is a complete lattice; (2)
in particular, we have
\/P:\/{xeX|f(ac)ZﬂcforevernyF}eP (3)
and
/\P:/\{xeX\f(x)SxforeveryfeF}eP. (4)

Obviously, the core of Theorem 1 is in statements (1) and (2), even if the
formulas (3), (4) create the basis of the original proof. Nevertheless, making
use of the explicit formulas for the least and the greatest fixed point can be in
concrete cases somewhat problematic. Naturally, the existence of fixed points
itself is the most important fact.

Let us point out that the motivation of many problems solved in this study
and in the paper [16] has arisen from concrete research tasks out of mathe-
matics. To mention in brevity the most important one, we turn our attention
to genetics. Some parts of genetic code can evince nontransitive relationships
which at the same time show a certain form of completeness. The formal de-
scription of this fact can be represented by the notion of a complete propelattice.
If a modification of a gene sequence is described by an isotone map on a pro-
pelattice, there arises a question of the existence of some reference gene, where
the gene sequence can be fixed on a medium, i.e., the question of the exis-
tence of a fixed point. The issue of interchangeability of manipulations with
gene sequences leads to a search for conditions which would be sufficient for the
existence of a common fixed point. The mentioned relationships usually have
different strength, which is the reason for solving all the tasks in a fuzzy setting.
(One can say that concrete real problems have indicated a deeper understanding
of the significance and strength of one of the most fundamental properties of
the entire mathematics - transitivity.)

2. Prerequisities, basic notions and facts

Now we briefly present all necessary facts and notation concerning residuated
lattices and fuzzy sets, i.e., L-sets in our terminology. For details and proofs,



we refer to reliable resources: [2, 10, 11]. Some of the needed facts from ordinal
or cardinal arithmetics can be found in [9, 13] and from lattice theory in [1, 6].
However, we try to be as self-sufficient as possible in the sense that we introduce
all necessary fundamental notions, which can be found in the literature under
the same names in different variants and usually with stronger assumptions.

The following notion is in our case just auxiliary, but with respect to its
importance in fuzzy set theory, we recall its definition. It delimits all the needed
properties of the fuzzy setting, where our results hold.

Definition 2. An algebra L = (L,V,A,®,—,0,1) is called a complete residu-
ated lattice if the following conditions are fulfilled:

(i) (L,V,A,0,1) = (L, <) is a complete lattice;
(ii) (L,®,1) is a commutative monoid;
(iii) binary operations ®, — satisfy the so-called adjoininess condition, i.e., for
every a,b,c € L the following equivalence holds:

a®b<c¢ & a<b—ec (5)

Let us point out that the assumption of completeness is fundamental in the
whole paper, because the existence of inf(A) for any set § # A C L (from
which follows also the existence of sup(A) [1, 6]) is necessary in all the following
statements. Both the operations multiplication e @ @ : L x L — L and residuum
e —»e: L x L — L formin L the so-called adjoint couple. As a consequence of
completeness of L we have for operations ® and — the following identities:

a—)bz\/{céL\a@cgb}, a®b:/\{c€L|a§b—>c}. (6)

Immediately from adjointness (5) the following important relations follow for
every a,b € L:

a®b<aAbd, (7)
a=1—a, a<b & a—b=1. (8)

Finally, the operation ® is mototone and the operation — is antitone in relevant
operands in the following way: for every a, b, c € L such that a < b the following
holds:

a®c<b®Re, c®a<cRb;
c—wa<c—b a—c>b—ec. (9)

The classical logical setting is in the following represented by the Boolean
algebra L = 2 with the support {0,1} (which is obviously a trivially complete
residuated lattice, where ® = A and — = =). A richer logical setting is then
represented by some complete residuated lattice L # 2.

Everywhere in the following X denotes an arbitrary but fixed nonempty
universe set and L denotes an arbitrary but fixed complete residuated lattice.



Any element ® € LX, i.e., any map ® : X — L, is called an L-set. For the
special cases (), X € LX we have f(z) =0 and X(z) =1 (z € X). For ® € LX
and a € L the set *® := {x € X |®(x) > «a} is the a-cut of P; especially
Ker(®) := 1® = {z € X | ®(x) = 1} is the kernel of ®. If Ker(®) # (), then the
L-set @ is normal, otherwise ® is subnormal. For fixedx € X anda € L, o # 0
we denote as {*/,} € L¥ such an L-set that {*/,}(z) = a and {*/.}(y) = 0
for every y # .

Because L is complete, we introduce for the indexed system () # F = {®) €
LX|X € A} € L™ the operations of intersection (\F = (ycp ®r and union
UF = U,ea @ for every € X in the following way:

GLEE (n ¢A> @)= A B

A€A AEA

(Ur)@ = (U ‘bk> (2) = \/ a(a). (10)

AEA AEA

If ) # A C X is a crisp subset, we identify it sometimes (not consistently)
thanks to (10) with its membership function, i.e., we write A = (J,c4{"/z}-
For a finite set {x1,2z2,...,2,} C X we also write

R R P U{%/wl}

For any ®, ¥ € LX the relation of inclusion ® C ¥ holds if for every x € X
we have ®(z) < U(z). Then ® is an L-subset of ¥. Obviously for any ®, ¥ € LX
the following holds:

hCx, 0Ce, @®CX;
PCU & VCO & V=0 (11)

It is substantial that with respect to completeness of L also (LX,U,N, 0, X) =
(LX,C) has a structure of a complete lattice.

The following definition introduces the most general variant of a singleton,
which is for our purposes not only sufficient but also favorable.

Definition 3. ([8]) An L-set ® € LX is an SC-singleton at the point xg € X
if Ker(®) = {zo}. An arbitrary SC-singleton at xg is denoted by the constant
term S[zo).

Remark 1. In literature, there are many variants of the definition of a single-
ton. In extreme cases it can be a subnormal L-set or one member crisp set
{1/4} for o € X. Other definitions of a singleton, see for example [2-4, 10,
11], usually require further conditions which are reasonable or useful in the rel-
evant context. This, however, means also some restrictions on the form of the
membership function of the singleton ®. For our purposes, it is important that



its form is restricted just by the only condition, i.e., that [Ker(®)| = 1. This en-
ables us to use in all our considerations the simple symbol S[zg]. (On the other
hand, this arbitrariness of the form of the membership function means that the
structure given by Definition 10 is not uniquely determined by its 1-cut, cf. [4]).
The only case, where the form of the membership function is for us important,
is in Example 4.

Any element A € LX*X is called an L-(binary) relation. For z,y € X
we write (z Ay) == A(z,y). For a € L the relation *A = {(z,y) € X x
X | (x Ay) > a} is the a-cut of A. For our purposes we find important mainly
1-cuts 1A = {(z,y) € X x X | (z Ay) = 1}. We write

rAy & (z,y) € A & (zAy)=1.
The following definition is effective for introducing or testing the properties

which have no analogies in the crisp setting [15]. It enables us to construct
simple but not trivial (i.e., where L # 2) examples and counterexamples.

Definition 4. ([15]) An element N(L) € L is called a neutral of L if N'(L) =
N (L) — 0. The set of all neutrals is denoted as N(L).

Obviously, the cases N (L) = ) but also |[N(L)| > 2 are possible. Until
something else is pointed out, anytime we speak about a neutral A (L), we
mean any fixed element of N(L). Every neutral A//(L) € N(L) has with respect
to (5) the following useful property:

N(L)<NL) =0 = NL)oN(L)<0 = NL)oN(L)=0. (12)

If ®(z) = N(L) for ® € L¥, we interpret such a situation naturally as that we
occupy a neutral attitude towards the statement “z is an element of ®”.

Remark 2. Let us notice that any two neutrals are incomparable in L. Let
Ni1(L),N2(L) € N(L) be different and for example A7 (L) < Na(L). Then the
following chain of implications holds: Nj(L) < N3(L) = N;(L) < M(L) —
N32(L) < Np(L), which is a contradiction, and hence N7 (L) || N2(L).

The following definition introduces nothing else but 3-valued Lukasiewicz
algebra (see [2, 11]), only its notation is adapted to the concept of complete
residuated lattices and to the specific role of neutrals in the following exam-
ples and counterexamples. These demonstrate some important properties or
contrarily the fact that relevant assumptions cannot be weakened.

Definition 5. Let us have Ly = {0, N,1} with the order 0 < N < 1. Then
the residuated lattice Ly := (Ly, V,A,®,—,0,1) for which N(Ly) = {N} is
called a 3-valued Lukasiewicz algebra.



With respect to (12), (6) and the fact that N is the only neutral, Ly is
obviously a uniquely determined complete residuated lattice.

One of the most important standard definitions in the paper is the following
one [2-4, 8].

Definition 6. An L-relation ~ € LX*X is called an L-equality if for every
z,y,2z € X the following four conditions are fulfilled:

(i) (z = x) = 1(reflexivity);

(ii) (= ~y) = (y = x) (symmetry);
(i) (z=~y) R (y=2) < (z = 2) (transitiity); (13)
(iv) (x=~vy)=1= z =y (separation). (14)

Remark 3. (a) Obviously, thanks to (7) (and transitivity of the order in (L, <)),
the following implication holds:

[(zry)A(yr2) <(zr2)] = [ry) e (y~2) < (z=2)

According to this implication, relation (13) introduces weak version of transi-
tivity =, whereas the left side of this implication introduces its strong version.
Analogous terminology is used also in the rest of the paper.

(b) In connection with the above-mentioned, it is suitable to notice that
our prior effort is to use as minimal number of as weak assumptions as possi-
ble. Definition 6 fulfills both these requirements. Let us remark that in many
concepts known from literature, the L-equality is usually being substituted by
other notions, whose conditions are however in total stronger.

Throughout the paper, we use only such notions, which are conservative
extensions of “crisp” notions, more precisely, the notions which for L = 2 au-
tomatically reduce onto the standard notions. From this point of view, the
L-equality from Definition 6 is an excellent example of a conservative extension
of the mathematical identity on the set X.

Remark 4. From a strictly logical point of view, conservative extensions are
hence such notions which have the following property: whatever can be proved
in a fuzzy setting which is represented by a logically richer setting L # 2, that
can be proved even in the crisp setting of the classical logic L = 2 only with
the use of its own means. This fact implies that it is enough to construct all
counterexamples only in the crisp setting, which is often easier. Nevertheless,
later we present a universal method (see Lemma 1), which enables to transfer
every (counter)example into a simple but not trivial fuzzy setting.

Concerning the notation, let us add that if the universe set X is considered
together with a fixed L-equality ~ € LX*X this fact is underlined by the
notation as we write it as the ordered pair (X, a). Especially, (X,=) means
that we consider the classical identity on X.



3. Fundamental crisp notions and illustrative examples

In this part, basic notions from [16] are reviewed and extended and a few
examples, which are then used also in further parts of the paper, are presented.
At first, analogies of notions from poset theory, which terminologically reflect
the absence of the assumption of transitivity, are introduced. These point out
that still there is some idea of “orderliness”. For the majority of the presented
notions, we bring in the next section also their conservative extensions. Never-
theless, these notions are important also themselves because they appear in the
following statements and theorems. (For terminology see Remark 7.)

Definition 7. ([16]) Let a binary relation A C X x X be reflexive and an-
tisymmetric. Then A is a propeorder on X and the pair X = ((X,=),4) is
a propeordered set. If A C X then

(pl) L(A):={a € X |Vx € A:aAx}isa lower propecone of A; any a € L(A)
is a lower propebound of A;

(p2) U(A) :={a € X |Vx € A:xAa}isan upper propecone of A; any a € U(A)
is an upper propebound of A,

(p3) an element a € X is the propeleast element of A iff a € ANL(A); we write
pmin(A4) := a;

(p4) an element a € X is the propegreatest element of A iff a € ANU(A); we
write pmax(A) 1= a;

(p5) an element a € X is the propeinfimum of A if a = pmax(L(A)); we write
pinf(A) := a, especially we denote L := pinf(X) = pmin(X);

(p6) an element a € X is the propesupremum of A if a = pmin(U(A)); we write
psup(A) := a, especially we denote T := psup(X) = pmax(X).

Remark 5. (a) The conditions in parts (pl) and (p2) can be also vacuously
true, i.e., L(0) = U(B) = X. If elements in (p3) and (p4) exist, then it auto-
matically means that the set A is nonempty and hence the assumption A # ()
is not needed in Definition 7.

None of the elements defined in (p3)—(p6) needs to exist but if it exists, then
it is unique thanks to antisymmetry. Therefore their notation could have been
introduced directly in the definition.

(b) It is not hard to check that for every A C X if pinf(A), or psup(4),
exists, then

{pinf(A)} = L(A) NU(L(A)), {psup(A)} =U(A) N LU(A)), (15)

respectively. The same relations, which depend only on reflexivity and antisym-
metry but not on transitivity, are well known also from lattice theory.

The following definition is here recalled above all because the second part
does not need to be well-known. Conservative extensions of these notions into
the fuzzy setting are fundamental in the next.



Definition 8. Let X = ((X,=),A) be a propeordered set. A map f: X — X
is isotone on X if for any z,y € X the following implication holds:

rAy = f@)Af(y). (16)

A map f: X — X is relatively isotone on X if for every z,y € X the following
implication holds:

f@) by & xhy & 2D fly) = fl@)Af(y). (17)

The notion of a relatively isotone map is adopted from poset theory [5, 7].
Condition (17) requires the fact that images are comparable only in the situation
when not only their preimages but also the preimages with the relevant images
are comparable; in the opposite case the condition does not require anything.
Thus, condition (17) is weaker than (16). Whenever the existence of a fixed point
for an arbitrary relatively isotone map f € XX is guaranteed, the existence of
fixed points of isotone maps is automatically ensured too. The major advantage
of condition (17) is that its antecedent is usually simply or even trivially fulfilled
if its consequent is fulfilled too, but condition (16) does not have to be satisfied.
(Let us notice that relatively isotone maps enable an alternative formulation
of the famous theorem by A. Davis, which is a converse of Tarski’s theorem.)
Mainly by looking for needed counterexamples it appears that the difference
between conditions (16) and (17) is bigger than one would await at first glance.

Remark 6. The following can be said about the history of condition (17). The
authors first met the condition (exactly in this form) in [12] in relation with
the so-called double superinduction principle from set theory (for more details
see also [13]). We do not know if the same condition appeared in lattice theory
independently.

The following definition appears here because of the codification of notation.

Definition 9. The set of all fized points of a map f € XX is denoted as
Fix(f) == {& € X |z = f(x)}. The set of all common fized points of a set
of maps 0 # F C X* is denoted as Fix(F) := ;¢ p Fix(f).

The fundamental role is in the following played by a conservative extension
of the next definition, which afterwards arises from successive extensions of
notions from Definition 7.

Definition 10. ([16]) A propeordered set X = ((X, =), A) is called a complete
propelattice, if for any set A C X both pinf(A) and psup(A4) exist simultane-
ously. Then A is called a complete propeorder on X.

Remark 7. Considering the formation of the terminology, one can see that for
transitive structures, especially lattices, all usual prefixes with Latin or Greek
origins are occupied: semilattice, pseudolattice, etc. Especially in connection



with Definition 10 and the following Definition 14 we have chosen short and
easily pronounceable Latin adverbium “prope” [prope], which means “close to”.
Our terminology should emphasize that the introduced notions have many prop-
erties in common with complete lattices.

The following examples illustrate the introduced notions and are then used
further in the text. Obviously, for a complete propelattice which is not automat-
ically transitive, card(X) > 5 has to hold. Hence the first two examples belong
to the simplest ones (because there card(X) = 6). Lattices are demonstrated
by “Hasse diagrams”, however, it is clear that it is transitivity what is the key
property which enables their unique interpretation and application of all the
rules for their construction. Therefore our figures are only helping and they can
be made even in different readable ways.

Example 1. Let a complete propelattice X = ((X,=),A) have the “Hasse
diagram” given in Figure 1.

Figure 1: Diagram for Example 1

o T

x
l 1
Here X = {1, z,y,w, 2, T} and the propeorder A is given as follows:

A= {(J->x)7 (J_7y), (L,w), (J-7 Z)7 (J-v T)? ($7y)7 (m7w)7
(x,2), (2,y), (W, 2), (2, T),(y, T), (w, T), (2, T)} Uidx.

The relation A C X x X is obviously not transitive, because w A z and z Ay
but (w,y) € A. Also it is easy to see that X is a complete propelattice; e.g., for
A ={xz,y, 2} we have:

pinf(4) = pmax(£(A)) = pmax({L,a}) = ,
psup(A) = pminU(A)) = pmin({T}) = T.

Further, let a map f : X — X be given by the following list:

f=Llora-zyy—myw— 2,22, T =y

10



It can be easily seen that f is isotone on X; for example we have:
A (L) (@) en, A3 (rw)Zd(22)en,
A> (w,T) it (z,y) € A.

Here Fix(f) = {y, 2z} # 0 and pmin(Fix(f)) = z and p max(Fix(f)) = y. In the
following we will see that these equalities are not coincidental but legitimate.

Example 2. Even here let us have X = {1, 2,y,w,2, T}. Let now the com-
plete propelattice X = ((X, =), A) have one of the following diagrams in Fig-
ure 2. The first one follows all the rules for constructing Hasse diagrams which
can be used for nontransitive relations; the second one represents only a “skele-
ton” of the relation and even if it has nothing common with Hasse diagrams, it
is probably better readable.

Figure 2: Diagrams for Example 2

T

_|

1L L

Here the propeorder A is given by the following:

A ={(L ), (Ly), (L w), (L, 2), (L, T), (2,9), (w,y), (w, 2), (,w), (4, 2),
(, T), (y, T)y (w, T), (2, T)} Uidx.

Clearly, X is a complete lattice, however even here the relation A C X x X is
not transitive, because x Aw and w A z and also Ay and y A z but (z,2) € A.
Further, let us define a map f : X — X by the following list:

f=Llrwz—wy—yw—wz—y T -yl
Again, it is trivial to check that f is isotone on X, for example:
As (L) P wy)yen, As(@w) L (ww) e A,
A (x,T) it (w,y) € A.

11



Here Fix(f) = {y,w} # 0 and simultaneously pmin(Fix(f)) = w and
pmax(Fix(f)) = y. Even here it is not coincidental, as we show in the next.
Further, let us define a map g : X — X by the following list:

g=[l—rrozy—ww—zz—2 T w.

This map is not isotone on X, but it is relatively isotone on X. Still for example
the following holds:

A3 (z,y) ZL (zw) e D, A3 (y,T)ES (ww) € A,
A (w,y) &4 (z,w) € A
Nevertheless A 3 (2, T) &% (z,w) & A, however the following trivial implica-
tion is exactly of the form (17):
AT & 2zAT & zAw = zAw;

in a similar way for example A 3 (w,z) 3% (z,2) € A, but again (17) holds
trivially:
Az & wAhz & whz = zlAz

If we check all the possibilities, we can see that g : X — X is really relatively
isotone. Here Fix(g) = {z,2} # 0 but « and z are incomparable.

The last example has in the fuzzy setting an important meaning as a coun-
terexample. Naturally, the universe set has to be richer here.

Example 3. Let the complete propelattice X = ((X,=),A) be infinite, i.e.
card(X) > Ng. The situation in X is demonstrated by the diagram in Figure 3.

Figure 3: Diagram for Example 3

Let Q € On be an arbitrary fixed limit ordinal and let X = {L,a,b,¢, T} U
{pa | @ € Q}, where {p, | @ € Q} is an antichain. Now for fixed 8 € Q we define

12



the map fg : X — X in the following way: for a set Ag := {Ll,a,b,¢, T} U
{pa o < B} be f5(Ap) :== {ps}; for « > B+ 1 then be fg(pa) := pa. The map
[ is obviously not isotone on X, because for arbitrary p, (where o > 5+1) we
have L Ap, and even po, AT but not pg A p, nor p, Apg hold. On the other
hand, f3 is relatively isotone on X de facto trivially. Here for every x,y € Ag the
implication £ Ay = pg A pg clearly holds. For a > $+1 then p, is comparable
only with L and T and the implications in the form of (17) hold:

pBApa & LAp, & LAp, = PBAPm
Pa DT & po AT & palAps = palps.

Hence f3 : X — X is indeed relatively isotone on X. At the same time Fix(fg) =
{pa| @ > B} # 0 is a nonempty antichain.

Moreover, F' = {fs|B8 € Q} C XX is a commutative set of maps. Let
B1<fBzreQand xe Ag, ={L,a,b,c, T}U{ps|a < B2}. Then

fﬁl (fﬂ2(m)) = fﬂl (pﬂ2) =Pp = fﬁz(pf}?) = f52 (fﬁl(x))

For p,, where oo > B3 + 1, we then have fg, (fz,(pa)) = f3, (f8,(Pa)) = Pa-
Now it can be easily shown by a contradiction that

Fix(F) = () Fix(fs) = 0.

BEQ

Obviously Fix(F) C {po|a € Q}. Let ap € Q be such that p,, € Fix(f3)
for every B € ). Because (2 is limit and oy < €2, there exists 5y € € such
that ag < By and hence po, ¢ Fix(fs,), which is a contradiction. Further,
if v <Qand F, :={fg|B < v} C F, then also Fix(F,) = (5, Fix(fs) =
{pa |y < a} # 0, hence there exists a subset of F' such that the set of common
fixed points is a nonempty antichain, i.e., especially it has not a structure of
a complete propelattice. Moreover, if > w (ordinal type of the set of natural
numbers) and w < v < Q, then card (Fix(Fy)) > Ry, which means that the set
of common fixed points Fix(F}) is infinite.

The following facts are important for further argumentation. If we turn
all the arrows up and leave the unnecessary ones in Figure 3, then we obtain
a standard Hasse diagram of a complete lattice. But everything above mentioned
remains valid without any changes even in this case, where X = ((X, =), A)
is a complete lattice.

All the examples in this part demonstrate special cases of facts which hold
in a much general fuzzy setting and which are partially presented in [16] or are
derived in the following. Here we have in mind the following: every relatively
isotone map on a complete propelattice has its fixed point, but the set of fixed
points does not need to have a structure of a complete propelattice or complete
lattice (Examples 2 and 3); an isotone map on a complete propelattice then
has fixed points and the structure of their set is again a complete propelattice
(Examples 1 and 2).
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Example 3 shows among others two important things. Firstly, relatively iso-
tone maps are indeed a fundamental extension of isotone maps, because often a
map is trivially relatively isotone but is not isotone. However, the cost for this
extension is the fact that for a commutative set of relatively isotone maps on a
complete propelattice, as well as on a complete lattice, none of the statements
(1)—(4) from Theorem 1 holds. As we use only conservative extensions of stan-
dard notions, no analogy of Tarski’s theorem for a commutative set of further
introduced L-fuzzy relatively isotone maps can be derived in the fuzzy setting.

4. Conservative extensions, some fundamental and auxiliary facts,
another example

In this section we present conservative extensions of fundamental notions
from Definitions 7, 10 and 8. Of course, the main part is taken over from [16],
where it is justified that all of the notions are really conservative (even if it is
factually evident). The first definition extends the notions of propeorder and
propeordered set.

Definition 11. ([16]) Let ~ € LX*X be an L-equality on X, then the L-
relation A € LX*X is reflexive and antisymmetric w.r.t. =, if for every z,y € X

(i) (zhz)=1 (reflexivity); (18)

(i) (zly)®(ylLz)<(z=y) (antisymmetry (w.r.it=)). (19)
An L-propeorder on X (w.r.t. =) is an L-relation A € LX*X which is reflexive
and antisymmetric (w.r.t. =). The pair X = ((X,~), A) is called an L-
propeordered set.

Remark 8. Let us emphasize that all the definitions in this section have of
course their analogies in existing literature, where different kinds of fuzzy orders
are considered. All of them just need in addition some version of transitivity
(usually one of those in Definition 13) and they can more or less differ from each
other [4, 8, 17]. Our definitions only fix and effectively shorten the terminology.
As mentioned in the introduction, our main effort was to choose as the basis
of each definition the variant with the weakest assumptions. Therefore, for
example, the basis of Definition 11 was adopted from [8], whereas in [4] there is
antisymmetry in spite of (19) specified by probably a more frequent but stronger
condition, that for every z,y € X the inequality (z Ay) A (yAzx) < (x ~ y)
holds.

Especially with respect to (15), we can de facto without any formal change
take over the following definitions from Bélohldvek’s work [2—4]. Our terminol-
ogy is only adapted to the generally supposed absence of transitivity.

Definition 12. ([16]) Let X = ({(X,~), A) be an L-propeordered set and ® €
L* be an arbitrary L-set. Then £(®) € LX is the lower propecone of ® if for
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every x € X

L@)(x) = N\ (®y) = (A y)); (20)

yeX
U(®) € LY is the upper propecone of ® if for every x € X
UB)(x) = N (@(y) = (y L)) (21)
yeX

For any x € X we denote:
L) = £({a)) = L)), UG) =t ((*/a)) =U({z)).  (22)
Propeinfimum and propesupremum of ® are successively the following L-sets:
pinf(®) = £(®) N UL®D)), psup(®) = U®) N LU®)).  (23)
Especially we denote:
1 :=pinf(X), T :=psup(X). (24)

Remark 9. In relation with following notions let us notice that none of the
L-sets defined by relations (20)—(24) needs to be normal in general.

It is mentioned in Remark 3 that many notions used here have their weak as
well as strong versions. Up to now we have used the weak versions of transitivity
of ~ in (13) and of antisymmetry of A in (19) and we continue in this manner.
But for transitivity of A, which is in the center of our attention, the situation
is different, because the validity of our statements substantially depends on the
used version of transitivity. In the same way as in Remark 3 we obtain from (7)
and transitivity of the order in L = (L, <) immediately the implication:

APA(yAz)<(xzlhz) = (zly)R(yAz) <(zAz).

This implication justifies the following important definition (even if it has mainly
terminological and systematical reasons).

Definition 13. An L-relation A € LX*X is weakly transitive if for every
x,y,z € X
Ay @ (yAz) < (zAz); (25)

A € LX*X is strongly transitive if for every x,y,z € X

Ay A(yLz) < (zAz). (26)

One of the main questions being solved in the paper is if transitivity can
be eliminated or not and if not, then if weak transitivity is sufficient or strong
transitivity is necessary. As already mentioned, every strongly transitive L-
relation is also weakly transitive.

The following auxiliary statement, which is, except for the last part, proved
in [16], is needed in the following and summarizes basic properties of all pre-
sented notions.
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Proposition 1. ([16]) Let X = ((X, =), A) be an L-propeordered set. Then the
following statements hold.

1. Let x € X and ® € LX. Then the following implications hold:
O C L(z) = psup(®) C L(z), P CU(x)=pnf(®) CU(z). (27)
2. The following equalities hold:
1 =pinf(X) = psup(P) = L(X), T = psup(X) = pinf(0) =U(X). (28)
3. Let x € X be arbitrary. Then the inclusions hold
1 CL(z), TCU(x). (29)
4. Let ® € L™ be arbitrary. Then the following implications hold:

Ker(pinf(®)) #0 = 3Jzp € X: pinf(®) = S[xo], (30)

Ker(psup(®)) # 0 = Jz1 € X: psup(P) = S[z4]. (31)

5. Let for ®, W € LX be ® C U, pinf(V) = S[zo], pinf(®) = S[x1], psup(®) =
Slxa] and psup(¥) = S[z3]. Then zo*Ax1 and 2 *A x3.

6. Let ® € LX be normal and A € LX*X be weakly transitive. If pinf(®) =
Slxo] and psup(®) = S[x1], then xo 1A wxy. All the more so, the relation
holds even if A is strongly transitive.

Proof. We prove only statement 6, because the other proofs can be found in [16].
According to the assumptions and (23) we have:

pinf(®)(wo) = L(®)(x0) AU(L(P))(x0) = 1,
psup(®)(z1) = U(®) (1) A LU®))(z1) = 1.
From here according to (20) and (21) we have

L(®)(z0) = /\ (@(y) = (z0 Ly)) =1,

yeX

U@ (1) = N\ (2(y) = (yAz)) = 1.
yeX

For every y € X hence ®(y) — (voAy) = 1 and ®(y) — (yAzp) = 1.
Because ® € LX is normal, i.e., Ker(®) # 0, there exists yo € X such that
O(yo) = 1. With respect to (8) then (xgAyo) = 1 and (yo Axy) = 1. From
weak transitivity we then obtain:

(l‘oAyo)@(yoﬂl‘l) =1®1< (3}‘0&3}1) =1 = Z‘Olﬂxl.

The same would hold also for strong transitivity. The proof is finished. O
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Let us point out that any L-set appearing in (27)—(29) generally does not
need to be normal.

Remark 10. In relation to Proposition 1, statement 5, it is suitable to realize
that the relation zg 1A x3, resp. =1 ' A x5, which would be awaited analogously
to relations from lattice theory, generally does not hold. These relations are in
fact substantially dependent on transitivity (see statement 6).

The following fundamental definition formulates a conservative extension of
Definition 10.

Definition 14. ([16]) Let X = ((X, =), A) be an L-propeordered set. Then
X is called an L-complete propelattice if for any L-set ® € L* both the L-sets
pinf(®) and psup(®P) are normal, i.e., Ker(pinf(®)) # 0 # Ker(psup(®)). The
L-relation A € LX*X is then called an L-complete propeorder on X.

From this definition, (30) and (31) it follows that in an L-complete propelat-
tice for every ® € LX there exist elements zg,z; € X such that

pinf(®) = S[xg] and psup(P) = S[z1]. (32)

The last fundamental definition formulates a conservative extension of Defini-
tion 8. Its first part is presented in [16].

Definition 15. Let X = ((X,~), A) be an L-propeordered set. Then a map
f: X — X is L-fuzzy isotone on X, if for every z,y € X

(xby) < (fl@) A f(y). (33)
A map f: X — X is L-fuzzy relatively isotone on X, if for every =,y € X
(f(@) Ay) Az Ay) Az A fy) < (f(z) A fy). (34)

Naturally, (33) implies (34), hence every L-fuzzy isotone map on X is also
L-fuzzy relatively isotone; the opposite does not hold.

Remark 11. It would not make a great sense to substitute in inequality (34)
its left side by expression (f(z) Ay) ® (x Ay) ® (x A f(y)), i.e., to consider its
“weak” version. If any two members in this expression would equal to some fixed
neutral A(L) € N(L), then its value would be 0 according to (12), whatever
the value of the third member would be.

The following theorem formulates complete a fuzzification of Tarski’s theo-
rem for a single isotone map and its great part is proved in [16]. As we will see,
it presents significantly different results in comparison with those, which can
be achieved by a fuzzification of Tarski’s generalized theorem. Here we prove
especially its first part. Moreover, its proof demonstrates the basic general idea
which also applies to further parts.
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Theorem 2. ([16]) Let X = ((X, =), A) be an L-complete propelattice. Then
the following statements hold.

1. If amap f: X — X is L-fuzzy relatively isotone on X, then Fix(f) # (.

2. If amap f: X — X is L-fuzzy isotone on X, then Fix(f) # 0. Moreover,
the system

Fy = ((Fix(f), =), 'A N [Fix(f) x Fix(f)]) (35)

18 a complete propelattice. FEspecially, for L-fuzzy isotone map f on X
there exist its propeleast and propegratest fized point.

3. If amap f: X — X is L-fuzzy isotone on X and the L-complete prope-
order A\ € LX*X s weakly transitive, then the complete propelattice F;
in (35) is a complete lattice.

4. If a map f : X — X is L-fuzzy isotone on X and the L-complete prope-
order A € LX*X s strongly transitive, then F; in (35) is a complete
lattice. Futher, let us define L-sets ®, U € LX for every x € X in this

way:

O(z) = (f(z) D), V(z):=(zL f(z)). (36)

Then the L-sets ® and ¥ are normal. If pinf(®) = S[xo] and psup(¥) =
S[z1], then

zo = min(Fix(f)), 1 = max(Fix(f)), (37)

where the minimum and mazimum are taken with respect to the order
LA N [Fix(f) x Fix(f)].

Proof. We prove only statements 1 and 3, the proofs of the other parts can be
found in [16].

Ad 1. For an arbitrary but fixed L-fuzzy relatively isotone map f: X — X
on X we construct a point zg € Fix(f), which means Fix(f) # 0.

Let F := {®y € L¥ |\ € A} C L¥ be the indexed system of all the L-sets
such that every ®, € F fulfills the following two conditions:

(a) @A C Prof, i, Vy € X : @y(y) < PA(f());
(b) V¢ € LX : ¢ C @) = pinf(¢) C ®,.

Firstly, 7 # 0. For every y € X we have X(y) = X(f(y)) = 1 and for an
arbitrary ¢ € LX we have ¢ C X as well as pinf(¢) C X, i.e., X € F. Now let
us define the following L-set:

= F=[)®r#0. (38)
AEA

Indeed, ® # 0. If we choose ¢ := ) then according to (b) T = pinf () C @, for
every A € A. Then, because X is an L-complete propelattice, according to (32)
there exists x* € X such that T = S[z*] #0, i.e., 0 £ T C ®.
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Now we show that @ fulfills both the conditions (a) and (b), which means
that ® € F is the least element of F in the complete lattice (LX,C) =
(LX,U,N, 0, X). For any A € A and y € X we have

<I><y>=<ﬂ ) = A ©x(y) < Baly) < A(F (),

AEA AEA

which leads to

oy) < N\ BA(f(y) = <ﬂ <I>A> (f(y) = 2(f(¥)), (39)

AEA AEA

and hence ® C ®o f, i.e., the condition (a) is fulfilled by ®. Further, let ¢ C ®.
Then according to (38) ¢ C @, for every A € A and thus pinf(¢) C (o A =
®. Hence ® satisfies also the condition (b). In total one can observe that in the
complete lattice (L~ C) the following fundamental equality holds:

d = irclf(]:) = mcin(f) eF. (40)

Because ® C ® € F, from the property (b) we get pinf(®) C ®. According
to (32) there exists zo € X such that pinf(®) = S[xg]. Thus according to (b)
and (a) we have 1 = pinf(®)(xg) < ®(zg) < ®(f(x0)), which gives ®(f(xg)) =
1. In addition to that, according to (23)

Slzo] = pinf(®) = L(D) NU(L(D)). (41)

From here with respect to (20) we have

L(®)(x0) = N (®(y) = (20 Ly)) =

yeX

ie, ®(y) = (zoAy) =1 for any y € X. With respect to relation (8) we get
the following important inequality:

O(y) < (zoAy), VyeX. (42)
For the special choice y := f(zo) in (42) we obtain

1 =®(f(z0)) < (zo A f(20)),

and
(zo A f(x0)) = 1. (43)
From here with respect to antisymmetry (19) and separation (14) it is obvious
that now it is enough to prove the equality (f(xo) Azg) = 1. For this purpose
let us introduce the L-set (see Definition 12, (22))
YU = & NU(f(x0)). (44)
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We have to show that ® = ®”. The inclusion & C & is obvious. The opposite
inclusion is to be proved in such a way that we show that ®“ satisfies both the
conditions (a) and (b). Then with respect to minimality of ® in F according to
(40) the relation ® C ® has to hold.

According to (44) and (39) for every y € X we have:

1 = (D NU(f(w0))) (y) = @y) AU(f(w0))(y) <

< @(y) < @(f(y)- (45)
Further, according to (45) and (42) we obtain:
(y) < @(y) < ©(f()) < (20D f(y))- (46)

Now with respect to (22), (21) and (8) for any y € X the following holds:

Uf)w) = N\ (@} (z) = (zAy)) =

= N\ 0= (@EAY)AQ = (flzg) Ay)) = (47)
Z?'éf(ﬂj)

= A 1AM (flwo) Ay)) = (flzo) Ay).
z#f(aio)

Hence according to (44) and (47) for every y € X we have:
Y (y) <U(f(20))(y) = (f(wo) Ly). (48)
Finally with respect to (44) and (42) obviously:
(y) < B(y) < (z0 Ly). (49)
From (48), (49) and (46) we obtain
Y (y) < (f(wo) Dy) A (wo Ly) Ao A f(y)): (50)

Because the map f : X — X is L-fuzzy relatively isotone on X, we get with
respect to (34) the following inequality:

(f(wo) Dy) A(zo BSy) A (o A f(y) < (Fwo) A& Fly)- (51)
From (50) and (51) with respect to (47) we finally obtain the inequality:
®(y) < (f(zo) & f(y)) = U(F(20)(f(y)). (52)

For every y € X hence according to (52) and the fact that the L-set ® satisfies
the condition (a), the following inequality holds:

(y) = @(y) AU(f(x0))(y) < S(f(y) AU (0))(f(y)) =
= (@ NU(f(20)))(f() = “(f(y)),
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which means that the L-set ®“ fulfills the condition (a).

Now we have to justify for ®/ the condition (b). Let for some ¢ € L¥
hold: ¢ C ®Y = ® NU(f(x0)). Then at the same time ¢ C ® and also
¢ C U(f(xp)). Because ® € F, then pinf(¢) C ®. According to implications
(27) even pinf(¢) C U(f(zo)), which gives

pinf(¢) € ® NU(f(z0)) = B

and this means that ® satisfies also the condition (b).

Because the L-set ®“ fulfills both the conditions (a) and (b), we have that
PY € F. From (40) we then get the inclusion ® C & and because the opposite
inclusion is trivial, we finally obtain the equality:

oY = . (53)
From (41), (53) and (44) we then have the following chain of inclusions:
Slao] = pinf(®) = pinf (@) € & = & NU(f(x0)) C U(f(wo)).
From here according to (47) for the special choice y := z¢ we obtain:

Slzo](zo) = 1 SU(f(z0))(w0) = (f(w0) A 20),

hence
(f(zo) Dzo) = 1. (54)

As a final consequence, according to (43) and (54) with respect to antisymmetry
of A w.rt ~ (19) and to the subsequent separation (14), we obtain the next
chain of implications:

1=1®1=(z0A f(x0)) ® (f(z0) Azo) < (w0 =~ f(x0)) =
= (wo~f(z0)=1 = x0= f(zo)

Hence x € Fix(f), so Fix(f) # 0 and statement 1 from Theorem 2 is proved.

For the sake of completeness let us add that a fixed point of the map f :
X — X could be constructed by a dual approach in the following way. At first
we would introduce P := {¥, € LX |\ € A} C LX as the indexed system of all
the L-sets such that every W), satisfies the following two conditions:

(aa) Uy C Wyof,ie, Vy € X : Ua(y) < UA(f(¥));
(bb) V¢ € LX : ¢ C Wy = psup(¢) C V.

Then we would introduce in the same manner the L-sets ¥ := [P = (], o, ¥ #
¢ and UL, All further considerations would then be analogous and they would
lead to the existence of a certain (generally different) fixed point x; € Fix(f),
i.e., again we would find that Fix(f) # (.

Ad 3. With respect to statement 2 of the theorem and the fact that in Defi-
nitions 7 and 10 none of the notions is dependent on transitivity, it is sufficient
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to show that the propeorder *!A C X x X is transitive (in the usual sence).
Let for z,y,2 € X be 2*Ay and y'Az. Then according to the definition,
(x Ay)=1and (yAz) =1 and according to inequality (25) we get

1=101=(2Ay)(ylLz) < (zAz).

From here (z A z) =1, i.e., 2 'A z. Hence 'A is a transitive relation and Fy is
a complete lattice.

As it was already mentioned, the other two statements 2 and 4 are proved
in [16]. Thus the proof is finished. O

Remark 12. (a) An interesting question arises in relation to the proof of state-
ment 1 from Theorem 2, i.e., if the fixed points zy and x; are different from
each other in the case, where card(Fix(f)) > 2. As proved in [16],if f : X — X
is L-fuzzy isotone on X, then zyp = pmax(Fix(f)) and z; = pmin(Fix(f)),
where the propegreatest and propeleast elements are taken in the propeorder
LA N [Fix(f)]? and thus necessarily zo # x1. However the situation is different
in Example 3. Let us consider any from maps fg : X — X. With respect to
minimality of the sets ® and ¥ from the proof (in this case in (Exp(X), <))
obviously Ag € F, Ag € P and ®,¥ C Ay and in this case for both the fixed
points we have pinf(®),psup(¥) € Ag. Because Fix(fz) N Ag = {ps}, the
following has to hold: pinf(®) = pg = psup(¥). Hence both the fixed points
blend in one. (Although now L = 2, the same could be observed also in the
fuzzy setting, see the following Lemma 1.)

(b) The proof of statement 1 demonstrates a general idea of all the proofs of
the other statements from Theorem 2. Always an L-set of desired properties is
introduced, which is the least in the complete lattice (LX, C) = (LX,uU,N, 0, X).
Completeness of this lattice is here fundamental. This is the main reason why
L=(L,V,A,®,—,0,1) has to be a complete lattice. The same method is also
used in the proof of the following Proposition 2.

Theorem 2 implies the following facts. If f : X — X is L-fuzzy relatively iso-
tone on an L-complete propelattice X = ((X, =), A), then Fix(f) # 0. However,
as it is shown in Example 3, no specific structure of Fix(f) can be awaited, what-
ever the L-propeorder A € LX*X is like, regardless if it is weakly or strongly
transitive or even not transitive at all.

It is obvious that statements 2 and 4 of Theorem 2 provide a complete
fuzzification of Tarski’s theorem on fixed points of a single isotone map. These
statements are surprising because of the following reasons. Let us start with
statement 4. For validity of this statement strong transitivity is necessary and
it cannot be replaced by the weak one, because, as mentioned in [16], there
exist weakly transitive L-complete propeorders, where equalities (37) do not
hold. Obviously, for the L-sets ® ¥ € LX in (36), with respect to reflexivity
(18), inclusions Fix(f) C ® as well as Fix(f) € ¥ hold. Then regardless if
the L-relation A € L¥*X is weakly transitive or is not transitive at all, the
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following relations always hold, according to Proposition 1 (statement 5) and
the definition of the propeleast and propegreatest element:

zo*A pmin(Fix(f)), pmax(Fix(f))*A xy, (55)
pmin(Fix(f)) *A pmax(Fix(f)).

Statement 2 of Theorem 2 is much more interesting, especially because it
holds surprisingly without any transitivity. In addition, F¢ in (35) is a crisp
complete propelattice. This its “exceptionality” however can be seen only in
a logically richer setting; in the setting determined by L = 2 it cannot be
observed at all. It might seem that this exceptionality has a connection to the
result [4], which shows that every lattice fuzzy order is uniquely determined by
its 1-cut. Nevertheless, we need to realize that its author utilizes in the proofs
three fundamental properties: firstly the “strong version” of antisymmetry in
place of the weak one (19); secondly weak transitivity, whereas we generally
suppose no transitivity; thirdly we do not suppose the so-called compatibility of
the L-relation A € L*X*X w.r.t. ~ (for more detail see the following Remark
13). As we show in the following, an L-complete propeorder is not determined
uniquely by its 1-cut (Example 4).

Finally let us point out that F; = ((Fix(f),=), *A N [Fix(f) x Fix(f)]) is
according to statement 3 a complete lattice, if A € LX*X is weakly transitive.
However, as we already know, weak transitivity still does not suffice for the
validity of equalities (37).

To sum up the previous, we can say that the most important statement in
Theorem 2 is statement 2. This statement fuzzifies and at the same time widely
generalizes fundamental parts of the classic Tarski’s theorem for a single isotone
map. It says that without any assumption of transitivity the set of fixed
points is nonempty and its structure is a complete propelattice. Especially, the
propeleast, as well as propegreatest, element exist. (The only cost which is
paid for such a generality is the fact that we do not have explicit formulas for
their expression. Nevertheless, the usability of such explicit formulas can be
sometimes problematic even in the crisp setting.)

The following auxiliary statement enables to construct trivially illustrative
examples of L-complete propelattices and among others to demonstrate that an
L-complete propeorder does not need to be uniquely determined by its 1-cut.
Moreover, together with the following Proposition 2 we will be able to present
a (almost) complete discussion of the necessity of the assumption of a relevant
version of transitivity for the validity of single statements of Theorem 1 in a
fuzzy setting. (For the notation used in the following lemma, see Definition 5).

Lemma 1. Let L = Ly be a 3-valued Lukasiewics algebra and X = ((X,=), )
be a complete propelattice. Let the Ly -equality ~xn € (Ly)X** be defined for
any x,y,z € X in the following way:

(zrny) =N & z#uy; (56)



and further the L -propeorder Ax € (Ly)X*% (w.r.t. ~x) on X by the fol-
lowing way:

(xAnz):=1,
(xAny)=1& (yAnz):=N & zlhy & x#y, (57)
(xAny):=N& (yAyz):=N < x| y.

Then Xy = ((X,=n), AN) is an Ly-complete propelattice, where A = *Ay.
Simultaneously, for any ® € (Lx)~ we have

pinfay (@) = S[pinfa(Ker(®))], psupa, (P) = S[psupx (Ker(®))]. (58)

If A C X x X is transitive, then Ay € (Ly)X*X is strongly transitive; if /\ is
not transitive, then Ay is not even weakly transitive. Moreover, an arbitrary
map [ : X — X, which is (relatively) isotone on X, is Ly-fuzzy (relatively)
isotone on Xxy.

Proof. Firstly, ~x € (Lx)X*¥X is with respect to relations (56) and according
to Definition 6 reflexive and symmetric and obviously even the condition of
separation (14) holds. Transitivity of ~y then holds according to (12). The
Ly-relation Ay € (Ly)X*¥ is with respect to (57) reflexive in the form of (18).
With respect to (57) and (12), the relation Ay is also antisymmetric w.r.t ~y
in the form of (19).

For the sake of brevity, we will no more specify the lower indices of propein-
fima and propesuprema. If we show that equalities (58) hold, at the same time
we prove also that X is an L -complete propelattice. We verify the validity of
the first equality, the second one is dual. Let ® := {J,c 4 {*/o} UU,ep{"/2} €
(Ln)X, where A,B C X, AN B = () and eventually A # () # B. Here
Ker(®) = A. We show that if {z¢} = pinf(4) = L(A) NU(L(A)) in X, then
pinf(®) = S[wp]. With respect to (57), the N-cut is V(Ay) = X x X and then
for every y € X according to (8) we have:

L@)(y) = N\ (@) = (yra) A )\ (@) = (yL2)) =

€A z€B

= N A@) = ra))r1= N (Al) = (yLa)).

z€A z€A

From here for y € L(A) immediately £(®)(y) = 1 and for y ¢ L(A) then
L(®)(y) = N and hence

U =ruv U Ve (59)

zEL(A) rZL(A)

By an analogous consideration one would obtain also

uc@e)= \J v U Nk (60)

zEU(L(A)) T@U(L(A))
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From (59) and (60) we have that pinf(®)(zg) = L(P)(zo) A U(L(D))(x0) =1
and thus with respect to implication (30) also p inf(®) = S[xg] = S[pinf(Ker(P))]
has to hold. Finally, we observe that Xy = ((X,~y), An) is an Ly-complete
propelattice and according to (57) clearly A = Ay.

Further, let A C X x X be transitive and z,y,z € X be arbitrary. If
(x Anxy) = N orif (yAyxz) = N, then because ¥ (Ay) = X x X holds, also
(26) holds. Of course, if x Ay and y A z then inequality (26) holds too.

Contrarily, if the relation A is not transitive, then there exist z,y,z € X
such that x Ay and y A z; but either 2z Az or x || z. In both the cases hence
(x An z) = N and at the same time (z Ayy) = 1 and (yAnx2z) = 1. Hence
the following inequality holds:

(zANY) @ (YAn2) =101 > N = (z Ay 2).

Thus inequality (25) does not hold and therefore Ay € (Ly)X*¥ is not weakly
transitive.

Finally, let f : X — X be relatively isotone on X. The only case which
is worth mentioning arises in the situation when all the three relations hold
together: f(z) Ay,x Ay and x A f(y). Then we have

(f@)Anvy) AN (@ Any) A(@An f(y) =1 < (f(z) Ay f(y) =1.

The other eventualities follow from (57), or more precisely from the fact that
N(An) = X x X, and hence f is Ly-fuzzy relatively isotone. The case, where
f: X — X is isotone, is even simpler. The proof is complete. O

The following example together with Lemma 1 show above others that an
L-complete propeorder is not uniquely determined by its 1-cut.

Example 4. Let us have X = {1, z,y,2, T} and let X = ((X,~y),A) be an
L -complete propelattice. A diagram of its “skeleton” is given in Figure 4.

Now, the Ly-complete propeorder A € (Ly)X*¥ is uniquely given by the
following two conditions (not according to Lemma 1):

A = {(L2), (L), (L5 2), (LT, (@,9), (, 2), (2, T), (3, T, (2, T)} Uddxs
for every u,v € X we have
(uAu):=1,
(wAv):=1 & (WAu):=N & u'hAv & u#v,
(xAz):=0 & (zAz):=0.

Obviously, the Ly-propeorder A is not strongly nor weakly transitive.
It can be easily seen that X = ((X,~p),A) is Ly-complete. We simply
compute for example that:

o={Y..",} = pinf(®)=S8[L]
d={N/ 1., = pinf(®)=S[z]
o={"/LN/by = pinf(®) =S[y,

o={"/1,N/N/) = pinf(®) =pinf(h) = S[T).

b

)

25



Figure 4: Diagram of the “skeleton” of X for Example 4

It can be justified that in this case also relations (58) hold.
Nevertheless, for example for the Ly-set ® := {1/,,V/,,1/.} we have in X:

psup(®) = S[T] = {"/1.°/:.7/,.0/:.1 T} (61)
But on the other hand, in Xy = ((X,~x), (1A)x) we have according to (59)
and (60) that

psup(®) = S[T] = (/1% /N[y, /1 7} (62)

In (61) and (62) there are two SC-singletons at the same point T € X, but they
have different membership functions.

Only for the sake of completeness of the demonstration of introduced notions
let us notice that the map f : X — X with the list

f=Llezz—=yy— 2,20 T, T T]
is clearly L y-fuzzy isotone on X. The map g : X — X given by the list
g=[Ll—=Llz—zy—zz— L T—T]

is not Ly-fuzzy isotone on X (which is shown for example by inequality (63),
because for the same elements x,y € X the inequality analogous to (33) does not
hold), however, it is L y-fuzzy relatively isotone. Clearly, the following relations
successively hold (and the other cases are in fact trivial):
(xDhy)AN(xzlhy)AN(xzlLz) < (xAz), (63)
(AN YLA)AN (YA L)=1ALIAN<(zAL)=N,
(zAzZ)AN(yLDz)AN(yDz) < (zAz),
(LAYA(ZAYA(zA2)=1ANAL<S(LAZ)=1.

In all these and also other cases hence inequality (34) holds.
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Further simple examples of extensions of the notions which were introduced
in this part into a fuzzy setting could be obtained by the application of Lemma 1
onto Examples 1-3. This lemma also implies that in Example 4 the propeordered
sets X = ((X,~pn),A) and Xy = ((X,~p), (XA)N) are two different Ly-
complete propelattices, especially A # (!A)y are two different L y-complete
propeorders. Nevertheless, at the same time A = 1((1A) N). From here it
follows that an L-complete propeorder generally is not uniquely determined by
its 1-cut. Above all this is the fact that represents the difference between our
concept and the concept of the completely lattice Li-order from [2-4].
Remark 13. It is important to realize that the Ly-equality ~y € (Ly)**¥ in
Lemma 1 is introduced by relations (56) in such a way, that the Ly-propeorder
AN € (Ly)X*¥X in (57) is then antisymmetric w.r.t. ~x according to (19) (let
us point out that it is not antisymmetric w.r.t. the classical identity = = idx
on X). In general, the L-relation A € LX*X is compatible w.r.t. L-equality
~ € LX*X [2-4, 8], if for any x,y,u,v € X holds:

(uxz)@ Ay @ (y~v) < (ulv).

This property certainly has very epistemiological core but it is also technically
very effective and the proof of the result in [4] would not be possible without it.
However, compatibility of the L-propeorder is not supposed and a consequence
of this fact is that the L-complete propeorder is not uniquely determined by
its 1-cut. For example the Ly-propeorder Ay from Lemma 1 is obviously
compatible w.r.t =y, but A from Example 4 is not compatible, because here
the following inequalities hold:

(zr2)R(xAy)RYy~z2)=101Q N > (xAz)=0,
YY) @YLhz)2(zx2)=N®1®1>(xAz)=0.

The following proposition is of great importance for further results and for
discussion of the necessity of relevant versions of transitivity for the validity of
single statements of Theorem 1 in a richer fuzzy setting. In its proof, we use
a method which appeared to be very effective in proofs of all the statements
of Theorem 2 in connection with L-complete propelattices, i.e., generally under
the absence of transitivity (compare to Remark 12 (b)).

Proposition 2. Let X = ((X,=),A) be an L-complete propelattice. Then
IX .= ({(X,=), 1A) is a complete propelattice. Moreover, for an arbitrary crisp
set A C X the following equalities generally hold:

pinfa (A) = S[pinfin (A)], psupa(A) = S[psupia (A)]. (64)

If in addition I\ € LX*X is weakly transitive, then YX is a complete lattice. All
the more so, the same holds if A\ is strongly transitive.
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Proof. Let ) # P C X (for P = () it is sufficient to use Proposition 1 and
relations (28) for the case L = 2, because all here introduced notions are con-
servative extensions.) We show for example that for P there exists psup(P) in
1X. The case of pinf(P) can be justified dually.

Let P := {lIy € LX | X € A} C L be the indexed system of all the L-sets
such that every Il € P satisfies the following two conditions:

(2) P =Upep{/p} STy
(b)Vwe LX :w C Tl = psup(w) C II,.

Obviously P # . Certainly P C X and for any w € L we have w C X
and even psup(w) C X, i.e., X € P. Now let us introduce the following L-set:

O:=()P= ()M #0. (65)

A€A

Indeed, II # (. Let us choose w := (), then according to (b) we have 1L =
psup(P) C @, for every A € A. Now because X is an L-complete propelattice,
then according to (32) there exists z* € X such that L = S[z*] # 0, which
gives () # 1 C II. Because the L-set II € L itself obviously satisfies both the
conditions (a) and (b), we obtain the following equality in the complete lattice
(LX,C) = (L¥,u,n,0, X):

IT = inf(P) = minP € P. (66)
¢ c

Now let psup(Il) = S[xo] for a certain 2o € X. We show that xg = psup(P)
in 1X. Above all

S[xol(wo) = U() N LU(IT)) (x0) = 1, (67)

which gives
U(IT)(z0) = /\ (Il(y) = (yAxo)) = 1.
yeX
From here II(y) — (yAxg) = 1 for every y € X and according to (8) for

y :=p € P we have

which means that (p Axg) = 1 and so ptA xg. As its consequence we have in
X = ((X,=), 'A) that
xo € U(P). (68)

We have to show that xg = pmin(U(P)), i.e., Va* € U(P) : zo*Ax*. Let us
choose an arbitrary but fixed 2* € U(P). Then for every p € P we have p 1A x*.
We introduce the L-set

% = 1IN L(z*) (69)

and show that IIZ € P.
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Analogously to (47), according to (22) and (20), we get for any y € X:

L)) = N\ (Ve }2) = (y22) =12 (yAa") = (yoa™).  (70)

zeX

The next equalities for every p € P then follow from (70):
5 (p) = (LN L(z*))(p) = W(p) A L(z")(p) =LA (pAz*) =1AL1=1.

From here obviously P C IT* and II# fulfills the condition (a).

Let now be w € LX arbitrary such that w C II* = 1N £(2*). Then w € II
and according to the assumptions psup(w) C II. Because also w C L(z*),
then according to implications (27) also psup(w) C L(z*). Finally psup(w) C
1N L(z*) and II* fulfills also the condition (b).

From the previous facts it follows that II* € P and according to (66) the
inclusion IT C TI* holds. However, according to (69) also the opposite inclusion
I1# C II holds trivially and with respect to (11) we have the equality

I = IT-. (71)
From (71) we then successively obtain that
S[zo] = psup(Il) CII =IINL(x") C L(z").
Hence according to (67) and (70) we have
1 = S[zol(zo) < L(z") (o) = (o A z™),

which means (zg A z*) = 1 and hence zo A z*. Because z* € U(P) was arbi-
trary, we get that in 1X = ((X, =), 1A) really

zo = pmin(U(P)) (72)

and thus there exists psup(P) = zo in *X. Because the existence of pinf(P)
can be shown analogously, it is clear that 1X = ((X,=), !A) is a complete
propelattice.

Equalities (64) are an immediate consequence of the facts that all used no-
tions are conservative extensions and that propeinfima, resp. propesuprema,
are SC-singletons.

If A € LX*X would be in addition weakly transitive, then the proof of the
fact that 1X = ((X, =), 'A) is a complete propelattice is identical to the proof
of statement 3 of Theorem 2. The more so, the statement holds even for strong
transitivity. The proof is complete.

O

5. Analysis of Tarski’s theorem for commutative sets of maps in a
fuzzy setting

We attempt to make here an almost complete analysis. The word “almost” is
written intentionally, because one part of the argumentation has to be based on

29



a fact, which has not been published yet. The mentioned fact is almost obvious,
but a relevant construction is rather sophisticated (more precisely, the authors
do not know a simple construction, even if they do not exclude its existence),
but above all, it does not relate directly to the topic of our paper. Now we
sum up all the results about Tarski’s generalized theorem in connection with
transitivity.

(A) It immediately follows from Example 3 and Lemma 1 that for a com-
mutative set () £ F C XX of L-fuzzy relatively isotone maps on an L-complete
propelattice X = ((X, =), A) none of the statements (1)—(4) of Theorem 1 holds.
This is valid even if the L-propeorder A € LX*X is strongly transitive. Ac-
cording to Theorem 2 we can say only that every f € F has necessarily a fixed
point, but no common fixed point needs to exist.

(B) In the case if this part is not observed as trustworthy, it can be eventually
considered as a so far unsolved problem, even if its usefulness can appear to be
much smaller than the effort to solve it. Simplified versions of consequences of
the above-mentioned construction are summed up in the following proposition.
The main problem is the fact that whereas a construction of a commutative set
of relatively isotone maps, for which Theorem 1 does not hold (Example 3), is
in fact trivial, the situation is different for isotone maps.

Proposition 3. There exists a nontransitive complete propelattice X = ((X, =),
A) and a commutative set ) # F C XX of isotone maps on X such that none
of the statements (1)—(4) of Theorem 1 holds.

Lemma 1 and Proposition 3 then imply that there exists an Ly-complete
propelattice Xy = ((X,~y), Ax) and there a commutative set ) # F C XX of
L ny-fuzzy isotone maps such that no analogy of statements (1)—(4) of Theorem 1
holds. Naturally, the Ly-propeorder Ay € L¥X*X cannot be according to
Lemma 1 even weakly transitive.

(C) The case where the L-propeorder A € LX*X is weakly transitive is
solved by the following result.

Theorem 3. Let X = ((X, =), A) be an L-complete propelattice and let A\ €
LX*X be weakly transitive. Then for an arbitrary commutative set ) # F C XX
of isotone maps the following statements hold.

1. The set of common fized points is nonempty:
Fix(F) # 0. (73)
2. The system
Fr := ((Fix(F),=), *A N [Fix(F) x Fix(F)]) (74)
1s a complete lattice.

Proof. If X = {(X,~),A) is an L-complete propelattice and if A € LX*X
is weakly transitive, then according to Proposition 2 X = ((X,=), 1A) is
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a complete lattice and also every map f € F is isotone on 'X. According to
Theorem 1, (1) we have Fix(F) # () and Fr = ((Fix(F),=), 'A N [Fix(F) x
Fix(F)]) is a complete lattice according to Theorem 1, (2). The proof is finished.

O

We noticed in [16] that there exist counterexamples, which show that weak
transitivity is not sufficient for the validity of equalities (37). Because every map
is commutative with itself, even analogies of relations (3)—(4) from Theorem 1
cannot be awaited in this case, but only corresponding analogies of relations
(55), which are presented further in the form (94).

(D) Finally, we solve the case where the L-propeorder A € LX*X is strongly
transitive. It is the following theorem which possesses the complete fuzzification
of Tarski’s generalized theorem (i.e., Theorem 1).

Theorem 4. Let X = ((X, =), A) be an L-complete propelattice and let A\ €
LX*X be strongly transitive. Then for an arbitrary commutative set () # F C
XX of L-fuzzy isotone maps the following statements hold.

1. The set of common fized points is nonempty:
Fix(F) # 0. (75)
2. The system
Fr := ((Fix(F),=), 'A N [Fix(F) x Fix(F)]) (76)
s a complete lattice.
3. Further we define L-sets ®, W € LX for every x € X in the following way:

®(z) = /\ (f(z) Do), (77)

fEF

V()= N (@A f(x). (78)

fer

Then the L-sets ® and ¥ are normal. If S[xo] = pinf(®) and S[z1] =
psup(V), then

o = min(Fix(F)), x; = max(Fix(F)) (79)

(where minimum and mazimum are taken with respect to the order 1A N
[Fix(F) x Fix(F)]).

Proof. If A € LX*X is strongly transitive, then it is also weakly transitive and
the first two statements follow immediately from Theorem 3. So now the third
statement, i.e., the validity of equations (79), is to be proved.

At first we show that @ is normal (where the L-set ® € L% is defined by
equality (77)), which means Ker(®) # 0. Primarily, with respect to (28) and
(8) we have for any y € X:
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Ty) =UX) ) = \Q - (z09) =

= ANGoy < A\ () by = 2(y).
zeX fEF

From here we see that the inclusion T = U(X) C ® holds. Because X = ((X, ~),
A) is an L-complete propelattice, according to (32) there exists & € X such that
S[z] = psup(X) = U(X) C ®. From here we have that & € Ker(®) # 0 and
thus @ is normal.

Now we show that there exists z9 € Fix(F) = (\;cp Fix(f) # 0 and if
S[z*] = pinf(P), then at the same time zo = min(Fix(F')) and zo = «*, that is
the first equality in (79) holds. The second equality in (79) is then proved by a
dual argumentation.

Let G := {I'y € LX| X € T} C LX be the indexed system of all the L-sets
such that every I'y € G fulfills the following three conditions:

(a) TAx CTyof,ie, Vye X:Tx(y) <Tx(f(y)), for every f € F
(b) V¢ € LX : ¢ C T\ = pinf(¢) C Ty;
(¢c) ® CT)y for every 'y € G.

Primarily, G # 0. For every y € X and f € F we have X (y) = X(f(y)) =1
and for any L-set ¢ € LX we have ¢ C X, pinf(¢) C X and ® C X, which gives
X € G. Now let us define the following L-set whose role is fundamental in the
following:

Ii=()G=()Tx#0 (80)
AEA

Indeed, T' # 0. If we choose ¢ := () then according to (b) and (28) we have
T = pinf(@) C Ty for every A € A. Further, because X is an L-complete
propelatice, with respect to (32) there exists such x* € X that T = S[z*] # 0,
which implies ) # S[z*] C T.

Analogously to the proof of statement 1 from Theorem 2 one could easily
show that T fulfills all the three conditions (a)—(c) and hence in the complete
lattice (LX,U,N, 0, X) = (LX, C) the following holds:

I'=min(G) € G. (81)

Because I' C T" € G, there exists zg € X such that
Slro] = pinf(T) €T (2)
From (82) according to (a) we obtain for I' equalities

I(wo) =L(f(z0)) =1, VfEF. (83)
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Furthermore, according to (23) we have:
pinf(T") = Slxo] = L(T) NU(L(T)). (84)
From here, specially at the point xy € X, we have that

1 = Slzo](z0) < L) (o) = /\ (T(y) = (w0 Ay)),

yeX

that is I'(y) — (zo Ay) = 1 for every y € X. Further, with respect to (8) we
have
L(y) < (w0 Dy), VyeX. (85)

According to (83) for the choice y := f(xg) in (85) we then have
(o A f(zo)) =1, Vf€EF. (86)
Now let us introduce the following L-set (see Definition 12, (22)):
=10 () U(g(xo))- (87)
geF

We have to prove that T¥ =T'. We show that the L-set TV fulfills all the three
conditions (a)-(c), which means T € G.

Firstly, with respect to (86), because every map g € F is L-fuzzy isotone
and F' is commutative, the following holds:

(9(z0) A f(g(z0))) = (9(z0) Ag(f(20))) =1, Vf,g€F. (88)

According to (47) and (88), with respect to strong transitivity of the com-
plete propeorder A € LX*X for any y € X we obtain the following inequalities:

U(g(0))(y) = (g(z0) Ay) < (f(g(x0)) A fy) = 1A (f(g(w0)) A fy)) =
(9(z0) A f(g(20))) A (f(g9(x0)) A f(y)) <
< (9(z0) & f(y)) = U(g(x0))(f(y))-

These inequalities for every y € X and every f € F immediately imply

() Ulg(wo))(y) < () Ulg(wo))(f())-

geF geF

From here we get the following inclusions:

() U(g(xo)) € [ U(g(xo)) o f, VfEF. (89)

geF geF
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With respect to the property (a) of the L-set I', according to (89) for any f € F'
finally holds:

I =rn (Y Ulglxo) STofn| ) Ulglxo)| of =

geF geF

= |Tn () Ulg(xo)) | o f,

geF

i.e., the L-set ['¥ fulfills the condition (a).

It is rather simple to show that I'¥ satisfies the condition (b). Let ¢ € LX
be such that ¢ C T¥. Then according to (87) we have ¢ C I' and simul-
taneously ¢ C (,cpU(g(x0)), ie, ¢ C U(g(zo)) for every g € F. Then
according to assumptions pinf(¢) C I'. Also, with respect to (27), we have
pinf(¢) C U(g(xo)) for every g € F, that is pinf(¢) C (,cpU(g(x0)). Alto-
gether we have pinf(¢) C I'N(,cpU(g(x0)) = ' and hence T fulfills the
condition (b).

Finally, we show that 'Y fulfills also the condition (c). According to the
condition (c) for I' we have ® C I' and hence, with respect to (85) and (77), for
any y € X the following inequality holds:

oy) = N\ (f(y) Ay) < (0 Ay). (90)
fEF

Let now g € F be an arbitrary but fixed map. If we “multiply” inequality (90)
by the expression (g(y) A y), then with respect to idempotency of the operation
eANe: L xL — L and to the generalized associative law (see [1]), further
with respect to strong transitivity of A € LX*X and finally to the fact that
g : X — X is L-fuzzy isotone on X = ((X, =), A), we successively obtain the
following:

W) A A N\ FW Ay =g ry A2y A N (Fy)Ay) =

feF gAfEF

=@ ayn N\ F@oay = N\ )Ly =aoy) <
gAfEF feF

< (9(y) Dy) Ao Ay) < (9(y) Ay) A(g(zo) Agly)) = (91)

= (g9(z0) A g(y)) A (9(y) Ay) < (g(w0) Ay).

From here we immediately have that for any y € X and every g € F the
following inequality holds

P(y) < (9(x0) Ay),

and hence for every y € X we have

o(y) < N (9(z0) Ay).

geF
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Thus the following inclusion holds:

® C () Ulg(wo)) (92)

geF

From (87), the property (c) for I" and from (92) we finally arrive at

®CTN () Ulglwo) =TY,
geF

after which ' finally fulfills also the condition (c).

Because the L-set T satisfies all the three conditions (a)—(c), we have 'Y €
G. Thanks to this, according to (81), the inclusion T D T holds. The opposite
inclusion T¥ C T is trivial, so according to (11) we obtain the following equality:

I =r.
From this equality, according to (82), we have

S[zo] = pinf(I') CT =T¥ C ﬂ U(g(z0)).
geF

Specially at the point g € X we obtain

1 = S[zo)(wo) < | () Ulg(0)) | (x0) = )\ (9(x0) A o).

geFr geF
From here we see that the following equalities hold:
(9(wo) Awo) =1, VgeF. (93)

No matter how a map from the commutative set F' is denoted, from (86) and
(93) in total follows that with respect to antisymmetry (19) and separation (14)
for any f € F the next chain of implications holds:

1=1®1=(f(z0) Azo) @ (xo A f(w0)) < (zo = f(w0)) =
= (xozf(xo))zl = xOZf(xO)'

It means that zy € Fix(f) for every f € F, so xg € Fix(F) = ;. Fix(f) # 0.
If we denote the L-set IT := U ,cpix(r) {1/,} then with respect to reflexivity of

the propeorder A € LX*X we have I C ® C T, or less formally () # Fix(F) C
® C I'. Let 21 = min(Fix(F)) = pinf(Fix(F)) be the propeinfimum with
respect to the complete propeorder A C X x X. The set Fix(F) = II is crisp,
thus according to (64) we have pinf(II) = S[z1]. Because pinf(I') = S[x], then
according to statement 5 from Proposition 1 we have zg A x;. However xy €
Fix(F) and hence also 21 'A g holds. If we denote S[z*] = pinf(®), then by
an analogous argumentation we obtain xy A z*. But also z* A z; = ¢ holds.
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*

Again, from antisymmetry we finally have 2o = z*, that is min(Fix(F)) = z*,
which is in our notation the first equality in (79).

Finally, we present the dual argumentation which proves that also the second
equality in (79) holds. At first we introduce the dual L-propeorder A~! € LX*X
to the L-propeorder A € L¥*X for every x,y € X by a natural way:

(z A1 y) = (y D).

Now we consider the dual L-complete propelattice Xy = ((X,~), A™1), where
the L-propeorder A~! is strongly transitive too. Clearly, every map f € F is
isotone even on X . If we denote the relevant operations in X4 by index d then,
according to the previous, for S[z1] = pinfy(®4) we have z; = ming(Fix(F)).
At the same time for every y € X we have (see (78))

ay) = N W)L y) = N D fly) =),

fer fer

that is &; = ¥. In addition to that, obviously pinfy(®4) = psup(®y) =
psup(¥) and ming(Fix(F)) = max(Fix(F')) hold. From here we see that even
the second equality in (79) holds.

Now the proof is complete. O

The last example demonstrates quite simply all the statements of Theorem 4.

Example 5. Let 0 #£ Q € On be an arbitrary ordinal. Then Q + 1 is a well-
ordered set with respect to inclusion and is in addition also a complete lattice.
If we set X :=Q+1and A :=C, then X = ((X,=),A) is a complete lattice
(transitive complete propelattice). Further we define the commutative set of
maps () # F,, € XX for fixed 0 < w < € in the following way. For 0 < 8 < w
let fg(ﬁ + 1) := {B} and fz(a) := a for & > o > . Obviously every map
fa: X — X isisotone on X and the set F,, := {fz|0 < 8 < w} is commutative.
Now according to Lemma 1 let Xy = ((X, ~n)AN) be a strongly transitive L y-
complete propelattice, where all maps are L y-fuzzy isotone on Xy. Because
Q + 1 is a chain, for every z,y € X,z # y only /Ay and simultaneously
(yAnx) = N, or y Az and simultaneously (z Axy) = N (because in  + 1
there are no incomparable elements). From here it is clear that

0<z<fB=(fglx)DAz)=N; <z<Q=(fs(z)Az)=1,

and hence according to (77) and (78) we obtain

P = U {I/I}UU{N/z}:[wvg}UU{N/m}

w<z<N r<w r<w

and clearly
U=0+1.
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From the definitions of F,, and fg it is clear that Fix(F,) = [w,]. Further
then min(Fix(F,)) = min([w, 2]) = w and max(Fix(F,)) = max([w,]) = Q in
(Q+ 1, C). Moreover, with respect to (58) we have

<)
pinf(®) = S[pinf([w, )] = S[inf([w, )] = S[min((w, Q)] = S[w,
psup(¥) = S[psup([w, 2])] = S[sup([w, QJ)] = S[max([w, QJ)] = S[)].

From here we can see that equalities (79) hold.

In conclusion, let us mention some facts. As it was already said, if A € LX*X
is only weakly transitive, then equalities (79) do not need to hold. Nevertheless,
with respect to reflexivity both the following inclusions clearly hold:

Fix(F) C ®, Fix(F)C U.

According to Proposition 1, statement 5, and the definitions of the propeleast
and propegreatest elements, only the following relations hold in general even
without any assumption of any transitivity:

zo A pmin(Fix(F)), pmax(Fix(F)) Az, (94)
pmin(Fix(F)) *A pmax(Fix(F)).

To have in relations (94) the equalities instead of 1A, strong transitivity is
needed. As already mentioned in [16], the most important fact for the validity
of equalities (37) is that the operation of meet e Ao : L x L — L, which
appears in relation (26), is idempotent. Contrarily, multiplication e ® e : L X
L — L generally does not have this property. Also in the proof of Theorem 4
idempotency plays an irreplaceable role, even if it is maybe in the proof somehow
hidden. However, fundamental relations (91), which are the basis of the proof,
would not hold without idempotency.

It is clear that one of the major reasons why transitivity is more impor-
tant for existence of common fixed points for a commutative set L-fuzzy isotone
maps than for existence of fixed points of a single L-fuzzy isotone map — as
formulated in Theorem 2 — is the fact that commutativity has no connection
to the structure of the L-complete propelattice X = ((X, ), A) itself. On one
hand, exactly this kind of properties is for the existence of common fixed points
the most important, but it is clear from our examples that the system of com-
mutative sets of L-fuzzy isotone maps is relatively narrow. On the other hand,
this independence of commutativity on the structure of X enabled the analysis
of the dependence of the validity of single statements on different versions of
transitivity.

6. Conclusion: a mutual comparison of the both fuzzified Tarski’s
theorems
Primarily, we showed (Theorem 2, statement 1, and Example 3, or its fuzzi-

fication according to Lemma 1) that fixed points do always exist for L-fuzzy
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relatively isotone maps, but no other statement of any of Tarski’s theorems
holds.

However, the situation is diametrically different for L-fuzzy isotone maps.
Theorem 2, statement 2, says that for a single L-fuzzy isotone map the most
substantial part of Tarski’s theorem holds even without the assumption of tran-
sitivity and surprisingly, the set of its fixed points is a “crisp” complete pro-
pelattice. Weak transitivity is sufficient for this set to be a complete lattice
(Theorem 2, statement 3). And it is only strong transitivity, what enables the
validity of the explicit formulas for the least and greatest fixed points (Theorem
2, statement 4). On the other hand, transitivity is necessary for any statement
of the generalized theorem. For the existence of common fixed points of a com-
mutative set of L-fuzzy isotone maps at least weak transitivity is needed and
the set of fixed points then forms automatically a complete lattice (Theorem 3).
For the validity of the explicit formulas for the least and greatest common fixed
point strong transitivity is absolutely necessary (Theorem 4).

Summed up: Fuzzifications of both the theorems essentially differ. For the
main part of the first theorem no transitivity is needed, for the second theorem
transitivity is everywhere essential. On the contrary, their similarity consists in
the fact that strong transitivity is in both the cases needed for the validity of
the explicit formulas for the least and greatest (common) fixed point.
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