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Abstract

Considering a family {Tc}c∈[0,1] generated from a t-norm T , the
degree of T -transitivity of a fuzzy relation R is revisited and proved
to coincide with the greatest c for which R is Tc-transitive.

This fact gives rise to the study of new families of t-norms to
generate different degrees of transitivity with respect to them.

The mappings transforming fuzzy relations into transitive fuzzy
relations smaller than or equal to the given ones are studied.

Keywords: t-norm, Archimedean t-norm, fuzzy relation, T -transi-
tivity, degree of transitivity.

1 Introduction

Transitivity with respect to a t-norm T (T -transitivity) is probably the most
important property a fuzzy relation can fulfill. This is mainly because fuzzy
equivalence relations and fuzzy preorders- fuzzifying the concepts of equiva-
lence relation and preorder respectively- are T -transitive fuzzy relations.

It may happen though that a fuzzy relation R which we require to be
T -transitive for theoretical or practical reasons do not satisfy this property.
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In fact, when R comes from applied domains, where data are dependent
on the accuracy of empirical measurements or to the subjectivity of human
assessments, it cannot be expected that R is neatly transitive with respect
to a given t-norm. In these cases it is proposed to consider the degree of
transitivity of R and then the property of being T -transitive turns out to be
fuzzy.

For a given t-norm T , a fuzzy relation R on a universe X is T -transitive
when for all x, y, z ∈ X , T (R(x, y), R(y, z)) ≤ R(x, z). Considering the

residuation
−→
T of the t-norm (see Section 2) this is equivalent to

−→
T (T (R(x, y), R(y, z))|R(x, z)) = 1

for all x, y, z ∈ X . The first author that fuzzified this concept and defined
and studied the degree of T -transitivity of a fuzzy relation was Gottwald
[13, 14, 15] (see also [4, 16]). For a left continuous t-norm T the degree of
transitivity of a fuzzy relation R on a universe X was defined by

inf
x,y,z∈X

−→
T (T (R(x, y), R(y, z))|R(x, z)).

In [3] L. Běhounek generalized this definition by considering a fuzzy equality
E on X and imposing compatibility between R and E:

inf
x,x′,y,y′,z,z′∈X

−→
T (T (E(x, x′), E(y, y′), E(z, z′), R(x, y), R(y′, z))|R(x′, z′)).

Later on, in [6, 7] the degree of transitivity of R was related to the degree
of equivalence or similarity ET (R, S) (Definition 2.19) between R and a T -
transitive fuzzy relation S taken as referential: If ET (R, S) ≥ α, then the
degree of transitivity of R is greater than or equal to α(3) = T (α, T (α, α)).
In [11, 12] different ways of obtaining a transitive relation from a reflexive
and symmetric fuzzy relation (i.e., a proximity relation) were provided.

Gottwald introduced the degree of transitivity of a fuzzy relation in the
context of formal fuzzy logic. It is written as a logic sentence and depends
on the conjunction (t-norm) (and the implication) associated to the corre-
sponding Logic. In the present manuscript, following the motto that good
definitions deserve to be generalized, the definition has been re-interpreted by
considering a family of t-norms, called {Tc} in the paper. The degree of tran-
sitivity coincides with the greatest c for which the relation is Tc-transitive.
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All the previous considerations assume that the t-norm T is given, and
based on this assumption a measure on how far R is from being transitive is
provided by means of the transitivity degree.

The reason why a fuzzy relation R that “should” be T -transitive does not
satisfy completely this property can be analyzed from two perspectives. We
can think that we are asking too much in the sense that

a) the t-norm is too big or

b) R has to be modified.

The transitivity with respect to a t-norm T indicates the level of struc-
turalization of the data represented by the relation R. The smaller the t-norm
T , the less structuralised. If T is the drastic t-norm (i.e. T (x, y) = 0 for all
x, y < 1), then virtually every relation R is T -transitive. At the other end of
the spectrum, if T = min the condition of being T -transitive becomes very
restrictive. Therefore, if we choose a) (i.e. to change the t-norm T ), a pro-
cedure must be provided in order to determine a new t-norm small enough
to accommodate R, but still optimal in some sense.

If we follow b) instead, and we consider that is R that should be modified,
a reasonable way to replace R by a new relation has to be provided.

These two points of view turn out to be equivalent in the sense that will
be explained in Sections 3 and 4.

Going back to the problem of finding a suitable t-norm T to fit the rela-
tion R, it is worth recalling that choosing optimal candidates from paramet-
ric families of objects is standard mathematical practice. This is the case,
for example, of Parametric Statistics, function approximation by means of
orthogonal families of polynomials, Computer Aided Design or Neural Net-
works, among many others. In the present situation it happens sometimes
that we are bounded to a certain family {Ta} of t-norms because they have
to satisfy a certain condition, property or functional equation. In these cases
we are constrained to this family and it is reasonable to define a degree of
transitivity with respect to it. In Section 4 we recall a couple of ways to
obtain a family of t-norms from a given one that include some of the most
used ones, namely, Yager’s, Dombi’s, Aczél-Alsina’s t-norms.

For a fuzzy relation R its T -transitive closure is known to be the smallest
fuzzy relation greater than or equal to R. This provides the best upper ap-
proximation of R by a T -transitive fuzzy relation. More complex is finding
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good lower approximations of R. In [9] good lower approximations for reflex-
ive and symmetric fuzzy relations are obtained for universes of finite cardi-
nality. Later on in [8] optimal lower approximations, called openings, of these
relations were obtained again for finite cardinality but with a non-efficient
algorithm. The problem of finding lower approximations for arbitrary fuzzy
relations in universes of non necessarily finite cardinality was still open and
Section 5 provides an easy way to obtain them.

The paper is structured as follows: In the next section, the basic defini-
tions and results concerning t-norms including the definitions of T -transitivity,
degree of T -transitivity and power with respect to a t-norm will be recalled as
well as some results on fuzzy relations. In Section 3, a family A = {Tc}c∈[0,1]
of t-norms will be generated from a given t-norm T and the degree of T -
transitivity of a fuzzy relation R will coincide with the index c0 of the great-
est t-norm of A for which R is Tc0-transitive. Inspired by this result, in
Section 4 two different ways of generating families from a given continuous
Archimedean t-norm will be recalled and corresponding new degrees of T -
transitivity associated to these families will be defined and studied. Moreover
as a generalization of Section 3, the mappings transforming a fuzzy relation
R into a transitive one smaller than or equal to R will be studied in Section
5. The last section of the paper contains some concluding remarks.

2 Preliminaries

This section contains some definitions and properties related to t-norms and
fuzzy relations that will be needed in the article. For more details on t-norms
we recommend [17].

Definition 2.1. [17] A t-norm is a binary operation T : [0, 1]× [0, 1]→ [0, 1]
which satisfies the following properties for all x, y, z, t ∈ [0, 1]

• T (x, y) = T (y, x)

• T (x, y) ≤ T (z, t) if x ≤ z and y ≤ t

• T (x, T (y, z)) = T (T (x, y), z)

• T (x, 1) = x

Example 2.2.
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• The minimum t-norm min is defined by T (x, y) = min(x, y) for all
x, y ∈ [0, 1].

• The  Lukasiewicz t-norm is defined by T (x, y) = max(0, x+ y − 1).

• The product t-norm is defined by T (x, y) = x · y.

Remark. The minimum t-norm is the greatest t-norm.

Definition 2.3. Let T be a t-norm and x1, x2, ..., xn ∈ [0, 1]. T (x1, x2, ..., xn)
is defined recursively.

• T (x1) = x1.

• T (x1, x2, ..., xn) = T (T (x1, x2, ..., xn−1), xn).

In particular, for x ∈ [0, 1] and n ∈ N, x
(n)
T will denote T (

n times
︷ ︸︸ ︷
x, x, ..., x) and

x
(0)
T = 1.

Definition 2.4. For a t-norm T , an x ∈ [0, 1] is an idempotent element of
T if and only if T (x, x) = x. E(T ) will be the set of idempotent elements of
T .

Definition 2.5. A t-norm T is Archimedean if and only if E(T ) = {0, 1}.

Example 2.6. The product and  Lukasiewicz t-norms are Archimedean t-
norms, while the minimum t-norm is not.

Definition 2.7. For a t-norm T , an x ∈ [0, 1] is nilpotent if and only if

there exists an n ∈ N such that x
(n)
T = 0. Nil(T ) will be the set of nilpotent

elements of T .

Proposition 2.8. If a t-norm T is continuous Archimedean, then Nil(T ) is
[0, 1) or {0}. In the first case, T is called nilpotent and strict in the second
case.

Proposition 2.9 (Ling’s Theorem). A continuous t-norm T is Archimedean
if and only if there exists a continuous and strictly decreasing function t :
[0, 1]→ [0,∞) with t(1) = 0 such that

T (x, y) = t[−1](t(x) + t(y))

where t[−1] is the pseudo inverse of t, defined by
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t[−1](x) =

{
t−1(x) if x ∈ [0, t(0)]
0 otherwise.

T is strict if t(0) =∞ and nilpotent otherwise.
t is called an additive generator of T and two generators of the same

t-norm differ only by a positive multiplicative constant.
If T is nilpotent (strict), its additive generator with t(0) = 1 (t(1

2
) = 1)

is called its normalized additive generator.

Example 2.10.

1. t(x) = 1− x is an additive generator of the  Lukasiewicz t-norm.

2. t(x) = − log(x) is an additive generator of the product t-norm.

Lemma 2.11. Let t be an additive generator of a continuous Archimedean
t-norm and t[−1] its pseudoinverse. Then

(t ◦ t[−1])(x) =

{
x if x ≤ t(0)
t(0) otherwise

for all x ≥ 0.

Lemma 2.12. Let T be a continuous Archimedean t-norm and t its normal-
ized additive generator. Then

(t ◦ t[−1])(x) = x

for all x ∈ [0, 1].

Definition 2.13. Let T be a t-norm. Its residuation
−→
T is the mapping

−→
T : [0, 1]× [0, 1]→ [0, 1] defined for all x, y ∈ [0, 1] by

−→
T (x|y) = sup{α ∈ [0, 1] | T (x, α) ≤ y}.

The residuation is usually defined only if T is a left continuous t-norm.

In this case
〈

[0, 1],∧,∨, T,
−→
T , 0, 1

〉

is a complete commutative residuated

lattice [4] where T and
−→
T satisfy the adjoiness property

T (x, y) ≤ z ⇐⇒ y ≤
−→
T (x|z).

In this case,
−→
T is also called the residual implication associated to T .
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Definition 2.14. Let T be a t-norm. Its biresiduation
←→
T is defined for all

x, y ∈ [0, 1] by
←→
T (x, y) = min(

−→
T (x|y),

−→
T (y|x)).

If T is left continuous, then
−→
T and

←→
T play the role of implication and

biimplication respectively.

Definition 2.15. A fuzzy relation R on a universe X is a mapping R :
X ×X → [0, 1].

In other words, R is a fuzzy set of X × X . For two elements x, y ∈ X

R(x, y) is the degree in which x and y are related by R.

Definition 2.16. Let T be a t-norm. A fuzzy relation R on a set X is
T -transitive if for all x, y, z ∈ X,

T (R(x, y), R(y, z)) ≤ R(x, z).

Definition 2.17. Let T be a t-norm. A T -transitive fuzzy relation R on a
set X is a T indistinguishability operator if it satisfies for all x, y ∈ X,

• R(x, x) = 1 (Reflexivity)

• R(x, y) = R(y, x) (Symmetry)

Definition 2.18. [13] For a fuzzy relation R on a set X and a left continuous
t-norm T , the degree of T -transitivity αT (R) of R with respect to T is

αT (R) = inf
x,y,z∈X

−→
T (T (R(x, y), R(y, z))|R(x, z)).

αT (R) = 1 if and only if R is T -transitive.

Definition 2.19. [18] The degrees of similarity or equivalence ET (µ, ν),
ET (R, S) between two fuzzy subsets µ and ν of a set X and between two
fuzzy relations R and S on a set X are defined, respectively, by

ET (µ, ν) = inf
x∈X

←→
T (µ(x), ν(x))

ET (R, S) = inf
x,y∈X

←→
T (R(x, y), S(x, y)).

where
←→
T is the biresiduation associated to T .
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In Section 4 we will need the concept of power with respect to a t-norm
[1, 20, 18, 17].

Definition 2.20. Given a continuous t-norm T and m,n ∈ N, the n-th root

x
( 1

n
)

T of x with respect to T is defined by

x
( 1

n
)

T = sup{z ∈ [0, 1] | z
(n)
T ≤ x}

and for m,n ∈ N, x
(m
n
)

T =
(

x
( 1

n
)

T

)(m)

T
.

Lemma 2.21. [1] Let T be a continuous t-norm. If k,m, n are non-negative

integers and k, n 6= 0, then x
(km
kn

)

T = x
(m
n
)

T .

The powers x
(m
n
)

T can be extended to irrational exponents in a straight-
forward way.

Definition 2.22. [18] If r ∈ R
+ is a positive real number, let {an}n∈N be a

sequence of rational numbers with limn→∞ an = r. For any x ∈ [0, 1], the

power x
(r)
T is

x
(r)
T = lim

n→∞
x
(an)
T .

Continuity assures the existence of the last limit and independence of the
sequence {an}n∈N.

Proposition 2.23. [18] Let T be a continuous Archimedean t-norm with
additive generator t, x ∈ [0, 1] and r ∈ R

+. Then

x
(r)
T = t[−1](rt(x)).

Proposition 2.24. [18] Let T be a continuous t-norm, R a T -transitive

relation on X and r > 0. Then the fuzzy relation R
(r)
T defined for all x, y ∈ X

by R
(r)
T (x, y) = (R(x, y))

(r)
T is a T -transitive relation on X.

Example 2.25.

• If T is a continuous Archimedean t-norm with additive generator t

and R a T -transitive fuzzy relation on X, then t[−1] (r · t(R)) is a T -
transitive fuzzy relation on X.

• If T is the  Lukasiewicz t-norm and R a T -transitive fuzzy relation on
X, then max(0, 1− r + r · R) is a T -transitive fuzzy relation on X.

• If T is the product t-norm and R a T -transitive fuzzy relation on X,
then Rr is a T -transitive fuzzy relation on X.
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3 Different Interpretations of αT

In this section we will provide different characterizations of the degree αT of
T -transitivity of a fuzzy relation that are related to its Tc-transitivity with
respect to the members of the family {Tc}c∈[0,1] of t-norms defined below.

Definition 3.1. Given a t-norm T and c ∈ [0, 1] let Tc be the t-norm defined
for all x, y ∈ [0, 1] by

Tc(x, y) =







y if x = 1
x if y = 1
T (x, y, c) otherwise

if c ∈ (0, 1] and T0 = TD, where TD stands for the smallest t-norm.

Proposition 3.2.

a) Tc is a t-norm for every c ∈ [0, 1].

b) Tc is continuous (left-continuous) if and only if T is continuous (left-
continuous) and c = 1.

c) The family {Tc}c∈[0,1] satisfies

1. T1 = T

2. c ≤ c′ implies Tc ≤ Tc′

3. limc→0 Tc = TD.

Proof. The results are straightforward and we will only prove b).
If c = 1, then Tc = T .
If c < 1, we will prove that Tc is not continuous (left-continuous) at the

point (1, 1). Tc(1, 1) = 1 but for (x, y) 6= (1, 1), Tc(x, y) = T (x, y, c) ≤ c <

1.

Definition 3.3. Let R be a fuzzy relation on a set X, T a t-norm and
c ∈ [0, 1]. Then R(T,c) is defined for all x, y ∈ X by

R(T,c)(x, y) = T (R(x, y), c).

Proposition 3.4. Let T be a left-continuous t-norm. R a fuzzy relation on
a set X and c ≥ 0.
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a) If c ≤ αT (R), then R(T,c) is a T -transitive fuzzy relation.

b) If T is strictly monotone on ]0, 1]2, then R(T,c) is a T -transitive fuzzy
relation on X if and only if c ≤ αT (R).

c) R is Tc-transitive if and only if c ≤ αT (R).

Proof.

a) For all x, y, z ∈ X ,

c ≤
−→
T (T (R(x, y), R(y, z))|R(x, z))

which is equivalent to

T (R(x, y), R(y, z), c) ≤ R(x, z)

which implies

T (R(x, y), R(y, z), c, c) ≤ T (R(x, z), c)

and this inequality is equivalent to

T (R(T,c)(x, y), R(T,c)(y, z)) ≤ R(T,c)(x, z).

b) R(T,c) is T -transitive if and only if for all x, y, z ∈ X ,

T (R(T,c)(x, y), R(T,c)(y, z)) ≤ R(T,c)(x, z)

or, equivalently,

T (R(x, y), R(y, z), c, c) ≤ T (R(x, z), c).

Since T is strictly monotone it satisfies the cancellation law.

c = 0 or T (R(x, y), R(y, z), c) ≤ R(x, z).

This is equivalent to

c ≤
−→
T (T (R(x, y), R(y, z))|R(x, z))

and since this is satisfied for all x, y, z ∈ X , c ≤ αT (R).

The sufficiency follows from a).
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c) R is Tc-transitive if and only if for all x, y, z ∈ X ,

Tc(R(x, y), R(y, z)) ≤ R(x, z)

or, equivalently,

T (R(x, y), R(y, z), c) ≤ R(x, z).

This is equivalent to

c ≤
−→
T (T (R(x, y), R(y, z))|R(x, z))

and since this is satisfied for all x, y, z ∈ X , c ≤ αT (R).

The sufficiency follows from a).

Proposition 3.4a) and 3.4b) provide a characterization of αT (R) as the
greatest c for which R(T,c) is T -transitive.

Proposition 3.4c) provides the second characterization of αT (R).
The third characterization is Corollary 3.7:

Lemma 3.5. [5] Let T be a left-continuous t-norm. For x, y ∈ [0, 1],
−→
T (x|T (x, y)) ≥

y.

Proposition 3.6. Let T be a left-continuous t-norm, R a fuzzy relation on
a universe X and c ∈ [0, 1]. Then

1. ET (R,R(T,c)) ≥ c

2. If T is strictly monotone on ]0, 1]2 and there exist x, y ∈ X with
R(x, y) 6= 0, then ET (R,R(T,c)) = c.

Proof.

1.

ET (R,R(T,c)) = inf
x,y∈X

←→
T (R(x, y), R(T,c)(x, y))

= inf
x,y∈X

←→
T (R(x, y), T (R(x, y), c))

= inf
x,y∈X

−→
T (R(x, y) | T (R(x, y), c)) ≥ c.
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2.
−→
T (R(x, y) | T (R(x, y), c)) = sup{α | T (α,R(x, y)) ≤ T (R(x, y), c)}. T
satisfies the cancellation law and therefore from}

T (α,R(x, y)) ≤ T (R(x, y), c)

it follows
α ≤ c

and from here
−→
T (R(x, y) | T (R(x, y), c)) ≤ c.

Therefore,

inf
x,y∈X

−→
T (R(x, y) | T (R(x, y), c)) ≤ c.

Corollary 3.7. Let T be a left-continuous t-norm, R a fuzzy relation on a
universe X and c ∈ [0, 1]. Then

1. ET (R,R(T,αT (R))) ≥ αT (R)

2. If T is strictly monotone on ]0, 1]2, then ET (R,R(T,αT (R))) = αT (R).

4 Alternative degrees for continuous Archi-

medean t-norms

Inspired by Section 3 we will consider alternative degrees of transitivity of a
fuzzy relation R with respect to a continuous Archimedean t-norm T . For
this, we will build two families {Tλ}λ>0 from T , one in each of the following
subsections, and study the transitivity of R with respect to the t-norms of
these families.

4.1 Powers of Additive Generators

Definition 4.1. [10, 17] Let T be a continuous Archimedean t-norm, t an
additive generator of T and λ > 0. Tλ is the continuous Archimedean t-
norm generated by an additive generator tλ given for all x ∈ [0, 1] by tλ(x) =
(t(x))λ.
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The pseudo-inverse t
[−1]
λ of tλ is t

[−1]
λ (x) = t[−1](x

1

λ ) for all x ∈ [0,∞] and
for every λ > 0 Tλ is explicitly given by

Tλ(x, y) =

{

t−1(((t(x))λ + (t(y))λ)
1

λ ) if ((t(x))λ + (t(y))λ)
1

λ ≤ t(0)
0 otherwise

for all x, y ∈ [0, 1].

Example 4.2.

• From the  Lukasiewicz t-norm, we obtain the family of Yager’s t-norms
[22].

• From the t-norm with additive generator t(x) = 1−x
x

for all x ∈ [0, 1],
we obtain the family of Dombi t-norms [10].

• From the product t-norm, we obtain the family of Aczél-Alsina t-norms
[2].

Proposition 4.3. [17] The family {Tλ}λ>0 satisfies

1. T1 = T

2. λ ≤ λ′ implies Tλ ≤ Tλ′

3. limλ→∞ Tλ = min

4. limλ→0 Tλ = TD.

Definition 4.4. Let R be a fuzzy relation on a set X, T a continuous
Archimedean t-norm, t an additive generator of T and λ > 0. Rt

λ is the
fuzzy relation defined for all x, y ∈ X by Rt

λ(x, y) = t[−1]((t(R(x, y)))λ).

Proposition 4.5. Let R be a fuzzy relation on a set X, T a continuous
Archimedean t-norm, t and u = µt (µ > 0) two additive generators of T and
λ > 0. Then

Ru
λ(x, y) = t[−1](µλ−1(t(R(x, y)))λ)

for all x, y ∈ X.

Proposition 4.5 shows that Rt
λ is not canonical in the sense that it depends

on the additive generator. It is not true in general that Rt
λ is T -transitive if

and only if Ru
λ is. The next proposition gives necessary conditions for this

equivalence.
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Proposition 4.6. Let R be a fuzzy relation on a set X, T a continuous
Archimedean t-norm, t and u = µt (µ > 0) two additive generators of T and
λ > 0. If T is nilpotent, t is its normalized additive generator and µλ−1 ≤ 1.
Then

a) Rt
λ is T -transitive if and only if Ru

λ is T -transitive.

b) Rt
λ is T -transitive if and only if R is Tλ-transitive.

Proof.

a) Ru
λ is T -transitive if and only if for all x, y, z ∈ X ,

T (Ru
λ(x, y), R

u
λ(y, z)) ≤ Ru

λ(x, z) ⇔

t(Ru
λ(x, y)) + t(Ru

λ(y, z)) ≥ t(Ru
λ(x, z)) ⇔

t(t[−1](µλ−1(t(R(x, y)))λ))+t(t[−1](µλ−1(t(R(y, z)))λ)) ≥ t(t[−1](µλ−1(t(R(x, z)))λ))
∗
⇔

µλ−1(t(R(x, y)))λ + µλ−1(t(R(y, z)))λ ≥ µλ−1(t(R(x, z)))λ ⇔

(t(R(x, y)))λ + (t(R(y, z)))λ ≥ (t(R(x, z)))λ ⇔

t(t[−1]((t(R(x, y)))λ) + t(t[−1]((t(R(y, z)))λ) ≥ t(t[−1]((t(R(x, z)))λ)
∗
⇔

t(Rt
λ(x, y)) + t(Rt

λ(y, z)) ≥ t(Rt
λ(x, z)) ⇔

T (Rt
λ(x, y), R

t
λ(y, z)) ≤ Rt

λ(x, z)

which means that Rt
λ is T -transitive.

The equivalences with a star follow from Lemma 2.11.

b) Rt
λ is T -transitive if and only if for all x, y, z ∈ X ,

T (Rt
λ(x, y), R

t
λ(y, z)) ≤ Rt

λ(x, z) ⇔

t(Rt
λ(x, y)) + t(Rt

λ(y, z)) ≥ t(Rt
λ(x, z)) ⇔

t(t[−1]((t(R(x, y)))λ))+t(t[−1]((t(R(y, z)))λ)) ≥ t(t[−1]((t(R(x, z)))λ))
∗
⇔

t(R(x, y))λ + t(R(y, z))λ ≥ t(R(x, z))λ ⇔

tλ(R(x, y)) + tλ(R(y, z)) ≥ tλ(R(x, z)) ⇔

Tλ(R(x, y), R(y, z)) ≤ R(x, z)

where the equivalence with a star follows from Lemma 2.11.
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Definition 4.7. Let T be a continuous Archimedean t-norm and R a fuzzy
relation on a set X. λ0(R) = sup{λ ≥ 0 | R is Tλ− transitive} is the degree
of transitivity of R with respect to the family {Tλ}.

The next result is a corollary of Proposition 4.6.

Corollary 4.8. Let T be a continuous Archimedean t-norm and R a fuzzy
relation on a set X. Then λ0(R) = min(sup{λ ≥ 0 | Rt

λ is T−transitive}, 1)
for any additive generator t of T if T is strict and for t the normalized additive
generator is T is nilpotent.

Remark. It can happen that λ0 = 0 even in sets of finite cardinality.
As an example, it is well known that for a fuzzy relation R it is necessary,
in order to be transitive with respect to a given t-norm T , that R(x, z) =
R(y, z) if R(x, y) = 1 1. So, for a fuzzy relation S with S(x, y) = 1 and
S(x, z) 6= S(y, z), St

λ will not be T -transitive for any λ ≥ 0.

Example 4.9. Let R be the fuzzy relation with matrix





1 0.3 0.8
0.3 1 0.6
0.8 0.6 1





Then λ0(R) = 0.564 with respect to the  Lukasiewicz t-norm while αT (R) =
0.9.

The rest of this subsection studies the similarity between the elements of
the family of t-norms and between a fuzzy relation R and the corresponding
fuzzy relations Rt

λ. The study of the mentioned similarities shows how similar
is the original t-norm and fuzzy relation to the modified one and can be used
for estimation of an error in applications.

Proposition 4.10. Let λ1 ≥ λ2 and T a nilpotent t-norm. Then ET (Tλ1
, Tλ2

) =

t−1((1− 2
1

λ2
− 1

λ1 )t(0)).

1If R is T -transitive and R(x, y) = 1, then T (R(x, y), R(y, z)) = R(y, z) ≤ R(x, z) and
similarly R(x, z) ≤ R(y, z).

15



Proof.

If λ1 = λ2, then t−1((1− 2
1

λ2
− 1

λ1 )t(0)) = t−1(0) = 1.
If λ1 > λ2, then

ET (Tλ1
, Tλ2

) = inf
x,y∈[0,1]

←→
T (Tλ1

(x, y), Tλ2
(x, y)) = inf

x,y∈[0,1]

−→
T (Tλ1

(x, y)|Tλ2
(x, y)).

Let us partition [0, 1]2 into three subsets A,B,C:

a) A is the set of pairs (x, y) such that Tλ1
(x, y) = 0 (and therefore

Tλ2
(x, y) = 0),

b) B is the set of pairs (x, y) such that Tλ1
(x, y) 6= 0 and Tλ2

(x, y) = 0
and

c) C is the set of pairs (x, y) such that Tλ1
(x, y) 6= 0 and Tλ2

(x, y) 6= 0.

a)

inf
(x,y)∈A

←→
T (Tλ1

(x, y), Tλ2
(x, y)) = 1.

b)

inf
(x,y)∈B

←→
T (Tλ1

(x, y), Tλ2
(x, y)) = inf

(x,y)∈B

←→
T (Tλ1

(x, y), 0)

= inf
(x,y)∈B

(t−1(t(0)− t(t[−1]((((t(x))λ1 + (t(y))λ1)
1

λ1 )))))

= t−1( sup
(x,y)∈B

(t(0)− t(t[−1]((((t(x))λ1 + (t(y))λ1)
1

λ1 )))))

= t−1( sup
(x,y)∈B

(t(0)− ((t(x))λ1 + (t(y))λ1)
1

λ1 )).

Putting t(x) = X and t(y) = Y and B′ = {(t(x), t(y)) | (x, y) ∈ B},
we consider the function F : B′ → [0, t(0)]

F (X, Y ) = t(0)− (Xλ1 + Y λ1)
1

λ1 .

We want to find where F attains its maximum.

F (0, Y ) = t(0) − Y and this would be maximum if Y = 0 but the
corresponding point (x, y) with t(x) = 0 and t(y) = 0 is (1, 1) that does

16



not belong to B. Similarly with F (X, 0). We can consider therefore
the points (X, Y ) with X 6= 0 and Y 6= 0.

The critical points of F would be the solutions of

{
∂F
∂x

= −(Xλ1 + Y λ1)
1

λ1
−1
Xλ1−1 = 0

∂F
∂x

= −(Xλ1 + Y λ1)
1

λ1
−1
Y λ1−1 = 0

But this system does not have solutions in B′.

The maximum will belong to the border of the domain of F which is

composed by the curves Cλ1
: (Xλ

1 + Y λ
1 )

1

λ1 = t(0) and Cλ2
: (Xλ2 +

Y λ2)
1

λ2 = t(0). The points (X, Y ) of the curve Cλ1
, correspond to points

(x, y) with Tλ1
(x, y) = Tλ2

(x, y) = 0 and there cannot be a maximum
in Cλ1

. We can apply Lagrange multipliers to find the maximum of

F (X, Y ) subject to the constraint (Xλ2 + Y λ2)
1

λ2 = t(0):







−(Xλ1 + Y λ1)
1

λ1
−1
Xλ1−1 = k(Xλ2 + Y λ2)

1

λ2
−1
Xλ2−1

−(Xλ1 + Y λ1)
1

λ1
−1
Y λ1−1 = k(Xλ2 + Y λ2)

1

λ2
−1
Y λ2−1

(Xλ2 + Y λ2)
1

λ2 = t(0)

By dividing both members of the first equation by the corresponding
members of the second one, we get

Xλ1−1

Y λ1−1
=

Xλ2−1

Y λ2−1
.

From that,
Xλ1−λ2 = Y λ1−λ2

and finally, X = Y and using the third equality, the only maximum is

attained at the point (X0, Y0) with X0 = Y0 = 2
− 1

λ2 t(0). If (X0, X0) =

(t(x0), t(x0)), then t(x0) = 2
− 1

λ2 t(0). Therefore

inf
(x,y)∈B

←→
T (Tλ1

(x, y), Tλ2
(x, y)) = t−1(t(0)− ((t(x0))

λ1 + (t(x0))
λ1))

1

λ1 )

= t−1(t(0)− 2
1

λ1
− 1

λ2 t(0)).

17



c)

inf
(x,y)∈C

←→
T (Tλ1

(x, y), Tλ2
(x, y)) = inf

(x,y)∈C

−→
T (Tλ1

(x, y)|Tλ2
(x, y))

= inf
(x,y)∈C

t−1(t(Tλ2
(x, y))− t(Tλ1

(x, y)))

= inf
(x,y)∈C

t−1(t(t−1(((t(x))λ2 + (t(y))λ2)
1

λ2 ))

− t(t−1(((t(x))λ1 + (t(y))λ1)
1

λ1 )))

= t−1( sup
(x,y)∈C

(((t(x))λ2 + (t(y))λ2)
1

λ2

− ((t(x))λ1 + (t(y))λ1)
1

λ1 )).

Putting t(x) = X and t(y) = Y and C ′ = {(t(x), t(y)) | (x, y) ∈ C},
we consider the function F : C ′ → [0, t(0)]

F (X, Y ) = (Xλ2 + Y λ2)
1

λ2 − (Xλ1 + Y λ1)
1

λ1 .

We want to find where F attains its maximum.

If X = 0 or Y = 0, then F (X, Y ) = 0 and at the points of the form
(X, 0) or (0, Y ) F does not attain its maximim.

Let us find its critical points:

{
∂F
∂x

= (Xλ2 + Y λ2)
1

λ2
−1
Xλ2−1 − (Xλ1 + Y λ1)

1

λ1
−1
Xλ1−1 = 0

∂F
∂x

= (Xλ2 + Y λ2)
1

λ2
−1
Y λ2−1 − (Xλ1 + Y λ1)

1

λ1
−1
Y λ1−1 = 0

If X 6= 0, then Y 6= 0 and

Y λ2−1

Xλ2−1
=

Y λ1−1

Xλ1−1
.

From this,
Xλ1−λ2 = Y λ1−λ2

and X = Y . However then

(2Xλ2)
1

λ2
−1
Xλ2−1 = (2Xλ1)

1

λ1
−1
Xλ1−1
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and hence
2

1

λ2
−1

= 2
1

λ1
−1

and this implies λ1 = λ2, which is a contradiction.

Therefore the maximum belongs to the border of the domain of F .
This border is composed by the segments L1 joining the points (0, t(0))
with (0, 0) and L2 joining the points (t(0), 0) and (0, 0) and the curve

Cλ2
: (Xλ2 + Y λ2)

1

λ2 = t(0). The maximum on this curve has already
been found in b).

Finally,

ET (Tλ1
, Tλ2

) = min( inf
(x,y)∈A

←→
T (Tλ1

(x, y), Tλ2
(x, y)), inf

(x,y)∈B

←→
T (Tλ1

(x, y), Tλ2
(x, y)),

inf
(x,y)∈C

←→
T (Tλ1

(x, y), Tλ2
(x, y))) = min(1, t−1(t(0)− 2

1

λ1
− 1

λ2 t(0)))

= t−1((1− 2
1

λ2
− 1

λ1 )t(0)).

In particular,

ET (T, Tλ) =

{
t−1((1− 21−

1

λ )t(0)) if λ < 1

t−1((1− 2
1

λ
−1)t(0)) if λ ≥ 1.

Example 4.11. If T is the  Lukasiewicz t-norm, then

ET (T, Tλ) =

{
21−

1

λ if λ < 1

2
1

λ
−1 if λ ≥ 1.

Lemma 4.12. Let T be a continuous Archimedean t-norm and t an additive
generator of T normalized if T is nilpotent. Defining xt

λ = t[−1]((t(x))λ) for

all x ∈ [0, 1] and λ > 0,
←→
T (x, xt

λ) = t−1(|t(x)− (t(x))λ|).

The next proposition provides a lower bound for ET (R,Rt
λ).

Proposition 4.13. Let T be a continuous Archimedean t-norm and t an
additive generator of T , normalized if T is nilpotent. Given a fuzzy rela-
tion R on a set X, ET (R,Rt

λ) = infx,y∈X t−1(|t(R(x, y)) − (t(R(x, y)))λ|) ≥
infz∈[0,1] t

−1(|t(z)− (t(z))λ|).
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Proof.

ET (R,Rt
λ) = inf

x,y∈X

←→
T (R(x, y), Rt

λ(x, y))

≥ inf
z∈[0,1]

←→
T (z, ztλ)

= inf
z∈[0,1]

t−1(|t(z)− (t(z))λ|).

Example 4.14. If in the last proposition T is the  Lukasiewicz t-norm and
t(x) = 1−x for all x ∈ [0, 1] its normalized additive generator, then the lower
bound infz∈[0,1] t

−1(|t(z)− (t(z))λ|) is

{

1 + λ
1

1−λ − λ
λ

1−λ if λ < 1

1− λ
1

1−λ + λ
λ

1−λ if λ ≥ 1.

Figure 1 plots the lower bound for the corresponding λ.

Figure 1: Lower bound for λ.
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4.2 Powers with respect to a Strict t-norm

Another idea for obtaining new relations from the given fuzzy relation R

is calculating their powers R
(r)
T but, as we know from Proposition 2.24, if

R is not T -transitive, none of its powers R
(r)
T can be T -transitive either.

Nevertheless, we can consider a new strict continuous Archimedean t-norm
T ∗ and the powers R

(r)
T∗ of R.

In this section we will assume that T is a continuous Archimedean t-
norm, t an additive generator of T , t∗ an additive generator of a fixed strict
continuous Archimedean t-norm and λ > 0.

Definition 4.15. λT is the continuous Archimedean t-norm generated by an
additive generator λt given for all x ∈ [0, 1] by λt(x) = t(x

(λ)
T ∗ ).

This definition coincides with Example 3.32(ii) of [17] as is shown in the
next lemma.

Lemma 4.16. λt(x) = t(t∗−1(λt∗(x))) for all x ∈ [0, 1].

Lemma 4.17. The pseudo-inverse λt
[−1] of tλ is λt

[−1](x) = (t[−1](x))
( 1

λ
)

T ∗ =
t∗−1( 1

λ
t∗(t[−1](x)) for all x ∈ [0,∞].

Lemma 4.18. If T ∗ = T , then λT = T for all λ > 0.

Proof. λt(x) = t(t−1(λt(x))) = λt(x).

Lemma 4.19.

λT (x, y) = (t[−1](t(x
(λ)
T ∗ ) + t(y

(λ)
T ∗ )))

( 1

λ
)

T ∗ .

In general, the members of the family {λT}λ>0 are not comparable. A
counterexample is given in Example 6.4(ii) of [17].

Proposition 4.20. λT ≤µT if and only if f : [0,µ t(0)]→ [0,∞] defined for

all x ∈ [0,µ t(0)] by t((t[−1](x))
(λ
µ
)

T ∗ ) is subadditive.

Proof. λT ≤µT if and only if λt ◦µ t
[−1] : [0,µt(0)] → [0,∞] is subadditive

(Theorem 6.2 of [17].)

λt ◦µt
[−1](x) =λ t(t

[−1](x))
( 1

µ
)

T ∗ ) = t(((t[−1](x))
( 1

µ
)

T ∗ )
λ
T ∗) = t((t[−1](x))

(λ
µ
)

T ∗ ).
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Example 4.21. Let T is the  Lukasiewicz t-norm and T ∗ the product t-norm.
If λ ≥ µ > 0, then λT ≤µT .

Proof. In this case, x
(r)
T ∗ = xr for all r ≥ 0 and t((t[−1](x))

(λ
µ
)

T ∗ ) = 1− (1− x)
λ
µ

which is a subadditive function when λ ≥ µ > 0.

Definition 4.22. Let R be a fuzzy relation on a set X, T a continuous
Archimedean t-norm with additive generator t, λ > 0 and T ∗ a strict contin-
uous Archimedean t-norm. R∗

λ is the fuzzy relation defined for all x, y ∈ X

by R∗
λ(x, y) = (R(x, y))

(λ)
T ∗ .

Proposition 4.23. R∗
λ is T -transitive if and only if R is λT -transitive.

Proof. R∗
λ is T -transitive if and only if for all x, y, z ∈ X ,

T (R∗
λ(x, y), R

∗
λ(y, z)) ≤ R∗

λ(x, z) ⇐⇒

t(R∗
λ(x, y)) + t(R∗

λ(y, z)) ≥ t(R∗
λ(x, z)) ⇐⇒

t((R(x, y))
(λ)
T ∗ ) + t((R(y, z))

(λ)
T ∗ ) ≥ t((R(x, z))

(λ)
T ∗ )

if and only if R is λT -transitive.

Definition 4.24. Let R be a fuzzy relation on a set X, T a continuous
Archimedean t-norm with additive generator t, λ > 0 and T ∗ a strict con-
tinuous Archimedean t-norm. λ∗

0(R) = sup{ 1
λ
| R is λT − transitive} is the

degree of transitivity of R with respect to the family {λT}λ>0.

Corollary 4.25. λ∗
0(R) = sup{ 1

λ
| R∗

λ is T − transitive}.

Example 4.26. We have seen in Example 4.9 that for the fuzzy relation R

with matrix 



1 0.3 0.8
0.3 1 0.6
0.8 0.6 1



 ,

if T is the  Lukasiewicz t-norm, then αT (R) = 0.9 and λ0(R) = 0.564. In this
case, considering T ∗ the product t-norm, λ∗

0(R) = 1
1.579

= 0.6331.
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5 How to make a Fuzzy Relation Transitive

For a given fuzzy relation R, in this section, a characterization of the map-
pings that provide a transitive relation smaller than or equal to R will be
obtained when the t-norm is continuous Archimedean. More specifically,
given a continuous Archimedean t-norm T and a fuzzy relation R with degree
of transitivity αT (R), we will characterize in Proposition 5.7 the mappings
σ : [0, 1]→ [0, 1] for which

• σ ◦R is T -transitive

• σ ◦R ≤ R.

Moreover, Proposition 5.9 will provide a way to obtain t-norms satisfying
that R is transitive with respect to them.

Definition 5.1. A fuzzy relation R on a set X is a proximity relation if for
all x, y ∈ X

• R(x, x) = 1

• R(x, y) = R(y, x).

Recall that if moreover R is T -transitive for a given t-norm T , then R is
called a T -indistinguishability operator (Definition 2.17).

Definition 5.2. Let X be a set. A mapping m : X × X → [0,∞] is δ-
triangular if δ = max(0, supx,y,z∈X{m(x, z) −m(x, y)−m(y, z)}).

δ = 0 if and only if m satisfies the triangular inequality (m(x, z) ≤
m(x, y) +m(y, z) for all x, y, z ∈ X).

Proposition 5.3. Let X be a set, δ > 0, m : X×X → [0,∞] a δ-triangular
mapping, m0 = inf(x,y)∈X×X m(x, y), ε : [0,∞] → [0,∞] a mapping, ε0 =
infa≥m0

ε(a) and ε1 = supa≥m0
ε(a). If ε satisfies the condition 2 ·ε0−ε1 ≥ δ,

then

1. m′ = (i + ε) ◦m (where i is the identity map) satisfies the triangular
inequality

2. m′ ≥ m.
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NOTE: If ε0 = ε1 =∞ then we assume 2 · ε0 − ε1 ≥ δ for all δ ≥ 0.

Proof.

a) If ε1 = ∞, then ε0 = ∞ and ε restricted to [m0,∞] is the constant
mapping ε(a) =∞. Hence, m′(x, y) =∞ for all x, y ∈ X .

b) If ε1 <∞,

1.
(i+ ε)(m(x, y)) + (i+ ε)(m(y, z)) ≥ (i+ ε)(m(x, z))

is equivalent to

ε(m(x, y))+ε(m(y, z))−ε(m(x, z)) ≥ m(x, z)−m(x, y)−m(y, z).

This equality holds since

ε(m(x, y))+ε(m(y, z))−ε(m(x, z)) ≥ 2·ε0−ε1 ≥ δ ≥ m(x, z)−m(x, y)−m(y, z).

2. m′ = m+ ε(m) ≥ m.

In order to deal with pseudometrics and proximity relations it is necessary
to split m(x, y) = 0 and ε(0) from the rest of possible values of m and ε. To
this end, we define a new condition on m.

If a mapping m : X × X → [0,∞] satisfies that if m(x, y) = 0, then
m(x, z) = m(y, z) for all x, y, z ∈ X , then we will say that m satisfies Con-
dition (*).

Proposition 5.4. Let X be a set, δ > 0, m : X×X → [0,∞] a δ-triangular
mapping satisfying condition (*), with m(x, x) = 0 and m(x, y) = m(y, x)
for all x, y ∈ X. Let M0 = {(x, y) s.t. 0 < m(x, y)}, m0 = inf(x,y)∈M0

m(x, y)
and suppose m0 > 0. Let ε : [0,∞] → [0,∞] be a mapping such that ε(0) =
0, ε0 = infa≥m0

ε(a) and ε1 = supa≥m0
ε(a). If ε satisfies the condition

2 · ε0 − ε1 ≥ δ for all a ∈ [m0,∞] then

1. m′ = (i+ ε) ◦m (where i is the identity map) is a pseudometric on X

2. m′ ≥ m.
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Proof. 1. We need to proof the inequality

(i+ ε)(m(x, y)) + (i+ ε)(m(y, z)) ≥ (i+ ε)(m(x, z)).

If m(x, y) > 0, m(y, z) > 0 and m(x, z) > 0 then proceed as in proof
of Proposition 5.3.

If m(x, y) = 0 (or m(y, z) = 0) then Condition (*) ensures that
m(y, z) = m(x, z), (resp. m(x,y)=m(x,z)), and therefore the inequality
holds.

If m(x, z) = 0 then (i + ε)(m(x, z)) = 0 and therefore the inequality
holds too.

Lemma 5.5. [19] Let T be a continuous Archimedean t-norm and t an ad-
ditive generator of T . Then

• If R is a T -transitive fuzzy relation on a set X, then t ◦R satisfies the
triangular inequality.

• If m : X ×X → [0,∞] satisfies the triangular inequality, then t[−1](m)
is a T -transitive fuzzy relation on X.

Lemma 5.6. Let T be a continuous Archimedean t-norm, t an additive gen-
erator of T , R a fuzzy relation on a set X and δ > 0. Then R has degree
of transitivity αT (R) if and only if m = t ◦R is a δ-triangular mapping with
δ = t(αT (R)).

Proof.

a) Case αT (R) = 1.

If αT (R) = 1 then R is T -transitive. Due to Lemma 5.5 this is equiva-
lent to m satisfying the triangular inequality, which means t(αT (R)) =
0.

b) Case αT (R) < 1.

Necessity
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If αT (R) < 1, then, in order to calculate αT (R) we can restrict ourselves to

the subset A ⊆ X3 of elements (x, y, z) ∈ X3 for which
−→
T (T (R(x, y), R(y, z))|R(x, z)) <

1, or, equivalently, T (R(x, y), R(y, z)) > R(x, z).

αT (R) = inf
(x,y,z)∈A

−→
T (T (R(x, y), R(y, z))|R(x, z))

= inf
(x,y,z)∈A

t−1(t(R(x, z))− t(t−1(t(R(x, y)) + t(R(y, z)))))

= inf
(x,y,z)∈A

t−1(m(x, z)−m(x, y)−m(y, z))

and

t(αT (R)) = sup
(x,y,z)∈A

{m(x, z)−m(x, y)−m(y, z)}

= sup
x,y,z∈X

{m(x, z)−m(x, y)−m(y, z)} = δ.

Sufficiency
δ = t(αT (R)) > 0 and in order to evaluate δ we can restrict ourselves to

the subset B ⊆ X3 of elements (x, y, z) ∈ X3 for which m(x, z) −m(x, y)−
m(y, z) ≥ 0.

From here,

αT (R) = inf
(x,y,z)∈X

−→
T (T (R(x, y), R(y, z))|R(x, z))

= inf
(x,y,z)∈B

−→
T (T (R(x, y), R(y, z))|R(x, z))

= inf
(x,y,z)∈B

t−1({t(R(x, z))− t(R(x, y))− t(R(y, z))})

= inf
(x,y,z)∈B

t−1({m(x, z)−m(x, y)−m(y, z)})

= t−1( sup
(x,y,z)∈B

{m(x, z)−m(x, y)−m(y, z)}).

Proposition 5.7. Let R be a fuzzy relation on a set X, T a continuous
Archimedean t-norm, t an additive generator of T and αT (R) the degree
of transitivity of R. Let m0 = inf(x,y)∈X×X t ◦ R(x, y), ε : [0,∞] → [0,∞] a
mapping, ε0 = infa≥m0

ε(a) and ε1 = supa≥m0
ε(a). If ε satisfies the condition

2 · ε0− ε1 ≥ t(αT (R)) (where i is the identity map) then σ = t[−1] ◦ (i+ ε) ◦ t
(where i is the identity map) satisfies
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1. σ ◦R is T -transitive

2. σ ◦R ≤ R.

Proof.

1. By the previous lemma, t◦R is t(αT (R))-triangular and, due to Propo-
sition 5.3, (i+ε)◦t◦R is a mapping satisfying the triangular inequality.

Therefore, t[−1] ◦ (i+ ε) ◦ t ◦R is a T -transitive fuzzy relation.

2. (i+ ε) ◦ t ◦R ≥ t ◦R and

t[−1] ◦ (i+ ε) ◦ t ◦R ≤ t[−1] ◦ t ◦R = R.

Proposition 5.8. Let R be a proximity relation on a set X, T a contin-
uous Archimedean t-norm, t an additive generator of T and αT (R) the de-
gree of transitivity of R. Suppose t ◦ R satisfies condition (*). Let M0 =
{(x, y) s.t. 0 < t ◦ R(x, y)}, m0 = inf(x,y)∈M0

t ◦ R(x, y) with m0 > 0,
ε : [0,∞] → [0,∞] a mapping such that ε(0) = 0, ε0 = infa≥m0

ε(a) and
ε1 = supa≥m0

ε(a). If ε satisfies the condition 2 · ε0 − ε1 ≥ t(αT (R) then

σ = t[−1] ◦ (i+ ε) ◦ t (where i is the identity map) satisfies

1. σ ◦R is a T -indistinguishability operator

2. σ ◦R ≤ R.

Proof. Proceed as in the previous proof but apply Proposition 5.4 instead.

It seems that s = (i+ε)◦t should be an additive generator of a continuous
t-norm for which R would be transitive. This is not necessarily the case
because s need not to be continuous. If m0 6= 0, ε is continuous on [m0,∞]
and we replace ε by ε′ : [0,∞]→ [0,∞] defined by

ε′(a) =

{
ε(a) if a > m0
ε(m0)
m0

· a if 0 ≤ a ≤ m0,

then ε′ is continuous and the next result follows.
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Proposition 5.9. With the previous notations, if R is a fuzzy relation on
X, m0 6= 0 and ε is continuous on [m(0),∞], then s = (i + ε′) ◦ t is the
additive generator of a t-norm T and R is T -transitive.

Remarks

• ε′|[0,m0]
can be replaced by any strictly increasing continuous mapping

f with f(0) = 0 and f(m0) = ε(m0).

• If, moreover, R is reflexive and symmetric, then R is a T -indistinguishabilty
operator.

We would like to find a T -transitive relation for which the degree of
similarity with the original relation is maximal. If R is T -transitive then
evidently the maximal such similarity degree is 1. Therefore we take the
corresponding similarity degree as a degree of the transitivity.

Definition 5.10. Let T be a nilpotent t-norm, t an additive generator of
T , R a fuzzy relation on a set X with degree of transitivity αT (R) , m0 =
inf(x,y)∈X×X(t ◦ R)(x, y), ε : [0,∞] → [0,∞] a mapping, ε0 = infa≥m0

ε(a)
and ε1 = supa≥m0

ε(a). If ε satisfies 2 · ε0 − ε1 ≥ t(αT (R)) and σ = t[−1] ◦
(i + ε) ◦ t, then the degree of transitivity ασ(R) of R with respect to σ is
ασ(R) = ET (σ(R), R).

Example 5.11. Considering again the fuzzy relation R from Example 4.9
with matrix 



1 0.3 0.8
0.3 1 0.6
0.8 0.6 1





and αT (R) = 0.9, the additive generator t(x) = 1 − x of the  Lukasiewicz
t-norm and ε defined by

ε(x) =







0 if x = 0
2+x
10

if 0 < x ≤ 1
0.3 if x > 1

,

σ(R) is the transitive relation with matrix




1 0.03 0.58
0.03 1 0.36
0.58 0.36 1



 .
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and the degree of transitivity with respect to σ is ασ(R) = ET (σ(R), R) =
0.73.

As it can be guessed from this example, the degree of transitivity of a
fuzzy relation R with respect to a mapping σ is always smaller than or equal
to αT (R).

Proposition 5.12. Let σ : [0, 1]→ [0, 1] be a mapping defined in Definition
5.10 and R a fuzzy relation on a set X with degree of transitivity αT (R). If
ασ(R) is the degree of transitivity of R with respect to σ, then ασ(R) ≤ αT (R).

Proof. From 2·ε0−ε1 ≥ t(αT (R)), it follows that ε0 ≥ t(αT (R)) and a fortiori
ε(x) ≥ t(αT (R)) for all x ∈ [m0,∞). From this, σ(R) ≤ T (R, αT (R)) or,

equivalently, ET (σ(R), R) = infx,y∈X
←→
T (σ(R(x, y))|R(x, y)) ≤ αT (R).

As a corollary of Proposition 5.7, we will give an alternative proof of
Proposition 3.4 for continuous Archimedean t-norms.

Proposition 5.13. Let T be a continuous Archimedean t-norm. R a fuzzy
relation on a set X and c ≤ αT (R). Then R(T,c) is a T -transitive fuzzy
relation.

Proof. With the previous notation, take as ε the mapping ε(x) = t(c) for
x > 0 and ε(0) = 0. ε fulfills the conditions of the last proposition and

(t[−1] ◦ (i+ ε) ◦ t)(R(x, y)) = t[−1](t(R(x, y)) + t(c)) = R(T,c)(x, y).

Finally, it T is a continuous strict Archimedean t-norm, the only mapping
σ providing a T -transitive fuzzy relation σ(R) to every fuzzy relation R on a
given set X is the constant mapping σ(x) = 0 for all x ∈ [0, 1] which means
that the obtained T -transitive relation from every fuzzy relation R is the
smallest fuzzy relation assigning the value 0 to any pair (x, y) ∈ X2. If T is
nilpotent then there are more mappings σ satisfying the former condition.

Proposition 5.14. Let X be a set and T a continuous strict Archimedean
t-norm. Then the only mapping σ : [0, 1] → [0, 1] satisfying for any fuzzy
relation R on X

1. σ ◦R is T -transitive
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2. σ ◦R ≤ R

is the constant mapping σ(x) = 0 for all x ∈ [0, 1].

Proof. Given a ∈ [0, 1], consider a fuzzy relation R such that R(x, y) =
R(y, z) = a and R(x, z) = 0 for some x, y, z ∈ X .

Since σ ◦ R is T -transitive and σ ◦ R ≤ R we have T (σ(a), σ(a)) =
T (σ ◦ R(x, y), σ ◦ R(y, z)) ≤ σ ◦ R(x, z) ≤ R(x, z) = 0. Therefore σ(a) = 0
because T is strict.

Proposition 5.15. Let X be a set and T a nilpotent t-norm, and α =
sup{a ∈ [0, 1] s.t. T (a, a) = 0}. Then the mapping σ : [0, 1] → [0, 1] defined
by

σ(a) =

{
α if a > α

a if a ≤ α

is the biggest mapping satisfying for any fuzzy relation R on X

1. σ ◦R is T -transitive

2. σ ◦R ≤ R.

Proof. σ(a) ≤ a for all a ∈ [0, 1]. Therefore, σ ◦R ≤ R.
As for the transitivity, T (σ ◦ R(x, y), σ ◦ R(y, z)) ≤ T (α, α) = 0 ≤ σ ◦

R(x, z).
Let σ′ be a mapping satisfying 1 and 2, and b ∈ [0, 1].We need to proof

that σ′(b) ≤ σ(b). σ′ ◦R ≤ R for all R implies that σ′ ≤ i (the identity map).
If b ≤ α, then σ′(b) ≤ i(b) = b = σ(b). If b > α consider a fuzzy relation

R such that R(x, y) = R(y, z) = b and R(x, z) = 0 for some x, y, z ∈ X .
Then σ′(b) ≤ α follows from: T (σ′(b), σ′(b)) = T (σ′ ◦R(x, y), σ′ ◦R(y, z)) ≤
σ′ ◦R(x, z) ≤ i ◦R(x, z) = 0.

The defined degrees ασ(R) of a fuzzy relation R depend on σ. As we
would like to find a T -transitive relation for which the degree of similarity
with the original relation is maximal we can consider the supremum of all
degrees ασ(R) as its degree of transitivity from below.

Definition 5.16. Let T be a nilpotent t-norm, t an additive generator of T
and R a fuzzy relation on a set X with degree of transitivity αT (R).Consider
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the family F of all mappings σ satisfying the conditions of Definition 5.10.
Then the degree of transitivity from below αb(R) of R is αb(R) = sup{ασ(R) | σ ∈
F}.

As an immediate consequence of Propostion 5.12, we obtain that for every
fuzzy relation R, αb(R) ≤ αT (R).

6 Concluding Remarks

The degree of transitivity of a fuzzy relation R has been revisited. From
the original t-norm T a family (Tc)c∈[0,1] and a family of fuzzy relations
(R(T,c))c∈[0,1] have been generated in such a way that the degree of T -tran-
sitivity αT (R) of R coincides with the greatest c ∈ [0, 1] for which R is
Tc-transitive and for which R(T,c) is T -transitive.

Inspired by these relationships, different degrees of transitivity related
to new families of t-norms have been provided in Section 4 following two
directions.

In the first one, from a continuous Archimedean t-norm with additive
generator t, the family (Tλ)λ>0 of continuous Archimedean t-norms with ad-
ditive generators tλ is considered and the degree of transitivity of a fuzzy
relation R with respect to (Tλ)λ>0 is defined as the supremum of λ such that
R is Tλ-transitive.

In the second one, a new strict t-norm T ∗ is involved in the generation of
a new family (λT )λ>0 and the degree of transitivity of a fuzzy relation with
respect to this family is analyzed.

In Section 5 the mappings σ transforming a fuzzy relation R into a T -
transitive fuzzy relation σ(R) smaller than or equal to R have been studied
and characterized.
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