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Abstract

In many real cases the data are not expressed in term of single values but are imprecise. In all these cases, standard clustering 
methods for single-valued data are unable to properly take into account the imprecise nature of the data. In this paper, by considering 
the Partitioning Around Medoids (PAM) approach in a fuzzy framework, we propose a fuzzy clustering method for imprecise data 
formalized in a fuzzy manner. In particular, in order to neutralize the negative effects of possible outlier fuzzy data in the clustering 
process, we proposed a robust fuzzy c-medoids clustering method for fuzzy data based on the combination of Huber’s M-estimators 
and Yager’s OWA (Ordered Weighted Averaging) operators. The proposed method is able to smooth the influence of anomalous data 
by means of a suitable parameter, the so-called typicality parameter, capable to tune the influence of the outliers. The performance 
of the proposed method has been shown by means of a simulation study, composed of experiments on: (i) simple two-dimensional 
dataset, (ii) benchmark datasets and (iii) the fuzzy-art-outliers dataset. The comparison made with the robust clustering methods 
known from the literature indicates the competitiveness of the introduced method to others. An application of the suggested method 
to a real dataset is also provided and the results of the method has been compared with other clustering methods suggested in the 
literature. In the application, the comparative assessment has shown the informational gain (in term of additional information) of 
the proposed method vs the other robust methods.
© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

In the literature, many scholars are devoting great attention to the development of fuzzy methods for the exploratory 
multivariate analysis of fuzzy data [18,19]. Among these, a lot of attention has focused on fuzzy clustering of fuzzy 
data. In particular, Sato and Sato [45] suggested a fuzzy clustering procedure for fuzzy data through an additive fuzzy 
clustering procedure based on multiple criteria. Hathaway et al. [32] and Pedrycz et al. [44] suggested clustering 
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algorithms for fuzzy data based on, respectively, a parametric and nonparametric formalization. Yang and Ko [53]
proposed fuzzy clustering models for univariate LR fuzzy data. Yang and Liu [54] extend the clustering algorithm 
defined by Yang and Ko [53] to conical fuzzy vectors. Takata et al. [47] proposed a fuzzy clustering method for data 
with uncertainties using minimum and maximum distances based on L1 metric. Auephanwiriyakul and Keller [2]
discussed a linguistic fuzzy clustering procedure for fuzzy data based on the extension principle and the decompo-
sition theorem. Yang et al. [52] suggested a fuzzy clustering algorithm for mixed data, i.e. fuzzy and symbolic data, 
by defining a “composite” dissimilarity measure. D’Urso and Giordani [26] suggested a fuzzy clustering method for 
symmetrical fuzzy data based on a weighted (squared) distance for fuzzy data. Suggestive applications of fuzzy clus-
tering methods for fuzzy data have been suggested by D’Urso et al. [23,25,24] and Disegna et al. [14]. In a clusterwise 
framework, Yang and Ko [55], D’Urso and Santoro [30] and D’Urso et al. [29] adopt a fuzzy clustering-based ap-
proach to overcome the heterogeneity problem in fuzzy regression analysis of fuzzy data. Fuzzy clustering methods 
for complex structures of fuzzy data, i.e., fuzzy data time arrays have been proposed by Coppi and D’Urso [7,8]
and Coppi et al. [9,10]. Recently, in the literature on fuzzy clustering on fuzzy data there is a great attention of the 
scholars on the development of robust methods. Hung and Yang [34] proposed a robust fuzzy clustering for univariate 
fuzzy data based on exponential distance. Hung et al. [35] defined a robust clustering technique based on a similarity 
measure for fuzzy data. Zarandi and Razaee [57] suggested two robust fuzzy clustering procedures for fuzzy data, 
respectively, based on a Wasserstein-type distance and on a suitable transformation of fuzzy data. Coppi et al. [11], 
proposed a possibilistic clustering method for multivariate fuzzy data. Successively, following the same possibilistic 
approach, Ferraro and Giordani [31] suggested robust fuzzy clustering methods for imprecise data. Following the 
Partitioning Around Medoids (PAM) approach, D’Urso and De Giovanni [20] proposed different robust clustering 
methods for fuzzy data based on the noise cluster approach, a robust distance metric and the trimmed approach. For 
more information on fuzzy clustering for fuzzy data, see D’Urso [16,19].

In this paper, we propose a robust fuzzy clustering method for fuzzy data based on robust loss functions and 
Ordered Weighted Averaging (OWA). In particular, by considering the Partitioning Around Medoids (PAM) approach 
we propose a robust fuzzy clustering for fuzzy data combining Huber’s M-estimators and Yager’s OWA operators. 
Our clustering method, called Fuzzy c-Ordered Medoids Clustering for Fuzzy Data (FcOMdC-FD) inherits all the 
advantages connected to PAM, fuzzy and robust approaches D’Urso and Leski [28]. In particular, our robust fuzzy 
c-medoids clustering method neutralizes the disruptive effect of the outliers defining a suitable parameter, i.e. the 
so-called typicality parameter varying in the range [0, 1]. In this way, it provides suitable information on the atypicality 
level of the data: if outliers are present in the dataset, our method tends to give them typicalities very low or close to 0. 
Then, typicality is an important means for alleviating the undesirable effects of outliers. In fact, as we can see below, 
by means of the typicality our method tunes suitably the influence of the outlier fuzzy data in the clustering process.

The paper is organized as follows. In Section 2, we define fuzzy data. In Section 3, we show different theoretical 
approaches for defining distances for fuzzy data and propose a robust distance measure for fuzzy data. Successively, 
in Section 4, we describe the proposed robust fuzzy clustering method for fuzzy data. A simulation study is illustrated 
in Section 5. The following numerical experiments were carried out: in Subsection 5.1 on simple two-dimensional 
dataset, in Subsection 5.2 on benchmark datasets and in Subsection 5.3 on the fuzzy-art-outliers dataset. In Section 6, 
we apply our robust clustering method to a real dataset and compare it vs some methods suggested in the literature. In 
Section 7, we show some conclusions.

2. Fuzzy data

In statistical analysis imprecise data can be formalized by means of the so-called LR fuzzy data [15,58], that can be 
stored in a fuzzy data matrix, i.e. LR fuzzy data matrix, (N observation units × J fuzzy variables) defined as follows:

X̃ ≡ {x̃ij = (m1ij ,m2ij , lij , rij )LR : i = 1, . . . ,N; j = 1, . . . , J }, (1)

where x̃ij = (m1ij , m2ij , lij , rij )LR represents the j -th LR fuzzy variable observed on the i-th object, m1ij and m2ij

(m2ij > m1ij ) denote, respectively, the left and right “center” (the interval [m1ij , m2ij ] is usually referred to as the 
“core” of the fuzzy number x̃ij ), and lij and rij the left and right spread, respectively, with the following membership 
function (see Fig. 1):
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Fig. 1. LR membership function.

Fig. 2. Trapezoidal membership function.

μ(uij ) ≡ μx̃ij
(uij ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L
(

m1ij −uij

lij

)
, uij ≤ m1ij (lij > 0),

1, m1ij ≤ uij ≤ m2ij ,

R
(

uij −m2ij

rij

)
, uij ≥ m2ij (rij > 0),

(2)

where L (and R) is a decreasing “shape” function from R+ to [0, 1] with L(0) = 1; L(zij ) < 1 for all zij > 0, ∀i, j ; 
L(zij ) > 0 for all zij < 1, ∀i, j ; L(1) = 0 (or L(zij ) > 0 for all zij and L(+∞) = 0). The fuzzy number x̃ij =
(m1ij , m2ij , lij , rij )LR (i = 1, . . . , N; j = 1, . . . , J ), consists of an interval which runs from m1ij − lij to m2ij + rij
and the membership functions give differential weights to the values in the interval, respectively, to the left and to the 
right of the left and right “centers”.

The most common LR fuzzy datum is the trapezoidal one (i.e., fuzzy datum with trapezoidal membership function). 
In particular, for a LR fuzzy number x̃ij , if L and R are of the form:

L(z) = R(z) =
{

1 − zα, 0 ≤ z ≤ 1,

0, otherwise,
(3)

with α = 1, then X̃ ≡ {x̃ij : i = 1, . . . , N; j = 1, . . . , J } is a trapezoidal fuzzy data matrix whose elements have the 
following membership functions (see Fig. 2):

μ(uij ) ≡ μx̃ij
(uij ) =

⎧⎪⎨⎪⎩
1 − m1ij −uij

lij
, uij ≤ m1ij (lij > 0)

1, m1ij ≤ uij ≤ m2ij ,

1 − uij −m2ij

rij
, uij ≥ m2ij (rij > 0).

(4)

An alternative formalization of trapezoidal fuzzy data has been suggested by Hathaway et al. [32] and Yang and 
Ko [53]. Examples of membership functions generated by the family of membership function (4) are shown in Fig. 3.

When mij ≡ m1ij ≡ m2ij , we obtain a particular type of LR fuzzy number, denoted as x̃ij = (mij , lij , rij )LR , where 
mij denotes the center, i = 1, . . . , N; j = 1, . . . , J , determining the following particular case of LR fuzzy data matrix:

X̃ ≡ {x̃ij = (mij , lij , rij )LR : i = 1, . . . ,N; j = 1, . . . , J }. (5)

Particular cases of LR fuzzy data are the triangular, parabolic and square root ones, when L and R are of the 
form (3) with α = 1, α = 2 and α = 1/2, respectively (see Fig. 4). Each case takes into account a different level of 
fuzziness around the centers of the fuzzy numbers. Specifically, the square root case denotes a low level of fuzziness, 
the triangular case a medium level, and the parabolic case a high level.

Two very important topics, connected with the representation of some terms of natural language by means of fuzzy 
data, are the elicitation and specification of the membership functions. In particular:
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Fig. 3. Some fuzzy data generated by trapezoidal membership function (Source: [20]). (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Fig. 4. Particular cases of LR membership functions.

• Elicitation: “as for the subjectivistic approach to probability, also the choice of the membership functions is 
subjective. In general, these are determined by experts in the problem area. In fact, the membership functions are 
context-sensitive. Furthermore, the functions are not determined in an arbitrary way, but are based on a sound 
psychological/linguistic foundation. It follows that the choice of the membership function should be made in such 
a way that a function captures the approximate reasoning of the person involved. In this respect, the elicitation of 
a membership function requires a deep psychological understanding.” [12]

• Specification: in the statistical analysis of fuzzy data, particular attention must be paid to the specification of 
the membership functions when we deal simultaneously with J variables. In particular, we have two possible 
approaches: the conjunctive approach and the disjunctive approach [6]. In the conjunctive approach, we take into 
account the fuzzy relationship defined on the Cartesian product of the reference universes of the J variables. From 
the statistical point of view, the adoption of the conjunctive approach to the multi-dimensional fuzzy variables 
involves a specific interest in studying the fuzzy relationship looked at as a “variable” in itself, which could 
be observed on the N objects. In the disjunctive approach, we are not interested in studying a fuzzy variable 
which constitutes the resultant of the J original variables. Instead, we focus our attention upon the set of the 
J “juxtaposed” variables, observed as a whole in the group of N objects. In this case, we have J membership 
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functions and the investigation of the links among the J fuzzy variables is carried out directly on the fuzzy data 
matrix concerning the NJ -variate observations [6,16].

Remark 1 (Fuzzy data preprocessing). Prior to apply our clustering method it may be advisable to preprocess the 
data in order to eliminate unwanted differences among the variables. To do it, we operate as follows. The left and 
right centers are standardized using the mean and the standard deviation of the (left and right) centers’ values of each 
variable. After that, each left and right spread is divided by the standard deviation of the corresponding centers. This 
way of preprocessing the data helps us to eliminate unwanted differences among the variables, without losing relevant 
information concerning the widths of the fuzzy data.

3. Distance measures for fuzzy data

In the literature, for comparing pairs of objects with imprecise, i.e. fuzzy, information, several proximity measures 
(dissimilarity, similarity and distance measures) have been suggested [16].

Some of these proximity measures are defined by taking into account the membership functions of the fuzzy data. 
These distances can be classified according to different approaches [21,3,59]:

• functional approach: based on the comparison of the membership functions by means of Minkowski and Canberra 
distance measures [41,43];

• information theoretic approach: based on the definition of fuzzy entropy [13];
• set theoretic approach: based on the concepts of fuzzy union and intersection [5,43,49,59];
• weighting system approach: based on the comparison of the fuzzy data by using directly the empirical information 

represented by the centers and the spreads of the fuzzy data and by adopting suitable weighting systems that 
somehow capture the information connected to the shape of the membership functions (see, e.g., [11,27,52–54]).

3.1. A distance measure for fuzzy data based on the weighting system approach

Following the weighting system approach for comparing fuzzy data, we consider a multivariate version of the 
distance measure for LR fuzzy data proposed by Yang and Ko [53] [21], i.e.:

d(x̃i x̃i′) =
[
‖m1i − m1i′ ‖2 + ‖m2i − m2i′ ‖2+

‖(m1i − λli ) − (m1i′ − λli′)‖2 + ‖(m2i + ρri ) − (m2i′ + ρri′)‖2
] 1

2 =[
(m1i − m1i′)


(m1i − m1i′) + (m2i − m2i′)

(m2i − m2i′)+

((m1i − λli ) − (m1i′ − λli′))

((m1i − λli ) − (m1i′ − λli′))+

((m2i + ρri ) − (m2i′ + ρri′))

((m2i + ρri ) − (m2i′ + ρri′))

] 1
2 =[

(m1i − m1i′)

(m1i − m1i′) + (m2i − m2i′)


(m2i − m2i′)+
((m1i − m1i′) − λ(li − li′))


((m1i − m1i′) − λ(li − li′))+

((m2i − m2i′) + ρ(ri − ri′))

((m2i − m2i′) + ρ(ri − ri′))

] 1
2 =[

2(m1i − m1i′)

(m1i − m1i′) + 2(m2i − m2i′)


(m2i − m2i′)+
−2λ(m1i − m1i′)


(li − li′) + λ2(li − li′)

(li − li′)+

2ρ(m2i − m2i′)

(ri − ri′) + ρ2(ri − ri′)


(ri − ri′)
] 1

2
,

(6)

where λ = ∫ 1
0 L−1(ω)dω and ρ = ∫ 1

0 R−1(ω)dω are parameters which summarize the shape of the left and right tails 
of the membership function, and subscript 
 stands for the transposition.
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Fig. 5. Some particular cases of membership functions and values of λ and ρ.

In particular, the left and right spreads are differently weighted by means of the parameters λ and ρ. These param-
eters take into account the variability of the membership function and reduce accordingly the influence of the spreads 
in the computation of distance measure (6). In fact, they are lower than one whenever the importance of the points 
decreases as they are farther from the center, as it is usually the case. Also notice that λ’s (and ρ’s) take low or high 
values according to whether the membership function values are high, respectively, only very near to the center or in 
almost the entire interval [mij − lij , mij + rij ]. For the most common membership functions (Fig. 4), the following 
results for λ (similarly for ρ) hold: λSquare root = 1/3 < λTriangular = 1/2 < λParabolic = 2/3. Thus, the parameters λ’s 
(and ρ’s) increase as the fuzziness of the involved membership function increases.

3.1.1. Distance measure for symmetric fuzzy data
In the following, we show briefly the mathematical aspects of some particular membership functions very utilized 

in the real applications (see Fig. 5). We consider the symmetric case, i.e., mi ≡ mi1 ≡ mi2, si = li = ri , λ = ρ and 
L ≡ R.

In this case we obtain from (6):

d(x̃i , x̃i′) =
[
4(mi − mi′)


(mi − mi′) + 2λ2(si − si′)

(si − si′)

] 1
2

(7)

and then the following particular cases.

Square root case
In this case, we have

L(z) =
{

(1 − z
1
2 ), 0 ≤ z ≤ 1,

0, otherwise,
(8)

and then

μ(uij ) =
⎧⎨⎩1 −
(

mij −uij

lij

) 1
2
, mij − lij ≤ uij ≤ mij + lij (lij > 0),

0, otherwise.
(9)

Since λ = ∫ 1
0 L−1(ω)dω, where

L−1(ω) =
{

(1 − ω)2, 0 ≤ ω ≤ 1,

0, otherwise,
(10)

we get λ = ∫ 1
0 L−1(ω)dω = ∫ 1

0 (1 − ω)2dω = 1
3 , and then

d(x̃i x̃i′) =
[

4(mk − mi′)

(mi − mi′) + 2

9
(sk − si′)


(si − si′)

] 1
2

. (11)

Symmetric triangular case
The most common membership function is provided by the symmetric triangular function, which is a particular sym-
metric function where L has the following form
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L(z) =
{

1 − z, 0 ≤ z ≤ 1,

0, otherwise.
(12)

The corresponding membership function is:

μ(uij ) =
{

1 − |mij −uij |
lij

, mij − lij ≤ uij ≤ mij + lij (lij > 0),

0, otherwise.
(13)

In this case, taking into account that λ = ∫ 1
0 L−1(ω)dω, where

L−1(ω) =
{

1 − ω, 0 ≤ ω ≤ 1,

0, otherwise,
(14)

we get λ = ∫ 1
0 L−1(ω)dω = ∫ 1

0 (1 − ω)dω = 1
2 , and then

d(x̃i x̃i′) =
[

4(mi − mi′)

(mi − mi′) + 1

2
(si − si′)


(si − si′)

] 1
2

. (15)

Parabolic case
In the parabolic case, we have

L(z) =
{

(1 − z2), 0 ≤ z ≤ 1,

0, otherwise,
(16)

and then

μ(uij ) =
⎧⎨⎩1 −
(

mij −uij

lij

)2
, mij − lij ≤ uij ≤ mij + lij (lij > 0),

0, otherwise.
(17)

Since λ = ∫ 1
0 L−1(ω)dω, where

L−1(ω) =
{

(1 − ω)
1
2 , 0 ≤ ω ≤ 1,

0, otherwise,
(18)

we get λ = ∫ 1
0 L−1(ω)dω = ∫ 1

0 (1 − ω)
1
2 dω = 2

3 , and then

d(x̃i x̃i′) =
[

4(mi − mi′)

(mi − mi′) + 8

9
(si − si′)


(si − si′)

] 1
2

. (19)

For more details, see D’Urso and Santoro [30], D’Urso [16] and Yang and Ko [53].

3.2. A robust distance measure for fuzzy data based on the weighting system approach

Using a quadratic loss function LSQR(e) = e2—where the so-called model’s residuals are: e = m1ij − m1i′j or 
e = m2ij − m2i′j or e = (m1ij − λlij ) − (m1i′j − λli′j ) or e = (m2ij − ρrij ) − (m2i′j − ρri′j )— we can obtain from 
(6) the following robust distance measure for fuzzy data:
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d(x̃i , x̃i′) =

=
⎡⎣ J∑

j=1

LSQR(m1ij − m1i′j ) +LSQR(m2ij − m2i′j )+

+LSQR((m1ij − λlij ) − (m1i′j − λli′j ))+
+LSQR((m2ij + ρrij ) − (m2i′j + ρri′j ))

] 1
2 =

= [LSQR(m1i − m1i′) +LSQR(m2i − m2i′)+
+LSQR((m1i − λli ) − (m1i′ − λli′))

+LSQR((m2i + ρri ) − (m2i′ + ρri′))
] 1

2

(20)

for a vector argument e = [e1, e2, · · · , eJ ] a loss function takes the form

L (e) =
J∑

j=1

L
(
ej

)
. (21)

The reason for using measure (20) is for simplicity and low computational burden. However, this approach is sensitive 
to noise and outliers. There are many proposals of robust loss functions in the literature. The Huber’s one is the best 
known [33]:

LHUB(e) =
{

e2/δ2, |e| ≤ δ,

|e|/δ, |e| > δ,
(22)

where δ > 0 denotes a parameter. Many other robust loss functions may be taken into account [38]:

• LINear (LIN)

LLIN(e) = |e| , (23)

• SIGmoidal (SIG) with parameters α, β > 0

LSIG(e) = 1
/
(1 + exp (−α (|e| − β))) , (24)

• LOGarithmic (LOG)

LLOG(e) = log
(

1 + e2
)

. (25)

3.2.1. Robust distance measure for symmetric fuzzy data
For simplicity, we consider in the following the more used case, i.e. the symmetric membership function. In this 

case, the distance measures in the first two lines of (6) with conditions: mi ≡ m1i ≡ m2i , λsi ≡ λli ≡ ρri , use a 
quadratic loss function (LSQR(e) = e2, where the so-called model residuals are e = mij − mi′j or e = (mij − λsij ) −
(mi′j − λsi′j ); i, i′ = 1, · · · , N , j = 1, · · · , J ) as a dissimilarity measure between the fuzzy data. Thus distance from 
the two first lines of (6) may be written in the form

d(x̃i , x̃i′) =

=
⎡⎣2

J∑
j=1

LSQR(mij − mi′j ) +LSQR((mij − λsij ) − (mi′j − λsi′j ))

⎤⎦
1
2

= [2LSQR(mi − mi′) + 2LSQR((mi − λsi ) − (mi′ − λsi′))
] 1

2 ,

(26)

where λ = 1
3 (square root case), λ = 1

2 (symmetric triangular case), λ = 2
3 (parabolic case). Alternatively, by consid-

ering (7) we have:
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d(x̃i , x̃i′) =

=
⎧⎨⎩

J∑
j=1

[
4LSQR(mij − mi′j ) + 2λ2LSQR(sij − si′j )

]⎫⎬⎭
1
2

=
[
4LSQR(mi − mi′) + 2λ2LSQR(si − si′)

] 1
2
.

(27)

4. A robust fuzzy clustering method for fuzzy data: FcOMdC-FD (fuzzy c-ordered medoids clustering for 
fuzzy data)

The different robust loss functions are connected to robustness of the distance measure. In this case we consider the 
distance between pair of objects (between a fuzzy datum and a fuzzy medoid). Using D

(
x̃i , x̆t

) = L(m1i − m1t ) +
L(m2i − m2t ) + L((m1i − λli ) − (m2t − λlt )) + L((m2i + ρri ) − (m2t + ρrt )) as a dissimilarity measure between 
the kth fuzzy datum and the ith fuzzy medoid, and additional weighting (βi), the fuzzy c-ordered medoids criterion 
function, for fuzzy data, takes the form:

J
(

U, X̆
)

=
c∑

t=1

N∑
i=1

βi (uti)
ζ D
(
x̃i , x̆t

)
, (28)

where X̆ = {x̆1, x̆2, · · · , x̆c

}
. The t th fuzzy medoid is taken from dataset, i.e., x̆t ∈ {x̃1, x̃2, · · · , x̃N

}
. ζ is a weighting 

exponent in [1, ∞) which influences a fuzziness of the clusters. βi ∈ [0, 1] denotes the typicality of the ith fuzzy 
datum with respect to the clusters. Indeed, smaller βi denotes a more atypical data. The typicality parameters are 
derived based on the ordering of the distances of data from medoids [39,38].

The set of all possible fuzzy partitions of N fuzzy data into c clusters is defined by:

Jgf c =
⎧⎨⎩U ∈ Rc×N

∣∣∣∣∣∣ ∀
1≤t≤c
1≤i≤N

uti ∈ [0,1];
c∑

t=1

uti = 1; 0 <

N∑
i=1

uti < N

⎫⎬⎭ . (29)

The overall assessment of the typicality of the ith fuzzy datum is obtained using the typicality of the ith fuzzy 
datum with respect to the clusters [38]:

∀
1≤i≤N

βi = β1i 	
S̃

β2i 	
S̃

· · · 	
S̃

βci, (30)

where 	
S̃

denotes s-norm S̃ and βti ∈ [0, 1] is the typicality of the ith fuzzy datum with respect to the t th cluster. 
Formula (30) may be linguistically interpreted as the following sentence: “The ith fuzzy datum is typical IF AND 
ONLY IF the ith fuzzy datum is typical with respect to the first cluster OR the ith fuzzy datum is typical with respect 
to the second cluster OR · · · OR the ith fuzzy datum is typical with respect to the cth cluster”. Instead of s-norm, the 
maximum operation is chosen [38]

∀
1≤i≤N

βi = β1i ∨ β2i ∨ · · · ∨ βci . (31)

The necessary conditions for minimization of (28) with respect to the elements of the partition matrix can be 
described as

∀
1≤i≤N
1≤s≤c

usi =D
(
x̃i , x̆s

) 1
1−ζ

/⎡⎣ c∑
p=1

D
(
x̃i , x̆p

) 1
1−ζ

⎤⎦ . (32)

A local optimal solution with respect to the medoids can be obtained as follows [22]:

∀
1≤t≤c

x̆t = x̃qt , (33)

where
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qt = arg min
1≤
≤N

N∑
i=1

βi (uti)
ζ D
(
x̃i , x̃


)
. (34)

The rank-ordered dissimilarities between t th fuzzy medoid and fuzzy data satisfy the following conditions:

D
(
x̃πt (1), x̆t

)≤D
(
x̃πt (2), x̆t

)≤ D
(
x̃πt (3), x̆t

)≤ · · · ≤D
(
x̃πt (N), x̆t

)
, (35)

where πt : {1,2, · · · ,N} → {1,2, · · · ,N} is the permutation function for t th fuzzy medoid. If βti parameters fulfill 
βtπt (1) ≥ βtπt (2) ≥ · · · ≥ βtπt (N), then the impact of outliers is reduced by down-weighting the respective dissimilari-
ties. The form of parameters βti may be piecewise-linear [39,38,28]

βtπt (n) = {[(pcN − n)/(2plN) + 0.5] ∧ 1} ∨ 0 (36)

or sigmoidal

βtπt (n) = 1

/{
1 + exp

[
2.944

paN
(n − pcN)

]}
, (37)

where ∧ and ∨ denote min and max operations, respectively. The functions defined by (36) and (37) are called 
Piecewise-Linearly-weighted OWA (PLOWA) and Sigmoidally-weighted OWA (SOWA), respectively. Both functions 
are nonincreasing with respect to argument n ∈ {1, 2, · · · , N} and for n = pcN are equal to 0.5. Parameters pl > 0
and pa > 0 influence their slope. In the case of the piecewise-linear function, for n ∈ [pcN − plN, pcN + plN ]
its value linearly decreases from 1 to 0 [38]. For the sigmoidal function, a value 2.944 is chosen to obtain that for 
n ∈ [pcN − paN, pcN + paN ] its value decreases from 0.95 to 0.05 [38]. The following values: pc ∈ [0.7, 1.0], 
pl = 0.1, pa = 0.1 were used.

If ordering of dissimilarities from (35) is not applied, which is equivalent to using Uniformly Weighting function 
for OWA – UOWA (βtπt (n) = 1 for all t, n), then we call this case as clustering without ordering (or with no weighting 
function).

Remark 2 (Algorithm FcOMdC-FD). The algorithm of the proposed Fuzzy c-Ordered-Medoids Clustering for Fuzzy 
Data (FcOMdC-FD) can be described as follows

1. Fix c (1 < c < N), ζ ∈ (1, ∞). Choose dissimilarity measure. Initialize X̆(0) ⊂ X̃, βti = 1 and set the iteration 
index 
 = 1,

2. Calculate the fuzzy partition matrix U(
) for the 
-th iteration using (32),
3. Rank-order the dissimilarities between the ith fuzzy medoid and fuzzy data (see (35)) obtaining the permutation 

function πt (i),
4. Calculate βtπt (i) using (36) or (37) or uniform weighting,
5. Update overall typicality parameters βi using (31),
6. Update the medoids for the 
-th iteration X̆(
) using U(
) and (33)–(34),

7. If 
∥∥∥X̆(
+1) − X̆(
)

∥∥∥
F

> ξ then j ← j + 1 and go to Step 2 else stop.

Remark 3 (Fuzziness parameter). The fuzziness parameter ζ plays an important role in fuzzy clustering. It should be 
suitably chosen in advance. Although 1 < ζ < ∞, values too close to 1 will result in a partition with all memberships 
close to 0 or 1. Excessively large values will lead to disproportionate overlap with all memberships close to 1/c [51]. 
Consequently, neither of these types of ζ is recommended [1]. Although there have been some empirical heuristic 
procedures to determine the value of ζ (e.g., [42,51,20]), there seems to exist no theoretically justifiable manner of 
selecting ζ . Wang et al. [50] and Yang et al. [56] suggest ζ = 2 and Leski [37] uses ζ = 1.1. Since the medoid always 
has membership equal to 1 in the cluster, raising its membership to the power λ has no effect. Thus, when ζ is high, 
the mobility of the medoids may be lost [17]. For this reason, a value between 1 and 1.5 for ζ is recommended by 
Kamdar and Joshi [36]. For more details on the choice of ζ see D’Urso and De Giovanni [20].

Remark 4 (Number of clusters and parameter of SOWA ordering function). Several clustering validity criteria can be 
considered for computing the optimal number of clusters. For our clustering method we obtain the best number of 
clusters and the value of pc by means of the Fuzzy Silhouette (FS) [4]:
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FS =
∑N

i=1(uri − uqi)
γ vi∑N

i=1(uri − uqi)γ
, (38)

where uri, uqi are the first and second largest elements of the ith column of fuzzy partition matrix U, γ is a weighting 
coefficient (in our experiments equals 1.0), and

vi = bi − ai

bi ∨ ai

, (39)

where bi is the minimum of the distances (using dissimilarity D) of ith datum to all remaining data from other clusters, 
ai is the average distance of ith datum to remaining data belonging to its highest membership cluster.

The highest the value of FS, the better the assignment of the objects to the clusters.

5. Numerical experiments

All experiments were performed on HP Intel® Core™ i7-8700 CPU @ 4.50 GHz with 16 GB RAM, running 
Windows 10 and MATLAB™ R2016b environment. In all experiments for FcOMdC-FD the weighting exponent 
ζ = 1.5 was used. The iterations were stopped as soon as the Frobenius norm of the successive X̆ matrices difference 
was less than ξ = 10−4 (see step 7).

5.1. Experiments on simple two-dimensional dataset

The purpose of this experiment was to investigate the sensitivity to various types and number of outliers for the 
traditional FcMdC and the FcOMdC-FD methods. Please note that the FcMdC method is equivalent to the FcOMdC-
FD method with SQR loss function and with no weighting function (UOWA). The two-dimensional (two features 
vector) symmetric triangular fuzzy data set, presented in Fig. 9, consists of three well-separated groups (each of 25
objects), and a varying number of outliers. For each group fuzzy data were generated randomly. Both the centers 
and the spreads were from Gaussian distribution with mean m and standard deviation σ ; N (m, σ). The centers (two 
features) and the spreads (two features) of the three groups were as follows:

• first group:
centers N (−15, 1.5), N (15, 1.5) and spreads N (2, 0.04), N (2, 0.04),

• second group:
centers N (15, 3), N (15, 1.5) and spreads N (3, 0.04), N (1.5, 0.04),

• third group:
centers N (15, 1.5), N (−15, 3) and spreads N (2, 0.04), N (3, 0.04).

Thus, an expected value of fuzzy medoids that describe the groups create the following matrix: X̆e =
[(−15, 2, 15, 2); (15, 3, 15, 1.5); (15, 2, −15, 3)]. The tested methods were initialized using fuzzy medoids with cen-
ters (5,1), (−1,1) and (3,−3), and spreads (2,2), (2,2) and (2,2), marked on the figure. In the figure, all the data 
are marked as crosses, whose crossing points are located in the centers m, and the ends of which are at points m − s
and m + s. For each experiment all fuzzy outliers are identical. This is the least favorable case. If in the place of 
such fuzzy outliers a fuzzy medoid would be placed, it would cause the greatest possible reduction of the criterion 
function. When outliers are dispersed the value of the criterion reduction is not be so big. In other words, ‘force’ 
attracting prototypes to such outliers is as large as possible. Therefore, the use of such outliers leads to a drastic verify 
the resistance of clustering methods. The number of outliers varies from 0 (no outliers) to 25 (equal to the number of 
data in each group). Three types of outliers are used:

• with respect to the centers and spreads: centers (−15, 15) and spreads (7, 4) (see Fig. 9. The outliers are marked 
as the crosses that are drawn by dotted line.),

• with respect to the spreads: centers (15, −15) and spreads (0.25, 9) (see Fig. 10. The outliers are marked as the 
crosses that are drawn by dotted line.),

• with respect to the centers: centers (−15, −15) and spreads (2, 2) (see Fig. 11. The outliers are marked as the 
crosses that are drawn by dotted line.).



JID:FSS AID:7630 /FLA [m3SC+; v1.298; Prn:29/03/2019; 15:43] P.12 (1-28)

12 P. D’Urso, J.M. Leski / Fuzzy Sets and Systems ••• (••••) •••–•••
Fig. 6. The Frobenius norm of the clusters centers errors for various numbers of center and spread outliers in the synthetic symmetric triangular 
fuzzy data. The traditional FcMdC and the FcOMdC-FD with various loss function are presented in subplots.

The effects of the FcMdC and the FcOMdC-FD methods investigation for varying number of outliers and its type 
are presented in Figs. 6–8. For the computed terminal fuzzy medoids, we measured the performance of a clustering 
method by the Frobenius norm of the difference between the expected value of fuzzy centers/spreads matrix and the 

terminal fuzzy medoids matrix, i.e., 
∥∥∥X̆e − X̆(
0)

∥∥∥
F
, where 
0 is the number of steps needed to achieve convergence 

of the algorithm.
Fig. 6 shows that for a few outliers (from 1 to 2 center/spread outliers type) the terminal medoids determined by 

all methods are close to the true centers/spreads values of each group. But for a slightly greater number of outliers 
(greater than 3) the terminal medoids errors are smaller for FcOMdC-FD than for the FcMdC method. We can con-
clude that the best performance of the FcOMdC-FD method is obtained for the SIG loss function. For LIN, HUB 
and LOG loss functions a slightly worse results are obtained for a large number of outliers (close to 25). The FcMdC 
method performance is catastrophically deteriorated for 3 outliers. For the FcOMdC-FD method the terminal medoids 
determined for all loss functions except the SQR are close to the true centers/spreads. The performance is catastroph-
ically deteriorated for the number of outliers equal to 8, for the SQR loss function only. However, even for smaller 
number of outliers and for the FcOMdC-FD method with SQR loss function rather serious increase of errors is visible. 
In the case of the center outliers, the best results were archived for the FcOMdC-FD with SIG loss function. Similar 
conclusions can be drawn from Fig. 7, which shows the test results for varying number of centers outliers. The figure 
shows that we get the best results for LIN, SIG and HUB loss functions.

Fig. 7 shows that despite the large number of outliers (spread outliers type) the terminal medoids determined by 
all methods are close to the true centers/spreads. But the best results were archived for FcMdC and the FcOMdC-FD 
method with SQR loss functions.

Fig. 9 illustrates the performance of the FcOMdC-FD method for 25 centers and spreads outliers, and the SIG 
loss function. In this figure, we can observe the traces of the medoids centers (lines) and spreads (boldfaced crosses) 
calculated in the successive iterations. We can see that the medoids terminate near the expected clusters centers 
and spreads. Fig. 10 illustrates the performance of the FcOMdC-FD method for 25 spreads outliers and the SIG 
loss function. Fig. 11 illustrates the performance of the FcOMdC-FD method for 25 centers outliers and the SIG 
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Fig. 7. The Frobenius norm of the clusters centers errors for various numbers of spread outliers in the synthetic symmetric triangular fuzzy data. 
The traditional FcMdC and the FcOMdC-FD with various loss function are presented in subplots.

Fig. 8. The Frobenius norm of the clusters centers errors for various numbers of center outliers in the synthetic symmetric triangular fuzzy data. 
The traditional FcMdC and the FcOMdC-FD with various loss function are presented in subplots.
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Fig. 9. Performance of the FcOMdC-FD method with the SIG loss function for 25 center and spread outliers.

Fig. 10. Performance of the FcOMdC-FD method with the SIG loss function for 25 spread outliers.

loss function. We can notice that despite the outliers type the medoids terminate near the expected clusters cen-
ters.

The proposed FcOMdC-FD method was compared to the robust Fuzzy c-Medoids Clustering for Interval-valued 
Data (FcMdC-ID) [26] and the Fuzzy Ordered c-Medoids for Interval-valued Data (FcOMdC-ID) with various loss 
functions [28]. For these methods, fuzzy data was treated as interval data: [m − s, m + s]. The effects of the FcMdC-ID 
and the FcOMdC-ID methods investigation for varying number of outliers and its type are presented in Figs. 12–14. 
For the computed terminal fuzzy medoids, we measured the performance of a clustering method by the Frobenius 
norm of the difference between the expected value of fuzzy centers/spreads matrix and the terminal fuzzy medoids 
matrix. By comparing the above results to those shown in Figs. 6–8 we can draw the following conclusions. For center 
spread outliers and less resistance occurs for FcOMdC-ID method for the loss function SQR. For other loss functions 
and FcMdC-ID method we have similar errors to the FcOMdC-FD method. In the same way, for spread outliers, all the 
methods compared showed similar outliers. For center outliers, worse results were found for the FcMdC-ID method. 
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Fig. 11. Performance of the FcOMdC-FD method with the SIG loss function for 25 center outliers.

Fig. 12. The Frobenius norm of the clusters centers errors for various numbers of center and spread outliers in the synthetic symmetric triangular 
fuzzy data. The traditional FcMdC-ID and the FcOMdC-ID with various loss function are presented in subplots.

Fig. 15 presents the results obtained for different types of outliers and the Trimmed Fuzzy c-medoids Clustering for 
Interval-valued Data TrFCMd-FD [22] and the Weighted Fuzzy c-means clustering for Fuzzy Data (WFcMFD) [27]. 
Both methods lead to better results compared to FcOMdC-FD and SQR loss function. However, for FcOMdC-FD and 
other loss functions, and in particular HUB, SIG and LOG, the obtained results are better than the methods being 
compared, regardless of the type of outliers.
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Fig. 13. The Frobenius norm of the clusters centers errors for various numbers of spread outliers in the synthetic symmetric triangular fuzzy data. 
The traditional FcMdC-ID and the FcOMdC-ID with various loss function are presented in subplots.

Fig. 14. The Frobenius norm of the clusters centers errors for various numbers of center outliers in the synthetic symmetric triangular fuzzy data. 
The traditional FcMdC-ID and the FcOMdC-ID with various loss function are presented in subplots.
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Fig. 15. The Frobenius norm of the clusters centers errors for various type and number outliers in the synthetic symmetric triangular fuzzy data. 
The traditional TrFCMd-FD the WFcMFD for various types of outliers are presented in subplots.

5.2. Experiments on benchmark datasets

The aim of the experiment was to compare the efficiency of grouping for complex data structures. For the exper-
iments, 2 well-known benchmark datasets are used, obtained from the SIPU (School of Computing, University of 
Eastern Finland) repository http://cs .uef .fi /sipu /datasets:

1. D31 (3100 data points, containing 31 clusters of circular shape, similar size, and different degree of overlapping) 
Veenman et al. [48].

2. R15 (600 data points, containing 15 mostly well separated clusters of circular shape and similar size) Veenman et 
al. [48].

The traditional FcMdC, the TrFCMd-FD, the FcOMdC-ID (for various loss functions), the WFcMFD and 
FcOMdC-FD methods were compared, for different numbers of outliers: 0, 20, 40, 60, 80. All data from the database 
was subjected to a fuzzyfication process. The spread parameter was assumed N (1, 0.3). For the FcOMdC-ID method, 
fuzzy data was treated as interval data: [m − s, m + s]. Outliers had the following parameters: centers (0, 0) and 
spreads (2, 2) (see Figs. 16 and 17). The outliers are marked on these figures as the crosses that are drawn by dotted 
line.

The tested methods were initialized using fuzzy medoids with centers and spreads calculated using the method 
described in the work Leski and Kotas [40] (see Algorithm 1 with distances between objects calculated by (26)). The 
databases used had information on the membership of elements to groups. It was therefore possible to calculate, using 
the average, the parameters of the expected group centers (centers/spreads). For the computed terminal fuzzy medoids, 
we measured the performance of a clustering method by the Frobenius norm of the difference between the expected 
value of fuzzy centers/spreads matrix and the terminal fuzzy medoids matrix.

Figs. 16 and 17 illustrate the performance of the FcOMdC-FD method for 80 outliers, and the HUB loss function 
for R15 and D31 datasets, respectively. The terminal prototypes are marked with bold line. The Frobenius norm of 

http://cs.uef.fi/sipu/datasets
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Fig. 16. Performance of the FcOMdC-FD method with the HUB loss function for R15 dataset and 80 center and spread outliers. The terminal 
prototypes are marked in boldface.

Fig. 17. Performance of the FcOMdC-FD method with the LOG loss function for D31 dataset and 80 center and spread outliers. The terminal 
prototypes are marked in boldface.

the difference between the expected value of fuzzy centers/spreads matrix and the terminal fuzzy medoids matrix, for 
datasets R15 i D31 are presented in Tables 1 and 2, respectively.

In the case of R15 dataset, the best results were obtained for the method proposed in the paper (FcOMdC-FD), for 
HUB loss function. Only slightly worse resistance to outliers shows this method for LIN and LOG loss functions. For 
the FcOMdC-ID method, slightly worse results than the FcOMdC-FD method were obtained. For other methods, i.e. 
the FcMdC, the TrFCMd-FD, the WFcMFD the results are much worse. Similar conclusions can be provided for D31 
dataset. The only difference is that the greatest resistance to the method FcOMdC-FD proposed at work we get in this 
case for the LOG function. For the HUB function the results are slightly worse.
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Table 1
The Frobenius norm of the clusters centers errors for various clustering methods and different 
numbers of center and spread outliers in the R15 dataset.

Method Number of outliers

0 20 40 60 80

FcOMdC-FD, SQR 0.4665 1.0177 1.6399 1.7017 1.8754
FcOMdC-FD, LIN 0.5710 0.6519 0.6519 0.6519 0.6552
FcOMdC-FD, SIG 0.5884 0.6068 0.7126 0.7126 0.7806
FcOMdC-FD, HUB 0.4664 0.4664 0.4664 0.5275 0.5275
FcOMdC-FD, LOG 0.4664 0.8460 1.0385 1.1638 0.6711
FcMdC 0.4664 0.9998 1.0786 1.7762 2.0460
TrFCMd-FD 0.4664 1.0504 1.6790 1.8203 2.0546
FcOMdC-ID, SQR 0.5278 0.9159 1.0241 1.6864 1.7103
FcOMdC-ID, LIN 0.6907 0.6443 0.6443 0.6443 0.6115
FcOMdC-ID, SIG 0.6130 0.6130 0.6489 0.5882 0.7573
FcOMdC-ID, HUB 0.5330 0.5330 0.5293 0.5293 0.5293
FcOMdC-ID, LOG 0.5278 0.6124 0.9159 1.0231 1.1912
WFcMFD 0.4711 0.9916 1.0797 1.8187 2.0545

Table 2
The Frobenius norm of the clusters centers errors for various clustering methods and different 
numbers of center and spread outliers in the D31 dataset.

Method Number of outliers

0 20 40 60 80

FcOMdC-FD, SQR 1.1085 1.3110 2.9389 3.0228 3.5160
FcOMdC-FD, LIN 1.8662 1.8717 1.8681 1.8681 1.8681
FcOMdC-FD, SIG 1.3793 1.3745 1.3745 1.4305 1.6193
FcOMdC-FD, HUB 1.5388 1.5388 1.6049 1.5992 1.5992
FcOMdC-FD, LOG 1.1857 1.1334 1.2243 1.3273 1.3232
FcMdC 1.2565 1.3162 1.5494 2.9621 3.0245
TrFCMd-FD 1.1085 1.3110 2.9389 3.0228 3.5160
FcOMdC-ID, SQR 1.2415 1.3288 1.9709 3.0175 3.5273
FcOMdC-ID, LIN 1.8631 1.9270 1.9235 1.9235 1.9235
FcOMdC-ID, SIG 1.3609 1.3609 1.3609 1.3746 1.3760
FcOMdC-ID, HUB 1.6287 1.6287 1.6287 1.6299 1.6299
FcOMdC-ID, LOG 1.2295 1.2295 1.2672 1.3295 1.3295
WFcMFD 1.2416 1.3288 1.9709 3.0175 3.5273

5.3. Experiments on the fuzzy-art-outliers dataset

The ‘art-outliers’ is a six dimensional and two cluster dataset Siminski [46]. This dataset includes 100 examples 
each cluster, and a varying number of outliers. A fuzzy version of the data was used in the experiments, and the 
dataset is hereinafter called ‘fuzzy-art-outliers’. For each group fuzzy data were generated randomly. Both the centers 
and the spreads were from the Gaussian distribution N (m, σ) with mean m and standard deviation σ or from the 
uniform distribution U(a, b) on interval (a, b). The centers (six features) and the spreads (six features) of groups were 
as follows:

• first group:
centers N (3, 0.5), U(0, 10), N (3, 0.5), U(0, 10), N (3, 0.5), U(0, 10) and spreads N (1, 0.1), N (1, 0.2), 
N (1, 0.1), N (1, 0.2), N (1, 0.1), N (1, 0.2),

• second group:
centers U(0, 10), N (7, 0.7), U(0, 10), N (7, 0.7), N (7, 0.7), U(0, 10) and spreads N (1, 0.2), N (1, 0.3), 
N (1, 0.2), N (1, 0.3), N (1, 0.3), N (1, 0.2),
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Table 3
The median of Frobenius norm of the clusters centers errors for various clustering methods 
and different numbers of center and spread outliers in the fuzzy-art-outliers dataset.

Method Number of outliers

0 20 40 60 80

FcOMdC-FD, SQR 3.3158 3.3158 4.2422 4.5876 17.4787
FcOMdC-FD, LIN 3.2884 3.2889 3.3158 4.9243 5.8366
FcOMdC-FD, SIG 3.9145 3.9145 3.9371 4.8243 5.8566
FcOMdC-FD, HUB 3.2889 3.2889 3.7801 4.5445 5.8566
FcOMdC-FD, LOG 3.3158 3.3158 3.3158 4.5876 5.6711
FcMdC 3.3158 4.2423 4.5876 8.8418 17.8540
TrFCMd-FD 3.3158 3.3158 4.5876 9.1124 17.4789
WFcMFD 9.9784 4.5876 7.2432 10.1242 17.4787

Thus, an expected value of fuzzy medoids that describe the groups create the following matrix: X̆e =
[(3, 1, 5, 1, 3, 1, 5, 1, 3, 1, 5, 1); (5, 1, 7, 1, 5, 1, 7, 1, 7, 1, 5, 1)]. The tested methods were initialized using fuzzy 
medoids determined by the method described in Leski and Kotas [40] (see Algorithm 1). It should be noted that 
the dataset is structured so that the 5th feature is important for both clusters and the 6th feature is not important in 
either cluster. For each experiment all fuzzy outliers are identical: (0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4); therefore they are 
located at the origin of the coordinate system and have spread equal to 4. The data examples were generated randomly 
50 times for each number of outliers. The following grouping methods have been compared: FcMdC, TrFCMd-FD, 
WFcMFD and FcOMdC-FD. The median of Frobenius norm of the clusters centers errors for each clustering methods 
and numbers of center and spread outliers equal to 0, 20, 40, 60 and 80 are presented in Table 3 Based on the above 
table, we can see that the greatest resistance to outliers is achieved again by the FcOMdC-FD method, for all types 
of loss functions except SQR. The best results were obtained for the LOG loss function. The other tested methods, as 
the number of outliers increases, show an increase in the error in determining the position of the prototypes.

6. Application

In this section, in order to show the effectiveness, performance and robustness of our clustering method, we apply 
FcOMdC-FD to a meteorological dataset (source: https://cran .r-project .org /web /packages /meteo /meteo .pdf; “Sample 
data set showing values of merged mean daily temperature measurements from the Global Surface Summary of Day 
data (GSOD) with European Climate Assessment & Dataset (ECA&D) data for the month July 2011”). In particular, 
we analyze the mean, minimum and maximum temperature in degree centigrade over a day of July 2011(i.e. July 7th) 
observed in 83 meteo stations. The dataset is shown in Table 4. We code the data in a fuzzy manner by considering 
an asymmetric triangular membership function with center equal to the mean temperature and left spread equal to the 
mean temperature minus the minimum temperature and right spread equal to the maximum temperature minus the 
mean temperature. The fuzzy coding and the membership functions of the dataset are shown in Fig. 18.

As we can see from Table 4 and 18, in the meteo dataset we have a well-defined group of stations with high 
temperatures, a well-defined group of stations with low temperatures, a station with intermediate temperature (fuzzy 
membership), a station with a very high temperature (outlier) and a station with a very low temperature (outlier).

Then, by applying our proposed method we expect to obtain this natural cluster structure.
We consider different loss functions (i.e., SQR, LIN, SIG, HUB and LOG), the number of clusters ranging from 2 

to 5, the parameter of SOWA function equal to 0.6, 0.7, 0.8, 0.9 and the weighting exponent equal to 1.5. For selecting 
the optimal parameters, we use the Fuzzy Silhouette criterion (see Remark 4). The values of the fuzzy silhouette for 
various number of clusters, the parameter of SOWA function and type of loss function are shown in Table 5.

By applying our method with the LOG loss function, we obtain the results shown in Table 6; the medoids are in 
red boldface in Fig. 18.

As we can see from Table 6, by applying FcOMdC-FD we have obtained the expected partition, i.e. 2 well-defined 
clusters (compact clusters with very low within variability, i.e. the cluster of stations with high temperatures and 
the cluster of stations with low temperatures), one station with intermediate temperature with fuzzy membership 
degrees (i.e. 0.486 and 0.514) (Sparrevohnafs), one station with a very high temperature (the “hot outlier” Jahra) 

https://cran.r-project.org/web/packages/meteo/meteo.pdf
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Table 4
Meteo dataset.

No. Meteo station Temperature Longitude Latitude

Average max min

1 JAHRA 43.1 50.5 35.2 47.667 29.317
2 AKSA 18.1 25.2 12.5 113.267 50.267
3 AKRON/AKRON-CANTON 22.6 30.6 14.4 −81.443 40.918
4 FISHBACH 20.8 26.9 13.9 15.650 47.450
5 MOOREDBUOY44030 19.1 22.5 17.1 −70.417 43.183
6 PINEGA 18.5 26.5 10.6 43.400 64.700
7 PETROZAWODSK 22.1 28.1 16.1 34.267 61.817
8 POKROVSKAJA 20.7 27.4 12.3 129.150 61.483
9 QIANGORLOS 21.6 26.5 16.8 124.867 45.083
10 KABAHE 20.9 27.3 12.5 86.350 48.050
11 IDAR-OBERSTEIN 18.1 23.9 11.2 7.333 49.700
12 TOAMASINA 21.2 26.7 18.6 49.400 −18.117
13 SEGOVIA 22.9 29.0 15.4 −4.117 40.950
14 TULA 20.1 25.1 15.1 37.700 54.200
15 KURSK 20.7 25.9 15.6 36.167 51.767
16 CHICAGO/WAUKEGAN 22.3 29.4 14.0 −87.868 42.422
17 MEDFORD-JACKSONCOU 21.4 30.6 12.8 −122.871 42.389
18 OCNASUGATAG 22.1 28.9 15.4 23.933 47.783
19 CARBERRYCS 19.6 26.3 11.7 −99.350 49.900
20 PRINCEALBERTARPT 18.3 27.0 13.5 −105.667 53.217
21 KITTILASAMMALTUNTUR 20.2 24.5 16.9 24.117 67.967
22 BOGOR/CITEKO 21.4 25.8 17.6 106.933 −6.700
23 PORTNOLLOTH 22.6 29.0 17.2 16.867 −29.233
24 MEZEN 19.1 24.0 10.8 44.217 65.867
25 VIROLAHTIKOIVUNIEMI 22.6 28.4 15.3 27.683 60.533
26 KOUMAC(NLLE-CALEDO 20.0 24.8 15.9 164.283 −20.567
27 LEIBSTADT 20.4 28.7 15.0 8.183 47.600
28 TEMELIN 22.1 28.9 14.7 14.350 49.200
29 COOKMUNI 20.1 27.0 15.0 −92.689 47.822
30 HEKKINGENFYR 19.6 27.0 11.6 17.837 69.601
31 LUSTELKEA 19.3 24.0 15.0 −110.667 62.417
32 HOLMSK 18.0 21.5 17.0 142.050 47.050
33 SEKTAGLI 19.8 24.9 15.7 131.017 50.433
34 LIDA 20.1 26.1 14.2 25.300 53.900
35 SVOLVAERLUFTHAVN 18.6 25.9 15.7 14.669 68.245
36 CRNCAYOSEMITEVILLAGE12W 18.6 22.3 15.1 −119.821 37.759
37 WIESBADEN 20.7 28.6 12.0 8.333 50.050
38 GENEVEOBSERVATOIRE 23.0 31.0 15.1 6.150 46.200
39 GOREBAYCLIMATE 20.5 26.1 13.7 −82.567 45.883
40 POPRAD/TATRY 19.8 27.6 11.6 20.250 49.067
41 PRZEMYSL 21.6 29.5 16.5 22.767 49.800
42 SPARREVOHNAFS 11.7 15.5 8.8 −155.583 61.100
43 COOMAAIRPORTAWS 4.2 10.4 −4.4 148.967 −36.300
44 PRUDHOEBAY 2.8 5.2 1.0 −148.517 70.400
45 STATIONNORDAWS 0.2 0.6 0.0 −16.650 81.600
46 NUIQSUT 4.3 10.6 0.6 −151.002 70.212
47 SONNBLICK 4.0 4.6 3.5 12.950 47.050
48 MTHOTHAMAIRPORT 0.4 4.7 −3.2 147.333 −37.050
49 FRANKFORT 4.6 17.6 −5.6 28.500 −27.267
50 LADYSMITH 4.6 14.6 −1.5 29.767 −28.567
51 ELCALAFATEAERO 0.5 2.8 −4.4 −72.050 −50.267
52 QUEENSTOWNAERODROM 1.6 5.0 0.1 168.733 −45.017
53 GOONDIWINDIAIRPORT 5.0 14.6 0.0 150.317 −28.517
54 IKERMIIT 4.7 6.4 3.8 −40.300 64.783
55 PIANROSA 3.3 5.4 1.4 7.700 45.933
56 MOUNTBOYCE 1.9 5.7 −1.7 150.267 −33.617

(continued on next page)
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Table 4 (continued)

No. Meteo station Temperature Longitude Latitude

Average max min

57 OSTROVDIKSON 4.4 4.8 3.7 80.400 73.500
58 MYSSHMIDTA 4.5 6.5 2.7 −179.633 68.900
59 DANMARKSHAVN 2.0 3.9 0.7 −18.667 76.767
60 PORT-AUX-FRANCAIS 0.1 2.9 −2.8 70.200 −49.300
61 APUTITEEQ 0.7 2.5 −0.8 −32.299 67.783
62 CAPEMERCY 0.1 3.0 −1.0 −63.583 64.950
63 ALIWALNORTH 3.9 18.3 −3.5 26.883 −30.800
64 IM.M.V.POPOVA 4.5 5.5 3.6 70.050 73.333
65 POLARGMOIM.E.T.K 0.8 2.1 −0.2 58.050 80.617
66 BUTLERSGORGE 2.9 5.0 −0.4 146.283 −42.283
67 BALLARATAERODROME 5.0 9.8 1.3 143.783 −37.517
68 SANJULIANAERO 4.9 8.5 2.2 −67.750 −49.317
69 BJOERNOEYA 3.8 4.5 3.0 19.017 74.517
70 GRAAFF-REINET 4.7 16.8 −3.4 24.550 −32.200
71 INVERCARGILLAIRPOR 3.3 6.2 1.3 168.333 −46.417
72 BATHURSTAIRPORTAW 4.9 8.1 0.3 149.650 −33.417
73 OSTROVKOTELNYJ 2.6 3.2 1.4 137.867 76.000
74 CYLDEAIRPORT 4.8 8.0 2.0 −68.517 70.483
75 ENDERBYISLANDAWS 2.8 4.9 0.9 166.300 −50.483
76 BALMACEDA 2.7 9.3 0.8 −71.700 −45.917
77 STAWELL 1.1 2.4 −0.3 142.600 −37.300
78 IKERMIUARSUK 3.6 5.0 2.6 −42.067 61.933
79 HOPEN 1.7 3.6 1.1 25.067 76.500
80 EILDONFIRETOWER 4.3 7.5 3.0 145.833 −37.217
81 NULLOMOUNTAINAWS 1.6 5.7 −2.9 150.233 −32.732
82 RIOGRANDEB.A. 1.2 2.0 0.0 −67.750 −53.800
83 VOSTOK −57.9 −56.3 −60.9 106.867 −78.450

Fig. 18. Fuzzy data and membership functions of the meteo dataset (and medoids obtained by means of FcOMdC-FD with LOG loss function.

and one station with a very low temperature (the “cold outlier” Vostok). The medoid stations for the 2 clusters are 
Gorebayclimate (cluster with high temperatures) and Invercargillairpor (cluster with low temperatures). Notice that, 
as expected, the 2 outliers are identified by very low values of the typicality parameters (see Table 6). In order to 
show the effectiveness and the informational gain of our method in a comparative point of view, we compare the 
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Table 5
Fuzzy silhouette for various number of clusters, the parameter of the SOWA function and type 
of loss function.

Method pc Number of clusters

2 3 4 5

0.6 0.6321 0.2937 0.2059 0.2817
FcOMdC-FD, SQR 0.7 0.6321 0.2937 0.3137 0.2817

0.8 0.6321 0.1325 0.3137 0.3047
0.9 0.3510 0.1322 0.2300 0.3255

0.6 0.7290 0.5660 0.4523 0.4071
FcOMdC-FD, LIN 0.7 0.7290 0.3125 0.4032 0.4420

0.8 0.7290 0.3241 0.4399 0.3882
0.9 0.7290 0.3244 0.4361 0.3750

0.6 0.7431 0.3190 0.3653 0.3124
FcOMdC-FD, SIG 0.7 0.7431 0.3190 0.3111 0.3667

0.8 0.7431 0.3832 0.3653 0.3399
0.9 0.7431 0.3195 0.3564 0.3236

0.6 0.7337 0.3149 0.3181 0.4121
FcOMdC-FD, HUB 0.7 0.7337 0.3149 0.3181 0.4098

0.8 0.7337 0.3149 0.3181 0.3926
0.9 0.7337 0.3149 0.3181 0.4098

0.6 0.8349 0.3484 0.2948 0.3357
FcOMdC-FD, LOG 0.7 0.8349 0.3484 0.3537 0.3700

0.8 0.8349 0.3484 0.2812 0.3357
0.9 0.8349 0.2297 0.2812 0.3357

Table 6
Membership degrees and typicality parameters for FcOMdC-FD.

No. Meteo station Cluster 1 Cluster 2 βi

1 JAHRA 0.294 0.706 0.003
2 AKSA 0.001 0.999 0.943
3 AKRON/AKRON-CANTON 0.001 0.999 0.932
4 FISHBACH 0.000 1.000 1.000
5 MOOREDBUOY44030 0.000 1.000 0.991
6 PINEGA 0.001 0.999 0.966
7 PETROZAWODSK 0.000 1.000 0.979
8 POKROVSKAJA 0.000 1.000 1.000
9 QIANGORLOS 0.000 1.000 0.996
10 KABAHE 0.000 1.000 0.999
11 IDAR-OBERSTEIN 0.002 0.998 0.906
12 TOAMASINA 0.000 1.000 0.993
13 SEGOVIA 0.001 0.999 0.920
14 TULA 0.000 1.000 1.000
15 KURSK 0.000 1.000 0.999
16 CHICAGO/WAUKEGAN 0.001 0.999 0.971
17 MEDFORD-JACKSONCOU 0.000 1.000 0.994
18 OCNASUGATAG 0.000 1.000 0.976
19 CARBERRYCS 0.000 1.000 0.998
20 PRINCEALBERTARPT 0.001 0.999 0.988
21 KITTILASAMMALTUNTUR 0.000 1.000 0.998
22 BOGOR/CITEKO 0.000 1.000 0.996
23 PORTNOLLOTH 0.001 0.999 0.890
24 MEZEN 0.001 0.999 0.986
25 VIROLAHTIKOIVUNIEMI 0.001 0.999 0.952
26 KOUMAC(NLLE-CALEDO 0.000 1.000 0.999

(continued on next page)
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Table 6 (continued)

No. Meteo station Cluster 1 Cluster 2 βi

27 LEIBSTADT 0.000 1.000 0.999
28 TEMELIN 0.000 1.000 0.983
29 COOKMUNI 0.000 1.000 1.000
30 HEKKINGENFYR 0.000 1.000 0.998
31 LUSTELKEA 0.000 1.000 0.997
32 HOLMSK 0.003 0.997 0.872
33 SEKTAGLI 0.000 1.000 0.999
34 LIDA 0.000 1.000 1.000
35 SVOLVAERLUFTHAVN 0.000 1.000 0.995
36 CRNCAYOSEMITEVILLAGE12W 0.001 0.999 0.959
37 WIESBADEN 0.000 1.000 0.999
38 GENEVEOBSERVATOIRE 0.002 0.998 0.850
39 GOREBAYCLIMATE 0.000 1.000 1.000
40 POPRAD/TATRY 0.000 1.000 0.999
41 PRZEMYSL 0.000 1.000 0.990
42 SPARREVOHNAFS 0.514 0.486 0.826
43 COOMAAIRPORTAWS 0.999 0.001 0.988
44 PRUDHOEBAY 1.000 0.000 1.000
45 STATIONNORDAWS 0.996 0.004 0.906
46 NUIQSUT 1.000 0.000 0.996
47 SONNBLICK 1.000 0.000 0.999
48 MTHOTHAMAIRPORT 0.997 0.003 0.952
49 FRANKFORT 0.992 0.008 0.850
50 LADYSMITH 0.997 0.003 0.976
51 ELCALAFATEAERO 0.996 0.004 0.890
52 QUEENSTOWNAERODROM 1.000 0.000 0.994
53 GOONDIWINDIAIRPORT 0.996 0.004 0.959
54 IKERMIIT 1.000 0.000 0.997
55 PIANROSA 1.000 0.000 1.000
56 MOUNTBOYCE 1.000 0.000 0.995
57 OSTROVDIKSON 1.000 0.000 0.999
58 MYSSHMIDTA 1.000 0.000 0.999
59 DANMARKSHAVN 1.000 0.000 0.998
60 PORT-AUX-FRANCAIS 0.996 0.004 0.872
61 APUTITEEQ 0.998 0.002 0.966
62 CAPEMERCY 0.997 0.003 0.943
63 ALIWALNORTH 0.994 0.006 0.920
64 IM.M.V.POPOVA 1.000 0.000 0.998
65 POLARGMOIM.E.T.K 0.998 0.002 0.971
66 BUTLERSGORGE 1.000 0.000 1.000
67 BALLARATAERODROME 0.999 0.001 0.990
68 SANJULIANAERO 1.000 0.000 0.991
69 BJOERNOEYA 1.000 0.000 0.999
70 GRAAFF-REINET 0.994 0.006 0.932
71 INVERCARGILLAIRPOR 1.000 0.000 1.000
72 BATHURSTAIRPORTAW 1.000 0.000 0.998
73 OSTROVKOTELNYJ 1.000 0.000 0.999
74 CYLDEAIRPORT 1.000 0.000 0.996
75 ENDERBYISLANDAWS 1.000 0.000 1.000
76 BALMACEDA 1.000 0.000 0.999
77 STAWELL 0.999 0.001 0.979
78 IKERMIUARSUK 1.000 0.000 1.000
79 HOPEN 1.000 0.000 0.993
80 EILDONFIRETOWER 1.000 0.000 0.999
81 NULLOMOUNTAINAWS 0.999 0.001 0.986
82 RIOGRANDEB.A. 0.999 0.001 0.983
83 VOSTOK 0.561 0.439 0.003
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Table 7
Results of FcMdC-FD, FcMdCNC-FD, TrFcMdC-FD and SFcMdC-FD.

No. Meteo station FcMdC-FD FcMdCNC-FD TrFcMdC-FD SFcMdC-FD

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Noise cluster Cluster 1 Cluster 2 Cluster 1 Cluster 2

1 JAHRA 0.080 0.920 0.010 0.100 0.890 outlier 0.480 0.520
2 AKSA 0.000 1.000 0.000 0.999 0.001 0.000 1.000 0.001 0.999
3 AKRON/AKRON-CANTON 0.000 1.000 0.000 0.998 0.002 0.001 0.999 0.002 0.998
4 FISHBACH 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
5 MOOREDBUOY44030 0.001 0.999 0.001 0.996 0.003 0.001 0.999 0.004 0.996
6 PINEGA 0.001 0.999 0.001 0.997 0.002 0.000 1.000 0.004 0.996
7 PETROZAWODSK 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
8 POKROVSKAJA 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
9 QIANGORLOS 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
10 KABAHE 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
11 IDAR-OBERSTEIN 0.001 0.999 0.002 0.995 0.003 0.001 0.999 0.006 0.994
12 TOAMASINA 0.000 1.000 0.000 0.999 0.001 0.000 1.000 0.001 0.999
13 SEGOVIA 0.000 1.000 0.000 0.999 0.001 0.000 1.000 0.001 0.999
14 TULA 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
15 KURSK 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
16 CHICAGO/WAUKEGAN 0.000 1.000 0.000 0.999 0.001 0.000 1.000 0.001 0.999
17 MEDFORD-JACKSONCOU 0.000 1.000 0.000 0.998 0.002 0.001 0.999 0.002 0.998
18 OCNASUGATAG 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
19 CARBERRYCS 0.000 1.000 0.000 0.999 0.001 0.000 1.000 0.001 0.999
20 PRINCEALBERTARPT 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
21 KITTILASAMMALTUNTUR 0.000 1.000 0.000 0.999 0.000 0.000 1.000 0.001 0.999
22 BOGOR/CITEKO 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.001 0.999
23 PORTNOLLOTH 0.000 1.000 0.000 0.999 0.001 0.000 1.000 0.001 0.999
24 MEZEN 0.001 0.999 0.002 0.995 0.003 0.001 0.999 0.006 0.994
25 VIROLAHTIKOIVUNIEMI 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
26 KOUMAC(NLLE-CALEDO 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
27 LEIBSTADT 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
28 TEMELIN 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
29 COOKMUNI 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
30 HEKKINGENFYR 0.000 1.000 0.000 0.999 0.001 0.000 1.000 0.001 0.999
31 LUSTELKEA 0.000 1.000 0.000 0.999 0.000 0.000 1.000 0.001 0.999
32 HOLMSK 0.002 0.998 0.003 0.991 0.006 0.002 0.998 0.011 0.989
33 SEKTAGLI 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
34 LIDA 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
35 SVOLVAERLUFTHAVN 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
36 CRNCAYOSEMITEVILLAGE12W 0.001 0.999 0.001 0.996 0.002 0.001 0.999 0.004 0.996
37 WIESBADEN 0.000 1.000 0.000 0.999 0.001 0.000 1.000 0.001 0.999
38 GENEVEOBSERVATOIRE 0.000 1.000 0.000 0.997 0.002 0.001 0.999 0.003 0.997
39 GOREBAYCLIMATE 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000
40 POPRAD/TATRY 0.000 1.000 0.000 0.999 0.001 0.000 1.000 0.001 0.999
41 PRZEMYSL 0.000 1.000 0.000 0.999 0.000 0.000 1.000 0.001 0.999
42 SPARREVOHNAFS 0.389 0.611 0.509 0.398 0.093 0.497 0.503 0.547 0.453
43 COOMAAIRPORTAWS 0.999 0.001 0.987 0.003 0.010 0.996 0.004 0.985 0.015
44 PRUDHOEBAY 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000 0.000
45 STATIONNORDAWS 0.999 0.001 0.992 0.001 0.007 0.999 0.001 0.991 0.009
46 NUIQSUT 0.998 0.002 0.997 0.001 0.002 0.999 0.001 0.997 0.003
47 SONNBLICK 0.999 0.001 1.000 0.000 0.000 1.000 0.000 1.000 0.000
48 MTHOTHAMAIRPORT 1.000 0.000 0.996 0.001 0.004 0.999 0.001 0.995 0.005
49 FRANKFORT 0.955 0.045 0.843 0.048 0.109 0.939 0.061 0.861 0.139
50 LADYSMITH 0.983 0.017 0.961 0.014 0.025 0.984 0.016 0.958 0.042
51 ELCALAFATEAERO 1.000 0.000 0.988 0.001 0.011 0.998 0.002 0.987 0.013
52 QUEENSTOWNAERODROM 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000 0.000
53 GOONDIWINDIAIRPORT 0.978 0.022 0.963 0.015 0.022 0.982 0.018 0.959 0.041
54 IKERMIIT 0.998 0.002 1.000 0.000 0.000 1.000 0.000 1.000 0.000
55 PIANROSA 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000 0.000
56 MOUNTBOYCE 1.000 0.000 0.999 0.000 0.001 1.000 0.000 0.999 0.001

(continued on next page)
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Table 7 (continued)

No. Meteo station FcMdC-FD FcMdCNC-FD TrFcMdC-FD SFcMdC-FD

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Noise cluster Cluster 1 Cluster 2 Cluster 1 Cluster 2

57 OSTROVDIKSON 0.998 0.002 1.000 0.000 0.000 1.000 0.000 0.999 0.001
58 MYSSHMIDTA 0.999 0.001 1.000 0.000 0.000 1.000 0.000 1.000 0.000
59 DANMARKSHAVN 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000 0.000
60 PORT-AUX-FRANCAIS 1.000 0.000 0.993 0.001 0.006 0.999 0.001 0.993 0.007
61 APUTITEEQ 1.000 0.000 0.997 0.000 0.002 1.000 0.000 0.997 0.003
62 CAPEMERCY 1.000 0.000 0.997 0.000 0.003 1.000 0.000 0.997 0.003
63 ALIWALNORTH 0.944 0.056 0.849 0.053 0.098 0.934 0.066 0.862 0.138
64 IM.M.V.POPOVA 0.998 0.002 1.000 0.000 0.000 1.000 0.000 1.000 0.000
65 POLARGMOIM.E.T.K 1.000 0.000 0.997 0.000 0.003 1.000 0.000 0.997 0.003
66 BUTLERSGORGE 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000 0.000
67 BALLARATAERODROME 0.998 0.002 0.998 0.000 0.001 0.999 0.001 0.998 0.002
68 SANJULIANAERO 0.998 0.002 1.000 0.000 0.000 1.000 0.000 0.999 0.001
69 BJOERNOEYA 0.999 0.001 1.000 0.000 0.000 1.000 0.000 1.000 0.000
70 GRAAFF-REINET 0.963 0.037 0.897 0.036 0.067 0.956 0.044 0.900 0.100
71 INVERCARGILLAIRPOR 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000 0.000
72 BATHURSTAIRPORTAW 0.999 0.001 1.000 0.000 0.000 1.000 0.000 1.000 0.000
73 OSTROVKOTELNYJ 1.000 0.000 1.000 0.000 0.000 1.000 0.000 0.999 0.001
74 CYLDEAIRPORT 0.999 0.001 1.000 0.000 0.000 1.000 0.000 1.000 0.000
75 ENDERBYISLANDAWS 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000 0.000
76 BALMACEDA 0.999 0.001 0.999 0.000 0.000 1.000 0.000 0.999 0.001
77 STAWELL 1.000 0.000 0.998 0.000 0.002 1.000 0.000 0.997 0.003
78 IKERMIUARSUK 0.999 0.001 1.000 0.000 0.000 1.000 0.000 1.000 0.000
79 HOPEN 1.000 0.000 1.000 0.000 0.000 1.000 0.000 0.999 0.001
80 EILDONFIRETOWER 0.998 0.002 1.000 0.000 0.000 1.000 0.000 1.000 0.000
81 NULLOMOUNTAINAWS 1.000 0.000 0.998 0.000 0.002 1.000 0.000 0.998 0.002
82 RIOGRANDEB.A. 1.000 0.000 0.997 0.000 0.002 1.000 0.000 0.997 0.003
83 VOSTOK 0.747 0.253 0.002 0.001 0.997 outlier 0.500 0.500

results obtained by our method, FcOMdC-FD, with the results obtained with the Fuzzy c-Medoids Clustering for 
Fuzzy Data (FcMdC-FD) [20], Fuzzy c-Medoids Clustering with Noise Cluster for Fuzzy Data (FcMdCNC-FD) 
[20], Trimmed Fuzzy c-Medoids Clustering for Fuzzy Data (TrFcMdC-FD) [20], and the Smoothed Fuzzy c-Medoids 
Clustering for Fuzzy Data (SFcMdC-FD) [20]. The results got by applying FcMdC-FD, FcMdCNC-FD, TrFcMdC-FD 
and SFcMdC-FD are shown in Table 7.

The results in Table 7 show that the robust clustering methods —i.e. FcMdCNC-FD, TrFcMdC-FD and SFcMdC-
FD— perform very well, as well as our method (see Table 6); instead the “timid robust” method FcMdC-FD shows 
problems in the identification of the two outliers.

In particular, our method shows an informational gain (in term of additional information) vs all other methods. It 
is able to neutralize the presence of possible outliers in the dataset tuning suitably the influence of outliers by means 
of a measure of typicality/atypicality of the fuzzy data. In fact, for each object, the method computes a value of its 
typicality/atypicality to the natural cluster structure (see Table 6).

7. Final remarks

In this paper, by considering a Partitioning Around Medoids (PAM) in a fuzzy framework, we proposed a robust 
clustering method for fuzzy data based on the combination of Huber’s M-estimators and Yager’s OWA operators. Our 
clustering method inherits all the benefits of PAM approach and fuzzy theory. Furthermore, it is able to neutralize 
the disruptive effect of the outliers defining a suitable parameter, the so-called typicality parameter, capable to tune 
suitably the influence of the outlier fuzzy data in the clustering process. The simulation study showed the effectiveness, 
performance and robustness of our clustering method. Experiments shown also that proposed method can handle 
datasets with outliers and noise better than compared methods. Furthermore, our method has been applied to real data 
set and the results compared with the results obtained by some methods presented in the literature. In a comparative 
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assessment, our method performed very well and the measure of typicality/atypicality represented a useful tool for 
increasing the information of the results.
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