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Abstract
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Bonferroni and De Vergottini indices of inequality. We also provide the conditions

under which the new polarization indices satisfy the Increased Spread and Increased

Bipolarity axioms. Finally, a simulation study has been carried out to compare the

different sensitivity of the new bipolarization indices to progressive transfers. Also,

an empirical application based on EU-SILC data for Italy ober the period 2007-2011

show the appeal of our proposal.
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Bonferroni and De Vergottini are back: new
subgroup decompositions and bipolarization
measures∗

Mariateresa Ciommi, Chiara Gigliarano,

Giovanni Maria Giorgi

1 Introduction

In recent years, the concept of income polarization has received an increasing at-

tention from scholars of different fields (economists, statisticians, econometricians,

sociologists, etc.). The main reasons for the interest in income polarization can be

identified in the link between homogeneous groups and social tensions (Esteban and

Ray [24]).

Monitoring the degree of polarization in a given income distribution means mea-

suring not only how poorer are getting the poor but also how richer are getting the

rich and hence how distant these two groups are one from the other. The further the

two groups are one from the other and at the same time the more cohesive inside

they are, the harder it will be communicating and interacting one to the other.

Two strands are distinguished in the income polarization literature: the first

one, going back to Wolfson [60] and [61] and Foster and Wolfson [26] and [27], is

focused to measure the shrinking middle class, monitoring how the income distribu-

tion spreads out from its center. The second strand, originating from Esteban and

Ray [24], focuses on the rise of separated income groups: polarization increases if the

population groups are getting more homogeneous inside and more separate one to

the other. These pioneering contributions have been followed by many others, such

∗Authors thank Gaia Rocchetti for her valuable collaboration provided in the design phase of the
paper. It is understood that the responsibility of the work is exclusively of the authors.
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as Wang and Tsui [59], Gradin [38], Chakravarty and Majumder [15], D’Ambrosio

[19], Zhang and Kanbur [64], Duclos et al. [22], Anderson [4], Esteban et al. [25],

Massari et al. [44], Chakravarty and D’Ambrosio [14], Lasso de la Vega et al. [42],

Yitzhaki [63], Pittau et al. [51], Permanyer [47], Silber et al. [55], Lasso de la Vega

and Urrutia [41], Chakravarty and Majumder [16].

In this paper we will follow the second strand of income polarization literature,

based on the Foster and Wolfson approach. Starting from the generalization of

Foster and Wolfson index proposed by Rodriguez and Salas [53], we introduce two

new polarization indices that are based on Bonferroni [11] and De Vergottini [20]

inequality indices, respectively. Our aim is therefore to investigate whether both new

indices provide additional or more detailed information than traditional measures

of polarization.

In a period in which Gini’s scientific ideas heavy influenced the research activity

of the Italian statisticians (see, e.g., Giorgi [31]; Giorgi and Gubbiotti [35]), Carlo

Emilio Bonferroni [11], in his book entitled Elements of General Statistics, proposed

the Bonferroni inequality index. His purpose was simply to highlight the possibility

of constructing indices as simple as the Gini concentration index with similar prop-

erties. In fact, the Bonferroni index is more sensitive than the Gini index to the

lower levels of income distribution in the sense that it gives more weights to trans-

fers among poor (Nygard and Sandstrom [46]). This makes the Bonferroni index

particularly suitable to investigate poverty (Giorgi and Crescenzi [33]; Giordani and

Giorgi [29]). For about fifty years, the Bonferroni index remained almost forgotten

as it was opposed by Corrado Gini and his followers, who tried to prevent that any

measures of inequality could overshadow the concentration ratio.

A fundamental contribution to the renewed interest in the Bonferroni and other

inequality indices (including De Vergottini) is due to Walter Piesch [49], who dis-

cussed, among other things, a series of links between inequality measures in his book

Statistische Konzentrationsmasse. Subsequently, the work of Nygard and Sandstrom

[46] enlarged and deepened such studies, reaching a larger audience of scholars.

Recently, the Bonferroni index has been revalued since its features and new

interesting applications in social and economic contexts have been studied (Barcena-
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Martin and Silber [8], [9], [10]; Chakravarty and Muliere [18]; Chakravarty [13]).

Various other important properties have been analyzed by, among others, Aaberge

[2], Aaberge et al. [3], Barcena and Imedio [7] and Imedio-Olmedo et al. [39]. Some

inferential results of the Bonferroni index have also been investigated (e.g., Giorgi

and Mondani [36] and [37]; Giorgi and Crescenzi [32]).

Some years later, in 1950, Mario De Vergottini [20] proposed another index of

inequality, the De Vergottini index, which, compared to the Gini index, is more

sensitive to the right tail of the income distribution, i.e. it is more sensitive to

income transfers among the rich. He also obtained a general formula from which

various indices of inequality can be derived (including Gini, Bonferroni and De

Vergottini), highlighting, as previously Bonferroni did, that the Gini index is only

one of the many suggested indices having similar features and properties.

Motivated by these very different types of sensitivity, in this paper we will con-

sider and compare the three indices (Gini, Bonferroni and De Vergottini) from the

point of view of polarization.

The present work is organized as follows: in Section 2 we review the Gini, the

Bonferroni and the De Vergottini inequality indices, while in Section 3 we provide a

brief review of the the main contributions proposed in the polarization measurement

literature. In Section 4 we propose a new subgroup decomposition for Bonferroni

and De Vergottini inequality indices, which will be used in Section 5 to propose new

polarization indices based on those indices of inequality. Section 6 shows some of

their properties through a simulation study, while Section 7 illustrates a simple ap-

plication to EU-SILC data referred to Italy, and in Section 8 we conclude. Appendix

A contains the proofs of all propositions.
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2 Gini, Bonferroni and De Vergottini inequality

indices

2.1 Notation

Let us assume that, for a given population, the income distribution can be repre-

sented by a continuous non-negative random variable X, with positive support on

[x1, xn], xn ≥ x1 ≥ 0. Let F (x) and µ denote the cumulative distribution function

and the mean income, respectively.

Similarly, let x = (x1, x1, ..., xn) indicate a positive non-decreasingly ordered

income distribution, which corresponds to an empirical distribution F that attaches

equal weights to each of the n points x1, x2, . . . , xn and let µ(x ) be the corresponding

mean. By µi(x ) we denote the average income of the individuals at the left of

individual i, that is: µi(x ) = 1
i

∑i
j=1 xj. Under the assumption that the incomes

are non-decreasingly ordered, we denote by n = n+1
2

the position of the median

individual, thus x− represents the sub-vector of the income distribution such that

xi : i < n and x+ represents the sub-vector of the income distribution such that

xi : i > n. Consequently, if n is a even number, x = (x−, x+), whereas, if n is

odd, x = (x−,m(x ), x+) where m(x ) denotes the median income. In addition, for

any x and y , y > x (y < x and y = x ) means that yi > xi (yi < xi and yi = xi,

respectively) for all i = 1, · · · , n. Finally, ni denotes the position of an individual

whose income is xi, ni ≤ n.

Definition 1 A polarization index P n(x) is a continuous function P n : Xn →

R+, where Xn is the set of all possible income distributions for a population of n

individuals.

As stressed by Permanyer [48], income polarization indices can be classified in two

subgroups: bipolarization index and multipolar index. Here, we focus on the first

group, that is a polarization index that measures the extent to which an income

distribution is clustered around two antipodal groups: the poor and the rich.

In what follows, we recall two axioms that are the cornerstones upon which

income bipolarization measures are based. The first one, the so-called Increased
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Spread Axiom, introduced by Chakravarty and Majumder [15] is a monotonicity

principle, it requires that polarization increases if the distance between the two

groups below and above the median increases. The second important axiom is

the Increased Bipolarity Axiom, which states that polarization should increase if a

progressive transfer between individuals belonging to the same income group takes

place. Formally:

Axiom 1 (Increased Spread (IS)) Let x,y be two income distributions with the

same median income m(x) = m(y). If y− ≤ x− and y+ ≥ x+, then P n(y) >

P n(x).

Axiom 2 (Increased Bipolarity (IB)) Let x,y be two income distributions with

the same median income m(x) = m(y). Consider the following scenarios:

(i) x+ = y+, y−PDx−

(ii) x− = y−, y+PDx+

(iii) y−PDx−, y+PDx+,

where PD denotes that the Pigou-Dalton transfers principle is satisfied. If one

condition among (i), (ii) or (iii) holds, then P n(y) > P n(x) .

Using the previous notation, we recall now the formulation of the Lorenz curve

in the continuous case (see [43]), given by:

L(p) =
1

µ

∫ p

0

F−1(t)dt, with p ∈ (0, 1] ,

where F−1(t) is the left-continuous version of the inverse of F , defined as F−1(t) =

inf{x : F (x) ≥ t}; see Pietra [50] and Gastwirth [28].

The corresponding discrete Lorenz curve is obtained by linearly interpolating the

following n points: (
i

n
;

1

nµ(x)

i∑
j=1

xj

)
, i = 1, . . . , n.

The Gini concentration index, the Bonferroni concentration index and the De

Vergottini concentration index can all be written as function of the Lorenz curve
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(see, among others, Amato [5], Tarsitano [57] and Barcena and Imedio [7]). We will

present both their continuous and their discrete formulation.

The population (or continuous) Gini index is defined as twice the area between

the equidistribution line (p) and the Lorenz curve L(p) :

G = 2

∫ 1

0

[p− L(p)] dp = 1− 2

∫ 1

0

L(p)dq.

The Gini index G ranges in [0, 1], where the lower extreme value (G = 0) is achieved

when the income is equally distributed among individuals, while the upper extreme

(G = 1) is reached when one person owns the overall income and all the others have

zero income.

One of the discrete formulation for the Gini index1 in the discrete case is:

IG(x) = 1− 2

n(n+ 1)µ(x)

n∑
i=1

i∑
j=1

xj.

The index IG(x) ranges in
[
0, n−1

n+1

]
.

The Bonferroni index corresponds to the area between the line of perfect equality

(horizontal line at height 1) and the Bonferroni curve B(p) = L(p)/p (see Giorgi

and Crescenzi[34]):

B = 1−
∫ 1

0

L(p)

p
dp =

∫ 1

0

[p− L(p)]

p
dp (1)

Note that B displays the same range as G.

The discrete Bonferroni index IB can be written as2:

IB(x) =
1

n

n∑
i=1

(
µ(x)− µi(x)

µ(x)

)
= 1− 1

nµ(x)

n∑
i=1

µi(x) = 1− 1

nµ(x)

n∑
i=1

1

i

i∑
j=1

xj,

The index IB(x) ranges in
[
0, n−1

n

]
.

The De Vergottini index [20] corresponds to the area between the De Vergottini

1See Giorgi [30] and Yitzhaki [62].
2See Nygard and Sandstrom [46] and Barcena and Imedio [7].
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curve V (p) = (1− L(p))/(1− p) and the line of perfect equality:

V =

∫ 1

0

1− L(p)

1− p
dp− 1 =

∫ 1

0

[p− L(p)]

1− p
dp. (2)

Index V has a lower bound equal to 0, when income is equally distributed over the

population, and an upper bound equal to xn
µ
− 1, in case of maximum concentra-

tion. This implies that its maximum depends on the income of the richer individual

(Barcena and Imedio [7]).

The discrete formulation of the De Vergottini index is:

IV (x) =
1

n

n∑
i=1

(
Mi(x)− µ(x)

µ(x)

)
=

1

nµ(x)

n∑
i=1

Mi(x)− 1,

where Mi(x) = 1
(n−i+1)

∑n
j=i xj. The De Vergottini index can be interpreted as a

weighted average of the relative differences between the mean of the population and

the partial means of the i-th richest group (see Tarsitano [58]). The index IV (x)

ranges in
[
0,
(∑n

j=1
1

n−j+1

)
− 1
]
. 3

The inequality indices G, B and V are pure numbers (relative indices) and

satisfy the following properties: i) the index ranges in [0, 1] with higher values de-

noting greater concentration (see Bonferroni [11])4; ii) transfer sensitivity: the index

increases as a result of a progressive income transfer from a richer to a poorer indi-

vidual (Pigou-Dalton principle). The Bonferroni index satisfies a stronger version of

the Pigou-Dalton principle, namely the positional transfer sensitivity, which ensures

that the reduction in inequality due to a progressive income transfer is higher if the

incomes involved are smaller than the average (see Mehran [45] and Zoli [65]). Also

the De Vergottini index satisfies the positional transfer sensitivity, with an opposite

interpretation: the reduction in inequality due to a progressive income transfer is

higher if the the individuals involved in the transfer have income higher than the

3 Note that the De Vergottini index does not have a unit upper bound. The maximum inequality
corresponds to the income profile in which only one individual holds the total income, i.e. xi =
nµ(x) and xj = 0 for j = 1, . . . , n, j 6= i. The upper bound of IV can be written as: VMAX =∑n
j=2

1
j . In this way it is easy to see that VMAX only depends on the population size.

4The value of VMAX can be used to normalize V in order to ensure V ∈ [0, 1], see Aristondo
et al. [6].
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average income.

2.2 A broader class of inequality indices

The Gini, Bonferroni and De Vergottini indices belong to the class of linear measures

introduced by Mehran [45] and defined as:

Iθ(p) =

∫ 1

0

θ(p) · (p− L(p)) dp.

Indeed, assuming particular formulations for the parameter θ(p), we trace back to

the three inequality indices as follows: for θ(p) = 2 we get the Gini index; for

θ(p) = 1/p with 0 < p ≤ 1 we obtain the Bonferroni index and for θ(p) = 1/(1− p)

with 0 ≤ p < 1 the De Vergottini index.

As already stressed, these three indices show a different sensitivity to progres-

sive income transfers occurring at different segments of the distribution. Indeed,

this is due to the different weights attached to the differences (p− L(p)) in equation

(3). In particular, for the Gini index, these differences are multiplied by a constant,

θ(p) = 2, revealing that the index attaches the same importance to the differences

(p− L(p)), regardless of their position in the income distribution. In the Bonferroni

index, instead, the differences (p− L(p)) are multiplied by the decreasing convex

function θ(p) = 1/p. This implies that the income transfers involving the poorer

individuals are attached a greater impact on the index variation. In other word, the

Bonferroni inequality index is more sensitive to income transfers occurring among

poor people. Finally, in the De Vergottini index the differences (p− L(p)) are mul-

tiplied by the increasing convex function θ(p) = 1/(1− p). Consequently, the index

is more sensitive to income transfers occurring among richer people.

The different types of sensitivity of the indices are even more evident considering

their sample formulations. In particular, the sample version of all the three indices

can be written as a weighted mean, and with different weighting systems.

According to Tarsitano [57], the discrete Bonferroni index can be written as a

linear combination of units with weights depending on the individual ranks. That
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is:

IB(x) = 1− 1

nµ(x)

n∑
i=1

1

i

i∑
j=1

xj =
1

nµ(x)

n∑
i=1

wixi

where the weights are such that

wi = 1−
n∑
j=i

1

j
, wi+1 = wi +

1

i
,

n∑
i=1

wi = 0. (3)

Barcena-Martin and Imedio [7] propose a similar expression for the Gini index:

IG(x) =
1

nµ(x)

n∑
i=1

γixi,

where

γi =

(
2i− 1

n

)
− 1, γi+1 = γi +

2

n
,

n∑
i=1

γi = 0 (4)

and for the De Vergottini index:

IV (x) =
1

nµ(x)

n∑
i=1

ξixi,

where

ξi =
i∑

j=1

1

n− j + 1
− 1 ξi+1 = ξi +

1

n− i

n∑
i=1

ξi = 0. (5)

In the three weighting systems (3), (4) and (5), the weight associated to the

individual’s income depends on his position in the income distribution and increases

with the individual’s rank in the distribution. Thus, we have three weight systems,

wi, γi, ξi that are all increasing with the individual ranks i = 1, ..., n but at different

rates: for the Gini index, the weight sequence increases constantly, with an absolute

increment of 2/n, whereas both Bonferroni’s and De Vergottini’s weights grow at a

decreasing rate (the absolute increment is equal to 1/i and 1/(n− i), respectively).

For the Gini index, therefore, the weighing system is such that the variation in

inequality recorded as a result of an income transfer depends only on the distance
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between the individuals involved, regardless of their position in the distribution. On

the contrary, for Bonferroni and De Vergottini’s indexes, the effect of a transfer also

depends on the position of individuals, making Bonferroni index more sensitive to

transfers that occur at the lower end of the income distribution and De Vergottini

index more sensitive to variations among the richest.

3 Brief review of polarization measures

In this section we briefly review the most common univariate polarization measures

and their connection to well-known inequality measures. Since in this paper we

follow the second strand of income polarization literature, based on the Foster and

Wolfson approach ([26] and [27]), here we will briefly review the main contributions

based on this approach.

In the Foster and Wolfson’s approach the middle class constitutes a crucial ele-

ment. By middle class the authors mean a group of people who are close enough in

their economic status to be able to cooperate and form a common political will. A

strong middle class has a beneficial influence on the society, as it provides a buffer

between the extreme tendencies of the lower and upper social classes; see Pressman

[52]. Easterly [23] for example shows that a higher share of income for the middle

class is associated with higher growth, more education, better health status and less

political instability in the society. In this context, the decline of the middle class

in a developed country signifies a threat for economic growth and socio-political

stability.

Foster and Wolfson [26] and the authors who have followed their approach (in

particular, Wang and Tsui [59], Chakravarty and Majumder [15], Rodriguez and

Salas [53], Chakravarty et al. [17] and Chakravarty and D’Ambrosio [14]) define the

middle class using the median income as a reference point, considering the middle

class as the group of individuals whose income is exactly equal to the median income.

The closer the incomes are to the median the less polarized is the distribution, while

the presence of two well separated poles at the right and at the left of the median

income identifies a highly polarized income distribution.
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Foster and Wolfson [26] define the bipolarization measure to be

P FW =
2µ(x)

m(x)
(1− 2L(0.5)−G) , (6)

where m(x) is the median of the incomes and L(z) be the value of the Lorenz curve

at the z-quantile of x.

It is easy to prove that the index P FW is consistent with the Increased Bipolarity

axiom, that is, it measures an increase in polarization in case of a progressive trans-

fer occurring either within x- or within x+ and with the Increased Spread axiom,

measuring an increase in polarization in case of a regressive transfer between x- and

x+.

An alternative expression of the Foster and Wolfson measure is given by

P FW =
2µ(x)

m(x)
(GB −GW ) . (7)

Therefore, the Foster and Wolfson polarization measure is a normalized function

of the difference between the Gini index between groups GB and the Gini index

within groups GW . As Rodriguez and Salas [53] pointed out, this formulation clearly

shows that there is a difference between adding up the two components, as it is

done in inequality measurement, and taking the differences, as it is in polarization

measurement.

Several other polarization measures are explicitly constructed as functions of

inequality measures. In particular, Rodriguez and Salas [53] propose an extension of

the Foster and Wolfson’s polarization measure that includes an additional sensitivity

parameter v. Their measure is based on a subgroup decomposition of the extended

Gini coefficient introduced by Donaldson and Weymark [21] in the case of population

divided by the median, and is defined as

PRS(x, v) = GB(x, v)−GW (x, v) , v ∈ [2, 3] .

The idea of measuring polarization in terms of the difference of a between-group

inequality component and a within-group inequality component (measured through
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the Gini index) is also present in the polarization index of Silber et al. [55], which

is defined as

P SDH =
GB −GW

G
,

where it is assumed that the population is divided by the median income.

Rather than using the difference between the two inequality components, Zhang

and Kanbur [64] use the ratio of the two components and define their polarization

measure to be the ratio of the between-component over the within-group component

of Theil’s measure of inquality. Since this measure is not defined if the within-group

inequality is zero, Silber et al. [55] propose a slight modification for the Zhang and

Kanbur measure.

4 Subgroup decomposition of Bonferroni and De

Vergottini inequality indices

The decomposition of income inequality indices by groups is of great interest to

researchers, since it allows to detect possible drivers of inequality, thus constituting

a valid tool for policy-makers. Decomposition by groups, indeed, aims at explaining

the contribution to total income inequality of some characteristics that affect income,

such as age, gender, education, and geographical area.

Moreover, as already discussed in Section 3, the subgroup decomposition of the

Gini index has been used to propose bipolarisation indices; see Wolfson [60] and [61],

Foster and Wolfson [26] and [27]. In particular, Wolfson’s index and its generaliza-

tion proposed by Rodriguez and Salas [53], based on the extended Gini index, are

defined as the difference between the between-group inequality and the within-group

inequality, in case of two groups divided by the median income.

In this context, since different inequality indices put different emphasis to changes

on different distribution segments and, consequently, they give different weight to

the between and within components (Shorrocks [56]), the use of a given inequality

index to measure polarization allows to characterise polarization indices according

to their sensitivity to transfers.
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In particular, we will provide a subgroup decomposition of the Bonferroni and

the de Vergottini concentration indices following the approach used by Lambert and

Aronson [40] for the Gini index. We will first discuss the case of a generic number

of groups that can also overlap. Then, we will show the decompositions for the

special case of two non-overlapping groups split by the median (which is the case

of interest for bipolarization analysis). In the next section we will employ these

decompositions to propose new polarization indexes based on the Bonferroni and on

the De Vergottini concentration indices.

4.1 The case of k generic groups

Let us suppose that a society with n individuals can be partitioned in K ≥ 2 groups,

each with nh individuals, for h = 1, 2, . . . K , and with group mean µh(x). Let us

also assume that the groups may overlap.

We now propose the decomposition for the Bonferroni and De Vergottini indices.

4.1.1 The Bonferroni decomposition

For the Bonferroni index we adopt the decomposition proposed by Barcena-Martin

and Silber [9]5 that is based on the decomposition for the Gini index discussed in

Lambert and Aronson [40].

The inequality between group can be obtained assuming that each individual in

the subgroup has income equal to the subgroup mean. We denote with BB(q) the

Bonferroni curve for this distribution.

CBonf (q) represents the Bonferroni curve computed after a two-stage reordering.

First, the individuals are divided into subgroups and those subgroups are oredered

according to the mean income of the group. Then, in each group, individuals are

reordered in a non-decreasing order with respect to their income. Formally

CBonf (q) =
1

µ

∑
i<h−1 niµi + nhµhLh(ph)

nq

5Note that these authors consider a slightly different definition of the Bonferroni curve, and
therefore their decomposition slightly differs from ours.
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Thus, CBonf (q) is a concentration curve, and, for a given percentile q, the ordinate

of the curve corresponds to the ratio between the mean of the first nq observations

and the mean of the whole distribution.

Proposition 1 For the Bonferroni index defined in 1, let the areas AB, AW and

AO be defined as follows:

AB =

∫ 1

0

[1−BB(q)] dq

AW =

∫ 1

0

[BB(q)− CBonf (q))] dq

AO =

∫ 1

0

[CBonf (q)−B(q)] dq.

Then

B = AB + AW + AO

with

AB = BBETmeans , AW = BWITH +BresidualAW , AO = OV

where BB(q) is the ratio between the mean of the first nq individuals, under the

assumption that each individual has the mean income of the subgroup, and the overall

mean, namely: BB(q) = 1
µ

∑
i≤h−1 niµi+nhµhph

nq
; BBETmeans is the value of the Bonferroni

index calculated in the hypothesis that each individual has the average income of the

subgroup to which he belongs, formally: BBETmeans = 1
n

∑n
i=1

1
1/n

(
i
n
− LB

(
i
n

))
; the

within component, BWITH =
∑k

h=1 νhwhI
h
B is obtained as the sum of the Bonferroni

indices calculated in each subgroup, weighted by a coefficient including the share of

income and population of the subgroup and BresidualAW
6 takes into account the role of

the rank of observations in calculating the Bonferroni index. Finally, OV measures

the degree of overlap between income distributions in subgroups.

Proof : See appendix A.1.

In the discrete case, the area AW can be written as a sum of the Bonferroni

indices computed in each subgroup and weighted by a coefficient that includes the

6The BresidualAW component is a consequence of the fact that the Bonferroni index does not
obey Dalton’s principle of population (see Barcena-Martin and Silber [9]).
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income shares and those of the population of the subgroup. Formally:

AW =
K∑
p=1

νpwpI
p
B +

K∑
p=1

νpwpI
p
B−reranking

where for i = 1, · · · , K, I iB represents the Bonferroni index computed in each sub-

group, νi = ni
n

is the population share in the subgroup, wi = niµi
nµ

the corresponding

income share and I iB−reranking is the Bonferroni index computed for each subgroup

rescaling the Bonferroni curve and the area that defines the index so that, if we

divide the population in subgroups, the units are ranked differently compared with

their position in the original distribution. Thus, for a given subgroup h, ph denotes

the position of an individual j, that is, ph = j/nh we have:

IpB−reranking =
1

nh

nh∑
i=1

(
ph
q
− 1)− 1

nh

nh∑
i=1

(
ph
q
− 1)

µ[i]

µh
where

ph
q

=
i
nh∑

j≤h−1 nj+i

n

and µ[i] is the mean until individual i, assuming that, within eanch subgroup, the

individuals are orfered by increasing individual incomes.

The presence of the residual depends on the positional transfer sensitivity prop-

erty, fulfilled by the Bonferroni’s index (see Aaberge [1]) and by the fact that the

index is not replication invariant (Giorgi [31], Chakravarty [12] and Barcena-Martin

and Imedio [7]).

Thus, the residual component BresidualAW represents the effect of the rank of

observations on the calculation of the Bonferroni index. We recall that the index

can be expressed as a linear combination of units with decreasing weights to increase

the rank (Tarsitano [57]):

IB =

∑n
i=1wixi∑n
i=1 xi

with wi = 1−
n∑
j=i

1

j
wi+1 = wi +

1

i

n∑
i=1

wi = 1

The weights depend on the position of units in the income distribution of income.

To better understand the role of the residual it is useful to compare the decompo-

sition of the Bonferroni index with that of the Gini index (see Lambert and Aronson

[40] and Silber [54]).
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For the Gini index, the decomposition consists of:

IG = GBETmeans +
∑
h

νhwhGh +OV

where GBETmeans is the Gini index computed supposing that each individual has

he average income of the subgroup in which he belongs; Gh is the Gini index for

the h−th groups, νi and wi are the population share in the subgroup and the cor-

responding income share, respectively and OV measures the degree of overlapping

among subgroup income distributions.

In this case, the weighted sum of the indices computed for subgroups returns the

AW area. In fact, the weighted sum takes into account the idea that the calculation

of subindices, the relative weights associated to the observations change. Thus,

rather than being divided by n/µ, they are reported to nh/µh.

However, in the case of the Bonferroni index, we need to take into account the fact

that ranges vary, in addition to the different numbers and averages in subgroups.

Therefore, the area AW is obtained as the sum of the within component and a

residual that corrects the weight of the modified individuals in the subgroup.

4.1.2 The De Vergottini decomposition

We now move to the De Vergottini index. Let VB(q) denote the average (income)

of the last n(1 − q) individuals under the assumption that each individual has the

subgroup average income over the overall income:

VB(q) =

∑
i>h niµi + nhµh(1− ph)

n(1− q)

and CDeV e(q) be the concentration curve for De Vergottini index, defined as the

ratio between the average of the income of the last n(1 − q) individuals and the

overall average income:

CDeV e(q) =

∑
i>h niµi + nhµh(1− L(ph))

n(1− q)

where L(·) is the Lorenz curve computed in a given percentile of the distribution.
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Proposition 2 Thus, for the De Vergottini index defined in (2) we have

AB =
∫ 1

0
[VB(q)− 1] dq

AW =
∫ 1

0
[CDeV e(q)− VB(q)] dq

AO =
∫ 1

0
[B(q)− CDeV e(q)] dq.

Then

V = AB + AW + AO

with

AB = VBETmeans , AW = VWITH + VresidualAW , AO = OV

where VBETmeans represents the value of De Vergottini’s index computed assuming

that each individual has income equal to his group’s average income. The within

component VWITH =
∑K

h=1 νhwhI
h
V is the weighted average of the subgroup Bonfer-

roni indices, namely νh = nh
n

and wh = nhµh
nµ

. The quantity VresidualAW takes into

account the role of the rank of observations in De Vergottini’s index calculation.

Finally, OV measures the degree of overlap between income subgroup distributions.

Proof : See appendix A.2.

Note that in the discrete case, the area AW can be written as sum of the De

Vergottinin inequality indices calculated in each subgroup, weighted by a coefficient

that includes the income shares and those of the population of the subgroup:

AW =
K∑
p=1

νpwpI
p
V +

K∑
p=1

νpwpI
p
V−reranking,

where IpV denotes the IV index defined in ?? computed in the p − th subgroup,

νi and wi are the population share in the subgroup and the corresponding income

share, respectively and, for each group, the reranking component, IpV−reranking are

calculated by re-scaling the curve V (p), and the area defining the index, so that, in

the subdivision of the population into subgroups, they take into account that the
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units have a different rank than they had in the original distribution. Thus, we have

IpV−reranking =
1

nh

nh∑
i=1

(
1− ph
1− q

− 1)
Mi

µh
− 1

nh

nh∑
i=1

(
1− ph
1− q

− 1)

with
1− ph
1− q

=
1− i/nh

1− (
∑
j≤h−1 nj+i)

n

.

Again, the residual represents the effect of the rank of observations on De Ver-

gottini’s index calculation. Compared with the decomposition of the Gini index, the

same considerations made for the Bonferroni index hold: in this case, the weighting

of the indices calculated in the subgroups also takes into account both the variation

of the relative weights of the observations which, rather than being divided by nµ,

they are related to nhµh, and the fact that the ranks vary. Therefore, the AW area is

obtained as the sum of the within component and a residue that corrects the weight

that was changed when subgroup are created.

4.1.3 Synthesis framework for the decomposition

The following Table 1 summarizes the decomposition’s components for the Bonfer-

roni and De Vergottini indices, baaed on the Lambert and Aronson’s approach. For

comparison we have also reported the Gini decomposition.

Table 2 reports the decomposition for the special case of k non-overlapping

groups. If groups do not overlap we have CLorenz(q) = L(q), CBonf (q) = B(q) and

CDeV e(q) = V (q). Therefore, the overlap term AO is null and the within component

AW is calculated accordingly.

4.2 The special case of two non-overlapping groups

We now illustrate how the subgroup decompositions discussed in the previous section

simplify when we are in the special case of two groups divided by the median income

m(x). This is the case of interest in the construction of bipolarization indices.

Recall that denote with x- the vector of incomes that are below the median and with

x+ the vector of incomes that are above that threshold. Obviously, the two groups

18



Table 1: Decompositions of Gini, Bonferroni and De Vergottini inequality indices
with K overlapping groups.

Between groups (AB) Within groups (AW ) Overlap (AO)

G
in

i

2
∫ 1

0
[q − LB(q)] dq 2

∫ 1

0
[LB(q)− CLorenz(q)] dq 2

∫ 1

0
[CLorenz(q)− L(q)] dq

B
on

fe
rr

on
i ∫ 1

0
[1−BB(q)] dq =

=
∫ 1

0

[
1− LB(q)

q

]
dq =

=
∫ 1

0

[
1
q

(q − LB(q))
]
dq

∫ 1

0
[BB(q)− CBonf (q)] dq =

=
∫ 1

0

[
LB(q)
q
− CLorenz(q)

q

]
dq =

=
∫ 1

0

[
1
q

(LB(q)− CLorenz(q))
]
dq

∫ 1

0
[CBonf (q)−B(q)] dq =∫ 1

0

[
CLorenz(q)

q
− L(q)

q

]
dq =

=
∫ 1

0

[
1
q

(CLorenz(q)− L(q))
]
dq

D
e

V
er

go
tt

in
i

∫ 1

0
[VB(q)− 1] dq =

=
∫ 1

0

[
1−LB(q)

1−q − 1
]
dq =

=
∫ 1

0

[
1

1−q (q − LB(q))
]
dq

∫ 1

0
[CDeV e(q)− VB(q)] dq =

=
∫ 1

0

[
1−CLorenz(q)

1−q − 1−LB(q)
1−q

]
dq =

=
∫ 1

0

[
1

1−q (LB(q)− CLorenz(q))
]
dq

∫ 1

0
[V (q)− CDeV e(q)] dq =∫ 1

0

[
1−L(q)
1−q −

1−CDeV e(q)
1−q

]
dq =

=
∫ 1

0

[
1

1−q (CDeV e(q)− L(q))
]
dq

Table 2: Decompositions of Gini, Bonferroni and De Vergottini inequality indices
with K non-overlapping groups.

Between groups (AB) Within groups (AW )

G
in

i

2
∫ 1

0
[q − LB(q)] dq 2

∫ 1

0
[LB(q)− L(q)] dq

B
on

fe
rr

on
i

∫ 1

0
[1−BB(q)] dq =

∫ 1

0

[
1− LB(q)

q

]
dq =

=
∫ 1

0

[
1
q

(q − LB(q))
]
dq

∫ 1

0
[BB(q)−B(q)] dq =

∫ 1

0

[
LB(q)
q
− L(q)

q

]
dq =

=
∫ 1

0

[
1
q

(LB(q)− L(q))
]
dq

D
e

V
er

go
tt

in
i

∫ 1

0
[VB(q)− 1] dq =

∫ 1

0

[
1−LB(q)

1−q − 1
]
dq =

=
∫ 1

0

[
1

1−q (q − LB(q))
]
dq

∫ 1

0
[V (q)− VB(q)] dq =

∫ 1

0

[
1−L(q)
1−q −

1−LB(q)
1−q

]
dq =

=
∫ 1

0

[
1

1−q (LB(q)− L(q))
]
dq

19



do not overlap, and, moreover, the order of the individuals remain the same as in the

overall distribution. In this special case, the computation of the within inequality

component reproduces the overall order of the individuals and, consequently, we

have CLorenz(q) = B(q) for the Gini index and CBonf (q) = L(q) for Bonferroni

index. Similarly, for the De Vergottini index we have: CDeV e(q) = V (q)

4.2.1 Subgroup decomposition of the Gini index

The decomposition of the Gini index in case of two groups divided by the median

reduces to:

G = GBETmeans +GWITH ,

where, if n is an even number,

GBETmeans =
1

4µ(x)
(µ(x+)− µ(x-))

and

GWITH =
1

2µ(x)

1

2
µ(x-)− 1

n/2(n/2 + 1)

n/2∑
i=1

i∑
j=1

xj

+

1

2µ(x)

1

2
µ(x+)− 1

n/2(n/2 + 1)

n/2∑
i=1

i∑
j=1

xj

 .
4.2.2 Subgroup decomposition of the Bonferroni index

The decomposition of the Bonferroni index in case of two groups divided by the

median is given by:

B = BBETmeans +BWITH ,

where, if n is an even number,

BBETmeans = 1
2µ(x)

(µ(x+)− µ(x-))

(∑n/2
j=1

1

n/2+j

)
.

(8)

Recall that for the Bonferroni index, differently from what happens for the Gini
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index, the within component includes the residual. Thus, considering the two income

groups x- and x+, from AW we calculate the within component.

Thus, if n is an even number7, we have:

BWITH =
1

2nµ(x)

n
2
µ(x−)−

n/2∑
i=1

µi(x−)

+
1

2nµ(x)

n
2
µ(x+)−

n/2∑
i=1

µi(x+)

 .
(9)

For the residual term, since µ(x−) ≤ µ(x+) and the subgroups are disjointed, the

lexicographic order coincides with the original one and, consequently, the overlapping

is null and the concentration curve CBonf (q) coincides with the Bonferroni curve

B(q). Therefore, the residual term reduces to:

BresidualAW =
1

2nµ(x)

n
2
µ(x−)−

n/2∑
i=1

µi(x−)

+

+
1

2nµ(x)

µ(x+)

n/2∑
i=1

(
(i− n)/2

(i+ n)/2

)
−
(

(i− n)/2

(i+ n)/2

)
µi(x+)

 .
The effect of reranking, which corresponds to the correction made by the residual

term, becomes as stronger as the observation gets closer to the median.

4.2.3 Subgroup decomposition of the De Vergottini index

In case of two groups divided by the median, the De Vergottini inequality index can

be decomposed as follows:

V = VBETmeans + VWITH .

7If n is an odd number:

BWITH = ((n−1)/2)2

n2

µ(x−)
µ(x) I

(n−1)/2
B (x−) + ((n−1)/2)2

n2

µ(x+)
µ(x) I

(n−1)/2
B (x+) =

= (n−1
2n )2 µ(x−)

µ(x) I
(n−1)/2
B (x−) + (n−1

2n )2 µ(x+)
µ(x) I

(n−1)/2
B (x+)

with I
(n−1)/2
B (x−) = 1 − 2

n−1

∑(n−1)/2
i=1

∑i
j=1

xj
iµ(x−) and I

(n−1)/2
B (x+) = 1 −

2
n−1

∑(n−1)/2
i=1

∑i
j=1

xj
iµ(x+) . We observe that for n large enough, ((n− 1)/(2n))

2 → 1/4

and, consequently, the two expression coincides.
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If n is an even number, then the between component reduces to

VBETmeans =
1

nµ(x)

n/2∑
i=1

1

(n− i+ 1)

∑
j=i,j≥n/2

[µ(x+)− µ(x−)]

=
1

nµ(x)

n

2
(µ(x+)− µ(x−))

 n/2∑
i=1

1

n− i+ 1


=

1

2µ(x)
(µ(x+)− µ(x−))

 n/2∑
i=1

1

n− i+ 1

 .

Let us remember that for the De Vergottini index, the within term includes a

residual term. Thus, in case of two non overlapping groups and assuming n even,

the within term reduces to:

VWITH =
1

2nµ(x)

 n/2∑
i=1

Mi(x−)− n

2
µ(x−)

+
1

2nµ(x)

 n/2∑
i=1

Mi(x+)− n

2
µ(x+)

 .
(10)

Moving to the residual term, since µ(x−) ≤ µ(x+) and since the groups are

disjoint, the lexicographic order coincides with the original one and, consequently,

the overlap is zero and the CDeV e(q) concentration curve coincides with the curve

V (q). Therefore, the residual is equal to:

VresidualAW =
1

2nµ(x)

 n/2∑
i=1

(
i

i− n

)
Mi(x−)−

n/2∑
i=1

(
i

i− n

)
µ(x−)

+ (11)

+
1

2nµ(x)

 n/2∑
i=1

Mi(x+)− n

2
µ(x+)

 . (12)

5 Bonferroni and De Vergottini based bipolariza-

tion indices

Following the approach described in Wolfson [60] and [61] and Foster and Wolfson

[26] and [27] and generalized in Rodriguez and Salas [53] , we will now propose new

bipolarization indices based, respectively, on the Bonferroni concentration index and
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on the De Vergottini concentration index.

Both Foster and Wolfson’s index and Rodriguez and Salas’ index of bipolariza-

tion are function of the difference between the inequality between groups and the

inequality within groups. Here, we follow the same approach using the decompo-

sitions of the Bonferroni and the De Vergottini indices proposed in the previous

section, for the case of two non-overlapping groups, to obtain new bipolarization

measures.

In the following, we introduce two new bipolarization measures, denoted by PB

and P V , discussing the conditions under which they are consistent with the Increased

bipolarity axiom (IB)8 and the Increased spread axiom (IS) defined in Section 2.19.

5.1 A new bipolarization index based on the Bonferroni in-

dex

Since the within groups inequality component contains a residual part representing

the role played by the individuals’ rank in the calculation of the Bonferroni index,

we propose the following Bonferroni- based bipolarization index :

PB = 2µ(x)
m(x)

[BBETmeans − (BWITH +BresidualAW )] = 2µ(x)
m(x)

[AB − AW ] =

= 2µ(x)
m(x)

[∫ 1

0

(
1
q

)
(q − LB(q)) dq −

∫ 1

0

(
1
q

)
(LB(q)− L(q)) dq

]
.

Proposition 3 Let x = (x1, . . . , xn) be the income distribution of a population of n

individuals, s be the position of the individual belonging to group x− and transferring

part of his income, with s ∈ [1, n/2], and k be the position of the individual belonging

to group x+ and receiving the transfer, with k ∈ [1, n/2] and s ≥ k, then the

bipolarization index PB satisfies IB and IS axioms if s ≥ min(k, n/6).

Proof : See appendix A.3.

8IB axiom requires that polarization increases in presence of a progressive transfer occurring
either below or above the median.

9According to IS axiom, polarization increases in presence of a regressive transfer occurring
between one income smaller than the median and another income greater than the median.
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Proposition 3 gives a condition in order to ensure that the bipolarization index

PB is consistent with the so-called second polarization curve10 (Wolfson [60] and

[61], Foster and Wolfson [26] [27]).

5.2 A new bipolarization index based on the De Vergottini

index

Also for the De Vergottini index, the within groups inequality component contains

a residual part representing the role of observation rank in the calculation of IV .

Therefore, the De Vergottini-based bipolarization index that we proposed is the fol-

lowing:

P V = 2µ(x)
m(x)

[VBETmeans − (VWITH + VresidualAW )] = 2µ(x)
m(x)

[AB − AW ] =

= 2µ(x)
m(x)

∫ 1

0

(
1

1−q

)
(q − LB(q)) dq − 2µ(x)

m(x)

∫ 1

0

(
1

1−q

)
(LB(q)− L(q)) dq

Proposition 4 Let x = (x1, . . . , xn) be the income distribution of a population of n

individuals, s be the position of the individual belonging to group x− and transferring

part of his income, with s ∈ [1, n/2], and k the position of the individual belonging

to group x+ and receiving the transfer, with k ∈ [1, n/2] and s ≥ k. The index P V

is consistent with the IB and IS axioms if k ≤ min
(
s, n

3
+ 1
)
.

Proof : See appendix A.4.

As for proposition 3, proposition 4 gives a range of admissible position values (k)

for an individual that receives the transfer in order to guarantee to P V to satisfies

the two fundamental axioms for bipolarization measures.

6 Simulation study

We now illustrate through a simulation study the sensitivity of the new bipolariza-

tion indices proposed, PB and P V , with respect to the regressive transfers through

the median (IS axiom) and Pigou-Dalton transfers above or below the median (IB

10A bipolarization index is consistent with the second polarization curve if a progressive median-
preserving transfer within (between) polar subgroups never reduces (increases) polarization
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axiom). We will study the sensitivity of the new bipolarization indices to different

types of transfer, which vary in terms of the amount of income transferred, namely

α, with α > 0.

To analyze the sensitivity of the indices to the IS and IB axioms, we generate an

income distribution by extracting a sample of n = 1000 observations from a mixture

of two normal distributions. For the sake of simplicity, we will assume that the

population of n (even) observations is composed of two sub-populations with same

number of individuals (n/2) : the income distribution of the first sub-population is

a realization from the random variable X1 ∼ N(µ1, σ1), whereas the distribution of

the second group is a realization of X2 ∼ N(µ2, σ2), with (µ1, σ1) = (375, 100) and

(µ2, σ2) = (625, 100). It should be noted that here the simulated distribution is not

intended to reproduce the features of an effective income distribution, but rather

to provide an initial distribution, starting from which we will gradually introduce

increasing degrees of bi-polarisation.

To ensure robustness to our analysis, 10, 000 independent extractions are carried

out for s and k, that are the positions of the individuals involved into the transfer and

the index variations are calculated for each draw. The average percentage variations

of the indices and the respective confidence intervals are then computed.

Let s∗ and k∗ be the empirical threshold values obtained by simulating an IS

transfer. More in detail, s∗ and k∗ are the threshold values that guarantee the

Bonferroni and De Vergottini indices, respectively, to satisfy the IS transfer. That

is, for a given k, s∗ is the minimum value of s such that ∆PB(s, k, n) > 0 for s > s∗

and ∆PB(s, k, n) < 0 for s ≤ s ∗ . Similarly, for a given s, k∗ is the maximum value

of k such that ∆PV (s, k, n) < 0 for k ≥ k∗ and ∆PV (s, k, n) > 0 for k < k ∗ .

In this section, we will focus on transfers between individuals with position s

and k, respectively, in the benchmark scenario11 to evaluate the effect of IS and

Pigou-Dalton transfers (IB above and below the median) both on inequality and

bipolarization indices. For the simulation illustrated in Table 3 we choose s∗ = 50

and k∗ = 946.

11In what follows, we call benchmark scenario a situation in which we select two individuals in
the positions s > s∗ and k < k∗ such that PB and PV indices are consistent with an IS transfer,
and these indices can be considered polarization indices
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Table 3 compares the different sensitivity degrees of the inequality indices with

respect to a transfer α, as α varies. For the IS transfer we note that, on average,

the Gini index has a greater variation than both the Bonferroni and De Vergottini

indices. This difference increases with the increase of the transferred income.12

By definition, the IB transfers, occurring either below or above the median

value, determine a decrease in inequality. Given the positional transfer sensitivity

that characterizes both the Bonferroni and the De Vergottini index, we observe

that the Bonferroni index, which attaches more weight to the poor people, is the

most sensitive to the IB transfers below the median value. Conversely, De Vergottini

index, which gives more weight to the income variation among the richer individuals

in the distribution, is more sensitive to IB transfers above the median. For both

type of transfers, the variation of the Gini index is in between the variations of the

other two indices. Moreover, in case of IB transfers, the difference between index

variations increases with α. Concluding, the analysis of the overall effect of IS and

IB transfers reveals that the Gini index has a greater sensitivity than the other two

indices for all α values. Consequently, if we take into account the impact of transfer

on the inequality, the impact of the IS transfer seems prevailing on those of the IB

one.

We now move to analyze the transfer sensitivity of the three bipolarization in-

dexes, Foster and Wolfson (P FW ), Bonferroni-based (PB) and De Vergottini-based

(P V ), as α varies (see Table 4). First, we note that, for all the three indices, a

regressive IS transfer induces an increase of both inequality and polarization; these

results are in line with the literature. On the contrary, progressive transfers that in-

crease concentration on one, or both, income distribution segments above and below

the median, cause a decrease in inequality and an increase in polarization.

For each value of α, the variation of PB and P V indices with respect to the IS

transfer is always higher than that of the Foster and Wolfson index, since the index

based on Bonferroni is more responsive to a regressive transfer. Also P V index shows

a greater sensitivity to IS transfers than the Foster and Wolfson index. Moreover,

12Note that this characteristic of index variation, depicted by the simulation, also occurs if
the positions are chosen without imposing constraints on the variation of s and k. However, the
difference among the variation of the indices is less accentuated.
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Table 3: Variation (mean and variance) of the inequality indices in case of IS and
an IB transfer for different values of the amount of transferred income (α). 10,000
Bootstrap replications

Average variation Variance of the variation
Gini Bonf DeVe Gini Bonf DeVe

IS transfer
α = 10 0.99% 0.78% 0.79% 0.00% 0.00% 0.00%
α = 20 2.05% 1.64% 1.66% 0.01% 0.01% 0.01%
α = 30 3.19% 2.57% 2.61% 0.01% 0.02% 0.02%
α = 40 4.40% 3.58% 3.64% 0.02% 0.04% 0.04%
α = 50 5.68% 4.68% 4.76% 0.03% 0.06% 0.06%

IB transfer below the median
α = 10 -0.32% -0.61% -0.14% 0.00% 0.00% 0.00%
α = 20 -0.49% -0.68% -0.22% 0.00% 0.00% 0.00%
α = 30 -0.62% -0.86% -0.28% 0.00% 0.01% 0.00%
α = 40 -0.68% -0.94% -0.30% 0.01% 0.02% 0.00%
α = 50 -0.67% -0.92% -0.30% 0.01% 0.03% 0.00%

IB transfer above the median
α = 10 -0.32% -0.14% -0.62% 0.00% 0.00% 0.00%
α = 20 -0.47% -0.21% -0.65% 0.00% 0.00% 0.00%
α = 30 -0.58% -0.26% -0.81% 0.00% 0.00% 0.01%
α = 40 -0.61% -0.27% -0.85% 0.01% 0.00% 0.02%
α = 50 -0.56% -0.24% -0.78% 0.01% 0.00% 0.03%

IS and IB transfers
α = 10 0.35% 0.02% 0.03% 0.00% 0.01% 0.01%
α = 20 1.08% 0.74% 0.77% 0.01% 0.01% 0.01%
α = 30 1.97% 1.44% 1.51% 0.02% 0.03% 0.03%
α = 40 3.08% 2.36% 2.47% 0.04% 0.05% 0.05%
α = 50 4.42% 3.49% 3.66% 0.06% 0.09% 0.09%
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the difference between the variations in the indices is the higher the bigger is α.

For what concerns the IB transfer, its effect on the polarization indexes is similar

to what is observed for the inequality indices on which these are built: PB has the

greatest sensitivity to IB transfers below the median, while the P V index is the

most sensitive to IB transfers above the median. Finally, considering the overall

effect, we observe that the PB and P V indices are more sensitive to transfers that

bi-polarize the income distribution, with PB showing the greatest reactivity. This

characteristic becomes more evident as the transferred income (α) increases. The

results of the simulation show that PB and P V indices not only better report the

phenomenon of the emptying of the middle class, but their sensitivity is the more

accentuated the stronger is the change in the income distribution.

Table 4: Variation (mean and variance) of the polarization indices in case of IS and
an IB transfer for different values of the amount of transferred income (α). 10,000
Bootstrap replications

Average variation Variance of the variation
PFW PB PV PFW PB PV

IS transfer
α = 10 2.44% 3.76% 3.51% 0.01% 0.02% 0.02%
α = 20 4.73% 7.26% 6.78% 0.03% 0.09% 0.08%
α = 30 6.87% 10.50% 9.80% 0.06% 0.22% 0.18%
α = 40 8.84% 13.48% 12.55% 0.10% 0.42% 0.34%
α = 50 10.68% 16.17% 15.03% 0.16% 0.69% 0.56%

IB transfer below the median
α = 10 0.69% 2.12% 0.44% 0.00% 0.05% 0.00%
α = 20 1.01% 2.29% 0.65% 0.02% 0.07% 0.01%
α = 30 1.16% 2.81% 0.71% 0.06% 0.16% 0.04%
α = 40 1.16% 3.00% 0.68% 0.10% 0.27% 0.07%
α = 50 0.98% 2.84% 0.54% 0.15% 0.41% 0.10%

IB transfer above the median
α = 10 0.70% 0.48% 1.95% 0.01% 0.01% 0.05%
α = 20 1.13% 0.84% 2.15% 0.03% 0.03% 0.06%
α = 30 1.64% 1.30% 2.92% 0.08% 0.09% 0.15%
α = 40 2.11% 1.80% 3.49% 0.17% 0.20% 0.30%
α = 50 2.54% 2.34% 3.90% 0.29% 0.36% 0.50%

IS anf IB transfers
α = 10 3.82% 6.34% 5.89% 0.02% 0.08% 0.07%
α = 20 6.85% 10.36% 9.55% 0.08% 0.19% 0.15%
α = 30 9.64% 14.56% 13.38% 0.20% 0.47% 0.37%
α = 40 12.08% 18.21% 16.67% 0.37% 0.89% 0.69%
α = 50 14.16% 21.28% 19.40% 0.60% 1.47% 1.15%
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7 Empirical application to EU-SILC data

In this section, we illustrate the results of an empirical exercise in which we have

applied the new polarization indexes proposed to real data, with the aim of esti-

mating the degree of income bipolarization in Italy over the period between 2007

and 2011. We used data from the European Union Statistics on Income and Living

Conditions (EU-SILC), referred to Italy (sample size of about 20,000 each year).

As income variable we considered the household disposable income, defined as

the sum of the personal income components of all household members plus the family

income components, net of income tax and social contributions.13 Negative incomes

have been excluded from the analysis.

For the estimation of the inequality and polarization we will use simple weighted

estimators, constructed from the discrete formulation of the indices above presented.

More in details, we estimate the Gini index of inequality with

ÎG(x) = 1− 2

n(n− 1)µ(x)

n−1∑
i=1

i∑
j=1

wjxj, (13)

the Bonferrroni index of inequality with

ÎB(x) = 1− 1

(n− 1)µ(x)

n−1∑
i=1

1

i

i∑
j=1

wjxj, (14)

and the De Vergottini inequality index with

ÎV (x) =
1(

1 + n
∑n−1

s=2
1
s

)
µ(x)

n−1∑
i=1

1

i

n∑
j=n−i+1

wjxj − 1 (15)

where the sums are up to n − 1 to ensure the accuracy of the indices and wj are

the sample weights14. To estimate the absolute sampling error and build confidence

intervals we applied a bootstrap resampling technique.15

13For more details, see variable HY020.
14Variable DB090. These weights are obtained starting from the inverse of the inclusion proba-

bility of the family, corrected for the overall non-response rate.
15Since estimators (13), (14) and (15) have a complex formulation, the standard methodology

for sampling variance cannot be applied.
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Table 5 reports the results of the bootstrap procedure for the estimators (13),

(14) and (15). We note that, in all the years considered, the proposed estimators

have a negligible bias. Moreover, such bias is not systematic, since it is negative

in some years and positive in others. Moreover, the estimated standard error and

confidence intervals reveal a good accuracy of the proposed estimates. However, we

observe that the standard error σ(θ̂(x)), is higher for PB and P V than for P FW .

Table 5: Bootstrap estimates for the polarization indices (1, 000 replications) and
their 95% confidence intervals

year θ̂(x) θ∗ θ∗ − θ̂(x) σ(θ̂(x))) θ∗ − z1−α
2
σ(θ̂(x)) θ∗ + z1−α

2
σ(θ̂(x))

P FW 2007 0.3300 0.3299 −0.000117 0.002558 0.325 0.335
2008 0.3320 0.3317 −0.000220 0.002686 0.327 0.337
2009 0.3245 0.3244 −0.000140 0.00267 0.320 0.330
2010 0.3269 0.3270 0.000029 0.002785 0.321 0.333
2011 0.3294 0.3292 −0.000185 0.002842 0.324 0.335

PB 2007 0.4847 0.4845 −0.000168 0.005256 0.474 0.496
2008 0.4942 0.4940 −0.000202 0.005694 0.483 0.506
2009 0.4765 0.4767 0.0001746 0.005857 0.465 0.487
2010 0.4887 0.4884 −0.000326 0.007269 0.475 0.503
2011 0.4927 0.4931 0.0004162 0.007073 0.478 0.505

P V 2007 0.7240 0.7238 −0.000191 0.005453 0.713 0.735
2008 0.7334 0.7333 −0.000108 0.005904 0.722 0.745
2009 0.7139 0.7137 −0.000177 0.005554 0.703 0.725
2010 0.7222 0.7224 0.0002136 0.005666 0.711 0.733
2011 0.7300 0.7300 −7.26E − 06 0.006162 0.718 0.742

Where:

θ̂(x) is the estimator of the parameter θ(x)

θ∗ = 1
B

∑B
b=1 θ̂(x

∗
b) and x∗b for b = 1, · · · , B are sample of equal size drawn from the population X.

θ∗ − θ̂(x) represents the bias of the estimator.)

σ(θ̂(x)) is the sample variance

θ∗ ± z1−α
2
σ(θ̂(x)) are the lower and upper bound of the confidence interval.

Table 6 shows the annual percent variations of the polarization indices, as esti-

mated in the column θ̂(x) of Table 5.

Let P t be the polarization index at time t. Then, the annual percent variation

is:

∆P t−1/t =
P t − P t−1

P t−1
· 100.

Looking at Table 6, we observe a growing income polarization over the years

2007 and 2011, with the only exception of the year 2009.

Over the period of interest, the three indexes provide variations having the same
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sign. The variations are higher for PB and P V .

More in details, we note that between the years 2007 and 2008 and between

2010 and 2009 the increase in polarization was recorded with greater intensity by

PB index, which has increased by 2% and 2.6%, respectively, compared to 0.6% and

0.7% for the Foster and Wolfson index and 1.1% and 1.3% for P V . The differences in

the variation of the indexes between the years 2008 and 2009, when the polarization

decreased, are also notable: there is −2.2% for the Foster and Wolfson index, −3.6%

for PB and −2.7% for P V .

Table 6: Annual percent variation of polarization indices (estimated on EU-SILC
2008-2012 (household disposable income for 2007-2011)

PˆFW PB PV

∆P2008/2007 0.6% 2.0% 1.3%
∆P2009/2008 −2.2% −3.6% −2.7%
∆P2010/2009 0.7% 2.6% 1.2%
∆P2011/2010 0.8% 0.8% 1.1%

8 Conclusions

The paper provides a theoretical contribution to the study of income bipolarization

measurement.

Following Wolfson [60] and Foster and Wolfson ([26] and [27]), we have proposed

two new polarization indices, based on the Bonferroni index [11] and the index of De

Vergottini [20], respectively. The proposed indices show different degrees of sensi-

tivity to progressive transfers that accentuate the bipolarization in the distribution

of income.

A simulation study and an empirical illustration, based on EU-SILC for the years

2007 - 2011, have been also performed in order to compare the proposed indices to

the existing ones. By means of the simulation study, the analysis of the overall effect

of a regressive transfer through the median (IS) and a Pigou-Dalton transfer above

or below the median(IB) reveals that the polarization index based on Bonferroni

has the greatest sensitivity to IB transfers below the median, while the the De
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Vergottini-based polarization index is the most sensitive to IB transfers above the

median.

Finally, with the empirical analysis, we estimate the income polarization levels

in Italy over the period between 2007 and 2011, showing the percentage changes on

an annual basis of the three polarization indices.
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Appendix A

A.1 Proof of Proposition 1

We want to prove that IB = AB + AW + AO where AB = BBET means, AW =

BWITH +BresidualAW and AO = OV .

We will proceed by steps.

Firstly we compute the three components.

(1) The between groups inequality component can be obtained by dividing the ob-

servations into subgroups, and assuming that each observation has the average

income of the subgroup in which it belongs. Let BB(q) denote corresponding

the Bonferroni curve and q be the rank of individuals in the income distribu-

tion, defined according to a lexicographic order, that is, first, the observations

are sorted according to their group average and then, in each group, the ob-

servations are ordered in a non-increasing order relative to their income. The

ordinates of the curve at the q-th percentile correspond to the ratio between

the cumulatives of the average of the group until q, and the the average µ of

the distribution.

Thus, the AB area is obtained by subtracting the area under the curve BB(q) to

the equi-distribution area, that is the area under the curve B(q) = 116, for any q

AB =

∫ 1

0

[1−BB(q)] dq.

(2) The within inequality component can be obtained by assigning to each obser-

vation its income, maintaining the particular order imposed in step (1). We

obtain the concentration curve CBonf (q), that is, the Bonferroni curve com-

puted on the ordered observations respect to the lexicographic order. The

ordinates of this curve at the q-th percentile correspond to the ratio between

the average of the first nq observations and the average of the distribution.

16In the case of equi-distribution L(p) = p from which B(p) = L(p)/p, and B(p) = 1.
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The AW area is obtained by subtracting the area below the CBonf (q) curve to the

equidistribution area, that is the area under BB(q) for each q.

AW =

∫ 1

0

[BB(q)− CBonf (q))] dq.

(3) The final step consists in arranging the observations as in the original distri-

bution, thus isolating the effect of overlapping between groups. We get the

Bonferroni curve (B(q)), whose ordinates are equal to the ratio between the

partial average up to q and the average of the distribution, for each q.

Thus, the AO area is obtained as the difference between the CBonf (q) curve and

the Bonferroni curve B(q) :

AO =

∫ 1

0

[CBonf (q)−B(q)] dq.

We will prove that

IB = AB + AW + AO

where AB = BBET means, AW = BWITH +BresidualAW , AO = OV .

For construction AB = BBET means.

We compute the AW area by isolating the two terms, BWITH and BresidualAW .

Let now considere the h−th subgroup in which the Bonferroni curve is defined:

Bh(ph) = Lh(ph)
ph

where ph dentotes the rank of units in the h−th group that, for the

j-th unit, is equal to ph = j/nh.

The unit having rank ph in the h−th subgroup, in the original distribution has

rank equal to q being:

q =

∑
i≤h−1 ni + phnh

n
.

The concetration curve CBonf (q) is defined as the ratio between the average of

the first nq units and the overall average. It follows that

CBonf (q) =

[
1

µ

∑
i≤h−1 niµi + nhµhLh(ph)

nq

]

where Lh(ph) represents the Lorenz curve at the ph percentile, that is, the income
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portion of the h−th group that has individuals with income less than or equal to

the income of the individual having rank equal to ph.

By contrast, the BB(q) curve is defined as the ratio between the average of the

first nq units if each unit has the average income of the subgroup and the overall

average

BB(q) =

[
1

µ

∑
i≤h−1 niµi + nhµhph

nq

]
Multiplying both curves by imu and subtracting the second expression from the

first one we get:

nµ [BB(q)− C(q)] = nhµh
(ph − Lh(ph))

q

From the expression of q we get: dq = (nh/n)dph and by multiplying both sides by

dq we have:

nµ [BB(q)− C(q)] dq =
n2
hµh
n

(ph − Lh(ph))
q

dph.

Now, integrating in subgroups over ph between 0 and 1 and scrolling through the

group index (h)17, we get

nµAW =
∑

h(n
2
hµh/n)

∫ 1

0
(ph−Lh(ph))

q
dph

=
∑

h(n
2
hµh/n)

∫ 1

0
(ph−Lh(ph))

q
ph
ph
dph

=
∑

h(n
2
hµh/n)

∫ 1

0
(ph−Lh(ph))

ph

ph
q
dph ±

∑
h(n

2
hµh/n)

∫ 1

0
(ph−Lh(ph))

ph
dph

Assuming vh = nh
n

and wh = nhµh
nµ

we get:

nµAW =
∑
h

vhwhnµ

∫ 1

0

(ph − Lh(ph))
ph

dph+
∑
h

vhwhnµ

∫ 1

0

(ph − Lh(ph))
ph

(
ph
q
−1)dph

and by dividing both sides by nµ, we have:

AW =
∑

h vhwh
∫ 1

0
(ph−Lh(ph))

ph
dph +

∑
h vhwh

∫ 1

0
(ph−Lh(ph))

ph
(ph
q
− 1)dph

= BWITH +BresidualAW .

�

17This is equivalent to integrating for q between 0 and 1
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A2. Proof of Proposition 2

We know that Mi ≥ µ, for i = 1, . . . , n. This implies that the equi-distribution line

is below the V (p), VB(p) and CDeV e(q) curves.

Similarly to the Bonferroni index, we prove that:

IV = VWITH + VBET means + VresidualAW +OV.

By construction AB = VBET means. Let us compute the AAW area by isolating

the VWITH and VresidualAW terms. Let us consider the subgroup h in which the curve

of De Vergottini is defined:

Vh(ph) =
1− Lh(ph)

1− ph

where ph denotes the rank of units in the h group that, for the j-th unit, is ph =

j/nh. The rank unit ph in the h-th subgroup has rank equals to q in the original

distribution, since q is equal to:

q =

∑
i≤h−1 ni + phnh

n
.

and, dq = (nh/n)dph.

The concentration curve CDeV e(q) is defined as the ratio between the average of

the last n(1− q) units, that is, the units that have more than the income of the unit

having rank equal to 1, and the overall average. That is.

CDeV e(q) =

[
1

µ

∑
i>h niµi + nhµh(1− Lh(ph))

n(1− q)

]

We observe that Lh(ph) represents the Lorenz curve at ph percentile that is the the

income share of the h−th group possessed by individulas with income lower or equal

to the income of the individual having rank ph, whereas 1 − Lh(ph) represents the

share of individuals who have a higher income than the ph individual.

The VB(q) curve is defined as the ration between the average of the last n(1− q)

unit if each unit has the average income of the subgroup and the average of the
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distribution

VB(q) =

[
1

µ

∑
i>h niµi + nhµh(1− ph)

n(1− q)

]
.

Thus we have:

nµ [C(q)− VB(q)] = nhµh
(ph − Lh(ph))

1− q
.

Then, multiplying for dq and integrating in the subgroups between 0 and 1 over ph

through the h-th group index, we get:

nµAW =
∑

h

n2
hµh
n

∫ 1

0
(ph−Lh(ph))

1−q dph =

=
∑

h

n2
hµh
n

∫ 1

0
(ph−Lh(ph))(1−ph)

(1−ph)(1−q)
±
∑

h

n2
hµh
n

∫ 1

0
(ph−Lh(ph))

(1−ph)
dph

Let be vh = nh
n

and wh = nhµh
nµ

, we have:

nµAW =
∑
h

vhwhnµ

∫ 1

0

(ph − Lh(ph))
(1− ph)

dph+

+
∑
h

vhwhnµ

∫ 1

0

(ph − Lh(ph))
(1− ph)

(
1− ph
1− q

− 1

)
dph

And, dividing for nµ we get:

AW =
∑
h

vhwh

∫ 1

0

ph − Lh(ph
1− ph

dph +
∑
h

vhwh

∫ 1

0

(ph − Lh(ph))
(1− ph)

(
1− ph
1− q

− 1

)
dph

=VWITH + VresidualAW .

�
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A3. Proof of Proposition 3

Let’s verify if the polarization increases as a result of the IB transfer.

To this end we study:

∆PB = P t1
B − P

t0
B =

2µ(x)

m(x)
[∆BBET means − (∆BWITH + ∆BresidualAW )]

where

∆BBET means =

=

∫ 1

0

1

q

(
q − Lt1B(q)

)
dq −

∫ 1

0

1

q

(
q − Lt0B(q)

)
dq =

∫ 1

0

1

q

(
Lt0B(q)− Lt1B(q)

)
dq

and t1 denotes the period after the transfer of income and t0 the status quo, and

∆ (BWITH +BresidualAW ) =

=

∫ 1

0

1

q

(
Lt1B(q)− Lt1(q)

)
dq −

∫ 1

0

1

q

(
Lt0B(q)− Lt0(q)

)
dq =

=

∫ 1

0

1

q

(
Lt1B(q)− Lt0B(q)

)
dq −

∫ 1

0

1

q

(
Lt1(q)− Lt0(q)

)
dq

= −∆BBET means −
∫ 1

0

1

q

(
Lt1(q)− Lt0(q)

)
dq.

Thus we get:

∆PB =
2µ(x)

m(x)

[
2∆BBET means +

∫ 1

0

1

q

(
Lt1(q)− Lt0(q)

)
dq

]
.

Under IB, a α progressive transfer on one side of the median (or on both seg-

ments but without crossing the median) has the effect of ∆BBET means = 0.

Transfers that do not cross the median are such that both average incomes on

each segment and the general average µ(x) remain unchanged. Thus, Lt1B(q) =

Lt0B(q) ∀q ∈ [0, 1].

As for the within groups inequality component, including the residual, the pro-

gressive income transfers on one side of the median have the effect of ∆(BWITH +

BresidualAW ) le0. In fact, remembering that ∆(BWITH+BresidualAW ) = −∆BBET means−∫ 1

0
1
q

(Lt1(q)− Lt0(q)) dq, a progressive transfer to the x− segment of the income dis-
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tribution has the effect of reducing inequality and, consequently:

∫ 1/2

0

1

q

(
Lt1(q)− Lt0(q)

)
dq > 0.

Similarly, a progressive transfer on x+ is such that
∫ 1

1/2
1
q

(Lt1(q)− Lt0(q)) dq > 0.

Consequently, under IB, we have ∆PB > 0.

Now, we compute the effect of an IS transfer considering a regressive income

transfer of amount equal to α from the individual having rank s in the x− population

subgroup to the individual rankedd at k in the x+ subgroup.

For each pair (s, k) s, k ∈ [1, n/2], as a result of the transfer, the average in-

come below the median decreases of α/(n/2), whereas the average income above the

median increases by the same amount.

Thus, we have:

∆BBET means = Bt1
BET means −B

t0
BET means =

=
1

2µ(x)

n/2∑
j=1

(
1

n/2 + j

)(
µt1(x+)− µt1(x−)

)
+

− 1

2µ(x)

n/2∑
j=1

(
1

n/2 + j

)(
µt0(x+)− µt0(x−)

)
=

=
1

2µ(x)

n/2∑
j=1

(
1

n/2 + j

)(
µt1(x+)− µt1(x−)− µt0(x+) + µt0(x−)

)
=

=
1

2µ(x)

n/2∑
j=1

(
1

n/2 + j

)[(
µt1(x+)− µt0(x+)

)
−
(
µt1(x−)− µt0(x−)

)]
=

=
1

2µ(x)

n/2∑
j=1

(
1

n/2 + j

)(
α

n/2
+

α

n/2

)
=

=
1

2µ(x)

n/2∑
j=1

2α

n/2

(
1

n/2 + j

)
=

=
2α

nµ(x)

n/2∑
j=1

(
1

n/2 + j

)
> 0 ∀s, k ∈ [1, n/2].

(16)
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For the within groups component, we have:

∆BWITH =
1

2µ(x)

α

n

 n/2∑
j=s

1

j
−

n/2∑
j=k

1

j

 ≤ 0, for s ≥ k (17)

where s and k denote the position of the s−th and k−th individual on x− and x+,

respectively.

Indeed

∆BWITH = Bt1
WITH −B

t0
WITH =

=

[
1

4

µt1(x−)

µ(x)
I
n/2
B,t1

(x−)− 1

4

µt0(x−)

µ(x)
I
n/2
B,t0

(x−)

]
+

[
1

4

µt1(x+)

µ(x)
I
n/2
B,t1

(x+)− 1

4

µt0(x+)

µ(x)
I
n/2
B,t0

(x+)

]

=
1

4µ(x)

µt1(x−)

1− 1

n/2µt1(x−)

n/2∑
j=1

µt1j (x−)

+

−µt0(x−)

1− 1

n/2µt0(x−)

n/2∑
j=1

µt0j (x−)

+

+
1

4µ(x)

µt1(x+)

1− 1

n/2µt1(x+)

n/2∑
j=1

µt1j (x+)

+

−µt0(x+)

1− 1

n/2µt0(x+)

n/2∑
j=1

µt0j (x+)

 =

=
1

2nµ(x)

n
2

(
µt1(x−)− µt0(x−)

)
−

n/2∑
j=1

(
µt1j (x−)− µt0j (x−)

)+

+
1

2nµ(x)

n
2

(
µt1(x+)− µt0(x+)

)
−

n/2∑
j=1

(
µt1j (x+)− µt0j (x+)

) =

=
1

2nµ(x)

n
2

(
− α

n/2

)
+ α

n/2∑
j=s

1

j

+
1

2nµ(x)

n
2

(
α

n/2

)
− α

n/2∑
j=k

1

j

 =
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=
α

2nµ(x)

 n/2∑
j=s

1

j
−

n/2∑
j=k

1

j

 .
Equation (17) shows that the sign of ∆BWITH depends on the relative positions

of the income earners. In particular, the variation of the within component is not

positive, that is it has the desired effect on the polarization index, only if s ≥ k with

s ≥ 1 and ”k ≤ n/2.

Note 1 Note that, as shown in the previous paragraph, the variation of the within

component depends on s and k also in the case of the Gini index. However, by con-

struction, the Foster and Wolfson’s index is consistent with the second polarization

curve. Therefore, necessarily, the between component compensates for that within

for each pair s, k.

Now we prove that this is true also for the PB index, by finding the condition on

s and k for which ∆BBET means is greater than ∆BWITH + ∆BresidualAw
18.

Since

BresidualAW =
1

2nµ(x)

n
2
µ(x−)−

n/2∑
i=1

µi(x−)

+

1

2nµ(x)

µ(x+)

n/2∑
i=1

(
i− n/2
i+ n/2

)
−

n/2∑
i=1

(
i− n/
i+ n/2

)
µi(x+)


we have:

∆BresidualAw =
(
Bt1
residualAw −B

t0
residualAw

)
=

18The residual variation could introduce a sort of correction. Recall, in fact, that in the residue
the weights for which we multiply the observations above the median are negative and increasing
and, consequently, the correction made by the residue is all the stronger as the observation is close
to the median.
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=
1

2nµ(x)

n
2
µt1(x−)−

n/2∑
i=1

µt1i (x−)− n

2
µt0(x−) +

n/2∑
i=1

µt0i (x−)

+

+
1

2nµ(x)

µt1(x+)

n/2∑
i=1

(
i− n/2
i+ n/2

)
−

n/2∑
i=1

(
i− n/2
i+ n/2

)
µt1i (x+)− µt0(x+)

n/2∑
i=1

(
i− n/2
i+ n/2

)
+

+

n/2∑
i=1

(
i− n/2
i+ n/2

)
µt0i (x+)

 =

=
1

2nµ(x)

n
2

(
µt1(x−)− µt0(x−)

)
−

n/2∑
i=1

(
µt1i (x−)− µt0i (x−)

)+

+
1

2nµ(x)

(µt1(x+)− µt0(x+)
) n/2∑
i=1

(
i− n/2
i+ n/2

)
−

n/2∑
i=1

(
i− n/2
i+ n/2

)(
µt1i (x+)− µt0i (x+)

) =

=
1

2nµ(x)

n
2

(
−α
n/2

)
+ α

n/2∑
j=s

1

j

+
1

2nµ(x)

 α

n/2

n/2∑
j=1

(
j − n/2
j + n/2

)
− α

n/2∑
j=k

1

j

(
j − n/2
j + n/2

) =

=
1

2nµ(x)

 α

n/2

n/2∑
j=1

(
j − n/2
j + n/2

− 1

)
+ α

n/2∑
j=s

1

j
− α

n/2∑
j=k

1

j

(
j − n/2
j + n/2

) =

=
α

2nµ(x)

 n/2∑
j=s

1

j
−

n/2∑
j=k

1

j

(
j − n/2
j + n/2

)
+

1

n/2

n/2∑
j=1

(
j − n/2
j + n/2

− 1

) =

=
α

2nµ(x)

 n/2∑
j=s

1

j
+

n/2∑
j=k

1

j

(
n/2− j
n/2 + j

)
− 2

n/2∑
j=1

(
1

n/2 + j

)
Now we sum the BWITH and BresidualAW components:

∆BWITH + ∆BresidualAw = α
2nµ(x)

[∑n/2
j=s

1
j
−
∑n/2

j=k
1
j

]
+ α

2nµ(x)

[∑n/2
j=s

1
j
+

+
∑n/2

j=k
1
j

(
n/2−j
n/2+j

)
− 2

∑n/2
j=1

(
1

n/2+j

)]
=

= α
2nµ(x)

[
2
∑n/2

j=s
1
j
−
∑n/2

j=k
1
j

(
1−

(
n/2−j
n/2+j

))
− 2

∑n/2
j=1

(
1

n/2+j

)]
=

= α
2nµ(x)

[
2
∑n/2

j=s
1
j
− 2

∑n/2
j=k

(
1

n/2+j

)
− 2

∑n/2
j=1

(
1

n/2+j

)]
=

= α
nµ(x)

[∑n/2
j=s

1
j
−
∑n/2

j=k

(
1

n/2+j

)
−
∑n/2

j=1

(
1

n/2+j

)]
.
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Consequently, we have:

∆PB = 2µ(x)
m(x)

[∆BBET means − (∆BWITH + ∆BresidualAw)] =

= 2µ(x)
m(x)

2α
nµ(x)

∑n/2
j=1

(
1

n/2+j

)
− 2µ(x)

m(x)
α

nµ(x)

[∑n/2
j=s

1
j
−
∑n/2

j=1

(
1

n/2+j

)
−
∑n/2

j=k

(
1

n/2+j

)]
=

= 2α
nm(x)

[∑n/2
j=1

(
3

n/2+j

)]
+ 2α

nm(x)

[∑n/2
j=k

(
1

n/2+j

)
−
∑n/2

j=s
1
j

]
=

= 2α
nm(x)

[∑n/2
j=1

(
3

n/2+j

)
−
∑n/2

j=s
1
j

+
∑n/2

j=k

(
1

n/2+j

)]
.

We note there exists a value for s such that:

n/2∑
j=s∗

1

j
>

n/2∑
j=1

(
3

n/2 + j

)
+

n/2∑
j=k

(
1

n/2 + j

)
and ∆PB < 0

However, the analytic detection of this threshold is quite complicated, since it

is the solution of the equation to the differences ∆PB[s, k, n] > 0, as (s, k, n) vary.

By restricting to the case where s ≥ k we can obtain a sufficient condition on s for

∆PB > 0 under IS.

Thus we have:

∆PB = 2α
nm(x)

[∑n/2
j=1

(
3

n/2+j

)
−
∑n/2

j=s
1
j

+
∑n/2

j=k

(
1

n/2+j

)]
≥

≥ 2α
nm(x)

[∑n/2
j=k

(
3

n/2+j

)
−
∑n/2

j=s
1
j

+
∑n/2

j=k

(
1

n/2+j

)]
=

= 2α
nm(x)

[∑n/2
j=k

(
4

n/2+j

)
−
∑n/2

j=s
1
j

]
=

= 2α
nm(x)

[∑s−1
j=k

(
4

n/2+j

)
+
∑n/2

j=s

(
4

n/2+j

)
−
∑n/2

j=s
1
j

]
=

= 2α
nm(x)

[∑s−1
j=k

(
4

n/2+j

)
+
∑n/2

j=s

(
4

n/2+j
− 1

j

)]
=

= 2α
nm(x)

[∑s−1
j=k

(
4

n/2+j

)
+
∑n/2

j=s

(
3j−n/2
j(n/2+j)

)]
That is non-negative for j ∈ [s, n/2] such that 3j − n/2 ≥ 0. That is, for

3s− n/2 ≥ 0. Thus we get s ≥ min(k, n/6).

�
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A4. Proof of Proposition 4

Let’s verify if PV increases after the IB transfer.

We have

∆PV = P t1
V − P

t0
V =

2µ(x)

m(x)
[∆VBET means − (∆VWITH + ∆VresidualAW )] .

Now, the expression of the ∆VBET means is:

∆VBET means =
∫ 1

0
1

1−q

(
q − Lt1B(q)

)
dq −

∫ 1

0
1

1−q

(
q − Lt0B(q)

)
dq =

=
∫ 1

0
1

1−q

(
Lt0B(q)− Lt1B(q)

)
dq

where t1 denotes the period after the transfer of income and t0 the status quo, and

∆ (VWITH + VresidualAW ) =

=
∫ 1

0
1

1−q

(
Lt1B(q)− Lt1(q)

)
dq −

∫ 1

0
1

1−q

(
Lt0B(q)− Lt0(q)

)
dq =

=
∫ 1

0
1

1−q

(
Lt1B(q)− Lt0B(q)

)
dq −

∫ 1

0
1

1−q (Lt1(q)− Lt0(q)) dq =

= ∆VBET means −
∫ 1

0
1

1−q (Lt1(q)− Lt0(q)) dq.

Thus we have:

∆PV =
2µ(x)

m(x)

[
2∆VBET means +

∫ 1

0

1

1− q
(
Lt1(q)− Lt0(q)

)
dq

]
.

Now, let us consider a progressive income transfer19 α that does not cross the

median, fom the k−th individual to the s−th one, with s < k.

As consequence of an IB transfer, ∆VBET means = 0 and ∆(VWITH+VresidualAW ) ≤

0. Consequently, ∆PV > 0.

To analyze the effect of an IS transfer, let us consider a regressive income transfer

α from the s− th individual to the k−th one, with s < k).

In the case of the transfer, the average income below the median decreases by

alpha/(n/2), while the average income above the median increases of the same

amount.

19The transfer can take place in only one of the subgroups x− and x+, or both.
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Consequently:

∆VBET means = V t1
BET means − V

t0
BET means

= 1
2µ(x)

∑n/2
j=1

(
1

n−j+1

)
(µt1(x+)− µt1(x−))− 1

2µ(x)

∑n/2
j=1

(
1

n−j+1

)
(µt0(x+)− µt0(x−))

= 1
2µ(x)

∑n/2
j=1

(
1

n−j+1

)
(µt1(x+)− µt1(x−)− µt0(x+) + µt0(x−))

= 1
2µ(x)

∑n/2
j=1

(
1

n−j+1

)
[(µt1(x+)− µt0(x+))− (µt1(x−)− µt0(x−))]

= 1
2µ(x)

∑n/2
j=1

(
1

n−j+1

)(
α
n/2

+ α
n/2

)
= 1

2µ(x)

∑n/2
j=1

2α
n/2

(
1

n−j+1

)
= 2α

nµ(x)

∑n/2
j=1

(
1

n−j+1

)
> 0.

Note 2 We observe that, for a given n,

∆BBET means = ∆VBET means

since
n/2∑
j=1

(
2

n+ 2j

)
=

n/2∑
j=1

(
1

n− j + 1

)
.

In addition, since the two additions are less than 1/2, we have

∆BBET means < ∆GBET means and ∆VBET means < ∆GBET means.

Recalling equation (10), the variation of the within term is equal to

∆VWITH = V t1
WITH − V

t0
WITH =

= 1
2nµ(x)

[∑n/2
j=1

(
M t1

j (x−)−M t0
j (x−)

)
− n

2
(µt1(x−)− µt0(x−))

]
+

+ 1
2nµ(x)

[∑n/2
j=1

(
M t1

j (x+)−M t0
j (x+)

)
− n

2
(µt1(x+)− µt0(x+))

]
= 1

2nµ(x)

[
−α
∑s

j=1

(
1

n/2−j+1

)
− n

2

(
− α
n/2

)]
+ 1

2nµ(x)

[
α
∑k

j=1

(
1

n/2−j+1

)
− n

2

(
α
n/2

)]
=

= α
2nµ(x)

[∑k
j=1

(
1

n/2−j+1

)
−
∑s

j=1

(
1

n/2−j+1

)]
.
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Consequently,

∆VWITH =
α

2nµ(x)

[
k∑
j=1

(
1

n/2− j + 1

)
−

s∑
j=1

(
1

n/2− j + 1

)]
≤ 0, for s ≥ k

(18)

where s denotes the position of the s−th individual in the x− distribution and k

the position of the k−th individual in the x+ distribution.

Equation ((18)) shows that, as already noted for the polarization indexes based

on the concentration indices of Gini and Bonferroni, the sign of ∆VWITH depends

on the relative positions of the income earners. In particular, the variation of the

within component is non-positive, that is it has the desired effect on the polarization

index, only in case s ≥ k, with s ≥ 1 and k ≤ n/2.

Similarly to the Bonferroni concentration index case, we study the condition on

s and k for which variation ∆VBET means is greater of ∆VWITH + ∆VresidualAw.

We remember that

VresidualAw =
1

2nµ(x)

 n/2∑
i=1

(
i

i− n

)
Mi(x−)−

n/2∑
i=1

(
i

i− n

)
µ(x−)

+

+
1

2nµ(x)

 n/2∑
i=1

Mi(x+)− n

2
µ(x+)


end, consequently:

∆VresidualAw = V t1
residualAw − V

t0
residualAw =
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= 1
2nµ(x)

[∑n/2
i=1

(
i

i−n

)
M t1

i (x−)−
∑n/2

i=1

(
i

i−n

)
µt1(x−)

]
+

+ 1
2nµ(x)

[∑n/2
i=1M

t1
i (x+)− n

2
µt1(x+)

]
− 1

2nµ(x)

[∑n/2
i=1

(
i

i−n

)
M t0

i (x−)+

−
∑n/2

i=1

(
i

i−n

)
µt0(x−)

]
− 1

2nµ(x)

[∑n/2
i=1M

t0
i (x+)− n

2
µt0(x+)

]
=

= 1
2nµ(x)

[∑n/2
i=1

(
i

i−n

)
(M t1

i (x−)−M t0
i (x−))−

∑n/2
i=1

(
i

i−n

)
(µt1(x−)− µt0(x−))

]
+

+ 1
2nµ(x)

[∑n/2
i=1(M

t1
i (x+)−M t0

i (x+))−
∑n/2

i=1(µ
t1(x+)− µt0(x+))

]
=

= 1
2nµ(x)

[
−α
∑s

j=1

(
j

j−n

)(
1

n/2−j+1

)
+ α

n/2

∑n/2
j=1

(
j

j−n

)]
+

+ 1
2nµ(x)

[
α
∑k

j=1

(
1

n/2−j+1

)
− α

]
=

= α
2nµ(x)

[
−
∑s

j=1

(
j

j−n

)(
1

n/2−j+1

)
+
∑k

j=1

(
1

n/2−j+1

)
+ 1

n/2

∑n/2
j=1

(
j

j−n

)
− 1
]

=

= α
2nµ(x)

[∑s
j=1

(
j

n−j

)(
1

n/2−j+1

)
+
∑k

j=1

(
1

n/2−j+1

)
− 2

∑n/2
j=1

(
1

n−j

)]
.

Thus we have:

∆VWITH + ∆VresidualAw

= α
2nµ(x)

[
2
∑k

j=1

(
1

n/2−j+1

)
−
∑s

j=1

(
1

n/2−j+1

)
+

+
∑s

j=1

(
j

n−j

)(
1

n/2−j+1

)
− 2

∑n/2
j=1

(
1

n−j

)]
=

= α
2nµ(x)

[
2
∑k

j=1

(
1

n/2−j+1

)
+
∑s

j=1

(
j

n−j − 1
)(

1
n/2−j+1

)
− 2

∑n/2
j=1

(
1

n−j

)]
=

= α
2nµ(x)

[∑k
j=1

(
2

n/2−j+1

)
−
∑s

j=1

(
2j−n
j−n

)(
1

n/2−j+1

)
− 2

∑n/2
j=1

(
1

n−j

)]
=

= α
2nµ(x)

[∑k
j=1

(
2

n/2−j+1

)
−
∑s

j=1

(
2j−n
j−n

)(
1

n/2−j+1

)
+ 2

∑n/2
j=1

(
1

j−n

)]
Consequently,

∆VBET means − (∆VWITH + ∆VresidualAw)

= 2α
nµ(x)

∑n/2
j=1

(
1

n−j+1

)
− α

2nµ(x)

[∑n/2
j=1

(
2

j−n

)
+
∑k

j=1

(
2

n/2−j+1

)
−
∑s

j=1

(
2j−n
j−n

)(
1

n/2−j+1

)]
= 2α

2nµ(x)

∑n/2
j=1

(
2

n−j+1

)
− 2α

2nµ(x)

[∑n/2
j=1

(
1

j−n

)
+
∑k

j=1

(
1

n/2−j+1

)
−
∑s

j=1

(
j−n/2
j−n

)(
1

n/2−j+1

)]
= α

nµ(x)

[∑n/2
j=1

(
2

n−j+1

)
−
∑n/2

j=1

(
1

j−n

)
−
∑k

j=1

(
1

n/2−j+1

)
+
∑s

j=1

(
j−n/2
j−n

)(
1

n/2−j+1

)]
and

∆PV =

= 2µ(x)
m(x)

[∆VBET means − (∆VWITH + ∆VresidualAw)] =

= 2α
nm(x)

[∑n/2
j=1

(
2

n−j+1
+ 1

n−j

)
−
∑k

j=1

(
1

n/2−j+1

)
+
∑s

j=1

(
j−n/2
j−n

)(
1

n/2−j+1

)]
.

Similarly to ∆PB, we note that the ∆PV variation is made up of the difference

between the sum of the constant term and the sum that depends on s and the sum
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k.. The latter one assumes a decreasing value as k increases and therefore, there

will be a value of k such that

k∑
j=1

(
1

n/2− j + 1

)
>

s∑
j=1

(
j − n/2
j − n

)(
1

n/2− j + 1

)
+

n/2∑
j=1

(
2

n− j + 1
+

1

n− j

)

and

∆PV > 0.

Again, the analytic detection of the threshold, that is the solution of the equation

to the differences ∆PV [s, k, n] > 0 as (s, k, n) vary, is rather complicated. However,

if s ≥ k, we can get a sufficient condition on k such that ∆PV > 0 under IS.

Thus, we have:

∆PV = 2α
nm(x)

[∑n/2
j=1

(
2

n−j+1
+ 1

n−j

)
−
∑k

j=1

(
1

n/2−j+1

)
+
∑s

j=1

(
j−n/2
j−n

)(
1

n/2−j+1

)]
≥

≥ 2α
nm(x)

[∑k
j=1

(
2

n−j+1
+ 1

n−j

)
−
∑k

j=1

(
1

n/2−j+1

)
+
∑k

j=1

(
j−n/2
j−n

)(
1

n/2−j+1

)]
=

= 2α
nm(x)

[∑k
j=1

(
2

n−j+1
+ 1

n−j + 1
(j−n)

(j−n/2)
(n/2−j+1)

− 1
n/2−j+1

)]
= (∗)

where k ≤ s ≤ n/2. In addition, since

1

(j − n)

(j − n/2)

(n/2− j + 1)
=

1

(n− j)
(j − n/2)

(j − n/2− 1)
>

1

(n− j)

(∗) ≥ 2α
nm(x)

[∑k
j=1

(
2

(n−j+1)
+ 1

(n−j) −
1

(n/2−j+1)
+ 1

(n−j)

)]
=

=< 2α
nm(x)

[∑k
j=1

(
2

(n−j+1)
+ 2

(n−j) −
1

(n/2−j+1)

)]
≥

≥ 2α
n·m(x)

[∑k
j=1

(
2

(n−j+1)
+ 2

(n−j+1)
− 1

(n/2−j+1)

)]
=

= 2α
n·m(x)

[∑k
j=1

(
4

(n−j+1)
− 1

(n/2−j+1)

)]
.

The quantity
[∑k

j=1

(
4

(n−j+1)
− 1

(n/2−j+1)

)]
is positive for j such that

4

(n− j + 1)
− 1

(n/2− j + 1)
> 0,

that is for j ≤ n
3

+ 1 .
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Since j = 1, . . . , k, the sufficient condition that ensures ∆PV ≥ 0 is

k ≤ min
(
s,
n

3
+ 1
)
.

�
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