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Abstract

In this work, we introduce the notion of dG-Choquet integral, which generalizes the discrete Choquet integral
replacing, in the first place, the difference between inputs represented by closed subintervals of the unit
interval [0, 1] by a dissimilarity function; and we also replace the sum by more general appropriate functions.
We show that particular cases of dG-Choquet integral are both the discrete Choquet integral and the d-
Choquet integral. We define interval-valued fuzzy measures and we show how they can be used with
dG-Choquet integrals to define an interval-valued discrete Choquet integral which is monotone with respect
to admissible orders. We finally study the validity of this interval-valued Choquet integral by means of an
illustrative example in a classification problem.

Keywords: Choquet integral; Interval-valued dissimilarity function; Interval-valued fuzzy measure;
d-Choquet integral

1. Introduction

In recent years there exists a growing interest on fuzzy integrals [1, 2] for fusing information. This interest
has been specially focused on discrete Choquet integrals [3], which have shown themselves very useful in a
wide variety of problems in machine learning [4, 5, 6, 7, 8, 9]. Due to this usefulness, several generalizations
of Choquet integrals in the framework of real numbers have been proposed in the literature, leading to
notions such as Choquet-like integrals [10]; concave integrals [11]; universal integrals [12]; CT -integrals [13];
CF -integrals [14]; CC -integrals [15] or CF1F2-integrals [16, 17]; see [18] for an overview of many of these
extensions.

Besides, in some problems the use of intervals can provide a means to represent uncertainty linked to the
data [19, 20]. In order to compare and fuse this type of data, different interval-valued extensions of notions
such as those of aggregation function [21] or similarity functions [22] can be found in the literature.

However, the extension of the Choquet integral in the interval-valued framework is not a trivial or
straightforward task. Note the the standard discrete Choquet makes use of the difference between real
numbers, and the difference between intervals is not well defined, in general. On the other hand, the
difference in the standard Choquet integral is used to determine how dissimilar two inputs are, so it makes
sense to replace it by another function, such as a dissimilarity for instance. This, in the case of real numbers,
was the approach followed in [23], which led to the notion of d-Choquet integral.

Moreover, one key property of discrete Choquet integrals in the real setting is monotonicity with respect
to the usual order between real numbers, which is linear. In the interval-valued setting, on the contrary, it
does not exist a “standard” linear order, although several different linear orders, called admissible orders [24],
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can be defined and used to consider monotonicity. In this sense, this problem was considered in [25], where
lower and upper bounds of the involved intervals were considered separately, and also in [26, 27], but it was
restricted to the case or real-valued fuzzy measures, due to the problem of appropriately defining operations
for intervals. In [28] and [29] two different generalizations of the Choquet integral to the setting of fuzzy
numbers were proposed. In the former, the restriction to our setting of closed subintervals in [0, 1] with
respect to a fuzzy measure only gives decomposable interval functions, i.e., the left (or right) endpoint of
the output interval can be obtained separately in terms of the left (or right) endpoints of the input intervals,
whereas our goal is to also obtain non-decomposable generalizations of the Choquet integral to intervals. In
the later, the generalization was based on the representation of the Choquet integral by means of the Mobius
transform which was a way to overcome the difficulty of the ordering of fuzzy numbers (or ordering intervals
in the restriction to intervals), however, our goal was to propose a tool for intervals fusion/aggregation which
takes into account the specific features/structure of intervals, mainly the linear order, hence our approach
is based on the definiton of the discrete Choquet integrals in terms of the ordered inputs.

Taking into account these facts, our objective in this paper is to extend the notion of discrete Choquet
integral to the interval-valued setting in such a way that the difference between two intervals is given by the
dissimilarity between them and, moreover, monotonicity with respect to admissible orders is preserved and
interval-valued fuzzy measures are used.

In order to reach this objective, we are going to define the notion of discrete dG-Choquet integral, which
generalizes the usual Choquet integral by replacing, in the standard definition of the discrete Choquet
integral, the difference of inputs by a binary function d (e.g. distance, dissimilarity function etc.), the
product by a binary function P and the sum by an n-ary function S, all of them with possibly different
domains and ranges. We also replace the fuzzy measure by a set function m which needs not be real-valued.
In this way, we show that dG-Choquet integrals generalize both standard Choquet integrals and d-Choquet
integrals. Furthermore, by an appropriate choice of the functions d, P and S, as well as of the set function
m, we show that, from dG-Choquet integrals, we can define interval-valued Choquet integrals which are
monotone with respect to admissible orders. It is worth to mention that such generalization is obtained, in
particular, by considering that the values of m are intervals. In other words, m can be seen, for the specific
case of interval-valued Choquet integrals, as an interval-valued fuzzy measure.

For displaying the usefulness of our theoretical proposal, we discuss an illustrative example where we
use the proposed interval-valued Choquet integral for combining the predictions of an ensemble of IVTURS
classifiers [30], whose predictions are interval-valued. The accuracy of the proposed methodology will be
compared with existing alternatives of the interval-valued Choquet integral proposed in [26].

The structure of this paper is as follows. In Section 2 we present some preliminary definitions and results
which are necessary for the rest of the work. In Section 3 we introduce the new notion of discrete dG-Choquet
integral. In Section 4 we study interval-valued fuzzy measures and interval-valued dissimilarity functions
that we use in Section 5 to propose our notion of discrete interval-valued Choquet integral with respect to
admissible orders. Section 6 is devoted to the illustrative example and we finish with some conclusions and
references.

2. Preliminaries

In this section, we recall some basic notions and terminology that are necessary for our subsequent
developments.

Based on Fodor’s equivalence function [31], a dissimilarity function is defined as follows.

Definition 2.1. A function δ : [0, 1]2 → [0, 1] is called a dissimilarity function on [0, 1] if it satisfies, for all
x, y, z ∈ [0, 1], the following conditions:

1. δ(x, y) = δ(y, x);

2. δ(0, 1) = 1;

3. δ(x, x) = 0;

4. if x ≤ y ≤ z, then δ(x, y) ≤ δ(x, z) and δ(y, z) ≤ δ(x, z).
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We denote the set {1, . . . , n} by [n].

Definition 2.2. A function µ : 2[n] → [0, 1] is called a fuzzy measure on [n] if µ(∅) = 0, µ([n]) = 1 and
µ(A) ≤ µ(B) for all A ⊆ B ⊆ [n].

Definition 2.3 ([32]). Let n be a positive integer. A function F : [0, 1]n → [0, 1] is called an n-ary
aggregation function if F (0) = 0, F (1) = 1 and F is non-decreasing in each variable. A function F :
n⋃
k=1

[0, 1]k → [0, 1] is called an extended aggregation function if its restriction to [0, 1]k, for any k ∈ [n], is an

aggregation function in [0, 1]k.

Definition 2.4 ([32]). Let A,B be non-empty sets, n be a positive integer and F :
n⋃
k=1

Ak → B be a

function. An element e ∈ A is called an extended neutral element of F if, for any k ∈ [n] and any
x1, . . . , xk ∈ A such that xj = e for some j ∈ [k] it holds

F (x1, . . . , xk) = F (x1, . . . , xj−1, xj+1, . . . , xk).

We consider closed subintervals of the unit interval [0, 1], we denote:

L([0, 1]) = {X = [X,X] | 0 ≤ X ≤ X ≤ 1}.

The width of the interval X ∈ L([0, 1]) will be denoted by w(X), clearly w(X) = X −X. We will denote
by -L the partial order relation on L([0, 1]) induced by the usual partial order on R2, that is:

[X,X] -L [Y , Y ] if X ≤ Y and X ≤ Y . (1)

This is the order relation most widely used in the literature [33]. Regarding total orders on L([0, 1]), we are
going to consider the so-called admissible orders.

Definition 2.5 ([24]). An admissible order on L([0, 1]) is a total order ≤A in L([0, 1]) such that it refines
the partial order -L, that is, for every X,Y ∈ L([0, 1]), if X -L Y then X ≤A Y .

We denote by ≤L any order on L([0, 1]) (which can be partial or total) with 0L = [0, 0] as its minimal
element and 1L = [1, 1] as its maximal element. To denote an admissible order on L([0, 1]) we use the notation
≤A. An interesting feature of admissible orders is that they can be built using aggregation functions, as
stated in the following proposition.

Proposition 2.6 ([24]). Let M1,M2 : [0, 1]2 → [0, 1] be two aggregation functions such that for all X,Y ∈
L([0, 1]), the equalities M1(X,X) = M1(Y , Y ) and M2(X,X) = M2(Y , Y ) can only hold simultaneously if
X = Y . The order ≤M1,M2 on L([0, 1]) given by

X ≤M1,M2 Y if

{
M1(X,X) < M1(Y , Y ) or

M1(X,X) = M1(Y , Y ) and M2(X,X) ≤M2(Y , Y )

is an admissible order on L([0, 1]).

Example 2.7. (i) Xu and Yager’s order (see [34]):

[X,X] ≤XY [Y , Y ] ⇔

{
X +X < Y + Y or

X +X = Y + Y and X −X ≤ Y − Y ,

is an example of admissible order with M1(x, y) = x+y
2 and M2(x, y) = y.
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(ii) The lexicographical orders ≤Lex1 and ≤Lex2:

[X,X] ≤Lex1
[Y , Y ] ⇔

{
X < Y or

X = Y and X ≤ Y

and

[X,X] ≤Lex2 [Y , Y ] ⇔

{
X < Y or

X = Y and X ≤ Y ,

are also examples of admissible orders with M1(x, y) = x,M2(x, y) = y for ≤Lex1 and M1(x, y) =
y,M2(x, y) = x for ≤Lex2.

(iii) More generally, if, for α ∈ [0, 1], we define the aggregation function

Kα(x, y) = αx+ (1− α)y

then, for α, β ∈ [0, 1] with α 6= β, we can obtain an admissible order ≤α,β just taking M1(x, y) =
Kα(x, y) and M2(x, y) = Kβ(x, y). See [24] for more details.

Definition 2.8. Let n ≥ 2. An (n-dimensional) interval-valued (IV) aggregation function on L([0, 1]) with
respect to ≤L is a mapping M : (L([0, 1]))n → L([0, 1]) which verifies:

(i) M(0L, · · · , 0L) = 0L.
(ii) M(1L, · · · , 1L) = 1L.
(iii) M is a non-decreasing function in each variable with respect to ≤L.

We say that M : (L([0, 1]))n → L([0, 1]) is a decomposable n-dimensional IV aggregation function
associated with ML and MU , if there exist n-dimensional aggregation functions ML,MU : [0, 1]n → [0, 1]
such that ML ≤MU and

M(X1, . . . , Xn) =
[
ML

(
X1, . . . , Xn

)
,MU

(
X1, . . . , Xn

)]
(2)

for all X1, . . . , Xn ∈ L([0, 1]).

Definition 2.9. Let ≤L be an order relation on L([0, 1]). A function N : L([0, 1])→ L([0, 1]) is an interval-
valued negation function (IV negation) if it is a non-increasing function with respect to the order ≤L such
that N(0L) = 1L and N(1L) = 0L.

Definition 2.10. Let ≤L be an order on L([0, 1]). An interval-valued (IV) implication function in L([0, 1])
with respect to ≤L is a function I : (L([0, 1]))2 → L([0, 1]) which verifies the following properties:

1. I is a non-increasing function in the first component and an non-decreasing function in the second
component with respect to the order ≤L.

2. I(0L, 0L) = I(0L, 1L) = I(1L, 1L) = 1L.
3. I(1L, 0L) = 0L.

3. Discrete dG-Choquet integrals

The discrete Choquet integral on [0, 1] with respect to µ is defined as a mapping Cµ : [0, 1]n → [0, 1]
such that

Cµ(x1, . . . , xn) =

n∑
i=1

(xσ(i) − xσ(i−1))µ
(
Aσ(i)

)
(3)

where µ : 2[n] → [0, 1] is a fuzzy measure on [n], σ is a permutation on [n] with xσ(1) ≤ . . . ≤ xσ(n), with
the convention xσ(0) = 0 and Aσ(i) := {σ(i), . . . , σ(n)}.

In order to generalize the discrete Choquet integral to various different settings, we replace the difference
xσ(i)−xσ(i−1) by a binary function d (e.g. distance, dissimilarity function etc.), product by a binary function
P , sum by an n-ary function S and fuzzy measure by a set function m, all of them with possibly different
domains and ranges.
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Definition 3.1. Let n be a positive integer. Let

• S :
n⋃
i=1

Di → E be a function with S(d) = d for all d ∈ D, where D,E are sets such that D ⊆ E and

there exists an extended neutral element 0D ∈ D of the function S;

• P : B × C → D be a function, where B,C are sets such that there exists 0B ∈ B satisfying, for all
c ∈ C, P (0B , c) = 0D;

• d : A2 → B be a function such that d(a, a) = 0B for all a ∈ A where A is a set with a total order ≤
and the minimum element 0A;

• m : 2[n] → C be a set function.

Then an n-ary discrete dG-Choquet integral on A with respect to S, P,m, d is defined as a mapping CS,P,m,d :
An → E such that

CS,P,m,d(x1, . . . , xn) = Sni=1

(
P
(
d
(
xσ(i), xσ(i−1)

)
,m
(
Aσ(i)

) ))
(4)

for all x1, . . . , xn ∈ A, where σ is a permutation on [n] with xσ(1) ≤ . . . ≤ xσ(n), with the convention
xσ(0) = 0A and Aσ(i) := {σ(i), . . . , σ(n)}.

Remark 3.2. (i) The existence of elements 0B and 0D with the described property and the property
d(a, a) = 0B for all a ∈ A ensures that if there exist several possible permutations such that xσ(1) ≤ . . . ≤
xσ(n), the result for any of them when applying (4) is the same. Hence, CS,P,m,d is well-defined.

(ii) Clearly, taking A = B = C = D = E = [0, 1], the sum as S, the product as P , a fuzzy measure µ as
m and d(x, y) = |x− y| for all x, y ∈ [0, 1], we obtain the ’standard’ discrete Choquet integral with respect
to µ as defined in Equation (3).

(iii) In [23] we have introduced the so-called discrete d-Choquet integral which is a particular case of
CS,P,m,d such that:

• A = B = C = D = [0, 1] and E = [0, n];

• as a set function m we considered a fuzzy measure µ : 2[n] → [0, 1];

• as a binary function d we considered a restricted dissimilarity function δ : [0, 1]2 → [0, 1];

• as an n-ary function S : Dn → E we considered the sum;

• as a binary function P : B × C → D we considered the product.

Hence, we have studied the function Cµ,δ : [0, 1]n → [0, n] defined as:

Cµ,δ(x1, . . . , xn) =
n∑
i=1

δ(xσ(i), xσ(i−1))µ
(
Aσ(i)

)
(5)

where σ is a permutation on [n] with xσ(1) ≤ . . . ≤ xσ(n), with the convention xσ(0) = 0 and Aσ(i) :=
{σ(i), . . . , σ(n)}.

As a next step, we are going to generalize the discrete Choquet integral to intervals, so we obtain
particular cases of discrete dG-Choquet integrals considering the functions:

• as the function d we use an interval-valued dissimilarity function δ : (L([0, 1]))2 → L([0, 1]);

• as the set function m we use

– a fuzzy measure µ : 2[n] → [0, 1], or
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– an interval-valued fuzzy measure m : 2[n] → L([0, 1]);

• as the function P we use

– P : L([0, 1])× [0, 1]→ L([0, 1]) defined by P ([a, b], c) = [ac, bc] in the case of fuzzy measure, and

– P : (L([0, 1]))2 → L([0, 1]) defined by P ([a, b], [c, d]) = [ac, bd] in the case of interval-valued fuzzy
measure;

• as the function S we use

– S :
n⋃
i=1

(L([0, 1]))i → L([0, n]) defined by P ([a1, b1], . . . , [an, bn]) = [a1 + . . .+ an, b1 + . . .+ bn], or

–
⊕

:
n⋃
i=1

(L([0, 1]))i → L([0, n]) defined as a new operation on intervals based on Kα operators

introduced in Theorem 5.11.

Recall that, according to Definition 3.1, the obtained Choquet integrals have to be with respect to a total
(not only partial) order. Hence, also the considered IV dissimilarity functions, IV fuzzy measures as well as
functions P and S have to be defined with respect to the total order.

4. Interval-valued fuzzy measures and Interval-valued dissimilarity functions

4.1. Interval-valued fuzzy measures

Definition 4.1. Let n be a positive integer and ≤A be an admissible order on L([0, 1]). A function m :
2[n] → L([0, 1]) is called an interval-valued fuzzy measure on [n] w.r.t. ≤A if m(∅) = 0L, m([n]) = 1L and
m(A) ≤A m(B) for all A ⊆ B ⊆ [n].

The IV fuzzy measure m : 2[n] → L([0, 1]) is a generalization of fuzzy measure µ : 2[n] → [0, 1] as defined
in Definition 2.2. According to the following proposition, the fuzzy measure is a special case of the IV fuzzy
measure. Recall that an interval [x, x] is called degenerate interval and we can write x instead of [x, x].

Proposition 4.2. Let n be a positive integer, ≤A be an admissible order on L([0, 1]) and m : 2[n] → L([0, 1])
be an interval-valued fuzzy measure on [n] w.r.t. ≤A. If, for all A ⊆ [n], it holds m(A) = [x, x] for some
x ∈ [0, 1], then µ : 2[n] → [0, 1] given by µ(A) = x if and only if m(A) = [x, x], is a fuzzy measure on [n].

Proof. It is immediate that µ(∅) = 0 and µ([n]) = 1. Since any admissible order satisfies [a, b] ≤A [c, d]
whenever a ≤ c and b ≤ d, the monotonicity of µ follows from the monotonicity of m.

Theorem 4.3. Let n be a positive integer and ≤A be an admissible order on L([0, 1]). Then m : 2[n] →
L([0, 1]) is an IV fuzzy measure on [n] w.r.t. ≤A if and only if there exists an IV aggregation function
Mm : L([0, 1])n → L([0, 1]) w.r.t. ≤A such that for every A ∈ 2[n]

m(A) = Mm(1A)

where

1A = (X1, . . . , Xn) with Xi =

 1L, if i ∈ A
0L, otherwise.

Example 4.4. (i) LetMm be the IV aggregation function defined byMm(X1, . . . , Xn) = [1/n
∑n
i=1Xi, 1/n

∑n
i=1Xi].

Then the corresponding IV fuzzy measure is given by:

m(A) =

[
|A|
n
,
|A|
n

]
.
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(ii) For Mm(X1, . . . , Xn) =

[
n

√∏n
i=1Xi,

n

√∏n
i=1Xi

]
we have

m(A) =

 1L, if A = [n],

0L, otherwise.

Note that in (i) and (ii) we obtained fuzzy measures on [n], i.e. all the outputs are degenerate intervals.

(iii) For Mm(X1, . . . , Xn) =
[
n

√∏n
i=1Xi, 1/n

∑n
i=1Xi

]
we have

m(A) =

 1L, if A = [n],[
0, |A|n

]
, otherwise.

(iv) If Mm(X1, . . . , Xn) =
[
min{X1, . . . , Xn},max{X1, . . . , Xn}

]
we have

m(A) =


0L, if A = ∅,
1L, if A = [n],

[0, 1] , otherwise.

A construction of IV fuzzy measure in terms of two fuzzy measures is given next.

Proposition 4.5. Let n be a positive integer and µL, µU : 2[n] → [0, 1] be fuzzy measures such that µL ≤ µU .
Then m : 2[n] → L([0, 1]) given by

m(A) = [µL(A), µU (A)]

for all A ⊆ [n], is an IV fuzzy measure on [n] w.r.t. any admissible order ≤A.

Proof. Clearly, m is well-defined and m(∅) = 0L, m([n]) = 1L. From the monotonicity of µL, µU and the fact
that each admissible order extends standard partial order of intervals we have the monotonicity of m.

We say that m : 2[n] → L([0, 1]) introduced in Proposition 4.5 is a decomposable IV fuzzy measure
associated with µL and µU . A construction of decomposable IV fuzzy measure is given in the following
theorem.

Theorem 4.6. If an IV aggregation function Mm : (L([0, 1]))n → L([0, 1]) is decomposable and associated
with ML,MU : [0, 1]n → [0, 1], then the corresponding IV fuzzy measure m : 2[n] → L([0, 1]) induced from
Mm as in Theorem 4.3 is decomposable associated with µL, µU : 2[n] → [0, 1] where µL(A) = ML (1A) and
µU (A) = MU (1A).

Note that if m : 2[n] → L([0, 1]) is an IV fuzzy measure w.r.t. some admissible order, the set functions
µ1, µ2 : 2[n] → [0, 1] such that µ1(A) = m(A) and µ2(A) = m(A) may not be fuzzy measures, since the
monotonicity of µ1, µ2 is not secured.

Example 4.7. Let ≤XY be Xu and Yager’s order and let m be an IV fuzzy measure w.r.t. ≤XY such that
m(B) = [0.2, 0.6] and m(C) = [0.1, 0.7] for some B ⊂ C. Then µ1(B) = m(B) = 0.2 > 0.1 = m(C) = µ1(C),
hence the monotonicity is not satisfied and consequently µ1 is not a fuzzy measure.

We will use the following notation and results from [35]. Let c ∈ [0, 1] and α ∈]0, 1[. We denote by
dα(c) the maximal possible width of an interval Z ∈ L([0, 1]) such that Kα(Z) = c. Moreover, for any
X ∈ L([0, 1]) let

λα(X) =
w(X)

dα(Kα(X))
(6)

where we set 0
0 = 0.
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Proposition 4.8 ([35]). For all α ∈]0, 1[ and X ∈ L([0, 1]) it holds that

dα(Kα(X)) = min

{
Kα(X)

α
,

1−Kα(X)

1− α

}
. (7)

Now, considering a fuzzy measure µ on [n], we can construct IV fuzzy measures on [n] with respect to
orders ≤α,β .

Proposition 4.9. Let n be a positive integer and α, β ∈]0, 1[, β 6= α. Let µ : 2[n] → [0, 1] be a fuzzy measure
on [n]. Then m : 2[n] → L([0, 1]) defined by:

m(A) = Y, where


Kα(Y ) = µ(A),

λα(Y ) =

{
α−µ(A)

α , if µ(A) ≤ α,
1−µ(A)

1−α , otherwise.

(8)

for all A ∈ 2[n], is an IV fuzzy measure on [n] with respect to ≤α,β.

Proof. First observe that Kα (m (A)) as well as λα (m (A)) is a number from [0, 1] for any A ∈ 2[n], hence the
function m is well-defined. Since Kα (m (∅)) = µ(∅) = 0 and Kα (m ([n])) = µ([n]) = 1, we have m (∅) = 0L
and m ([n]) = 1. Now let A ⊆ B ⊆ [n], then there are two possibilities:

1. µ(A) = µ(B), which implies that Kα (m (A)) = Kα (m (B)) and λα (m (A)) = λα (m (B)), i.e. m(A) =
m(B);

2. µ(A) < µ(B), which implies that Kα (m (A)) < Kα (m (B)), i.e. m(A) <α,β m(B),

which proves the monotonicity.

Remark 4.10. The explicit form for computing λα(Y ) in Equation (8) is:

λα(Y ) =
max{0, α− µ(A)}

α
+

max{0, µ(A)− α}(1− µ(A))

(1− α)(µ(A)− α)
. (9)

Example 4.11. Consider the IV fuzzy measure given in Proposition 4.9 where n = 5, α = 1
3 and µ(A) = |A|

n .

• If |A| = 1, then Kα (m (A)) = 1
5 , λα (m (A)) = 2

5 , dα (Kα)) = 3
5 , w (m (A)) = 6

25 , hence µ(A) =[
3
25 ,

9
25

]
.

• If |A| = 2, then Kα (m (A)) = 2
5 , λα (m (A)) = 9

10 , dα (Kα)) = 9
10 , w (m (A)) = 81

100 , hence µ(A) =[
13
100 ,

94
100

]
.

• If |A| = 3, then Kα (m (A)) = 3
5 , λα (m (A)) = 3

5 , dα (Kα)) = 3
5 , w (m (A)) = 9

25 , hence µ(A) =[
12
25 ,

21
25

]
.

• If |A| = 4, then Kα (m (A)) = 4
5 , λα (m (A)) = 3

10 , dα (Kα)) = 3
10 , w (m (A)) = 9

100 , hence µ(A) =[
77
100 ,

86
100

]
.

By the following proposition we obtain a construction method for indecomposable IV aggregation func-
tions w.r.t. ≤α,β .

Proposition 4.12 ([36]). Let α, β ∈]0, 1[, β 6= α. Let MM1,MM2 : [0, 1]n → [0, 1] be aggregation functions
where MM1 is strictly increasing. Then M : (L([0, 1]))n → L([0, 1]) defined by:

M(X1, . . . , Xn) = Y, where

{
Kα(Y ) = MM1 (Kα(X1), . . . ,Kα(Xn)) ,

λα(Y ) = MM2 (λα(X1), . . . , λα(Xn)) ,

for all X1, . . . , Xn ∈ L([0, 1]), is an IV aggregation function with respect to ≤α,β.
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Note that applying the indecomposable IV aggregation functions from Proposition 4.12 in Theorem 4.3
we receive an IV fuzzy measure such that, for all A ⊆ [n], it holds µ(A) = [x, x] for some x ∈ [0, 1], i.e., in
fact the fuzzy measure with the range in [0, 1].

Remark 4.13. It is worth pointing out that the explicit form of the IV aggregation function given in Propo-
sition 4.12 can be expressed as follows. To shorten the notation we set K = MM1 (Kα(X1), . . . ,Kα(Xn))
and L = MM2 (λα(X1), . . . , λα(Xn)). Then,

M(X1, . . . , Xn) = Y,

where

Y = K− αL min

{
K

α
,

1−K

1− α

}
and Y =

K

α
− 1− α

α
Y .

4.2. Interval-valued dissimilarity functions

In order to define discrete IV Choquet integral, we deal with IV dissimilarity functions in this part.

Definition 4.14. Let ≤A be an admissible order on L([0, 1]). A function d : (L([0, 1]))2 → L([0, 1]) is called
an interval-valued dissimilarity function on L([0, 1]) w.r.t. ≤A if it satisfies, for all X,Y, Z ∈ L([0, 1]), the
following conditions:

1. d(X,Y ) = d(Y,X);

2. d(0L, 1L) = 1L;

3. d(X,X) = 0L;

4. if X ≤A Y ≤A Z, then d(X,Y ) ≤A d(X,Z) and d(Y, Z) ≤A d(X,Z).

The construction of IV dissimilarity function using an IV negation and IV implication is given in the
following theorem.

Theorem 4.15 ([36]). Let ≤A be an admissible order on L([0, 1]), N be an IV negation with respect to ≤A

and I be an IV implication function such that, for all X,Y ∈ L([0, 1]), I(X,Y ) = 1L whenever X ≤A Y .
Let M : L([0, 1])2 → L([0, 1]) be an IV aggregation function with respect to ≤A such that M(1L, 0L) = 0L
and M(X,Y ) = M(Y,X) for all X,Y ∈ L([0, 1]). Then the function d : L([0, 1])2 → L([0, 1]) defined by

d(X,Y ) = N
(
M(I(X,Y ), I(Y,X))

)
(10)

is an IV dissimilarity function on L([0, 1]) w.r.t. ≤A.

Proof. 1. Symmetry of d immediately follows from the symmetry of M .
2.

d (0L, 1L) = N (M (I(0L, 1L), I(1L, 0L))) = N (M (1L, 0L)) = N (0L) = 1L

3.
d (X,X) = N (M (I(X,X), I(X,X))) = N (M (1L, 1L)) = N (1L) = 0L

4. If X ≤A Y ≤A Z, then I(X,Y ) = I(X,Z) = 1L and I(Z,X) ≤A I(Y,X), hence, by the monotonicity
of M and N , we have d(X,Y ) ≤A d(X,Z). Similarly, d(Y,Z) ≤A d(X,Z).

Example 4.16. (i) Let us consider Xu and Yager’s order. The function M : (L([0, 1]))2 → L([0, 1]) given
by

M(X,Y ) =

[
XY +XY

2
,
XY +XY

2

]
(11)

is an IV aggregation function w.r.t. Xu and Yager’s order satisfying the assumptions of Theorem 4.15.
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The function I : L([0, 1])2 → L([0, 1]) defined by

I(X,Y ) =

{
1L, if X ≤A Y,

MI(N(X), Y ), if X >A Y,
(12)

is an IV implication w.r.t. Xu and Yager’s order satisfying the assumptions of Theorem 4.15. Note that, in
Equation (12), MI can be any IV aggregation function w.r.t. Xu and Yager’s order (for instance M from
Equation (11)) and N can be any IV negation w.r.t. Xu and Yager’s order, for instance

N(X) = [c′ − r′, c′ + r′] with

{
c′ = 1− c,
r′ = a− r.

(13)

where c = X+X
2 , r = X−X

2 and a = min{c, 1− c}, see [35, Theorem 2].
Hence, applying Equations (11), (12) and (13) into Equation (10), we obtain an IV dissimilarity measure

w.r.t. Xu and Yager’s order.
(ii) Now consider Kα,β order for some α, β ∈]0, 1[, β 6= α. To build an IV dissimilarity measure w.r.t.

≤α,β we can, for instance, use:

• The IV implication function given by Equation (12).

• Some IV negation w.r.t. ≤α,β defined in [35].

• The IV aggregation function M : (L([0, 1]))n → L([0, 1]) given in Proposition 4.12.

Remark 4.17. The IV dissimilarity functions defined in Example 4.16 are not suitable for our intention
to build a discrete IV Choquet integral with range in L([0, 1]), since it is possible that, for some 0L ≤XY

X1 ≤XY . . . ≤XY Xn ≤ 1L, it holds d(X1, X2) + d(X2, X3) + . . . + d(Xn−1, Xn) >XY 1L (or w.r.t. ≤α,β in
case (ii)). Hence, the output of Cm,d could be greater than 1L.

In the following proposition, in line with the previous remark, an IV dissimilarity function that can be
used to construct a discrete IV Choquet integral with the range in L([0, 1]) is introduced.

Proposition 4.18. Let α, β ∈]0, 1[ with α 6= β. Let Md : [0, 1]2 → [0, 1] be a symmetric aggregation
function, δd : [0, 1]2 → [0, 1] be a strictly monotone dissimilarity function and λα be given as in (6). Then
the function d : L([0, 1])2 → L([0, 1]) defined by

d(X,Y ) = Z, where

 Kα(Z) = δd(Kα(X),Kα(Y ));

λα(Z) = Md(λα(X), λα(Y )),
(14)

is an IV dissimilarity function w.r.t. ≤α,β.

Proof. 1. Symmetry of d immediately follows from the symmetry of δd and Md.

2. Let d (0L, 1L) = Z. Then Kα(Z) = δ(0, 1) = 1 and λα(Z) = Md(0, 0) = 0, hence Z = 1L.

3. Let d (X,X) = Z. Then Kα(Z) = δ(Kα(X),Kα(X)) = 0, hence dα(Kα(Z)) = 0 and consequently
Z = 0L.

4. Let X ≤α,β Y ≤α,β Z and d(X,Y ) = U, d(X,Z) = V . We consider two cases:

(i) If Kα(Y ) < Kα(Z), then Kα(U) < Kα(V ), thus d(X,Y ) ≤α,β d(X,Z).
(ii) If Kα(Y ) = Kα(Z) and Kβ(Y ) ≤ Kβ(Z), then Kα(U) = Kα(V ) and there are two cases:

(a) Let α < β. Then w(Y ) ≤ w(Z), thus λα(Y ) ≤ λα(Z) and by the monotonicity of M we have
λα(U) ≤ λα(V ), hence w(U) ≤ w(V ) and consequently U ≤α,β V .

(b) Let α > β. Then w(Y ) ≥ w(Z), thus λα(Y ) ≥ λα(Z), hence λα(U) ≥ λα(V ), from which it
follows w(U) ≥ w(V ) and finally U ≤α,β V .
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Remark 4.19. Similarly to Remark 4.13 we can express the IV dissimilarity function given in Proposi-
tion 4.18 by the explicit form as follows. To shorten the notation we set K = δd(Kα(X),Kα(Y )) and
L = Md(λα(X), λα(Y )). Then,

d(X,Y ) = Z,

where

Z = K− αL min

{
K

α
,

1−K

1− α

}
and Z =

K

α
− 1− α

α
Z.

It is worth pointing out that considering degenerate intervals in Equation (14) we recover dissimilarity
measure for numbers, in particular the measure δ.

Proposition 4.20. Under the assumptions of Proposition 4.18,

d(X,Y ) = δd(x, y)

for all x, y ∈ [0, 1] where X = [x, x], Y = [y, y].

Proof. Let X = [x, x], Y = [y, y] for some x, y ∈ [0, 1] and d(X,Y ) = Z. Then Kα(Z) = δd(x, x) and
λα(Z) = M(0, 0) = 0, hence w(Z) = 0.

5. Discrete interval-valued Choquet integral

Similarly to the case with numbers [23], we define discrete interval-valued Choquet integral in such a way
that we consider interval-valued dissimilarity function instead of difference of input intervals. The discrete
interval-valued Choquet integral is a special case of discrete dG-Choquet integral introduced in Definition 3.1.

Definition 5.1. A discrete dG-Choquet integral given by Definition 3.1 is called a discrete interval-valued
Choquet integral if A = L([0, 1]) and E = L([0,∞[).

5.1. Discrete interval-valued Choquet integral with respect to the sum of intervals

First, we consider the standard sum of intervals. Hence, in this part, we are going to study the discrete
IV Choquet integral (as a special case of dG-Choquet integral) w.r.t. ≤L in the form:

C∑
,m,d(X1, . . . , Xn) =

n∑
i=1

d(Xσ(i), Xσ(i−1))m
(
Aσ(i)

)
(15)

where d : L([0, 1])2 → L([0, 1]) is an IV dissimilarity function, m : 2[n] → L([0, 1]) is an IV fuzzy measure,
σ is a permutation on [n] with Xσ(1) ≤L . . . ≤L Xσ(n), with the convention Xσ(0) = 0L and Aσ(i) :=
{σ(i), . . . , σ(n)}.

Clearly, the domain of this function is (L([0, 1]))
n

and the range is a subset of L([0, n]). For numbers, a
sufficient condition (P1) to keep the range of Cµ,δ in [0, 1] was given in [23]:

(P1) δ(0, x1) + δ(x1, x2) + . . .+ δ(xn−1, xn) ≤ 1 for all x1, . . . , xn ∈ [0, 1] where x1 ≤ . . . ≤ xn.

However, as we show in the following example, taking δd satisfying (P1) does not ensure that the IV
dissimilarity function d : L([0, 1])2 → L([0, 1]) w.r.t. ≤α,β given as in Proposition 4.18 satisfies:

(IP1) δ(0L, X1)+δ(X1, X2)+. . .+δ(Xn−1, Xn) ≤α,β 1L for all X1, . . . , Xn ∈ L([0, 1]) where X1 ≤α,β . . . ≤α,β Xn.
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Example 5.2. Consider the IV dissimilarity function d : L([0, 1])2 → L([0, 1]) w.r.t. ≤α,β given as in
Proposition 4.18 where α = 0.5, δd(x, y) = |x− y| and Md(x, y) = min{x, y} for all x, y ∈ [0, 1]. It is easy to
see that δd satisfies (P1), however,

d
(
[0, 0.1], [0.1, 0.2], . . . , [0.9, 1]

)
=

=

[
1

30
,

5

30

]
+

[
3

50
,

7

50

]
+

[
5

70
,

9

70

]
+

[
7

90
,

11

90

]
+

[
7

90
,

11

90

]
+

[
7

90
,

11

90

]
+

[
5

70
,

9

70

]
+

[
3

50
,

7

50

]
+

[
1

30
,

5

30

]
=

=

[
197

350
,

433

350

]
/∈ L([0, 1]).

In spite of the fact that the range of C∑
,m,d can be outside of L([0, 1]), it is easy to see that the ’boundary’

conditions hold.

Proposition 5.3. Let n be a positive integer. Let C∑
,m,d : (L([0, 1]))n → L([0, n[) be an n-ary discrete IV

Choquet integral w.r.t. ≤L given by Equation (15). Then C∑
,m,d(0L, . . . , 0L) = 0L and C∑

,m,d(1L, . . . , 1L) =
1L.

Proof. It is enough to observe that d(0L, 0L) = d(1L, 1L) = 0L and d(0L, 1L) = 1L.

A discrete IV Choquet integral is idempotent only if d has neutral element 0L.

Theorem 5.4. Let n be a positive integer. Let C∑
,m,d : (L([0, 1]))n → L([0, n[) be an n-ary discrete IV

Choquet integral given by Equation (15). Then C∑
,m,d is idempotent for any IV fuzzy measure m on [n] if

and only if the IV dissimilarity function d satisfies d(X, 0L) = X for all X ∈ L([0, 1]).

Proof. Let X ∈ L([0, 1]). The proof follows from the observation:

C∑
,m,d(X, . . . ,X) = d(X, 0L) +

n∑
i=2

d(X,X)m
(
Aσ(i)

)
= d(X, 0L).

Now, a necessary and sufficient condition for monotonicity (with respect to ≤α,β order) of C∑
,m,d with

respect to a fuzzy measure m : 2[n] → [0, 1] is given.

Theorem 5.5. Let n be a positive integer and α, β ∈ [0, 1] with α 6= β. Let C∑
,m,d : (L([0, 1]))n → L([0, n[)

be an n-ary discrete IV Choquet integral w.r.t. ≤α,β given by Equation (15). Then the following assertions
are equivalent:

(i) For any fuzzy measure m : 2[n] → [0, 1] it holds

C∑
,m,d (X1, . . . , Xn) ≤α,β C∑

,m,d (Y1, . . . , Yn)

for all X1, . . . , Xn, Y1, . . . , Yn ∈ L([0, 1]) such that X1 ≤α,β Y1, . . . , Xn ≤α,β Yn.

(ii) For all k ∈ [n] it holds

d(0L, X1) + d(X1, X2) + . . .+ d(Xk−1, Xk) ≤α,β d(0L, Y1) + d(Y1, Y2) + . . .+ d(Yk−1, Yk)

for all X1, . . . , Xk, Y1, . . . , Yk ∈ L([0, 1]) such that X1 ≤α,β . . . ≤α,β Xk, Y1 ≤α,β . . . ≤α,β Yk and
X1 ≤α,β Y1, . . . , Xk ≤α,β Yk.
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Proof. First observe that X ≤α,β Y implies cX ≤α,β c Y for all X,Y ∈ L([0, 1]) and c ∈ [0, 1].
(ii) ⇒ (i) Let X1, . . . , Xn, Y1, . . . , Yn ∈ L([0, 1]) be such that X1 ≤α,β Y1, . . . , Xn ≤α,β Yn. Then there

exist permutations σx, σy of [n] such that Xσx(1) ≤α,β . . . ≤α,β Xσx(n), Yσy(1) ≤α,β . . . ≤α,β Yσy(n) and
Xσx(1) ≤α,β Yσy(1), . . . , Xσx(n) ≤α,β Yσy(n). Let us denote, for any r ∈ [n], m({r, r+ 1, . . . , n}) by mr. From
(ii) we have

(m1 −m2)d
(
0L, Xσx(1)

)
≤α,β (m1 −m2)d

(
0L, Yσy(1)

)
and

(m2 −m3)
(
d
(
0L, Xσx(1)

)
+ d

(
Xσx(1), Xσx(2)

))
≤α,β (m2 −m3)

(
d
(
0L, Yσy(1)

)
+ d

(
Yσy(1), Yσy(2)

))
,

thus

(m1−m3)d
(
0L, Xσx(1)

)
+(m2−m3)d

(
Xσx(1), Xσx(2)

)
≤α,β (m1−m3)d

(
0L, Yσy(1)

)
+(m2−m3)d

(
Yσy(1), Yσy(2)

)
.

Moreover, from (ii) it follows

(m3 −m4)
(
d
(
0L, Xσx(1)

)
+ d

(
Xσx(1), Xσx(2)

)
+ d

(
Xσx(2), Xσx(3)

))
≤α,β

≤α,β (m3 −m4)
(
d
(
0L, Yσy(1)

)
+ d

(
Yσy(1), Yσy(2)

)
+ d

(
Yσy(2), Yσy(3)

))
,

hence we obtain

(m1 −m4)d
(
0L, Xσx(1)

)
+ (m2 −m4)d

(
Xσx(1), Xσx(2)

)
+ (m3 −m4)d

(
Xσx(2), Xσx(3)

)
≤α,β

≤α,β (m1 −m4)d
(
0L, Yσy(1)

)
+ (m2 −m4)d

(
Yσy(1), Yσy(2)

)
+ (m3 −m4)d

(
Yσy(2), Yσy(3)

)
.

Repeating a similar procedure we have

(m1 −mn)d
(
0L, Xσx(1)

)
+ (m2 −mn)d

(
Xσx(1), Xσx(2)

)
+ . . .+ (mn−1 −mn)d

(
Xσx(n−2), Xσx(n−1)

)
≤α,β

≤α,β (m1 −mn)d
(
0L, Yσy(1)

)
+ (m2 −mn)d

(
Yσy(1), Yσy(2)

)
+ . . .+ (mn−1 −mn)d

(
Yσy(n−2), Yσy(n−1)

)
.

Finally, since

mn

(
d
(
0L, Xσx(1)

)
+ d

(
Xσx(1), Xσx(2)

)
+ . . .+ d

(
Xσx(n−1), Xσx(n)

))
≤α,β

≤α,β mn

(
d
(
0L, Yσy(1)

)
+ d

(
Yσy(1), Yσy(2)

)
+ . . .+ d

(
Yσy(n−1), Yσy(n)

))
,

it holds

m1d
(
0L, Xσx(1)

)
+m2d

(
Xσx(1), Xσx(2)

)
+ . . .+mnd

(
Xσx(n−1), Xσx(n)

)
≤α,β (16)

≤α,β m1d
(
0L, Yσy(1)

)
+m2d

(
Yσy(1), Yσy(2)

)
+ . . .+mnd

(
Yσy(n−1), Yσy(n)

)
,

that is
C∑

,m,d (X1, . . . , Xn) ≤α,β C∑
,m,d (Y1, . . . , Yn) .

(i) ⇒ (ii) Let X1, . . . , Xn, Y1, . . . , Yn ∈ L([0, 1]) be such that X1 ≤α,β Y1, . . . , Xn ≤α,β Yn and X1 ≤α,β
. . . ≤α,β Xn, Y1 ≤α,β . . . ≤α,β Yn. By (i) we have C∑

,m,d (X1, . . . , Xn) ≤α,β C∑
,m,d (Y1, . . . , Yn), hence

Equation (16) holds. Now consider, for any k ∈ [n], a fuzzy measure mk given by:

mk(A) =

{
1, if |A| ≥ n− k + 1,

0, otherwise.

Then mk ({r, r + 1, . . . , n}) = 1 for each r ≤ k and mk ({r, r + 1, . . . , n}) = 0 for each r > k, which imply

C∑
,mk,d (X1, . . . , Xn) = d (0L, X1)mk ({1, . . . , n})+d (X1, X2)mk ({2, . . . , n})+. . .+d (Xn−1, Xn)mk ({n}) =
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= d (0L, X1) + d (X1, X2) + . . .+ d (Xk−1, Xk)

and similarly
C∑

,mk,d (Y1, . . . , Yn) = d (0L, Y1) + d (Y1, Y2) + . . .+ d (Yk−1, Yk) .

Finally,

d (0L, X1) + d (X1, X2) + . . .+ d (Xk−1, Xk) ≤α,β d (0L, Y1) + d (Y1, Y2) + . . .+ d (Yk−1, Yk) ,

for all k ∈ [n].

Remark 5.6. It is worth to emphasize that in Theorem 5.5 fuzzy measures whose outputs are numbers
were considered. Observe, that the condition (ii) stated in Theorem 5.5 does not generally secure the
monotonicity of C∑

,m,d if m is an interval-valued fuzzy measure, that is for m : 2[n] → L([0, 1]). The
reason is that X ≤α,β Y does not imply X · Z ≤α,β Y · Z if Z is not a degenerate interval, as is shown
in the following counterexample: Let α = 0.75, X = [0.1, 0.8], Y = [0.2, 0.6] and Z = [0.2, 0.9], then
Kα(X) = 0.275, Kα(Y ) = 0.3, Kα(X ·Z) = 0.195, Kα(Y ·Z) = 0.165, hence X <α,β Y but Y ·Z <α,β X ·Z.

It is not easy to find an IV dissimilarity function that satisfies the condition (ii) of Theorem 5.5. Even
a very intuitive and natural construction described in the following example violates (ii).

Example 5.7. We show that the IV dissimilarity function given in Proposition 4.18 induced by δd(x, y) =
|x − y| and Arithmetic mean as Md does not satisfies the condition (ii) of Theorem 5.5. Let α = 0.5,
X1 = [0, 0.2], X2 = [0.1, 0.5], X3 = [0.8, 1] and Y1 = [0, 0.2], Y2 = [0.6, 0.8], Y3 = [0.8, 1], i.e. X1 ≤α,β Y1,
X2 ≤α,β Y2 and X3 ≤α,β Y3. Then

Kα (d (0L, X1)) = 0.1 λα (d (0L, X1)) = 0.5 d (0L, X1) = [0.05, 0.15]

Kα (d (X1, X2)) = 0.2 λα (d (X1, X2)) = 0.83 d (X1, X2) = [0.03, 0.36]

Kα (d (X2, X3)) = 0.6 λα (d (X2, X3)) = 0.83 d (X2, X3) = [0.26, 0.93]

Kα (d (0L, Y1)) = 0.1 λα (d (0L, Y1)) = 0.5 d (0L, Y1) = [0.05, 0.15]

Kα (d (Y1, Y2)) = 0.6 λα (d (Y1, Y2)) = 0.6 d (Y1, Y2) = [0.3, 0.86]

Kα (d (Y2, Y3)) = 0.2 λα (d (Y2, Y3)) = 0.6 d (Y2, Y3) = [0.06, 0.3].

Hence, for β > 0.5, it holds

d(0L, X1) + d(X1, X2) + d(X1, X2) = [0.35, 1.45] >α,β [0.45, 1.35] = d(0L, Y1) + d(Y1, Y2) + d(Y1, Y2)

which means that for the fuzzy measure given by m(∅) = 0 and m(A) = 1 otherwise, we obtain

C∑
,m,d (X1, X2, X3) >α,β C∑

,m,d (Y1, Y2, Y3) ,

i.e. the monotonicity of C∑
,m,d is violated.

Construction of an IV dissimilarity function that satisfies the condition (ii) of Theorem 5.5 is given next.
Note that the range of the IV dissimilarity function is narrowed to [0, 1].

Proposition 5.8. Let α, β ∈ [0, 1] with α 6= β and let δ1, δ2 : [0, 1]2 → [0, 1] be dissimilarity functions such
that δ1(x, y) ≤ δ2(x, y) for all x, y ∈ [0, 1]. Then d : L([0, 1])2 → L([0, 1]) given by:

d(X,Y ) =
[
δ1
(
Kα(X),Kα(Y )

)
, δ2
(
Kα(X),Kα(Y )

)]
(17)

is an IV dissimilarity function with respect to ≤α,β. Moreover, for each positive integer n, if δ = δ1 = δ2
and δ satisfies:
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• for all k ∈ [n] it holds

δ(0, x1) + δ(x1, x2) + . . .+ δ(xk−1, xk) ≤α,β δ(0, y1) + δ(y1, y2) + . . .+ δ(yk−1, yk) (18)

for all x1, . . . , xk, y1, . . . , yk ∈ [0, 1] such that x1 ≤ . . . ≤ xk, y1 ≤ . . . ≤ yk and x1 ≤ y1, . . . , xk ≤ yk,

then d satisfies the condition (ii) of Theorem 5.5.

Proof. First observe that d is an IV dissimilarity function with respect to ≤α,β since:

1. the symmetry od d follows from the symmetry of δ1 and δ2;
2. d (0L, 1L) =

[
δ1
(
0, 1
)
, δ2
(
0, 1
)]

= 1L;

3. d (X,X) =
[
δ1
(
Kα(X),Kα(X)

)
, δ2
(
Kα(X),Kα(X)

)]
= 0L;

4. the monotonicity of d follows from the monotonicity of δ1 and δ2.

Finally, if δ1 = δ2, the results of d(X,Y ) is always a degenerate interval, so the rest is obvious.

Example 5.9. Note that δ satisfies the condition from Proposition 5.8 given by Equation (18) whenever for
each k ∈ [n] there exists a non-decreasing function fk : [0, 1]→ [0, 1] such that fk(x) = d(0, x1) +d(x1, x2) +
. . . + d(xk−1, xk) for all x1, . . . , xk ∈ [0, 1] such that x1 ≤ . . . ≤ xk = x. See [23] for more details. For
instance, δ(x, y) = |x− y|, δ(x, y) = |

√
x−√y| and δ(x, y) = |x2 − y2| satisfy the condition (with functions

fk(x) = x, fk(x) =
√
x and fk(x) = x2, respectively).

It is easy to check that for monotone aggregation functions the idempotency and averagingness is equiv-
alent, hence the following result is immediate.

Corollary 5.10. Let n be a positive integer and α, β ∈ [0, 1] with α 6= β. Let C∑
,m,d be an n-ary discrete IV

Choquet integral given by Equation (15) where m : 2[n] → [0, 1] be a fuzzy measure and the IV dissimilarity
function d satisfies the condition (ii) of Theorem 5.5. Then the following assertions are equivalent:

(i) For all X1, . . . , Xn ∈ L([0, 1]) it holds:

min {X1, . . . , Xn} ≤α,β C∑
,m,d (X1, . . . , Xn) ≤α,β max {X1, . . . , Xn} .

(ii) d(X, 0L) = X for all X ∈ L([0, 1]).

Proof. Directly follows from Theorem 5.5 and Theorem 5.4.

5.2. Discrete interval-valued Choquet integral with respect to
⊕

Now we are going to build a discrete IV Choquet integral w.r.t. the orders ≤α,β replacing the sum by a
new operation that is more in line with the intuition behind the ≤α,β orders. First, a specific expression of
the operation S in Definition 3.1, namely

⊕
, is introduced.

Theorem 5.11. Let n be a positive integer, α, β ∈]0, 1[ and Ms :
n⋃
k=1

[0, 1]k → [0, 1] be an extended aggrega-

tion function. Let d : (L([0, 1]))2 → L([0, 1]) be an IV dissimilarity function on L([0, 1]) w.r.t. ≤α,β given in

Proposition 4.18 where δd : [0, 1]2 → [0, 1] satisfies the condition (P1). Let
⊕

:
n⋃
k=1

(L([0, 1]))k → L([0,∞[)

be the IV function defined by, for all k ∈ [n], Y1, . . . , Yk ∈ L([0, 1]),

k⊕
i=1

(Yi) = Z, where


Kα(Z) =

k∑
i=1

Kα(Yi);

λα(Z) = Ms(λα(Y1), . . . , λα(Yk)), if Kα(Z) ∈ [0, 1];

w(Z) = 1, if Kα(Z) > 1.

(19)

Then for all X1, . . . , Xk ∈ L([0, 1]) such that 0L = X0 ≤α,β X1 ≤α,β . . . ≤α,β Xk ≤α,β 1L, it holds
k⊕
i=1

(
d(Xi, Xi−1)

)
∈ L([0, 1]). Moreover, the function

⊕
is non-decreasing w.r.t. ≤α,β in each variable.
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Proof. Clearly, for each k ∈ [n],
k⊕
i=1

(
d(Xi, Xi−1)

)
is an interval and

k⊕
i=1

(
d(Xi, Xi−1)

)
≥α,β 0L. It remains

to prove that
k⊕
i=1

(
d(Xi, Xi−1)

)
≤α,β 1L. Since X1 ≤α,β . . . ≤α,β Xk, we have Kα(0L) ≤ Kα(X1) ≤ . . . ≤

Kα(Xk), hence

Kα

(
k⊕
i=1

(
d(Xi, Xi−1)

))
=

k∑
i=1

Kα

(
d(Xi, Xi−1)

)
=

k∑
i=1

δd
(
Kα(Xi),Kα(Xi−1)

)
≤ 1

where the last inequality follows from (P1). Consequently
k⊕
i=1

(
d(Xi, Xi−1)

)
≤α,β 1L, hence

k⊕
i=1

(
d(Xi, Xi−1)

)
∈

L([0, 1]).
The non-decreasingness of

⊕
follows from Equation (19) and the monotonicity of Ms.

Lemma 5.12. Let
⊕

:
n⋃
k=1

(L([0, 1]))k → L([0,∞[) be the IV function induced by Ms :
n⋃
k=1

[0, 1]k → [0, 1]

as in Theorem 5.11. Then 0L is the extended neutral element of
⊕

if and only if 0 is the extended neutral
element of Ms.

Proof. The proof is obvious.

Corollary 5.13. Let n be a positive integer and α, β ∈]0, 1[. Let m : 2[n] → L([0, 1]) be an IV fuzzy measure
on [n] w.r.t. ≤α,β, d : (L([0, 1]))2 → L([0, 1]) an IV dissimilarity function on L([0, 1]) w.r.t. ≤α,β and⊕

:
n⋃
k=1

(L([0, 1]))k → L([0,∞[) be the IV function defined in Theorem 5.11 and induced by a function Ms

with extended neutral element 0. Then the mapping C⊕
,m,d : (L([0, 1]))n → L([0,∞[) defined by

C⊕
,m,d(X1, . . . , Xn) =

n⊕
i=1

d(Xσ(i), Xσ(i−1))m
(
Aσ(i)

)
where σ is a permutation on [n] with Xσ(1) ≤α,β . . . ≤α,β Xσ(n), with the convention Xσ(0) = 0L and
Aσ(i) := {σ(i), . . . , σ(n)}, is a discrete IV Choquet integral associated with m and d w.r.t. ≤α,β.

Proof. In line with Remark 3.2 and Lemma 5.12, the discrete IV Choquet integral is well defined, since it is
a special case of dG-Choquet integral given in Definition 3.1.

Corollary 5.14. Under the assumptions of Corollary 5.13, if d is an IV dissimilarity function given in
Proposition 4.18 and induced by δd satisfying the condition (P1) then

C⊕
,m,d(X1, . . . , Xn) ∈ L([0, 1])

for all X1, . . . , Xn ∈ L([0, 1]).

Remark 5.15. In line with Remark 4.13 and Remark 4.19, the IV discrete Choquet integral on L([0, 1])
in Corollary 5.13 can be expressed by the explicit form as follows. To shorten the notation we set K1 =
δd(Kα(Xσ(i)),Kα(Xσ(i−1))), L1 = Md(λα(Xσ(i)), λα(Xσ(i−1))), K2 =

∑n
i=1Kα(Yi) and L2 = Ms(λα(Y1), λα(Yn)).

Then,
C⊕

,m,d(X1, . . . , Xn) = U,

where

U = K2 − αL2 min

{
K2

α
,

1−K2

1− α

}
and U =

K2

α
− 1− α

α
U

and

Yi = m
(
Aσ(i)

)(
K1 − αL1 min

{
K1

α
,

1−K1

1− α

})
and Yi = m

(
Aσ(i)

)(K1

α
− 1− α

α
Yi

)
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We give two examples of discrete IV Choquet integral. The first one, Example 5.16, with respect to a
fuzzy measure (with range in [0, 1]) and the second one, Example 5.17, with respect to an IV fuzzy measure
(with range in L([0, 1])).

Example 5.16. (i) Let α = 1
3 , the operation

⊕
be given as in Theorem 5.11 where Ms is the arithmetic

mean, IV dissimilarity function d be given as in Proposition 4.18 where δd(x, y) = |x − y| and Md(x, y) =
x+y

2 for all x, y ∈ [0, 1], and let IV fuzzy measure m be given as in Theorem 4.3 for Mm defined as in
Proposition 4.12 where MM1,MM2 are the arithmetic means. Let us denote

C⊕
,m,d

(
[0.1, 0.7], [0.6, 0.9], [0, 0.3]

)
= Z.

Then
Z =

⊕(
d ([0, 0.3], [0, 0]) , d ([0.1, 0.7], [0, 0.3])m ({1, 2}) , d ([0.6, 0.9], [0.1, 0.7])m ({2})

)
and since d ([0, 0.3], [0, 0]) =

[
1
20 ,

4
20

]
, d ([0.1, 0.7], [0, 0.3]) =

[
1
30 ,

16
30

]
, d ([0.6, 0.9], [0.1, 0.7]) =

[
1
5 ,

4
5

]
, m ({1, 2}) =[

2
3 ,

2
3

]
and m ({2}) =

[
1
3 ,

1
3

]
, we obtain Kα(Z) = 11

30 , λα(Z) = 11
18 and w(Z) = 209

360 , hence

C⊕
,m,d

(
[0.1, 0.7], [0.6, 0.9], [0, 0.3]

)
=

[
187

1080
,

814

1080

]
.

(ii) We compare C⊕
,m,d with C∑

,m,d for the same input and under the same conditions:

C∑
,m,d

(
[0.1, 0.7], [0.6, 0.9], [0, 0.3]

)
=

[
1

20
,

4

20

]
+

[
1

30
,

16

30

] [
2

3
,

2

3

]
+

[
1

5
,

4

5

] [
1

3
,

1

3

]
=

[
150

1080
,

888

1080

]
.

Example 5.17. We construct a discrete IV Choquet integral according to Corollary 5.13 (
⊕

induced by an
extended aggregation function M) associated with an IV fuzzy measure given in Proposition 4.9 (induced by
a fuzzy measure µ) and IV dissimilarity function given in Proposition 4.18 (induced by a strictly monotone
dissimilarity function δd satisfying (P1) and a symmetric aggregation function Md) with respect to ≤α,β .
Let us denote

Uσ(i) = d(Xσ(i), Xσ(i−1)) and Vσ(i) = m
(
Aσ(i)

)
.

Then
Uσ(i) =

[
Kα(Uσ(i))− αw(Uσ(i)),Kα(Uσ(i)) + (1− α)w(Uσ(i))

]
,

where
Kα(Uσ(i)) = δd

(
αXσ(i) + (1− α)Xσ(i), αXσ(i−1) + (1− α)Xσ(i−1)

)
,

λα(Uσ(i)) = Md

 Xσ(i) −Xσ(i)

min

{
αXσ(i)+(1−α)Xσ(i)

α ,
1−αXσ(i)−(1−α)Xσ(i)

1−α

} , Xσ(i−1) −Xσ(i−1)

min

{
αXσ(i−1)+(1−α)Xσ(i−1)

α ,
1−αXσ(i−1)−(1−α)Xσ(i−1)

1−α

}


and

w(Uσ(i)) = λα(Uσ(i)) min

{
Kα(Uσ(i))

α
,

1−Kα(Uσ(i))

1− α

}
.

Similarly,
Vσ(i) =

[
Kα(Vσ(i))− αw(Vσ(i)),Kα(Vσ(i)) + (1− α)w(Vσ(i))

]
,

where
Kα(Vσ(i)) = µ

(
Aσ(i)

)
,

λα(Vσ(i)) =
max

{
0, α− µ

(
Aσ(i)

)}
α

+
max

{
0, µ

(
Aσ(i)

)
− α

} (
1− µ

(
Aσ(i)

))
(1− α)

(
µ
(
Aσ(i)

)
− α

)
17



and

w(Vσ(i)) = λα(Vσ(i)) min

{
µ(Aσ(i))

α
,

1− µ(Aσ(i))

1− α

}
.

Thus,

Kα

(
Uσ(i) · Vσ(i)

)
= α

(
Kα(Uσ(i))− αw(Uσ(i))

)(
Kα(Vσ(i))− αw(Vσ(i))

)
+

+(1− α)
(
Kα(Uσ(i)) + (1− α)w(Uσ(i))

)(
Kα(Vσ(i)) + (1− α)w(Vσ(i))

)
.

Now, let us denote

Z =

n⊕
i=1

(
Uσ(i) · Vσ(i)

)
,

then

Kα(Z) =

n∑
i=1

(
Kα

(
Uσ(i) · Vσ(i)

) )
,

λα(Z) = Mn
i=1

 Uσ(i) · Vσ(i) − Uσ(i) · Vσ(i)

min

{
Kα(Uσ(i)·Vσ(i))

α ,
1−Kα(Uσ(i)·Vσ(i))

1−α

}
 ,

w(Z) = λα(Z) min

{
Kα(Z)

α
,

1−Kα(Z)

1− α

}
.

Hence, finally

C⊕
,m,d (X1, . . . , Xn) = [Kα(Z)− αw(Z),Kα(Z) + (1− α)w(Z)] . (20)

The reason why we have chosen the particular operation
⊕

in Corollary 5.13, that is the operation for
construction of an IV discrete Choquet integral, is the following: when we consider degenerate intervals we
recover the discrete d-Choquet integral for numbers. This is stated in Proposition 5.18.

Proposition 5.18. Let n be a positive integer, µ : 2[n] → [0, 1] be a fuzzy measure, δd : [0, 1]2 → [0, 1]
a dissimilarity measure and Cµ,δd a discrete d-Choquet integral according to Definition 3.1. Under the
assumptions of Corollary 5.14, if m(A) = µ(A) for all A ⊆ [n], then

C⊕
,m,d(X1, . . . , Xn) = Cµ,δd(x1, . . . , xn)

for all x1, . . . , xn ∈ [0, 1] where X1 = [x1, x1], . . . , Xn = [xn, xn].

Proof. Let X1 = [x1, x1], . . . , Xn = [xn, xn] for some x1, . . . , xn ∈ [0, 1] and let Z = C⊕
,m,d(X1, . . . , Xn).

Observe that, by Proposition 4.18, d(Xi, Xj) = δd(xi, xj) for all i, j ∈ {1, . . . , n}. Then

Z =

n⊕
i=1

d(Xσ(i), Xσ(i−1))m
(
Aσ(i)

)
=

n⊕
i=1

δd(xσ(i), xσ(i−1))µ
(
Aσ(i)

)
hence

Kα(Z) =

n∑
i=1

δd(xσ(i), xσ(i−1))µ
(
Aσ(i)

)
and λα(Z) = M1(0, . . . , 0) = 0.

Finally,

Z =

n∑
i=1

δd(xσ(i), xσ(i−1))µ
(
Aσ(i)

)
= Cµ,δd .
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A discrete IV Choquet integral is idempotent if and only if d has neutral element 0L.

Theorem 5.19. Let n be a positive integer. Let C⊕
,m,d be an n-ary discrete IV Choquet integral given in

Corollary 5.13. Then C⊕
,m,d is idempotent for any IV fuzzy measure m on [n] if and only if the dissimilarity

function d satisfies d(X, 0L) = X for all X ∈ L([0, 1]).

Proof. Let X ∈ L([0, 1]), let us denote Cµ,δ(X, . . . ,X) = Z. The proof follows from the observation:

Kα(Z) =

n∑
i=1

Kα

(
d
(
Xσ(i), Xσ(i−1)

)
m
(
Aσ(i)

) )
=

= Kα

(
d (X, 0L)

)
+

n∑
i=2

Kα

(
d (X,X)m

(
Aσ(i)

) )
= Kα

(
d (X, 0L)

)
and

λα(Z) = Ms

(
λα (d (X, 0L)) , λα (0L) , . . . , λα (0L)

)
= λα (d (X, 0L)) .

Corollary 5.20. Let n be a positive integer. Let C⊕
,m,d be an n-ary discrete IV Choquet integral given in

Corollary 5.13 where d is given in Proposition 4.18 and induced by δd, Md. Then C⊕
,m,d is idempotent for

any IV fuzzy measure m on [n] if and only if the δd(x, 0) = x and Md(x, 0) = x for all x ∈ [0, 1].

Proof. The proof follows from Theorem 5.19 and the observation:

Kα

(
d(X, 0L)

)
= δd

(
Kα(X), 0

)
,

λα
(
d(X, 0L)

)
= Md

(
λα(X), 0

)
.

Regarding the monotonicity (with respect to ≤α,β order) of C⊕
,m,d with respect to a fuzzy measure

m : 2[n] → [0, 1] we obtained a similar result as in the case of C∑
,m,d.

Theorem 5.21. Let n be a positive integer and α, β ∈ [0, 1] with α 6= β. Let C⊕
,m,d : (L([0, 1]))n →

L([0,∞[) be an n-ary discrete IV Choquet integral given by Corollary 5.13. Then

(i) For any fuzzy measure m : 2[n] → [0, 1] it holds

C⊕
,m,d (X1, . . . , Xn) ≤α,β C⊕

,m,d (Y1, . . . , Yn)

for all X1, . . . , Xn, Y1, . . . , Yn ∈ L([0, 1]) such that X1 ≤α,β Y1, . . . , Xn ≤α,β Yn.

whenever

(ii) For all k ∈ [n] it holds

d(0L, X1) + d(X1, X2) + . . .+ d(Xk−1, Xk) ≤α,β d(0L, Y1) + d(Y1, Y2) + . . .+ d(Yk−1, Yk)

for all X1, . . . , Xk, Y1, . . . , Yk ∈ L([0, 1]) such that X1 ≤α,β . . . ≤α,β Xk, Y1 ≤α,β . . . ≤α,β Yk and
X1 ≤α,β Y1, . . . , Xk ≤α,β Yk.

Proof. First observe that

• Kα(X) ≤ Kα(Y ) implies Kα(cX) ≤ Kα(c Y ) for all X,Y ∈ L([0, 1]) and c ∈ [0, 1];

• Kα

(
X1 + . . .+Xs

)
= Kα (X1) + . . .+Kα (Xs) for all X1, . . . , Xs ∈ L([0, 1]) and any positive integer

s.
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Let X1, . . . , Xn, Y1, . . . , Yn ∈ L([0, 1]) be such that X1 ≤α,β Y1, . . . , Xn ≤α,β Yn. Then there ex-
ist permutations σx, σy of [n] such that Xσx(1) ≤α,β . . . ≤α,β Xσx(n), Yσy(1) ≤α,β . . . ≤α,β Yσy(n) and
Xσx(1) ≤α,β Yσy(1), . . . , Xσx(n) ≤α,β Yσy(n). Let us denote, for any r ∈ [n], m({r, r+ 1, . . . , n}) by mr. From
(ii) we have

Kα

(
(m1 −m2)d

(
0L, Xσx(1)

) )
≤ Kα

(
(m1 −m2)d

(
0L, Yσy(1)

) )
(21)

and

Kα

(
(m2−m3)

(
d
(
0L, Xσx(1)

)
+ d

(
Xσx(1), Xσx(2)

)) )
≤ Kα

(
(m2−m3)

(
d
(
0L, Yσy(1)

)
+ d

(
Yσy(1), Yσy(2)

)) )
,

(22)

thus

Kα

(
(m1 −m3)d

(
0L, Xσx(1)

)
+ (m2 −m3)d

(
Xσx(1), Xσx(2)

) )
≤ (23)

≤ Kα

(
(m1 −m3)d

(
0L, Yσy(1)

)
+ (m2 −m3)d

(
Yσy(1), Yσy(2)

) )
.

Repeating a similar procedure we have

Kα

(
(m1−mn)d

(
0L, Xσx(1)

)
+(m2−mn)d

(
Xσx(1), Xσx(2)

)
+. . .+(mn−1−mn)d

(
Xσx(n−2), Xσx(n−1)

) )
≤

(24)

≤ Kα

(
(m1 −mn)d

(
0L, Yσy(1)

)
+ (m2 −mn)d

(
Yσy(1), Yσy(2)

)
+ . . .+ (mn−1 −mn)d

(
Yσy(n−2), Yσy(n−1)

)
Finally, since

Kα

(
mn

(
d
(
0L, Xσx(1)

)
+ d

(
Xσx(1), Xσx(2)

)
+ . . .+ d

(
Xσx(n−1), Xσx(n)

)) )
≤ (25)

≤ Kα

(
mn

(
d
(
0L, Yσy(1)

)
+ d

(
Yσy(1), Yσy(2)

)
+ . . .+ d

(
Yσy(n−1), Yσy(n)

)) )
,

it holds

Kα

(
m1d

(
0L, Xσx(1)

)
+m2d

(
Xσx(1), Xσx(2)

)
+ . . .+mnd

(
Xσx(n−1), Xσx(n)

) )
≤ (26)

≤ Kα

(
m1d

(
0L, Yσy(1)

)
+m2d

(
Yσy(1), Yσy(2)

)
+ . . .+mnd

(
Yσy(n−1), Yσy(n)

) )
,

that is

Kα

(
C⊕

,m,d (X1, . . . , Xn)
)
≤ Kα

(
C⊕

,m,d (Y1, . . . , Yn)
)
. (27)

Now there are two possibilities:

1. There is at least one strict inequality among the Equations (21)–(26), then also the inequality in
Equation 27 is strict and the proof is finished.

2. All the Equations (21)–(26) are equalities, then each Kα in (21)–(26) can be replaced by λα and we
obtain

λα

(
C⊕

,m,d (X1, . . . , Xn)
)
≤ λα

(
C⊕

,m,d (Y1, . . . , Yn)
)

which completes the proof.
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Example 5.22. Consider the same situation as in Example 5.7. Then, for β > 0.5, the fuzzy measure given
by m(∅) = 0 and m(A) = 1 otherwise and a strictly monotone aggregation function Ms (from Theorem 5.11),
we have

Kα

(
C⊕

,m,d (X1, X2, X3)
)

= 0.9 = Kα

(
C⊕

,m,d (Y1, Y2, Y3)
)

and

λα

(
C∑

,m,d (X1, X2, X3)
)

= Ms(0.5, 0.83, 0.83) > Ms(0.5, 0.6, 0.6) = λα

(
C∑

,m,d (Y1, Y2, Y3)
)

which implies that
C⊕

,m,d (X1, X2, X3) >α,β C∑
,m,d (Y1, Y2, Y3) .

So, the monotonicity of C⊕
,m,d is violated (in a similar way as that of C∑

,m,d).

6. Application: Combining classifiers with the interval-valued Choquet integral

In this section an application of the interval-valued choquet integral for aggregating the decision of
multiple classifiers whose predictions are given in terms of interval-valued data is proposed.

6.1. Motivation

In machine learning it is known that, when dealing with classification problems, the accuracy of an
individual classifier can be improved by training and combining small variations of the algorithm [37, 38].
These variations can be achieved by the use of different parameters of the algorithm or, as in this work,
by considering different subsets of the training set so that each classifier is trained with a different dataset.
Once the base classifiers are learned, it is necessary to combine the prediction of each classifier to assess
the final class label. Here is where the aggregation procedure takes an important role. The set of classifiers
aimed at solving a specific task is usually referred as ensemble.

The aggregation step of an ensemble is usually performed by combining the probabilities (or confidence
degrees) of each class provided by each classifier into a single probability value. Thus, the class with the
highest probability is predicted. The combination is usually performed by classical aggregation functions,
such as the arithmetic mean. However, it has been proven that the use of more sophisticated aggregation
functions, such as weighted means, OWA opertors or fuzzy integrals, can lead to an improvement of the
classification accuracy of the ensemble [39, 40, 41]. In the case of fuzzy integrals (Choquet or Sugeno), the
underlying fuzzy measure is able to capture positive and negative interaction among the classifiers of the
ensemble.

However, some classification algorithms provide the probability or confidence degree of a certain class
not by a real number, but using more complex structures, such as intervals. This is the case, for example
of IVTURS (Interval-Valued fuzzy reasoning method with TUning and Rule Selection) [30]. Then, when
considering an ensemble of interval-valued classifiers, the aggregation step is not a trivial task, specially if
aggregation functions such as the Choquet integral are considered.

The objective of this section is to evaluate the use of the proposed interval-valued Choquet integral for
combining the predictions of an ensemble of IVTURS classifiers, whose predictions are interval-valued. The
accuracy of the proposed methodology will be compared with existing alternatives of the interval-valued
Choquet integral [26].

6.2. Interval-valued Choquet Integral for Aggregating Classifiers

This section describes how the ensemble of interval-valued classifiers is learned and how the interval-
valued Choquet integral is used for combining their outputs.

IVTURS [30] is used as an interval-valued classifier which takes an example with real-valued features as
input and uses interval-valued fuzzy sets to model the labels in the fuzzy rule-based classification system. As
a consequence, all the fuzzy reasoning method is designed to work with intervals and hence, the confidence
for each class is given by an interval. When using a single IVTURS model, the class with the largest
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interval-valued confidence is predicted. In our case, we will use IVTURS as a baseline classifier for learning
a pool of classifiers that will form an ensemble. To learn this ensemble, the well-known Bagging procedure is
considered [42]. In Bagging, each classifier is learned with a different dataset created from the same original
training dataset with random sampling with replacement (some examples will appear twice or more and
others will not appear at all).

Therefore, in the ensemble of Bagging+IVTURS, each base classifier will provide an interval-valued
confidence for each example and class. In the case of two class problems, each sample will be associated to
N intervals for the class label 0 (b0j , j = 1, . . . , N) and N intervals for the class label 1 (b1j , j = 1, . . . , N),
being N the number of base classifiers in the ensemble. Usually, the confidences for each class (intervals
in this case) are aggregated and the class with the largest confidence is assigned to the example. However,
in the case of IVTURS the confidences are not normalized among classifiers and hence, normalization is
required before aggregating them. In this case, we will follow the normalization proposed in [43], where
the intervals are normalized by the upper bounds (the upper bounds of the normalized intervals sum up to

one). Thus, we will have that, for each classifier j, b
0

j + b
1

j = 1. Finally, to compute the global confidence of
each class, the N intervals will be aggregated by the interval-valued Choquet integral proposed in this work,
considering C∑

,m,d where d is an IV dissimilarity function with respect to ≤α,β , δd(x, y) = |x− y| and Md

is the arithmetic mean. The final class label will be the one whose global confidence is the greatest.
When considering the Choquet integral for aggregating data, one of the key aspects is the estimation of

the underlying fuzzy measure, since it is the responsible for modeling the interaction among data. Although
in this paper the proposed interval-valued Choquet integral is given with respect to a interval-valued fuzzy
measure, for the sake of simplicity, we have consider a classical fuzzy measure whose codomain is [0, 1]
instead of L([0, 1]). In this section, the estimation of the fuzzy measure will be done using the CPM
construction method [39], which is specifically designed for classifier aggregation using the Choquet integral.
This method estimates each coefficient of the fuzzy measure by considering the accuracy of each possible
coalition of classifiers.

Finally, the algorithm for assigning the class label to a test instance is described in Algorithm 1.

Algorithm 1 Classification step using Cm,d
Input: x: instance to be classified; b01, . . . , b

0
N : IV confidences of class 0; b11, . . . , b

1
N : IV confidences of class 1; C∑

,m,d: IV Choquet
integral function w.r.t. ≤α,β

Output: Class label Class(x)

1: Estimates the fuzzy measure m : 2{1,...,N} → [0, 1] using CPM

2: Normalize the IV confidences for each classifier j: b0j =
b0j

b0j+b
1
j

, b1j =
b1j

b0j+b
1
j

3: Aggregate the confidences of class 0: Y 0 = C∑
,m,d(b01, . . . , b

0
N ))

4: Aggregate the confidences of class 1: Y 1 = C∑
,m,d(b11, . . . , b

1
N ))

5: Predict class with largest confidence according to ≤α,β

6.3. Experimental framework

For the experiments, 24 binary datasets from the KEEL dataset repository [44] are considered. For each
dataset, the total number of examples and number of attributes are presented in Table 1. To estimate the
performance of each method in each dataset a 5-fold stratified cross-validation (SCV) is carried out. Hence,
the metric for each dataset and method will be obtained by averaging five runs. Accuracy measure will be
used to evaluate the performance of each method.

The rest of the parameters used for the experiments are presented in Table 2. Notice that the parameters
of IVTURS are the ones recommended by the authors [30]. Likewise, 21 classifiers are used for Bagging to
have an moderately large ensemble due to the runtimes required to learn an IVTURS model.

Non-parametric statistical tests will be used to analyze the results obtained, as recommended in the
literature [45]. To compare pairs of methods, the Wilcoxon test is considered, whereas the Friedman aligned-
ranks test is applied for multiple comparisons tests followed by Holm post-hoc test in case of significant
differences being found. Statistically significant differences will be considered at 95% confidence (p-value
lower than 0.05).
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Table 1: Summary of the datasets considered in this study.

Data-sets #Ex. #Atts. #Cl 0 #Cl 1

appendicitis 106 7 85 21
banana 5300 2 2924 2376
bands 365 19 135 230
breast 277 9 196 81
chess 3196 36 1527 1669
crx 653 15 357 296
haberman 306 3 225 81
heart 270 13 150 120
hepatitis 80 19 13 67
housevotes 232 16 124 108
ionosphere 351 33 126 225
mammographic 830 5 427 403
monk-2 432 6 204 228
mushroom 5644 22 3488 2156
phoneme 5404 5 3818 1586
pima 768 8 500 268
ring 7400 20 3664 3736
saheart 462 9 302 160
sonar 208 60 111 97
spectfheart 267 44 55 212
tic-tac-toe 958 9 332 626
titanic 2201 3 1490 711
wdbc 569 30 357 212
wisconsin 683 9 444 239

Table 2: Parameters for IVTURS and BAGGING algorithm.

Algorithm Parameters

IVTURS Num labels = 5, Min support = 0.05
Min confidence = 0.8, Deph of Trees = 3
K = 2, Max evaluations = 20000
Population size = 50, Alpha = 0.15
Bits per gene = 30, Type of inference = 1

Bagging Number of final classifiers = 21
Bag size = size of training set

For the definition of the admissible order ≤α,β associated with the IV Choquet integral, all the combi-
nations of α, β ∈ {0, 1/3, 1/2, 2/3, 1} have been considered. However, notice that according to [24], given
α ∈ [0, 1[ (α ∈]0, 1]), all admissible orders ≤α,beta with β > α (β < α) coincide. We denote this admissible
order as ≤α+ (≤α−). Then, all the combinations yield to a total of 8 potentially different admissible orders,
namely ≤0+, ≤1/3−, ≤1/3+, ≤1/2−, ≤1/2+, ≤2/3−, ≤2/3+ and ≤1−.
Remark: although most of the expressions of the IV Choquet presented in this paper assume α ∈]0, 1[, we
have consider α = ε and α = 1− ε for the application.

For comparing Algorithm 1 with other approaches, we have considered exactly the same steps by using
an alternative definition of the IV Choquet integral. Specifically, we have considered the IV Choquet given
in [26] considering the same admissible orders. It is important to note that this comparison can be done
since m in Algorithm 1 is a fuzzy measure and not an interval-valued fuzzy measure. We will denote this
IV Choquet integral by Cm.

6.4. Experimental study

The results obtained in terms of accuracy for each IV Choquet integral (the proposed one that is named
as C∑

,m,d and Cm) and dataset are presented in Table 3. The best result for each dataset is stressed in
bold-face. The last row summarizes the results over all datasets showing the average performance.

Overall, small differences in terms of accuracy are found (1% between the maximum and the minimum
average values). However, this was expected as only the aggregation is being changed, being all the other
components exactly the same (the base classifiers and their IV outputs). The best performers in terms of
average accuracy are both IVC-dis with α = 0.66. Notice that however, β has also a much lower importance,
changing the results only in the case of phoneme dataset. This behaviour is repeated for almost all α values
when comparing the effect of different β values. We recall that when using admissible orders based on ≤α,β ,
the parameter β is only applied in case of ties with α, which sporadically occurs.

Rather than looking at the results themselves, we will continue our analysis based on non-parametric
statistical tests. First, both IV Choquet integrals will be compared when using the same α and β values.
To do so, pairwise Wilcoxon tests are run, whose results are presented in Table 4.
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Table 3: Average test accuracy results for each dataset and configuration tested.

C∑
,m,d Cm

Dataset ≤0+ ≤1/3− ≤1/3+ ≤1/2− ≤1/2+ ≤2/3− ≤2/3+ ≤1− ≤0+ ≤1/3− ≤1/3+ ≤1/2− ≤1/2+ ≤2/3− ≤2/3+ ≤1−

appendicitis 0.8494 0.8398 0.8398 0.8398 0.8398 0.8489 0.8489 0.8584 0.8494 0.8398 0.8398 0.8584 0.8584 0.8584 0.8584 0.8584

banana 0.8192 0.8274 0.8274 0.8230 0.8230 0.8226 0.8226 0.8194 0.8189 0.8211 0.8211 0.8215 0.8215 0.8206 0.8206 0.8192

bands 0.6915 0.6971 0.6971 0.7025 0.7025 0.7025 0.7025 0.6863 0.6941 0.6944 0.6944 0.7052 0.7052 0.6943 0.6943 0.6832

breast 0.7620 0.7728 0.7728 0.7616 0.7616 0.7656 0.7656 0.7627 0.7584 0.7621 0.7621 0.7618 0.7618 0.7586 0.7586 0.7589

chess 0.9484 0.9643 0.9643 0.9659 0.9659 0.9659 0.9659 0.9662 0.9484 0.9637 0.9640 0.9643 0.9643 0.9628 0.9628 0.9640

crx 0.8714 0.8699 0.8699 0.8699 0.8699 0.8730 0.8730 0.8730 0.8637 0.8652 0.8652 0.8668 0.8668 0.8668 0.8668 0.8668

haberman 0.7547 0.7449 0.7449 0.7416 0.7416 0.7416 0.7416 0.7351 0.7678 0.7515 0.7515 0.7482 0.7482 0.7449 0.7449 0.7384

heart 0.8667 0.8593 0.8593 0.8593 0.8593 0.8556 0.8556 0.8481 0.8630 0.8630 0.8630 0.8556 0.8556 0.8481 0.8481 0.8481

hepatitis 0.8908 0.9042 0.9042 0.9042 0.9042 0.9175 0.9175 0.9032 0.8899 0.9042 0.9042 0.9042 0.9042 0.8899 0.8899 0.8899

housevotes 0.9646 0.9646 0.9646 0.9602 0.9602 0.9566 0.9566 0.9520 0.9689 0.9646 0.9646 0.9646 0.9646 0.9646 0.9646 0.9646

ionosphere 0.9118 0.9118 0.9118 0.9089 0.9089 0.9118 0.9118 0.9204 0.9174 0.9146 0.9146 0.9146 0.9146 0.9147 0.9147 0.9118

mammographic 0.8407 0.8383 0.8383 0.8322 0.8322 0.8297 0.8297 0.8196 0.8433 0.8431 0.8431 0.8369 0.8369 0.8286 0.8286 0.8237

monk-2 0.9814 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9814 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

mushroom 0.9959 0.9996 0.9996 1.0000 1.0000 0.9998 0.9998 0.9991 0.9952 0.9993 0.9993 0.9998 0.9998 0.9995 0.9995 0.9989

phoneme 0.8038 0.8090 0.8090 0.8079 0.8075 0.8077 0.8079 0.7996 0.8057 0.8077 0.8077 0.8070 0.8068 0.8064 0.8061 0.7981

pima 0.7604 0.7617 0.7617 0.7656 0.7656 0.7604 0.7604 0.7487 0.7643 0.7682 0.7695 0.7630 0.7630 0.7630 0.7630 0.7513

ring 0.8441 0.9230 0.9230 0.9374 0.9376 0.9369 0.9368 0.8839 0.8461 0.9246 0.9246 0.9343 0.9342 0.9361 0.9361 0.8949

saheart 0.7055 0.7120 0.7120 0.7142 0.7142 0.7099 0.7099 0.6969 0.7120 0.7164 0.7164 0.7099 0.7099 0.7099 0.7099 0.7076

sonar 0.8367 0.8415 0.8415 0.8463 0.8463 0.8609 0.8609 0.8560 0.8462 0.8318 0.8318 0.8318 0.8318 0.8367 0.8367 0.8222

spectfheart 0.7751 0.7902 0.7902 0.8015 0.8015 0.8052 0.8052 0.7864 0.7751 0.7977 0.7977 0.7940 0.7940 0.7978 0.7978 0.7903

tic-tac-toe 0.9248 0.9656 0.9666 0.9770 0.9770 0.9802 0.9802 0.9760 0.9342 0.9603 0.9603 0.9718 0.9718 0.9760 0.9760 0.9760

titanic 0.7815 0.7883 0.7883 0.7883 0.7883 0.7883 0.7883 0.7887 0.7824 0.7860 0.7860 0.7860 0.7860 0.7865 0.7865 0.7865

wdbc 0.9543 0.9649 0.9649 0.9684 0.9684 0.9684 0.9684 0.9666 0.9561 0.9631 0.9631 0.9684 0.9684 0.9684 0.9684 0.9684

wisconsin 0.9708 0.9752 0.9752 0.9752 0.9752 0.9738 0.9738 0.9737 0.9722 0.9752 0.9752 0.9752 0.9752 0.9738 0.9738 0.9752

Average 0.8544 0.8635 0.8636 0.8646 0.8646 0.8659 0.8659 0.8592 0.8564 0.8632 0.8633 0.8643 0.8643 0.8628 0.8627 0.8582

Table 4: Wilcoxon tests comparing the two IV Choquet integrals with the same ≤α,β configurations.

≤0+ ≤1/3− ≤1/3+ ≤1/2− ≤1/2+ ≤2/3− ≤2/3+ ≤1−

Rank+ (C∑
,m,d) 79.50 181.00 183.00 195.00 195.00 236.00 236.00 176.00

Rank- (Cm) 245.50 144.00 142.00 130.00 130.00 89.00 89.00 149.00

p-value 0.0255 0.6185 0.5812 0.3818 0.3818 0.0479 0.0479 0.7164
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Table 5: Holm’s post tests results after Friendman aligned-ranks test comparing the different configurations in each IV Choquet
integral.

≤α,β C∑
,m,d Cm

0− 142.86 (0.0010*) 129.78 (0.0132*)

1/3− 95.80 (1.0000) 87.78 (1.0000)

1/3+ 95.50 (1.0000) 87.18 (1.0000)

1/2− 90.28 (1.0000) 79.64 -

1/2+ 90.92 (1.0000) 80.10 (1.0000)

2/3− 80.72 (1.0000) 101.74 (0.8241)

2/3+ 80.52 - 102.38 (0.8241)

1− 127.40 (0.0251*) 135.40 (0.0046*)

Table 6: Wilcoxon test comparing the best configuration for each IV Choquet integral.

Comparison Rank+ Rank- p-value

C∑
,m,d ≤2/3+ VS Cm ≤1/2− 186.00 139.00 0.5270

Attending at these results, one can observe that in all comparisons except for the extreme case where
α = 0, the new proposal (C∑

,m,d) provides higher number of ranks. Moreover, statistical differences are
found when α = 0.66. As mentioned, in the case of α = 0, Cm performs statistically better, but looking at
the average performance, one can understand that this extreme value leads to lower accuracy. In fact, this
is what will be studied in our next analysis. Our aims is to check first which is the best configuration for
each IV Choquet integral and then, compare the best configurations between them.

To do so, Friedman aligned-ranks test is applied to compare the different configurations for each IV
Choquet integral. In both cases, the p-value indicates that significant differences exists among them (0.0023
and 0.0024 for C∑

,m,d and Cm, respectively). Hence, Holm’s post-hoc test is performed for each comparison
to analyze the differences with respect to the control method (the best configuration in each case). The
results of these tests are presented in Table 5. The first two columns corresponds to the configuration in
the corresponding row. Then, each column represents a comparison among the configurations of C∑

,m,d

and Cm, respectively. For each configuration, the ranks obtained (the lower the better) and the p-value
of Holm’s test (in brackets) are indicated. An asterisk ‘*’ close to the p-value represents that significant
differences are found.

Attending at Table 5, it becomes clear that extreme cases are performing worse than the control methods,
which are ≤2/3+ and ≤1/2− for C∑

,m,d and Cm, respectively. In fact, the extreme cases are the only ones
showing statistical differences in favor of the control methods, whereas no significant differences are found
with respect to the other configurations. Continuing with the analysis, a Wilcoxon test is carried out to
contrast the best alternatives for each IV Choquet integral. The results of this test are presented in Table
6.

The test shows that no significant differences are found between both IV Choquet integrals. However,
the proposed C∑

,m,d gets a higher number of ranks, showing that it is performing better in more datasets.
Notice also that the new C∑

,m,d could also work with IV fuzzy measures, which Cm cannot handle.

7. Conclusions

In this work we have proposed a generalization of the discrete Choquet integral, called dG-Choquet
integral, replacing, in the first place, the difference between inputs represented by closed subintervals of the
unit interval [0, 1] by a dissimilarity function; and we also replace the sum by more general appropriate
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functions. This generalization extends both the classical Choquet integral and the recently introduced d-
Choquet integral. Furthermore, we have introduced an interval-valued fuzzy measure, that, considered in
our generalization, has also allowed us to extend to the interval-valued setting the discrete Choquet integrals,
keeping the monotonicity properties under suitable conditions.

Although our motivation for introducing the dG-Choquet integral has been the analysis of interval-valued
Choquet integrals, this new class of integrals offers a large variety of possibilities which should be explored
in subsequent works. In particular, dG-Choquet integrals should be related to CF1F2-integrals. This can
be of special interest for applications in the nearby future. For this reason, we expect that the illustrative
example considered in this paper can be further expanded to develop new algorithms in classification in
future research papers.
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Data Set Repository, Integration of Algorithms and Experimental Analysis Framework, Journal of Multiple-Valued Logic
and Soft Computing 17:2-3 (2011) 255–287.
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