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Abstract

We prove that there is a monadic adjunction between the category of bounded
posets and the category of pseudo effect algebras.
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1. Introduction

In their 1994 paper 9], D.J. Foulis and M.K. Bennett defined effect alge-
bras as (at that point in time) the most general version of quantum logics.
Their motivating example was the set of all Hilbert space effects, a notion
that plays an important role in quantum mechanics 22, 12]. An equivalent
definition in terms of the difference operation was independently given by
F. Koépka and F. Chovanec in |20]. Later it turned out that both groups of
authors rediscovered the definition given already in 1989 by R. Giuntini and
H. Greuling in [12].

By the very definition, the class of effect algebras includes orthoalge-
bras [10], which include orthomodular posets and orthomodular lattices. It
soon turned out [4] that there is another interesting subclass of effect al-
gebras, namely MV-algebras defined by C.C. Chang in 1958 [3]| to give the
algebraic semantics of the Lukasiewicz logic. Furthermore, K. Ravindran in
his thesis [25] proved that a certain subclass of effect algebras (effect algebras
with the Riesz decomposition property) is equivalent with the class of par-
tially ordered abelian groups with interpolation [14|. This result generalizes

the equivalence of MV-algebras and lattice ordered abelian groups described
by D. Mundici in [24].
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In [19], Kalmbach proved the following theorem.

Theorem 1.1. Every bounded lattice L can be embedded into an orthomod-
ular lattice K(L).

The proof of the theorem is constructive, K (L) is known under the name
Kalmbach extension or Kalmbach embedding. In [23], Mayet and Navara
proved that Theorem [LI] can be generalized: every bounded poset P can be
embedded in an orthomodular poset K (P). In fact, as proved by Harding in
[16], this K is then left adjoint to the forgetful functor from orthomodular
posets to bounded posets. This adjunction gives rise to a monad on the
category of bounded posets, which we call the Kalmbach monad.

For every monad (7,7, ) on a category C, there is a standard notion
Eilenberg-Moore category CT (sometimes called the category of algebras or
the category of modules for T). The category CT comes equipped with a
canonical adjunction between C and CT and this adjunction gives rise to the
original monad 7" on C. A functor equivalent to a right adjoint C¥ — C is
called monadic.

In [18] the author proved that the Eilenberg-Moore category for the Kalm-
bach monad is isomorphic to the category of effect algebras. In other words,
the forgetful functor from the category of effect algebras to the category of
bounded posets is monadic.

In [6], Dvurecenskij and Vetterlein introduced pseudo effect algebras, a
non-commutative generalization of effect algebras. Many results known for
effect algebras were successfully generalized to the non-commutative case,
let us mention |5| generalizing some results from [17, [15] and [8] generalizing
main results of [7].

In the present paper we continue this line of research. We generalize the
main result of |[18] by proving that the forgetful functor G from the category of
pseudo effect algebras to the category of bounded posets is monadic. Unlike
in 18|, we shall not give an explicit description of the left adjoint associated
with G. Since we use Beck’s monadicity theorem, the proof we present
here is shorter and simpler than the previous proof that covered only the
commutative case.

2. Preliminaries

2.1. Bounded posets
A bounded poset is a structure (P, <, 0, 1) such that < is a partial order on
P and 0,1 € P are the bottom and the top elements of (P, <), respectively.
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Let P;, P, be bounded posets. A map ¢ : P, — P, is a morphism of
bounded posets if and only if it satisfies the following conditions.

e (1) =1 and ¢(0) =0.
e ¢ is isotone.

The category of bounded posets is denoted by BPos.

2.2. Pseudo effect algebras

Definition 2.1. |6] A pseudo effect algebra is an algebra A with a partial
binary operation 4+ and two constants 0, 1 such that, for all a,b, c € A.

(PE1) If a+ (b+c) exists, then (a+0b)+c exists and a+ (b+¢) = (a+b) +c.

PE2) There is exactly one d and exactly one e such that a+d =e+a = 1.

PEA4

(PE2)
(PE3) If a + b exists, there are d, e such that d+a=b+e¢ =a+b.
(PE4) If a + 1 exists or 1+ a exists, then a = 0.

Every pseudo effect algebra can be equipped with a partial order given
by the rule a < ¢ if and only if there exists an element b such that a +b = c.
In this partial order, 0 is the smallest and 1 is the greatest element, so every
pseudo effect algebra is a bounded poset. A morphism f: A — B of pseudo
effect algebras is a mapping such that f(0) = 0, f(1) = 1 and whenever a+b
exists in A, f(a)+ f(b) exists in B and f(a+b) = f(a)+ f(b). The category
of pseudo effect algebras is denoted by PsEA. Clearly, every morphism of
effect algebras is a morphism of the associated bounded posets. A pseudo
effect algebra is an effect algebra |9, 12] if and only if it is commutative.

Every closed interval [0, u] in the positive cone of a partially ordered (not
necessarily abelian) group gives rise to an interval pseudo effect algebra |6,
Section 2|. It is well-known that the set of all automorphisms of a poset
equipped with composition and a partial order defined pointwise forms a
partially ordered group |13, Example 1.3.19]. Using these facts, it is easy to
construct examples of non-commutative pseudo effect algebras:

Example 2.2. Let E be the set of all strictly increasing functions (in other
words, order-automorphisms of the poset R) from R to R such that, for all
xR,z < f(x) <2z. Put 0:=idg and 1 := (x — 2x). For f,g € E, define
f+gifand only if fog € E and then put f + g = fog. Then (FE,+,0,1)
is a non-commutative pseudo effect algebra.
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2.3. Pseudo D-posets

For our purposes, the axioms of pseudo effect algebras are not very handy.
Rather that working with the partial operation +, it will be easier to start
with a bounded poset and then to work with partial differences / and \,
defined for every pair of comparable elements on a poset.

Definition 2.3. [26] A pseudo D-poset is a bounded poset (A, <,0,1) with
the smallest element 0 and the greatest element 1, equipped with two partial
operations / and \, such that b/a and b\a are defined if and only if a < b
and, for all a,b,c € A, the following conditions are satisfied.

(PD1) For any a € A, a/0 = a\0 = a.

(PD2) Ifa < b <¢, thenc/b < c/aandc\b < c\a, and we have (¢/a)\(c/b) =
b/a and (c\a)/(c\b) = b\a.

A pseudo D-poset is a D-poset |20] iff the partial operations / and \
coincide.

A morphism of pseudo D-posets is a morphism of bounded posets f: A —
B such that, for all a,b € A, f(a/b) = f(a)/f(b) and f(a\b) = f(a)\f(b).
The category of pseudo D-posets is denoted by PsDPos. Clearly, there is a
forgetful functor G: PsDPos — BPos.

Let A be a pseudo D-poset. A subset B C A is a subalgebra of A if and
only if 0,1 € A and for all a,b € B such that a < b, the elements a/b and
a\b belong to B.

Generalizing the well-known fact that every effect algebra is a D-poset
and vice versa, it was proved by Yun, Yongmin, and Maoyin in [26]| that
every pseudo effect algebra is equivalent to a pseudo D-poset. Explicitly, if
(A,\,/) is a pseudo D-poset, then we may define a partial binary operation
+ on A so that a+b is defined and equals ¢ if and only if b < ¢ and ¢/b = a if
and only if @ < ¢ and ¢\a = b. Then (A4, +,0,1) is an effect algebra. On the
other hand, whenever (A,+,0,1) is a pseudo effect algebra then for every
a < ¢ we may define ¢/a and c\a by the rule a + (¢/a) = (c\a) +a = c.
Moreover, these two constructions are mutually inverse. That means that
the categories PSEA and PsDPos are isomorphic.

Proposition 2.4. The category PsDPos s small-complete.

Proof. 1t is easy to check that a product of every family of pseudo D-posets
can be constructed as a product of underlying bounded posets, the partial
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operation \ and / are then defined pointwise. For a parallel pair of morphisms
f,g: A — B in PsDPos, their equalizer is the inclusion of a subalgebra
E={reA: f(x)=g(x)} into A. Since PsDPos has all products and all
equalizers, it has all small limits. O

2.4. General adjoint functor theorem

Adjoint functor theorems give conditions under which a continuous func-
tor G has a left adjoint F'. This allows us to avoid construction of the functor
F', which is sometimes a difficult endeavor.

Theorem 2.5. [11//21, Theorem V.6.2] Given a locally small, small-complete
category D, a functor G: D — C is a right adjoint if and only if G preserves
small limits and satisfies the following

Solution Set Condition: for each object X of C there is a set I and an I-
indexed family of arrows h;: X — G(A;) such that every arrowh: X — G(A)
can be written as a composite h = G(j) o h; for some j: A; — A.

2.5. Beck’s monadicity theorem

A functor G: D — C is monadic if and only if it is equivalent to the
forgetful functor from the category of algebras CT to C for a monad 7" on C.
A colimit (or a limit) in a category C is absolute if and only if it is preserved
by every functor with domain C.

Theorem 2.6. [1/[21, Theorem VI.7.1] A functor G: D — C is monadic if
and only if G is a right adjoint and G creates coequalizers for those parallel
pairs f,g: A — B in D, for which

G(f)

G(9)
has an absolute coequalizer in C.

Beck’s monadicity theorem is a device that allows us to prove that a
functor is monadic without having to explicitly describe the monad 7" on C
arising from the adjunction, describe its category of algebras C* and to prove
that C7 is equivalent to D.



3. The result
Theorem 3.1. The forgetful functor G: PsDPos — BPos is monadic.

Proof. Let us apply Theorem to prove G is a right adjoint. By Proposi-
tion 2.4l PsDPos is small-complete. It is easy to check that G preserves all
small limits, since pseudo D-posets are algebraic structures; the partiality of
the operations is not a problem here. Let us check the Solution Set Condi-
tion. Let P be a bounded poset. Let Wp be a set of bounded posets such that
for every bounded poset W’ with card(P) < card(W’') < max(card(P),Ny),
there is a W € Wp such that W is isomorphic to W’. Consider the family
Hp = {hi}iesr of all BPos-morphisms h;: P — G(A4;), where A; is a pseudo
D-poset and G(A4;) € Qp. For every BPos-morphism h: P — G(A), the
cardinality of the subalgebra B of A that is generated by the range of h is
bounded below by card(P) and above by max(card(P),R,). Write j: B — A
for the embedding of the subalgebra B into A. Clearly, h = G(j) o h; for
some h; € M. Since G preserves small limits and the Solution Set Condition
is satisfied, GG is a right adjoint.

We have proved that G is a right adjoint, so we may apply Theorem 2.6
Let A, B be pseudo D-posets, let f,g: A — B be morphisms of pseudo D-
posets. Suppose that

LGB (1)

G(9)

is an absolute coequalizer. Assuming this, we need to prove that there is a
unique morphism of pseudo D-posets ¢': B — @' such that

A#BLLQ/ 2)

is a coequalizer in PsDPos and @ = G(Q'), ¢ = G(¢'). Let us prove that
such ¢ exists. We use the fact that (I]) is an absolute coequalizer to equip
the bounded poset ) with a structure of a pseudo D-poset. Then we prove
that ¢ comes from a morphism of pseudo D-posets. Finally, we prove that
this morphism of pseudo D-posets is a coequalizer of f, g in PsDPos.

For every poset P, let us write [(P) for the set of comparable pairs
{(a,b) € P x P: a < b} and partially order I(P) by the rule (a,b) < (c,d) if
and only if ¢ < a < b < d. Note that the elements of I(P) can be identified



with closed intervals of P, ordered by inclusion. We shall write [a < b] for
the element (a,b) of I(P). The construction P +— I(P) can be made into a
functor Pos — Pos by the rule I(f)([a < b)) = [f(a) < f(D)].

In what follows, we write U: BPos — Pos for the obviously defined for-
getful functor from bounded posets to posets. Note that, for every pseudo
D-poset X, the partial operation / can be described as an isotone map
/x: IUG(X) - UG(X): for every [a < b] € IUG(X), /x([a <b]) =a/b.

Moreover, for every morphism of pseudo D-posets h: X — Y, the squares

TUG(h) IUG(h)

[UG(X) GY)  IUG(X) [UG(Y) (3)
A o
UG(X) =57 UG(Y) UG(X) =57 UG(Y)

commute. Indeed, this is just a reformulation of the assumption that h is a
morphism of pseudo D-posets. Therefore, the families of Pos-morphisms

(/X)Xeob(PsDPos) (\X)Xeob(PsDPos)

form a pair of natural transformations from functor /UG : PsDPos — Pos
to functor UG: PsDPos — Pos. Thus, both / and \ are morphisms in the
category of functors [PsDPos, Pos] with source JUG and target UG.

Let us focus on the partial operation / (or, as explained in the previous
paragraph, a natural transformation /). Consider the diagram

IUG(f)
[UG(A) —= 1UG(B) 22 1U(Q) (4)
IUG(g) :
/Al \L/B /
UG(f) v
UG(A) UG(B) " U(Q)
UG(g)

Since f, ¢ in diagram () are morphisms of pseudo D-posets, the naturality
of / implies that both the f and g left-hand squares in () commute. Since
the coequalizer (1) is absolute, both the top and the bottom rows in ()
are coequalizers in Pos. From the commutativity of both f and ¢ left-hand
squares and from the fact that the bottom row is a coequalizer, it follows
that the morphism U(q) o /p: IUG(B) — U(Q) coequalizes the top pair of



parallel arrows. Indeed,

Ulg) o /poIUG(f)

U(q)oUG(f)o /a
U(q) oUG(g) o /a
U(g) o /o IUG(g).

Since the top row in () is a coequalizer, there is a unique arrow /: IU(Q) —
U(Q) making the right square commute. Note that, actually, we equipped
the bounded poset ) with a partial binary operation /, that is defined for
all comparable pairs of elements of (). In an analogous way, we may define a
partial operation \ on Q.

Let us prove that these partial operations on () satisfy the axioms of a
pseudo D-poset. For every bounded poset P, let [0 < |p denote the mapping
from U(P) to IU(P) given by the rule z — [0 < z]. It is easy to see that
this ob(BPos)-indexed family of arrows forms a natural transformation from
U to IU. Moreover, the / half of (PD1) is equivalent with the fact that, for
every pseudo D-poset X, the diagram

0< _Jax)
_—

UG(X) TUG(X) (5)
idl /

UG(X)

commutes, so we see that /o ([0 < ]*G) = idyg in the category of functors
[PsDPos, Pos|. Similarly, \ o ([0 < | G) =idye.

To prove that the partial operation / on @ satisfies (PD1), consider the
diagram

UG(f)

UG(A) vG(B) —2 - U(Q) (6)
UG(9)

[0<_]G(A)l l[0<_}c(3) l[OS_}Q

IUG(f)

[UG(A) waB) 29 ()
IUG(g)

/Al l/B l/
UG(f)

UG(A) UG(B) 29 u()
UG(9)

By the commutativity of (Bl), we see that the left and middle verticals
in (@) compose to idyga) and idygep), respectively. Merging the vertical



squares gives us the diagram

UG(f) U(q)
UG(A) == UG(B) —2=U(Q) (7)
idUG(A)\L lidUG(B) l/O[OS_}Q
UG(f) Ul(q)
UG(A UG(B U
(A) oo (B) (Q)

Note that if we replace the rightmost vertical arrow in (7) by idy (), the
diagram still commutes. However, by an analogous argument we have used
to define / on @, the rightmost vertical arrow in () is unique. Therefore,
/o]0 < _] =idy), that means, for all x € @, /0 = x. The other half of
(PD1) follows similarly.

Let us prove (PD2). For every poset P, let J(P) be a poset consisting of
all comparable triples [x <y < z] of P, partially ordered by the rule

(21 <y < 2] < [xo < yo < 29

0

To < 21 and y; < yo and 2z = 2o.

For every morphism of posets f: P — @, let us define J(f): J(P) — J(Q)

pointwise:
J(N(z <y <z2)) =1[f(z) < fly) < f(2)]

Obviously, J: Pos — Pos is a functor.

For every bounded poset P, let ap: JU(P) — [IU(P) be a map given by
the rule ap([z <y <z]) =[ly < z] <[z <z]] and let Bp: JU(P) — IU(P)
be a map given by the rule Sp([xr < y < z]) = [ < y|. Note that both
maps ap and [Bp are isotone. Moreover, the families o and S indexed
by the objects of BPos form natural transformations a: JU — IIU and
g: JU — IU.

We may now express one half of the (PD2) axiom by a commutative
diagram; for every pseudo D-poset X the diagram

Ba(x)

JUG(X) IUG(X) (8)

ac(x)l \L/X

IUG(X) 4 IUG(X) —— UG(X)



commutes. Indeed, chasing an element [z < y < 2] € JUG(X) around ()
gives us

Bax)

[z < y] (9)

Y |
aG(X)I I/X
<

o < 2l [(2/9) < (/)] e (/0N (2/2) = (/)

This shows that, in the category of functors [PsDPos, Pos], /o (8*xG) =
\ o (I*/)oa. We may now give a similar argument as we did to prove (PD1)
that the partial operations /,\ on @ satisfy the (PD2) axiom.

We have proved that the partial operations / and \ we defined on () satisfy
the axioms of a pseudo D-poset. In other words, there is a pseudo D-poset
@' such that @ = G(Q’). Moreover, the morphism ¢: U(B) — @ = U(Q’)
of bounded posets preserves /, since the right-hand square of (@) commutes.
Since ¢ preserves \ as well, we see that ¢ = U(¢’) for a morphism of pseudo
D-posets ¢': B — )'. With this fact in mind, we may now observe that the
diagram (@) and its \-twin mean that ¢'o f = ¢’ o g in PsDPos and since the
pseudo D-poset structure on @) arising from those diagrams is unique, we see
that @’ is unique. Uniqueness of ¢’ follows from the fact that G is a faithful
functor.

Let us prove that ¢’ is a coequalizer of the pair f,g in PsDPos. Let
h: B — C be a morphism of pseudo D-posets such that ho f = h o g. Since
the diagram (Il) is a coequalizer, there is a unique morphism of bounded
posets e: G(Q) — G(C) such that e o G(¢') = e o ¢ = G(h). It remains to
prove that this e preserves the partial operations / and \ on @. Consider the
diagram

weB) ™% o) 2 ruae) (10)

(
/Bl l/ l/c
UG(B) 5~ V(@) UG(C)
We need to prove that the right-hand square of (I0) commutes. By the
commutativity of the diagram ({]), we already know that the left hand square
of (I0) commutes. As G(h) = e o G(¢’) and h is a morphism of pseudo D-
posets, the outer square of (I0) commutes. Therefore,

U(e)

Ule)oU(g)o/p=[colU(e)olU(q) = Ule)o /o lU(q)
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Since the top row in (4) is a coequalizer, IU(q) is a coequalizer and thus an
epimorphism. This implies that /o o IU(e) = U(e) o / and we see that the
right-hand square of (I0) commutes. O
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