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OBSERVABLES ON SYNAPTIC ALGEBRAS

JENČOVÁ, A., PULMANNOVÁ, S.

Abstract. Synaptic algebras, introduced by D. Foulis, generalize different al-
gebraic structures used so far as mathematical models of quantum mechanics:
the traditional Hilbert space approach, order unit spaces, Jordan algebras, ef-
fect algebras, MV-algebras, orthomodular lattices. We study sharp and fuzzy
observables on two special classes of synaptic algebras: on the so called gen-
eralized Hermitian algebras and on synaptic algebras which are Banach space
duals. Relations between fuzzy and sharp observables on these two types of
synaptic algebras are shown.

1. Introduction

In the traditional Hilbert space approach to quantum mechanics, as a proper
mathematical model of a physical quantity (so called observable) POV-measures
(positive operator valued measures) are considered, instead of the more traditional
PV-measures (projection valued measures). This approach provides also a frame to
investigate imprecise measurements. The notion of fuzzy (or unsharp) observable
has been formulated in the literature ([18] as a smearing of a sharp observable (PV-
measure) by means of a (weak) Markov kernel. While in the classical mechanics,
an unsharp observable is always a smearing of a sharp one, in quantum mechanics
the situation is different.

PV-measures have ranges in the orthomodular lattice of projection operators,
and are in one-to-one correspondence with self-adjoint operators. There is a well-
developed functional calculus for commuting self-adjoint operators. It turns out
that functions of one self-adjoint operator may be considered as a special kind
of smearings. POV-measures have ranges in the algebra of Hilbert space effects
(self-adjoint operators between the zero and identity operator). A special subclass
of POV-measures are those with commuting ranges, which correspond exactly to
smearings of some PV-measures [1, 29, 30, 32]. Some of these results have been
generalized in the literature for effect algebras or for their special subclasses, MV-
algebras and orthomodular lattices [30, 31, 36, 43].

In this paper, we study observables in a more general frame of synaptic algebras.
Synaptic algebras were introduced by D. Foulis [11] as possible models for quantum
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mechanics. The aim was to build a mathematical description of quantum theory
based on a few relatively simple and physically relevant axioms.

Synaptic algebras put together several algebraic structures used so far as models
of quantum systems: the traditional Hilbert space model, Jordan algebras, order
unit spaces, effect algebras, orthomodular lattices. In this paper, we show how some
results obtained in the latter models can be adopted and enhanced for synaptic
algebras.

In [30], the notion of a weak Markov kernel was introduced and smearings of
observables on effect algebras were studied. It turns out that on an arbitrary σ-
orthocomplete effect algebra, a smearing need not always exist. In section 3.1 of the
present paper, we prove that on a convex σ-orthocomplete effect algebra with an
ordering set of σ-additive states, there exists a unique smearing of every observable
with respect to any weak Markov kernel.

As observables are usually defined as σ-homomorphisms from a σ-field of sets to
a given algebraic structure, we need a kind of an additional σ-property on synaptic
algebras. Therefore in section 4, we study sharp observables and unsharp observ-
ables with commuting ranges on a special kind of synaptic algebras, namely on
GH-algebras (generalized Hermitian algebras), in which the set of projections is a
σ-OML and every commutative sub-GH-algebra is monotone σ-complete. Using
a version of Loomis-Sikorski theorem for commutative GH-algebras, it was proved
in [14], that to every element of any GH-algebra there exists a unique sharp real
observable. In this paper we show that also conversely, every sharp real observ-
able on a GH-algebra A is determined by an element of A. Moreover, a functional
calculus for several commuting sharp real observables is defined. It is also shown
that every observable with commuting range is defined by a smearing of a special
sharp observable, whose existence follows by the Loomis-Sikorski representation.
This result is similar to that for POV-measures with commuting ranges [30].

In the last section, we consider synaptic algebras which are duals of Banach
spaces. By [4] and [41], this happens if and only if the synaptic algebra is isomorphic
to a JW-algebra, hence a weakly closed Jordan algebra of Hilbert space operators
[42]. Using the results of [41] and [10], we collect there some criteria under which
a synaptic algebra is a Banach space dual, hence a JW-algebra. We prove that in
this case, for every observable ξ and every weak Markov kernel ν there is a unique
observable η defined by a smearing of ξ by ν. We also prove that an observable is
a smearing of a sharp observable if and only if it has a commuting range. In case
that the Hilbert space is separable, the sharp observable may be chosen real, which
is a property shared with the POV-measures on a separable Hilbert space.

2. Synaptic algebras

In what follows, A is a synaptic algebra with enveloping algebra R ⊇ A, [11, 16,
13, 20, 21, 22, 37, 38] and P is the orthomodular lattice [5, 33] of projections in A.
A prototype example is the set A of all self-adjoint operators in the algebra B(H)
of all bounded linear operators on the Hilbert space H with B(H) as enveloping
algebra. See the literature cited above for numerous additional examples of synaptic
algebras.
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For the definition and axioms of a synaptic algebra see [11]. In this section we
outline some of the notions and facts pertaining to the synaptic algebra A. More
details and proofs can be found in [11, 16, 20, 21, 22, 37].

If a, b ∈ A, then the product ab, calculated in the enveloping algebra R, may or
may not belong to A. However, if ab = ba, i.e., if a commutes with b (in symbols
aCb), then ab ∈ A. Also, if ab = 0, then aCb and ba = 0. For a ∈ A, the set
C(a) := {b ∈ A : bCa} is the commutant of a in A. If B ⊆ A, then C(B) :=⋂

b∈B C(b) is the commutant of B in A, CC(B) := C(C(B)) is the bicommutant of
B, and CC(a) := CC({a}).

The synaptic algebra A is a partially ordered real linear space under the partial
order relation ≤ and we have 0 < 1 (i.e., 0 ≤ 1 and 0 6= 1); moreover, 1 is an order
unit in A, that is, for each a ∈ A there exists n ∈ N such that a ≤ n1. Moreover,
A is Archimedean, i.e., if a, b ∈ A and na ≤ b for all n ∈ N, then a ≤ 0. Thus A is
an order unit space with the order unit norm ‖a‖ := {0 < λ ∈ R : −λ ≤ a ≤ λ} [2].
For every a ∈ A the commutant C(a) is a norm-closed subset of A.

Elements of the ”unit interval” E := A[0, 1] = {e ∈ A : 0 ≤ e ≤ 1} are called
effects, and E is a convex effect algebra [26, 27, 6].

Elements of the set P := {p ∈ A : p = p2} are called projections and it is
understood that P is partially ordered by the restriction of ≤. The set P is a
subset of the convex set E of effects in A; in fact, P is the extreme boundary of
E ([11, Theorem 2.6]). Evidently, 0, 1 ∈ P and 0 ≤ p ≤ 1 for all p ∈ P . It turns
out that P is a lattice, i.e., for all p, q ∈ P , the meet (greatest lower bound) p ∧ q
and the join (least upper bound) p ∨ q of p and q exist in P ; moreover, p ≤ q iff
pq = qp = p. The projections p and q are said to be orthogonal, in symbols p ⊥ q,
iff p ≤ 1− q. The orthosum p⊕ q is defined iff p ⊥ q, in which case p⊕ q := p+ q.
It turns out that p ⊥ q ⇔ pCq with pq = qp = 0; furthermore, p ⊥ q ⇒ pCq with
p⊕ q = p+ q = p∨ q ∈ P . The lattice P , equipped with the orthocomplementation
p 7→ p⊥ = 1− p, is an orthomodular lattice (OML) [5, 33].

Two elements e, f ∈ E are called compatible if there are elements e1, f1 and g
such that e = e1 + g, f = f1 + g, and e1 + f1 + g ∈ E. If p, q ∈ P , then p and
q are compatible in P (that is, there are p1, q1, r ∈ P with p1 + q1 + r ∈ P , such
that p = p1 + r, q = q1 + r) iff they are compatible in E. Moreover, p and q are
compatible iff pCq [11].

If 0 ≤ a ∈ A, then there is a uniquely determined element r ∈ A such that 0 ≤ r
and r2 = a; moreover, r ∈ CC(a) [11, Theorem 2.2]. Naturally, we refer to r as the
square root of a, in symbols, a1/2 := r. If b ∈ A, then 0 ≤ b2, and the absolute value
of b is defined and denoted by |b| := (b2)1/2. Clearly, |b| ∈ CC(b) and | − b| = |b|.
Also, if aCb, then |a|C|b| and |ab| = |a||b|.

A is closed under squaring, hence it forms a special Jordan algebra [34] under the
Jordan product a ◦ b := 1

2 (ab + ba) = 1
2 ((a + b)2 − a2 − b2) ∈ A for a, b ∈ A. The

quadratic mapping on A is defined by b 7→ aba = 2a ◦ (a ◦ b)− (a ◦ a) ◦ b. For every
a ∈ A, this mapping is linear and order preserving [11, Theorem 4.2].

There is a mapping o : A → P such that ab = 0 ⇔ aob = 0. The element ao is
called the carrier of a. It turns out that a = aao = aoa, ao ∈ CC(a), and ao is the
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smallest projection p ∈ P such that a = ap (equivalently, a = pa). If n ∈ N, then
(an)o = ao. This mapping is closely related with the Rickart mapping, [17, 19].

Every a ∈ A determines and is determined by its spectral resolution (pa,λ)λ∈R

in P ∩ CC(a), where pa,λ := 1 − ((a − λ)+))o = (((a − λ)+)o)⊥ for λ ∈ R. Also,
La := sup{λ ∈ R : λ ≤ a} = sup{λ ∈ R : pa,λ = 0}, Ua := inf{λ ∈ R : a ≤ λ} =
inf{λ ∈ R : pa,λ = 1}, and

a =

∫ Ua

La−0

λdpa,λ,

where the Riemann-Stieltjes type sums converge to the integral in norm. Two
elements in A commute iff their respective spectral resolutions commute pairwise
[11, §8].

The spectral resolution of a ∈ A is a bounded resolution of identity in A, that is
defined as a system (pλ)λ∈R of projections in A satisfying the following conditions
for λ, λ′ ∈ R (see [25, Definition 4.1] and [11, Theorem 8.4.]):

(1) There exists 0 ≤ K ∈ R such that pλ = 0 if λ < −K and pλ = 1 if K ≤ λ.

(2) pλ ≤ pλ′ if λ ≤ λ′.

(3) pλ =
∧

λ>λ pλ′ .

Notice that condition (2) implies that the projections in a bounded resolution of
identity pairwise commute. In general it is not clear whether a bounded resolution
of identity is the spectral resolution of some element in A, but by [25, Theorem 4.2]
it is true for Banach (norm-complete) synaptic algebras.

A morphism of synaptic algebras (or a synaptic morphism) is a linear mapping
φ : A1 → A2, where A1, A2 are synaptic algebras, with the following properties for
all a, b ∈ A1:

(1) φ(1) = 1;
(2) φ(a2) = φ(a)2;
(3) aCb =⇒ φ(a)Cφ(b);
(4) φ(ao )̀ = φ(a)o.

A subset B of a synaptic algebra A is commutative iff ab = ba for all a, b ∈ B. A
synaptic algebra A is commutative iff it is a vector lattice iff E is an MV-algebra
[13], iff P is a Boolean algebra. If B is a commutative subset of A, then CC(B) is
a commutative sub-synaptic algebra of A.

A state on the synaptic algebra A is defined just as it is for any order-unit normed
space, namely as a linear functional ρ : A → R that is positive (a ∈ A+ ⇒ ρ(a) ∈
R

+) and normalized (ρ(1) = 1), [15]. The state space of A and the set of extremal
states on A are denoted by S(A) and Ext(S(A)). Likewise, S(E), Ext(S(E)),
S(P ), and Ext(S(P )) denote the states and extremal states on the convex effect
algebra E ⊆ A and on the OML P ⊆ E.

See [2, Corollary II.1.5 and Proposition II.1.7] for a proof of the following theorem.

Theorem 2.1. Let (V, v) be an order-unit normed space and let ρ : V → R be a
nonzero linear functional on V . Let S(V ) denote the set of states on V . Then:
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(1) If a ∈ V , then a ∈ V + iff 0 ≤ ρ(a) for all ρ ∈ S(V ).
(2) If a ∈ V , then ‖a‖ = sup{|ρ(a)| : ρ ∈ S(V )}.
(3) ρ is positive iff it is bounded with ‖ρ‖ = ρ(v).
(4) ρ ∈ S(V ) iff ρ is bounded and ‖ρ‖ = ρ(v) = 1.

Recall that there is an affine bijection ρ↔ s between states ρ ∈ S(A) and states
s ∈ S(E) via extension and restriction, moreover ρ ∈ ExtS(A) iff s ∈ ExtS(E).

A state ρ on A is a normal state iff 0 ≤ aα ր a =⇒ ρ(aα) ր ρ(a). A set
S ⊆ S(A) of states is separating iff ρ(a) = 0 for all ρ ∈ S implies a = 0, and S is
ordering if ρ(a) ≤ ρ(b)∀ρ ∈ S implies a ≤ b.

It was proved in [17, 19] that a norm-closed synaptic algebra, hence a Banach
synaptic algebra, is isomorphic to a special Rickart JB-algebra, hence a Rickart
JC-algebra. Recall that a JC-algebra is by definition a norm-closed subalgebra of
the algebra of all bounded self-adjoint operators on a complex Hilbert space, which
is closed under the Jordan product a ◦ b := 1

2 (ab+ ba) [4].

Recall that a JC-algebra C has the Rickart property if, for every b ∈ C, there
exists a projection p ∈ C such that, for all g ∈ C, bg = 0 ⇔ g = pg. Clearly,
bo = 1 − p is the carrier of b. A JC-algebra C is a Rickart JC-algebra if it has the
Rickart property [19].

By [41], A JB-algebra is a dual Banach space iff it is monotone complete and
admits a separating set of normal states; a JB-algebra satisfying these equivalent
conditions is called a JBW-algebra. Moreover, every JBW-algebra admits a direct
decomposition into a special and exceptional part. Consequently, a synaptic algebra
which satisfies the above conditions is a weakly closed Jordan operator algebra (a
so-called JW-algebra), see [42].

3. Effect algebras

An effect algebra [12] is a set L with two distinguished elements 0, 1 and with a
partial binary operation ⊕ : L→ L such that for all a, b, c ∈ L the following holds:

(EA1) if a⊕ b is defined then b⊕ a is defined and a⊕ b = b⊕ a (commutativity);
(EA2) If b ⊕ c and a ⊕ (b ⊕ c) are defined then a ⊕ b and (a ⊕ b) ⊕ c are defined

and a⊕ (b ⊕ c) = (a⊕ b)⊕ c (associativity);
EA3) for every a ∈ L there is a unique a′ ∈ L such that a⊕ a′ = 1 (orthosupple-

mentation);
(EA4) if 1⊕ a is defined then a = 0 (zero-one law).

We will write L = (L,⊕, 0, 1) for effect algebra. Elements a, b ∈ L are orthogonal
(written a ⊥ b) iff a⊕ b is defined in L. In what follows, we often write a⊕ b tacitly
assuming that a ⊥ b. A partial ordering is defined on L as follows: a ≤ b iff there is
c ∈ L such that a⊕c = b. The element c is uniquely defined, and we write c = b⊖a.
It is easy to check that a ⊥ b iff a ≤ b′.

The operation ⊕ can be extended to finite number of elements by recurrence in
an obvious way. Owing to (EA2) we may omit parentheses in the expressions of
the form a1 ⊕ a2 ⊕ · · · ⊕ an.
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A family {ai : i ∈ I}, where I is an arbitrary set, is called orthogonal iff every
finite subfamily of it admits an ⊕-sum (or orthosum) in L. If the element a =∨

F⊆I ⊕i∈Fai exists in L, where the supremum is taken over all finite subsets F

of I, then a is called the orthosum of the orthogonal family {ai : i ∈ I}, and is
denoted by a :=

⊕
i∈I ai.

An effect algebra L is called orthocomplete iff the orthosum exists for any orthog-
onal family of its elements, and L is called σ-orthocomplete iff the orthosum exists
for every countable orthogonal family of its elements.

A mapping s : L → [0, 1] from L to the interval [0, 1] of real numbers is a state
on L if (i) s(1) = 1; (ii) s(a⊕ b) = s(a) + s(b) whenever a⊕ b exists in L. A state
s is said to be σ-additive or completely additive iff s(

⊕
i∈I ai) =

∑
i∈I s(ai) holds

for any countable or arbitrary index set I such that
⊕

i∈I ai exists in L.

A nonempty set S of states on L is ordering iff, for a, b ∈ L, a ≤ b iff s(a) ≤ s(b)
for all s ∈ S: S is separating iff s(a) = s(b) for all s ∈ S implies a = b. Notice that
we may always replace S by its (σ)-convex hull Conv(S).

A mapping φ : L1 → L2, where L1, L2 are effect algebras, is a morphism if (i)
φ(1) = 1, (ii)φ(a⊕ b) = φ(a)⊕φ(b) whenever a⊕ b exists in L1. A morphism φ is a
σ-morphism (complete morphism) iff it preserve all existing countable (arbitrary)
⊕-sums. A bijective morphism such that a ⊥ b iff φ(a) ⊥ φ(b) is an isomorphism.
A σ-isomorphism, resp. complete isomorphism is defined in an obvious way.

A subset M of an effect algebra L is a sub-effect algebra iff (i) 0 ∈ M ; (ii)
a, b ∈M , a ⊥ b implies a⊕ b ∈M ; (iii) a ∈M implies a′ ∈M .

Important examples of effect algebras, so-called interval effect algebras are ob-
tained as follows. Let (G,G+) be a partially ordered abelian group, and let u ∈ G+.
the interval G+[0, u] := {g ∈ G : 0 ≤ u} endowed with a partial operation ⊕ such
that, for g, h ∈ G+[0, u], g⊕ h is defined iff g+ h ≤ u and then g⊕ h = g+ h, is an
effect algebra. For G = B(H)sa, the self-adjoint part of the group of all bounded
selfadjoint operators on a Hilbert space H , we obtain the effect algebra of Hilbert
space effects.

An effect algebra L is convex [26] if it bears a convex structure, i.e., there is a
mapping (λ, a) 7→ λa from R[0, 1]× L→ L such that

(C1) If α, β ∈ R[0, 1] and a ∈ L, then α(βa) = (αβ)a.
(C2) If α, β ∈ R[0, 1] with α + β ≤ 1 and a ∈ L, then αa ⊥ βa and (α + β)a =

αa⊕ βa.
(C3) If a, b ∈ L with a ⊥ b and λ ∈ R[0, 1], then λa ⊥ λb and λ(a⊕ b) = λa⊕λb.
(C4) If a ∈ L, then 1a = a.

If (V, V +) is an ordered vector space with a positive cone V + and u ∈ V +,
then the interval V [0, u] is a convex effect algebra, called linear effect algebra. The
following theorem implies that every convex effect algebra is linear.

Recall that an ordered vector space (V, V +) with u ∈ V + is generated by the
interval V [0, u] = {v ∈ V : 0 ≤ v ≤ u} if every element v ∈ V + is a finite linear
combination of elements of V [0, u], and V is directed, i.e., V = V + − V +.



OBSERVABLES ON SYNAPTIC ALGEBRAS 7

Theorem 3.1. (1) If L is a convex effect algebra, then L is affinely isomorphic
to a linear effect algebra V [0, u] that generates an ordered linear space (V, V +) [26,
Theorem 3.1].

(2) If L is a convex effect algebra with corresponding linear effect algebra V [0, u]
that generates (V, V +), then (V, V +, u) is an order unit space if and only if L
possesses an ordering set of states [27, Theorem 3.6].

An effect algebra that forms a lattice is called a lattice-effect algebra. A lattice
effect algebra M in which every two elements a, b are compatible (equivalently,
(a ∨ b) ⊖ a = b ⊖ (a ∧ b) for all a, b ∈ M) is called an MV-effect algebra. As a
lattice, an MV-effect algebra is distributive. Notice that a convex effect algebra
is an MV-effect algebra iff it is lattice ordered [27]. MV-effect algebras are closely
related to MV-algebras introduced by Chang [8]. Every MV-effect algebra can be
organized into an MV-algebra, and reciprocally, an MV-algebra can be organized
into an MV-effect algebra (see e.g. [9]). By a result of Mundici [35], there is a
categorical equivalence between MV-algebras and lattice ordered groups.

Let L be a σ-orthocomplete effect algebra, and (X,A) a measurable space. By
an (X,A)-observable on L we mean a mapping ξ : A → L such that

(i) ξ(X) = 1;
(ii) the system (ξ(Ai))i∈N is orthogonal and ξ(∪∞

i=1Ai) =
⊕∞

i=1 ξ(Ai) whenever
Ai ∈ A for i ≥ 1 and Ai ∩ Aj = ∅, i 6= j.

If (X,B) ≡ (R,B(R)), then ξ : B(R) → L is a real observable.

Let (X1,A1) be another measurable space and let f : X → X1 be a function
such that f−1(A) ∈ A whenever A ∈ A1. If ξ : A → L is an observable, then
f ◦ ξ : A 7→ ξ(f−1(A)), A ∈ A1 is an (X1,A1)-observable on L, which is called the
f -function of ξ denoted by f(ξ).

If ξ is an (X,A)-observable on L, and s is a σ-additive state on L, then sξ :=
s ◦ ξ : A → [0, 1] is a probability measure on (X,A). If ξ is a real observable, we
denote by

s(ξ) :=

∫
R

tsξ(dt)

the expectation of ξ in s whenever the right-hand side of the above equation exists
and is finite. Using the integral transformation theorem we obtain for any Borel
function f : X → R and for any (X,A)-observable on L,

s(f(ξ)) =

∫
R

us(f(ξ(du))

=

∫
R

us(ξ(f−1(du))) =

∫
X

f(t)sξ(dt)).

For an (X,A)-observable ξ on L, let R(ξ) := {ξ(A) : A ∈ A} denote the range
of ξ. An observable ξ is called sharp if its range consists of sharp elements (recall
that an element a ∈ L is sharp if a ∧ a′ = 0). For example, in the effect algebra
E(H) of Hilbert space effects, sharp elements are projections, observables are POV-
measures, and sharp observables are PV-measures.
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3.1. Weak Markov kernels and smearings of observables. Let (X,A) and
(Y,B) be measurable spaces. A mapping ν : X × B → [0, 1] is a Markov kernel if
the following is satisfied:

(i) for any fixed x ∈ X , νx(.) := ν(x, .) : B → [0, 1] is a probability measure;
(ii) for any fixed B ∈ B, the mapping x 7→ νB(x) := ν(x,B) is A-measurable.

The notion of Markov kernel has been weakened in [30] to so-called weak Markov
kernel. For our purposes, we introduce an even more general form of a weak Markov
kernel as follows. Let (X,A) and (Y,B) be measurable spaces, and let I be a σ-ideal
of the σ-algebra A. We will say that property Q holds I-almost everywhere (I-a.e.,
for short), if {x ∈ X : Q does not hold in x} ∈ I. Let ν : X ×B → R. We say that
ν is a weak Markov kernel with respect to I if

(i) x 7→ ν(x,B) is A-measurable for all B ∈ B;
(ii) for every B ∈ B, 0 ≤ ν(x,B) ≤ 1 I-a.e.;
(iii) ν(x, Y ) = 1 P-a.e., and ν(x, ∅) = 0 I-a.e.;
(iv) if (Bn)n∈N is a sequence in B such that Bn ∩Bm = ∅, n 6= m, then

ν(x,
⋃
Bn) =

∑
n

ν(x,Bn), I − a.e.

If ν, µ : X×B → [0, 1] are weak Markov kernels with respect to I, then we say that
ν ∼I µ if for all B ∈ B, {x, ν(x,B) 6= µ(x,B)} ∈ I. Clearly, ∼I is an equivalence
relation.

Note that in the case when M+
1 (X,A) denotes the set of all probability measures

on (X,A), P ⊆M+
1 (X,A), and we put IP := {x ∈ X : µ(x) = 0∀µ ∈ P}, then the

definition of IP -weak Markov kernel coincides with the definition of a weak Markov
kernel with respect to P in [30]. Clearly, a weak Markov kernel with respect to the
whole M+

1 (X,A) is a Markov kernel.

It is easy to see that if ν is a weak Markov kernel with respect to P , then

(1) ν(P )(B) :=

∫
X

ν(x,B)P (dx), B ∈ B

is a probability measure on B for all probability measures P ∈ P .

Let L be a σ-orthocomplete effect algebra with a (σ-convex) ordering set S of
σ-additive states and let (X,A) be a measurable space. Every observable ξ : A → L
can be characterized by its probability distribution Φξ : S →M+

1 (X,A) defined by

(2) Φξ(m)(A) = m ◦ ξ(A), m ∈ S, A ∈ A.

Definition 3.2. Let L be a σ-orthocomplete effect algebra with a nonempty set of
σ-additive states Sσ(L). Let (X,A) and (Y,B) be measurable spaces. Let ξ be a
(X,A)-observable on L. Put Iξ = {A ∈ A : ξ(A) = 0}. If ν : X × B → R is a weak
Markov kernel with respect to Iξ, and there is an observable η such that for every
B ∈ B and every m ∈ Sσ(L),

Φη(m)(B) = m(η(B)) =

∫
ν(x,B)m ◦ ξ(dx)

then η is called a smearing (or a fuzzy version) of ξ (with respect to ν).
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We note that if Sσ(L) is a (nonempty) set of σ-additive states on L, then B 7→
ν(m ◦ ξ)(B), where

ν(m ◦ ξ)(B) :=

∫
X

ν(x,B)m ◦ ξ(dx), B ∈ B,

is a probability measure on (Y,B), and if η is a smearing of ξ, then

ν(m ◦ ξ)(B) = m(η(B)), B ∈ B.

It is clear that if µ ∼Iξ ν, then the smearings with respect to µ are the same as
those with respect to ν.

Observe that a smearing of an observable need not be unique nor exist at all.
Note also that the function f ◦ ξ defined above is a special type of smearing, with
respect to the Markov kernel ν(x,B) = χf−1(B)(x).

Theorem 3.3. Let L be a convex σ-orthocomplete effect algebra with an ordering
set Sσ(L) of σ-additive states and let ξ be an (X,A) observable on L. Let (Y,B) be
a measurable space and let ν : X ×B → [0, 1] be a weak Markov kernel with respect
to Iξ. Then there is a unique smearing of ξ with respect to ν.

Proof. We first define integrals with respect to ξ, in the following sense. Let f :
X → [0, 1] be A-measurable. We will show that there is an element ξ(f) ∈ L such
that for all m ∈ Sσ(L), we have

m(ξ(f)) =

∫
X

f(x)m ◦ ξ(dx).

Since Sσ(L) is ordering, it is clear that such an element must be unique. First,
let f = χ∆ for ∆ ∈ A, it this case, we put ξ(f) := ξ(∆). Next, let f =

∑
i ci∆i

be a simple function, then by standard arguments, we may suppose that ∆i are
pairwise disjoint and ci ∈ [0, 1]. Put ξ(f) :=

∑
i ciξ(∆i). Since L is convex and

⊕iξ(∆i) exists in L, we see that ξ(f) ∈ L, moreover, for m ∈ Sσ(L),

m(ξ(f)) =
∑
i

cim(ξ(∆i)) =

∫
X

f(x)m ◦ ξ(dx).

If f : X → [0, 1] is a measurable function, then there is an increasing sequence of
simple functions fn : X → [0, 1] converging pointwise to f . Since Sσ(L) is ordering
and we have

m(ξ(fn)) =

∫
fndm ◦ ξ ≤

∫
fn+1dm ◦ ξ = m(ξ(fn+1)), ∀m ∈ Sσ(L),

it follows that ξ(fn) ≤ ξ(fn+1). Since L is σ-orthocomplete, there is some ele-
ment ξ(f) ∈ L such that ∨nξ(fn) = ξ(f). Using Lebesgue monotone convergence
theorem, we have for m ∈ Sσ(L),

m(ξ(f)) =
∨
n

m(ξ(fn)) = lim
n
m(ξ(fn)) =

∫
X

f(x)m ◦ ξ(dx).

By uniqueness, it is clear that ξ(f) does not depend on the choice of the sequence
fn. Note also that if f ′ : X → [0, 1] is such that ξ({x ∈ X, f(x) 6= f ′(x)}) = 0,
then ξ(f) = ξ(f ′).
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We now define η(B) = ξ(νB), B ∈ B, where νB = ν(·, B). We now show that η
is an observable, it is then clear by definition that η must be the unique smearing
of ξ with respect to ν. So let {Bi} is such that Bi ∩ Bj = ∅ for i 6= j and let
B = ∪iBi. Then by the definition of weak Markov kernel, νB =

∑
i νBi

up to some
set ∆0 with ξ(∆0) = 0 and hence

η(B) = ξ(νB) = ξ(
∑
i

νBi
) =

∑
i

η(Bi),

the last equality holds because

m(ξ(
∑
i

νBi
)) =

∫
X

∑
i

νBi
(x)m ◦ ξ(dx) =

∑
i

∫
X

νBi
m ◦ ξ(dx) =

∑
i

m(ξ(νBi
)).

The facts that η(∅) = 0 and η(Y ) = 1 are proved similarly.

�

Remark 3.4. Note that the element ξ(f) defined in the above proof is such that
for each σ-additive state m, m(ξ(f)) is the expectation of the observable f ◦ ξ in
m.

4. Observables on GH-algebras

For a measurable space (X,A), an (X,A)-observable on a synaptic algebra A
is defined as an observable on the effect algebra E = A[0, 1] or, in the case of
sharp observables, on the OML of projections P of A. Observables are usually
studied on σ-orthocomplete effect algebras resp. σ-complete OMLs. By the study
of observables, we will therefore assume that E, or at least P , is σ-orthocomplete.

It can be easily seen that the effect algebra E of a synaptic algebra A is σ-
orthocomplete iff the synaptic algebra A is monotone σ-complete. Indeed, assume
that E is σ-orthocomplete, and let (an)n be an ascending sequence of elements in
A bounded above by an element b ∈ A. Then

0 ≤
b− an
‖b− a1‖

≤ 1,

and

(
b − an
‖b− a1‖

)n

is descending, so it has an infimum in E, hence (an)n has a supremum in A.

We say that a state ρ on A is σ-normal if for every monotone increasing sequence
(an) of positive elements, an ր a =⇒ ρ(an) ր ρ(a). Clearly, a state ρ on A is
σ-normal iff its restriction to E is a σ-additive state on the effect algebra E.

A special kind of a synaptic algebra is a generalized Hermitian (GH-) algebra,
which was introduced and studied in [23, 24].

The following characterization was found in [17, Theorem 9.1].

Theorem 4.1. A GH-algebra is the same thing as a synaptic algebra A such that
every bounded monotone increasing sequence a1 ≤ a2 ≤ · · · of pairwise commuting
elements in A has a supremum in A.
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By [23, Lemma 5.4], if A is a GH-algebra, then P is a σ-complete OML. Clearly,
if A is monotone σ-complete synaptic algebra, then it is a GH-algebra, and a
commutative synaptic algebra is a GH-algebra if and only if it is monotone σ-
complete. Moreover, every monotone σ-complete synaptic algebra is norm complete
[28, Proposition 3.9]. For any synaptic algebra A, if T ⊆ A and T has a supremum
b in A, then b ∈ CC(T ) [17, Theorem 6.2]. Applying this to a commutative subset
T of a GH-algebra A, we obtain that CC(T ), in particular CC(a) for every a ∈ A,
is monotone σ-complete, hence a commutative GH-subalgebra of A. Therefore, we
may consider observables with a commutative range on a GH-algebra A and we
may assume that A is commutative.

We have the following representation theorem for commutative GH-algebras [15,
Theorem 6.6]. Recall that for a compact set X , C(X,R) denotes the set of all
continuous functions f : X → R. Recall that a morphism of GH-algebras φ : A1 →
A2 is defined as a synaptic morphism with the additional property that given a
sequence of pairwise commuting elements (an)n such that an ր a in A1, then
φ(an) ր φ(a) in A2. In what follows, P (X,R) denotes the set of all characteristic
functions of clopen subsets of X .

Theorem 4.2. Suppose A is a commutative GH-algebra and let X be the basically
disconnected Stone space of the σ-complete Boolean algebra P . Then there is an
isomorphism of GH-algebras Ψ : A → C(X,R) of A onto C(X,R), such that the
restriction ψ of Ψ to P is a boolean isomorphism of P onto P (X,R) as per Stone’s
representation theorem.

A functional calculus for continuous functions on GH-algebras is defined as fol-
lows. Let f ∈ C(spec(a),R) and let g := Ψ(a) ∈ C(X,R). Then spec(a) =
{g(x) : x ∈ X}, f ◦ g ∈ C(X,R), and we define the element f(a) ∈ CC(a) by
f(a) := Ψ−1(f ◦ g). In particular, if q(t) = α0 + α1t + α2t

2 + · · · + αnt
n, then

q(a) = α0 + α1g(x) + α2g(x)
2 + · · · + αng(x)

n. We have f(a) =
∫ Ua

La−0 f(λ)dpa,λ,

f ∈ C(spec(a),R), [14, Theorem 7.7].

Notice that countable suprema in C(X,R) are not the pointwise suprema of
functions. This can be improved by the following version of the Loomis-Sikorski
theorem [14, Theorem 6.6], which is an extension of the Loomis-Sikorski theorem
for σ-MV algebras (cf. [9]). For the definition of a gh-tribe see [14]. In short, a gh-
tribe T is a commutative GH-algebra consisting of bounded real-valued functions
on a nonempty set X with pointwise ordering and supremum norm. The set of
characteristic functions in T forms a σ-field B(T ) of subsets of X . By [7], every
function f ∈ T is B(T )-measurable. Moreover, for every σ-normal state on T , we
have s(f) =

∫
X f(t)P (dt), where P := s/B(T ) is a probability measure on B(T ).

Theorem 4.3. Loomis-Sikorski theorem. Let A be a commutative GH-algebra
and let X be the basically disconnected Stone space for the σ-complete Boolean
algebra P of projections in A. Then there exists a gh-tribe T on X such that
C(X,R) ⊆ T and there exists a surjective morphism h of GH-algebras from T onto
A.

Using Theorem 4.3, it was shown that each element a in a GH-algebra A cor-
responds to a sharp real observable ξa on the σ-OML P of projections on A [14,
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Theorem 7.4]. Every a ∈ A is contained in a commutative subalgebra B (we may
put, e.g., B = CC(a)) of A. This B is a commutative GH-algebra in its own
right, and admits a Loomis-Sikorski representation (X, T , h) by Theorem 4.3. By
definition, ξa(B) = h(f−1

a (B)), B ∈ B(R), where fa is a function in T such that
h(fa) = a. The observable ξa is independent on the choice of the function fa, and
is the unique real observable on P such that ξa((−∞, λ]) = pa,λ for all λ ∈ R,
where {pa,λ} is the spectral resolution of a. Since every element in A determines
and is uniquely determined by its spectral resolution, the observable ξa is uniquely
determined by a, and also determines a. The observable ξa is bounded, in the sense
that there is some K ≥ 0 such that ξ((−K,K)) = 1.

Since elements a and b in A commute iff their respective spectral resolutions
pairwise commute, we obtain that aCb iff the ranges of ξa and ξb pairwise commute,
i.e., iff ξa and ξb are compatible observables on the OML P (cf. [43]). Moreover,
for every σ-normal state ρ on A,

ρ(a) =

∫
R

λρ(ξa(dλ)), a ∈ A.

The following result shows a one-to-one correspondence between bounded sharp
real observables and elements of a GH-algebra.

Theorem 4.4. For any bounded sharp real observable ξ on a GH-algebra A, there
is a unique element a ∈ A such that ξ = ξa.

Proof. Define pλ = ξ((−∞, λ]), λ ∈ R. Then {pλ} is a bounded resolution of
identity. Indeed, we have

pλ =
∧

λ′>λ,λ′∈Q

pλ′ ≥
∧

λ′>λ

pλ′ ≥ pλ

where the equality follows by σ-additivity of ξ. The other two properties of a
bounded resolution of identity are clear. Since all pλ commute, they are contained
in a commutative GH-subalgebra B in A. Since B is monotone σ-complete, it is
a Banach GH-algebra. By [25, Theorem 4.2], {pλ} is the spectral resolution of an
element a ∈ B. It follows that ξa((−∞, λ]) = pλ = ξ((−∞, λ]), hence ξ = ξa.

�

The functional calculus on commutative GH-algebras can be extended to all
Borel measurable functions. Indeed, by [9, Proposition 7.1.11], and [9, Proposition
7.1.25], the gh-tribe generated by C(X,R) on a basically disconnected compact
Hausdorff space X coincides with the set of bounded Baire measurable functions
on X . Notice that the Baire σ-algebra is the σ-algebra generated by compact Gδ

sets on X , or equivalently, by {f−1([α,∞)) : f ∈ C(X,R), α ∈ R}. Now let A be a
commutative GH-algebra, and let a ∈ A be such that g = Ψ(a) ∈ C(X,R), where
Ψ is the isomorphism from Theorem 4.2. Let f be a real-valued Borel function
defined on σ(a) = {g(x) : x ∈ X}. Let B ∈ B(R) be any Borel set. Then
(f◦g)−1(B) = g−1(f−1(B)), where f−1(B) is a Borel set, hence (f◦g)−1(B) belongs
to the Baire σ-algebra. It follows that f ◦g is Baire measurable, equivalently, B(T )-
measurable function. It follows that f ◦ g ∈ T , and we may define f(a) := h(f ◦ g),
where h is the homomorphism from Theorem 4.3. Notice also, that instead of g we
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may use any function fa ∈ T such that h(fa) = a. Indeed, we have h(fa) = h(g) iff
the set {x ∈ X : fa(x) 6= g(x)} is meager. But then {x ∈ X : f ◦ fa(x) 6= f ◦ g(x)}
is meager too, and so h(f ◦ g) = h(f ◦ fa). For any σ-normal state we have

ρ(f(a)) =

∫
R

f(λ)ρ(ξa(dλ))),

where ξa is the observable corresponding a, i.e., ξa(B)) = h(g−1(B)).

Following [43], we can also define functions of several commuting elements. Let
a1, a2, . . . , an ∈ A be pairwise commuting, and let ξ1, ξ2, . . . , ξn be their corre-
sponding sharp real observables. Then these observables are compatible observ-
ables on the OML P . Let A1 be the smallest commutative sub-synaptic algebra
containing all a1, a2, . . . , an. Then the ranges of ξi, i = 1, 2, . . . , n are contained in
P1 := A1 ∩ P , which is the smallest Boolean subalgebra of the OML P containing
them. Let (X, T , h) be the Loomis-Sikorski representation of A1 according Theorem
4.3. Then h maps B(T ) onto P1. We may consider observables ξi, i = 1, 2, . . . , n
as observables from B(R) to P1. Let fi, i = 1, 2, . . . , n be functions in T such that
h(fi) = ai, so that ξi(B) = h(f−1

i (B)), i = 1, 2, . . . , n, for all B ∈ B(R).

We will follow the construction in the proof of [43, Theorem 1.6 (ii)]. Define
F : X → R

n by F (x) = (f1(x), f2(x), . . . , fn(x)). Then F is B(T )-measurable. Let
u := h ◦ F−1. Then u : B(Rn) → P is a σ-morphism such that ξi(B) = u(π−1

i (B)),
i = 1, 2, . . . , n, for all B ∈ B(R. Here πi(t1, t2, . . . , tn) → ti is a projection of
R

n → R
1. Since B(R) is the smallest σ-algebra of subsets of Rn containing all

π−1
i (B), i = 1, 2, . . . , n, the range of u is P1. The uniqueness of u is obvious. For

any Borel function G : R
n → R, the mapping u ◦ G−1 is an observable on P

whose range is contained in P1. We then define the function G of the observables
ξ1, ξ2, . . . , ξn as the observable u ◦G−1, i.e., G(ξ1, ξ2, . . . , ξn) := u ◦G−1. We have
the following.

Theorem 4.5. Let a, b be commuting elements in a GH-algebra A. The following
statements hold (cf. also [39, 40]):

(i) The observable ξa+b is the G-function of the observables ξa and ξb, where
G(t1, t2) = t1 + t2.

(ii) The observable ξab is the G-function of the observables ξa and ξb, where
G(t1, t2) = t1.t2.

Proof. (i) We have ξa+b = h ◦ f−1
a+b, where fa+b ∈ T is any function such that

h(fa+b) = a + b. Since h is a morphism of GH-algebras, we have h(fa + fb) =
h(fa) + h(fb) = h(fa+b). For every B ∈ B(R) we have,

G(ξa, ξb)(B) = u ◦G−1(B) = h ◦ F−1(G−1(B))

= h((G ◦ F )−1(B))

= h((fa + fb)
−1(B))

= ξa+b(B).

The proof of (ii) is similar. �
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Let us now turn to general observables with a commuting range. We first observe
that the Loomis-Sikorski theorem provides a special sharp observable for any com-
mutative GH-algebra A. Let (X, T , h) be the Loomis-Sikorski representation of A,
then it is easy to see that the restriction of h to B(T ) is a sharp observable on A.
By the proof of the next theorem, every observable with range in A is a smearing
of h.

Theorem 4.6. Every observable with commuting range on a GH-algebra is defined
by a smearing of a sharp observable.

Proof. This proof is analogous to that of [31, Theorem 4.4]. Let ξ be an (Ω,B)-
observable on a GH-algebra such that the range R(ξ) = {ξ(B) : B ∈ B} consists of
pairwise commuting elements. Then CC(R(ξ)) is a commutative GH-algebra. Let
(X, T , h) be the Loomis-Sikorski representation. By Theorem 4.3, for every B ∈ B
there is an fB ∈ T [0, 1] with h(fB) = ξ(B), where fB is B(T )-measurable and is
unique up to h-null sets. Define ν : X × B → [0, 1] by ν(x,B) = fB(x). It can be
proved that ν(X,B) is a weak Markov kernel with respect to Ih := {B ∈ B(T ) :
h(B) = 0}. Indeed, we have ξ(B) = h(νB), B ∈ B. Let (Bi)i be a disjoint sequence
of elements of B, and put B =

⋃
iBi. Then

h(fB) = ξ(B) = ⊕iξ(Bi) =
∑
i

h(fBi
) = h(

∑
i

fBi
)

and hence ν(x,B) = fB(x) =
∑

i fBi
(x) =

∑
i ν(x,Bi), Ih-a.e. This proves prop-

erty (iv) in the definition of a weak Markov kernel, the remaining properties are
obvious.

Owing to [7] we have for every σ-additive state m on E,

m(ξ(B)) = m(h(fB)) =

∫
X

fB(x)m ◦ h(dx) =

∫
X

ν(x,B)m ◦ ξ(dx).

By Definition 3.2, the observable ξ is a smearing of the (X,B(T ))-observable h.

�

Note that for a ∈ A, the corresponding sharp real observable ξa is the smearing
of h by the Markov kernel ν(x,B) = χf−1

a (B)(x). By Theorem 4.4, any bounded

sharp real observable has this form for some function f ∈ T .

Remark 4.7. Let A be a commutative GH-algebra with the Loomis-Sikorski rep-
resentation (X, T , h). Let (Y,B) be a measurable space and let ν : X × B → [0, 1]
be a weak Markov kernel with respect to Ih. Then ξ(B) := h(νB) is an observable
and if A has some σ-additive states, then ξ is a smearing of h with respect to ν.

5. Observables on synaptic algebras which are dual Banach spaces

In what follows, we will consider a synaptic algebra A which is the dual of a
Banach space. In this case, A is itself a Banach space, hence a Banach synaptic
algebra. As it was proved in [17, 19], A is then isomorphic to a JC-algebra and by
[41, Corollary 2.4], a JC-algebra is a dual Banach space iff it is a JW-algebra (that
is, a weakly closed Jordan operator algebra, see [42]), equivalently, A is monotone
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complete and has a separating set of normal states. Notice that also conversely,
every JW-algebra is a synaptic algebra, and being monotone complete, it is a GH-
algebra.

To describe the predual of A, we will need the notion of a base norm space. Let
(V, V +) be an ordered vector space and let K be a base of V +, that is, a convex
subset of V + such that every nonzero v ∈ V + can be uniquely written in the form
v = λx for λ > 0 and x ∈ K. Let

‖v‖K := inf{λ+ µ, v = λx − µy, λ, µ ≥ 0, x, y ∈ K}.

If ‖·‖K defines a norm in V , we say that V is a base norm space, with distinguished
base K. Let us remark that the dual of an order unit space is a base norm space
with the base given by the set of states. Conversely, the dual of a base norm
space is an order unit space such that the order unit has constant value 1 on the
distinguished base, [3].

We will make use of the following theorem [3, Proposition 1.11].

Theorem 5.1. If V is a base-norm space with distinguished base K, then the
restriction map f 7→ f/K is an order and norm preserving isomorphism of V ∗

onto the space Ab(K) of all real valued bounded affine functions on K equipped with
pointwise ordering and supremum norm,

The next result is based on [10, Theorem 6] and characterizes the convex ef-
fect algebras such that the corresponding ordered vector space is an order unit
space which is the dual of a Banach space. In particular, we obtain an alternative
characterization of synaptic algebras which are JW-algebras.

Let E be a convex effect algebra and let S ⊆ S(E) be a set of states. The
σ(E, S)-topology on E is given by the neighbourhoods basis consisting of the sets

V (a; s1, . . . , sn, ǫ) := {b ∈ E : |si(a)− si(b)| < ǫ}, si ∈ S, i = 1, 2, . . . , n, ǫ > 0.

Theorem 5.2. Let E be a convex effect algebra and let (V, V +, u) be the ordered
vector space with order unit u such that E is isomorphic to the unit interval V [0, u]
of V . Then (V, V +, u) is an order unit space which is the dual of a Banach space
if and only if E is compact with respect to the σ(E, S)-topology for a separating
set S ⊆ S(E). The predual is a base norm space, whose base is an ordering set of
completely additive states on E.

Proof. Since [0, u] generates V , every state ρ ∈ S can be uniquely extended to
a state ρ̂ on V . Let τ be the locally convex topology defined by the seminorms
x 7→ |ρ̂(x)|, x ∈ V for ρ ∈ S. Since S is separating, this family of seminorms is
separated. Indeed, let x ∈ V be such that ρ̂(x) = 0 for all ρ ∈ S. Let λ, µ ≥ 0 and
a, b ∈ E be such that x = λa− µb, so that

λρ(a) = µρ(b), ∀ρ ∈ S.

We may assume that µ ≤ λ and λ > 0. Then for ρ ∈ S,

ρ(a) =
µ

λ
ρ(b) = ρ(

µ

λ
b).

It follows that a = µ
λb, hence x = 0.
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Since the restriction of τ to E coincides with σ(E, S), E is compact with respect
to τ . By [10, Theorem 6], (V, V +, u) is an order unit space which is a dual of the Ba-
nach space N of all τ -continuous functionals on V , moreover, the σ(V,N)-topology
agrees with τ on norm-bounded sets. Let N+ be the cone of positive functionals
in N , then N+ has a base B consisting of states in N . By the proof of [10, Theo-
rem 6], N is base normed with respect to B. By Theorem 5.1, (V, V +, u) is order
isomorphic to (Ab(B), Ab(B)+, 1B) with pointwise ordering, which implies that B
is an ordering set of completely additive states on E ≃ V [0, u] ≃ Ab(B)[0, 1B].

For the converse, assume that (V, V +, u) is an order unit space which is a Banach
space dual. By the Banach-Alaoglu theorem, the unit ball in a dual of a Banach
space is w∗-compact. In our case, this implies that [−u, u] is w∗-compact and using
homogeneity and translation invariance, we obtain that [0, u] = 1

2 ([−u, u] + u) is
w∗-compact as well. Let S ⊂ S(E) be the set of (restrictions of) normal states,
then S is separating. The topology σ(E, S) is coarser than the w∗-topology, hence
E is compact in σ(E, S).

�

To summarize, we obtain the following statement.

Corollary 5.3. Let A be a synaptic algebra. The following statements are equiva-
lent:

(i) A is a dual of a Banach space.

(ii) A is monotone complete and has a separating set of normal states.

(i) E is orthocomplete and has a separating set of completely additive states.

(iii) E is compact in the topology defined by a separating set of states.

(iv) A is a JW-algebra.

(v) A is the dual of a base norm space whose base is the set of normal states of
A.

The proof of the next theorem follows from Theorem 3.3. We give here a more
direct proof based on Theorem 5.1.

Theorem 5.4. Let A be a JW-algebra and (X,A), (Y,B) be measurable spaces.
Let ξ be an (X,A)-observable. For every weak Markov kernel ν : X × B → [0, 1]
with respect to Iξ, there exists an observable η on E which is the smearing of ξ.

Proof. Let K be the set of normal states on A. By Corollary 5.3 and Theorem 5.1,
E is isomorphic to the set of all affine functions from K to R[0, 1]. For every s ∈ K,
s ◦ ξ is a probability measure on (X,A), and for every B ∈ B, νB : X → R[0, 1] is
a measurable function on X . Put η(B)(s) := s ◦ ξ(νB) =

∫
X
νB(x)s ◦ ξ(dx). Then

s 7→ η(B)(s) is an affine function on K with values in R[0, 1], therefore η(B) ∈ E.
To prove that B 7→ η(B) is an observable, let (Bi)

∞
i=1 be a sequence of pairwise

disjoint sets with ∪iBi = B. By the properties of a weak Markov kernel we have
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ν(x,B) =
∑

i ν(x,Bi) ξ-a.e. For every s ∈ K we have

η(B)(s) =

∫
X

νB(x)s ◦ ξ(dx) =

∫
X

∑
i

νBi
(x)s ◦ ξ(dx) =

∑
i

∫
X

νBi
(x)s ◦ ξ(dx)

=
∑
i

η(Bi)(s),

hence η(B) =
∑

i η(Bi). It then follows that η is an observable defined by a
smearing of ξ. Uniqueness is clear. �

In the next theorem we prove that in case that A is a JW-algebra, also the
converse of Theorem 4.6 holds true.

Theorem 5.5. Let A be a JW-algebra of operators on a separable Hilbert space.
Then an observable η is a smearing of a sharp observable ξ if and only if the range
R(η) consists of pairwise commuting effects.

Proof. If the range of η is pairwise commuting, the result follows by Theorem 4.6.

For the converse, let η : (Y,B) → E be an observable on E that is a smearing
of a sharp observable ξ : (X,A) → P . This means that for every σ-additive state
s ∈ S(E) and every set B ∈ B, s(η(B)) =

∫
X ν(x,B)s(ξ(dx)) = s(νB(ξ)), where

νB(x) = ν(B, x) : B × X → [0, 1] is a weak Markov kernel, and νB(ξ) is a sharp
real observable such that for every ∆ ∈ B(R), νB(ξ(∆))) = ξ(ν−1

B (∆)) ∈ R(ξ).
Since the range R(ξ) consists of mutually commuting projections, it is contained
in a commutative sub-GH-algebra A0. By Theorem 4.4, there exists an element of
A0 corresponding to νB(ξ), and since the normal states are ordering, this element
must be equal to η(B). It follows that the range of η is contained in A0, hence is
commutative. �

By [30, Theorem 4.4], on the effect algebra E(H) on the separable Hilbert space
H , an observable (POV measure) is a smearing of a sharp real observable (PV-
measure) iff it has a commutative range. We prove that the same holds for a
JW-algebra of operators on a separable Hilbert space.

Corollary 5.6. Let A be a JW-algebra of operators on a separable Hilbert space.
Let η be an observable on A whose range R(η) consist of pairwise commuting effects
in E. Then η is a smearing of a sharp real observable.

Proof. For every η(B), B ∈ B, there is a sharp real observable ξB such that
s(η(B)) = s(ξB) for every normal state s on A and every B ∈ B. So we have
a system {ξB : B ∈ B} of compatible observables on the OML P . By [43, Theo-
rem 3.9], there exists an observable ξ and real valued Borel measurable functions
fB : X → R for all B ∈ B such that ξB = fB ◦ ξ. Since the OML of projections on
a separable Hilbert space is separable (in the sense that every Boolean subalgebra
of it is countably generated), by [43, Theorem 3.9], there exists a real observable
ξ. Put ν(B, x) := fB(x). Similarly as in the proof of [30, Theorem 4.4], we prove
that ν(B, x) is a weak Markov kernel and that η is a smearing of ξ. �
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