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DIISM

Università di Siena
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Abstract

In this paper we continue to study varieties of K-lattices, focusing on
their bounded versions. These (bounded) commutative residuated lattices
arise from a specific kind of construction: the twist-product of a lattice.
Twist-products were first considered by Kalman in 1958 to deal with order
involutions on plain lattices, but the extension of this concept to residu-
ated lattices has attracted some attention lately.

Introduction

This paper is a natural continuation of the investigation in [3] on varieties of
K-lattices. These are commutative residuated lattices coming from a specific
kind of construction: the twist-product.

The idea of considering the twist-product construction goes back to Kalman’s
paper [16], where only pure lattices were considered. The extension of this
concept to residuated lattices is due to Tsinakis and Wille [21]; they considered
the twist-product of a residuated lattice L having a greatest element ⊤ such
that the element (⊤, 1) (1 the monoid identity) is the dualizing element relative

∗This work was supported by the Italian National Group for Algebra and Geometric Struc-
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to the natural involution. In other words for all (x, y) ∈ L × L∂ , ∼(x, y) =
(x, y) → (⊤, 1) and so ((x, y) → (⊤, 1)) → (⊤, 1) = (x, y).

K-lattices were introduced by [9] and they are residuated lattices that are
subalgebras of the algebras obtained by applying the Tsinakis-Wille construction
to integral commutative residuated lattices; in this case ⊤ = 1 and the dualizing
pair is (1, 1).

The lattice of subvarieties of K-lattices have been investigated in [3] and
this paper is mostly based on the results therein, but here we choose a different
starting point, as we consider twist-products coming from bounded commutative
residuated lattices.

We will not try to develop a theory of bounded K-lattices, paralleling the
one in [3] and the reason is that many parts would be just a repetition of our
previous work. In this paper we will focus on the differences in the various parts
of the theory, quoting freely [3] for the parts that are clearly identical. Moreover
we will use the same notation for residuated lattices that are lower bounded and
their bounded version, letting the context clear any possible ambiguity.

The paper is organized as follows. In Section 1, we enumerate all general
results needed to tackle the problem at hand, as well as those results from K-
lattices that will be needed. In Sections 2 we describe the lower part of the lattice
of subvarieties of bounded K-lattices, specifically we show that there is only one
atom, describe (up to a certain extent) all finitely generated covers of the atom,
and mention some infinite covers. Finally in Section 3 we consider some special
subvarieties of bounded K-lattices, and study the lattice of subvarieties for those
cases.

1 Preliminaries

As in the case of [3], we first mention the classical result by B. Jónsson.

Lemma 1.1. (Jónsson’s Lemma) Let K be a class of algebras such that V(K)
is congruence distributive; then

1. if A is a finitely subdirectly irreducible algebra in V(K), then A ∈ HSPu(K);

2. if A,B are finite subdirectly irreducible algebras in V(K) then V(A) =
V(B) if and only if A ∼= B.

In particular if K is a finite class of finite algebras and V(K) is congruence
distributive, then all the finitely subdirectly irreducible algebras in V(K) are in
HS(K).

A commutative residuated lattice is a structure 〈A,∨,∧, ·,→, 1〉 such
that

1. 〈A,∨,∧〉 is a lattice;

2. 〈A, ·, 1〉 is a commutative monoid;
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3. (·,→) form a residuated pair w.r.t. the ordering, i.e. for all a, b, c ∈ A

ab ≤ c if and only if a ≤ b→ c.

We denote this variety by CRL; if 1 is the largest element in the ordering
the lattice is said to be integral. Commutative and integral residuated lattices
form a variety which we call CIRL. Note that algebras in CRL are congruence
distributive, since they have a lattice reduct.

If we enlarge the type of CIRL with a constant 0 and we add the axiom 0 ≤ x
then we get the variety of bounded commutative residuated lattices, denote by
BCRL 1. Any finite algebra in CIRL is naturally bounded and most subvarieties
of CIRL have their bounded version. In BCRL we have a natural negation given
by ¬x = x→ 0.

There are two equations that result in interesting subvarieties of CIRL and
BCRL

(x→ y) ∨ (y → x) ≈ 1. (P)

x(x → y) ≈ y(y → x); (D)

The subvariety of BCRL given by equation (P) is the variety ofMTL-algebras,
and the one given by equations (P) and (D) is the variety of BL-algebras.

Algebras in CIRL satisfying (D) are called hoops. For hoops usually there is
a convention when dealing with their bounded counterparts: we use the name
algebra to identify the bounded version; so we talk about Wajsberg algebras (or
MV-algebras), product algebras, Gödel algebras and of course the bounded ver-
sion of generalized Boolean algebras are just Boolean algebras. While the term
basic algebra is used sometimes in the literature the most common name for the
bounded version of basic hoops is BL-algebras and there is no standard name
for the bounded version of hoops; in this paper we call them HL-algebras. The
theory of the bounded version of any variety is almost equal to the theory of the
unbounded version. There is one main difference though: since all the algebras
are bounded they cannot be cancellative, so there is no variety corresponding to
cancellative hoops. Of course cancellation comes back through the window as
soon as we start talking about ordinal sums (see the definition below); in fact
it is evident that any ordinal sum in which the first component is an algebra in
BCRL and all the others are algebras in CIRL is an algebra in BCRL. Another
general fact is the following: adding a constant changes the subalgebras of an
algebra, in the sense that one has less subalgebras to consider. This usually
simplifies the lattice of subvarieties: it is well known (and an easy exercise) that
the lattice of subvarieties of product algebras is the three element chain (and
the atom is the variety of Boolean algebras). The reader can compare this with
the lattice of subvarieties of product hoops described in [1].

The connection however is strong; it can be proved that if V is a subvariety
of BCRL then the class S0(V) of its zero-free subreducts (that is, subalgebras

1We follow the common usage that bounded implies integral, see [13].
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as CIRL of the zero-free reducts of algebras in V) is a subvariety of CIRL (see
[1], where the result is stated and proved for hoops, but the divisibility is never
used in the proof). But there are also more subtle differences; it is tempting to
conjecture that if a sets of zero-free equations axiomatize a subvariety V of BCRL
then the variety S0(V) of its zero-free subreducts is axiomatized by the same
set of equations. Though this happens very often it does not always happen, as
shown in [4] p. 372.

A powerful tool for constructing is the ordinal sum. If A ∈ BCRL and
B ∈ CIRL we put a structure on the set A \ {1} ∪ B \ {1} ∪ {1}. The ordering
is given by

a ≤ b if and only if







b = 1, or
a ∈ A0 \ {1} and b ∈ A1 \ {1} or
a, b ∈ Ai \ {1} and a ≤Ai

b, i = 0, 1.

and we define

a→ b =







b, if a = 1;
1, if b = 1;
a→Ai

b, if a, b ∈ Ai \ {1} and a ≤Ai
b, i = 0, 1.

a · b =







a, if a ∈ A0 \ {1} and b ∈ A1;
b, if a ∈ A1 and b ∈ A0 \ {1}
a ·Ai

b, if a, b ∈ Ai \ {1} and a ≤Ai
b, i = 0, 1.

If we call A⊕B the resulting structure, then it is easily checked that A⊕ B is
a semilattice ordered integral and commutative residuated monoid (and so the
ordinal sum of two hoops in the sense of [8] always exists). It might not be a
residuated lattice though and the reason is that if 1A is not join irreducible and
B is not bounded we run into trouble. In fact if a, b ∈ A \ {1} and a ∨A b = 1A
then the upper bounds of {a, b} all lie in B; and since B is not bounded there
can be no least upper bound of {a, b} in A ⊕ B and the ordering cannot be a
lattice ordering. However this is the only case we have to worry about; if 1A is
join irreducible, then the problem disappears, and if 1A is not join irreducible
but B is bounded, say by u, then we can define

a ∨ b =























a, a ∈ B and b ∈ A;
b, a ∈ A and b ∈ B;
a ∨B b, if a, b ∈ B;
a ∨A b, if a, b ∈ A and a ∨A b < 1;
u, if a, b ∈ A and a ∨A b = 1;

We will call A ⊕ B the ordinal sum and we will say that the ordinal sum
exists if A ⊕ B ∈ BCRL. We will now list some examples of varieties in which
ordinal sums play a special role.

It is easy to see that the 3-element Gödel chain G3 is isomorphic to 2⊕2. If
we consider GA the variety of Gödel algebras, it can be shown that GA is a locally
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finite variety and it is generated by all the finite Gödel chains Gn = 2⊕ . . .⊕ 2

(n− 1 summands).
More generally, algebras of the form 2 ⊕ D for some D ∈ CIRL are exactly

the directly idecomposable Stonean algebras (see Section 3.4).
On the other hand, subdirectly irreducible BL-algebras are of the form A⊕D,

with A a (bounded) Wajsberg chain and D a basic hoop.

A large class of algebras in BCRL can be obtained as follows. For any A ∈
CIRL we construct a new algebra, called the connected rotation of A in the
following way; if  L2 = {0, 12 , 1} then the universe is

Aδ2 = ({0} ×A) ∪

{(

1

2
, 1

)}

∪ ({1} ×A)

and the operations are defined as

(x, a) ∨ (y, b) =







(1, a ∨ b) if x = y = 1;
(0, a ∧ b), if x = y = 0;
(y, b), if x < y.

(x, a) ∧ (y, b) =







(1, a ∧ b) if x = y = 1;
(0, a ∨ b), if x = y = 0;
(y, b), if x < y.

(x, a)(y, b) =















(1, ab), if x = y = 1;
(xy, 1), if x, y 6= 1;
(y, b), if x = 1 and y = 1

2 ;
(y, a→ b), if x = 1 and y = 0.

(x, a) → (y, b) =























(1, a→ b), if x = y = 1;
(1, b→ a), if x = y = 0;
(0, ab), if x = 1 and y = 0;
(1, 1), if x < y;
(x→ y, 1), otherwise.

It is not hard to check that Aδ2 ∈ BCRL and it is also involutive; moreover
the set Aδ2 \

{(

1
2 , 1

)}

is a subalgebra of Aδ2 that we will call the disconnected

rotation of A and denote by Aδ1 . Connected and disconnected rotations of
algebras in CIRL have been studied in [11], [7] and [5].

On one hand, 2δ1 , the disconnected rotation of the 2-element Boolean alge-
bra, is the 4-element nilpotent minimum chain N4. In general, the variety of
nilpotent minimum algebras is generated by connected and disconnected rota-
tions of finite Gödel chains (see Section 3.2).

On the other hand, the Chang algebra  Lω
1 (see Section 3.1.1) is isomorphic

to the disconnected rotation of the cancellative hoop Cω.

Let A ∈ CIRL; the K-expansion K(A) of A is a structure whose universe
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is A×A and the operations are defined as:

〈a, b〉 ∨ 〈c, d〉 := 〈a ∨ c, b ∧ d〉

〈a, b〉 ∧ 〈c, d〉 := 〈a ∧ c, b ∨ d〉

〈a, b〉〈c, d〉 := 〈ac, (a→ d) ∧ (c→ b)〉

〈a, b〉 → 〈c, d〉 := 〈(a → c) ∧ (d→ b), ad〉.

Theorem 1.2. [9] For every A ∈ CIRL, K(A) is a commutative residuated
lattice that is also

1. 1-involutive;

2. 1-distributive, i.e. it satisfies both distributive laws for lattices whenever
at least one of the elements is equal to 1.

3. If we set ∼x = x→ 1 then it satisfies the equations

xy ∧ 1 ≈ (x ∧ 1)(y ∧ 1) (K1)

((x ∧ 1) → y) ∧ ((∼ y ∧ 1) → ∼ x) ≈ x→ y. (K2)

A Kalman lattice or just K-lattice is a a commutative integral residuated
lattice that is 1-involutive, 1-distributive and satisfies (K1) and (K2); the variety
of K-lattices is denoted by KL.

If we start with an algebra A ∈ BCRL, then K(A) will have (0, 1) as a lower
bound, and (1, 0) =∼ (0, 1) as an upper bound. Thus we define Bounded

K-lattices as the variety of K-lattices with an extra constant 0 and the axiom
0 ≤ x (observe that they will also be upper bounded by ⊤ =∼ 0). We will
denote the variety of bounded K-lattices by BKL.

Most of the basic definitions about K-lattices in [3] can be formulated in
the bounded case as well. In particular if B ∈ BKL we denote by B− the
algebra whose universe is {b ∈ B : b ≤ 1} endowed with same lattice operations,
constants 0, 1 and multiplication as B and a new implication a→− b = a→ b∧1.
It is clear that B− ∈ BCRL and moreover Con(B) and Con(B−) are isomorphic
via the mappings

α 7−→ α− = α ∩ (B− ×B−) θ 7−→ CgB(θ).

In particular for each α ∈ Con(B) there is an α− ∈ Con(B−) such that
(B/α)− ∼= B−/α− (see [15] for details. Moreover we have two lemmas whose
proofs are identical to the analogous one for the unbounded case (the first ap-
pears in [3] and the second in [9]).

Lemma 1.3. Let A,B ∈ BCRL and let (Ai)i∈I ⊆ BCRL. Then

1. if A ≤ B, then A− ≤ B−;

2. (Πi∈IAi)
− ∼= Πi∈IA

−.
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Lemma 1.4. [9] If L ∈ BCRL then L ∼= K(L)−. If A ∈ BKL, then f : a 7−→
(a ∧ 1,∼ a ∧ 1) is an embedding of A in K(A−).

By the same token, all the properties of the operator K transfer to the
bounded case without any change. As in [3], a subvariety W of BKL is a
Kalman variety if W = K(W−).

Lemma 1.5. Let V be any subvariety of BCRL, W any subvariety of BKL and
K any subclass of BCRL:

1. K(V) is a subvariety of BKL and K(V) = {A ∈ KL : A− ∈ V};

2. K(V(K)) = V(K(K));

3. HSPu(K(K)) ⊆ SK(HSPu(K));

4. K(V)− = V and W ⊆ K(W−);

5. K(W−) is the smallest Kalman variety containing W;

6. K : Λ(BCRL) 7−→ Λ(BKL) is a lattice homomorphism;

7. W− ⊆ V if and only if W ⊆ K(V), hence2

W
− =

∧

{U : W ⊆ K(U)}.

8. K is also injective, i.e. it is an embedding.

If A ∈ BKL and B is a subalgebra of A, we say that B is an admissible

subalgebra if B− = A−. Since it is evident that the intersection of any fam-
ily of admissible subalgebras is still admissible, admissible subalgebras form a
complete meet-semilattice (indeed algebraic) under inclusion.

If A ∈ BCRL, we define K0(A) as the minimal admissible subalgebra of
K(A). This notation will come in handy when we look at some of the examples.

In some special cases admissible subalgebras can be totally characterized.

An algebra A ∈ BCRL is involutive if for all a ∈ A, ¬¬a = a; in this case
we may define a⊕ b = (a → 0) → b.

Theorem 1.6. Let A ∈ BCRL be involutive; then there is a one to one and onto
correspondence between the lattice filters of A and the admissible subalgebras of
K(A). More precisely, if F is a lattice filter of A, then

K(B, F ) = {(a, b) ∈ K(B) : a⊕ b ∈ F} ≤ K(B)

is admissible. Conversely if A ∈ BKL is such that A− is involutive, then

F = {((a ∧ 1) →1 0) →1 ∼ a : a ∈ A}

is a lattice filter of A− and K(A−, F ) is an admissible subalgebra of K(A−).

2i.e. the operators K,− form a left adjoint pair between Λ(BCRL) and Λ(BKL).
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Wajsberg algebras and rotations (both connected and disconnected) are ex-
amples of involutive BCRL.

Let now H be a Heyting algebra; an element a ∈ H is dense if ¬a = 0. A
filter F of H is regular of it contains all the dense elements; it is easy to see
that F is regular if and only if H/F is a Boolean algebra.

Theorem 1.7. Let H be a Heyting algebra; then there is a one to one and
correspondence between the regular filters of H and the algebras in KL whose
negative cone is isomorphic with H. More precisely, if F is a regular filter of
H, then

K(H, F ) = {(a, b) ∈ K(H) : a ∨ b ∈ F} ≤ K(H)

and K(H, F )− ∼= H. Conversely if A ∈ BKL is such that A− is a Heyting
algebra, then F = {(a ∨ ∼ a) ∧ 1 : a ∈ A} is a regular filter of A− such that
K(A−, F ) ∼= A.

For a proof of the two previous results we quote [9].

We also have the following result, concerning ordinal sums.

Theorem 1.8. ([3], Theorem 3.4) The admissible subalgebras of K(A⊕B) are
in one to one correspondence with the admissible subalgebras of K(A). More-
over, if S is an admissible subalgebra of K(A), then TB

S = S ∪ (A×B) ∪ (B ×
A)∪ (B×B) is the universe of an admissible subalgebra of K(A⊕B). And if T

is an admissible subalgebra of K(A⊕ B), then ST = T ∩ A×A is the universe
of an admissible subalgebra of K(A) that satisfies TB

ST
= T .

As a particular case, we can completely describe the admissible subalgebras
of K(A ⊕ B) if A ∈ BCRL is either involutive or Heyting, using Theorems 1.6
and 1.7.

2 Atoms and covers

If V is any variety we denote by Λ(V) its lattice of subvarieties; a variety W ∈
Λ(V) that is a cover of an atom is called almost minimal. The lattice of
subvarieties of (non necessarily bounded) K-lattices has been investigated at
length in [3]. If 2 is the two element Boolean algebra and then K(2) has four
elements and it is the only four element bounded K-lattice, so it makes sense
to denote it by K4. Moreover if 2 = {0, 1}, then {(0, 1), (1, 1), (1, 0)} is the
universe of admissible subalgebra K3 of K(2). As in the unbounded case [9]
K3 is the only totally ordered algebra in BKL and therefore V(K3) is the only
representable subvariety of BKL. K(V(2)) is of course the variety generated by
the kalmanization of the variety BA of Boolean algebras; and in the same way
that [3] we can check that V(K3) is not a Kalman variety. Here is the first
result that is different for bounded K-lattices.

Theorem 2.1. V(K3) is the only atom in Λ(BKL).
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There is another subtler difference of behavior in bounded K-lattices. Here,
the element (0, 0) always exists in K(A) for A ∈ BCRL, and can be described
equationally.

Lemma 2.2. If A ∈ BKL, then there exists at most one element o ∈ A such
that

• ∼ o = o,

• o ∧ 1 = 0.

Proof. If z ∈ A satisfies both ∼ z = z and z ∧ 1 = 0, then clearly z ∧ 1 = 0 ∧ 1
and ∼ z ∧ 1 =∼ o ∧ 1, and in Kalman lattices these two equations imply that
z = o (see [9]).

Lemma 2.3. If A ∈ BKL, the following are equivalent

1. A ∼= K(A−),

2. K4 ≤ A,

3. there exists o ∈ A such that ∼ o = o and o ∧ 1 = 0.

Proof. 1. ⇒ 2 and 2. ⇒ 3. are immediate, as (0, 0) satisfies the equations
for o. To show that 3. ⇒ 1., observe that we always have A ≤ K(A−) as
x 7→ (x ∧ 1,∼ x ∧ 1) is an embedding, by Lemma 1.4. But if 3. holds, it is also
onto: if a, b ∈ A−, then z = a∨ (∼ b∧o) satisfies z ∧ 1 = a and ∼ z ∧ 1 = b.

Lemma 2.3 implies that Kalman subvarieties of BKL will always be above
V(K4). More precisely:

Theorem 2.4. V(K4) = K(BA) is almost minimal in Λ(BKL); moreover it is
the only almost minimal Kalman variety.

2.1 Finitely generated almost minimal varieties

In Section 5 of [3], we introduced a subclass of CIRL from which we could
construct finitely generated almost minimal varieties in Λ(KL). An algebra
A ∈ CIRL is tight if

• |A| > 2;

• A is bounded by 0 and any element different from 0, 1 generates A.

It turns out that finite tight algebras describe almost all finitely generated
almost minimal varieties in CIRL :

Theorem 2.5. [2] If A ∈ CIRL is a finite subdirectly irreducible algebra gener-
ating an almost minimal variety, then either A is tight, or it isomorphic with
the 0-free reduct of either G3 or N4.
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The definition of tight algebras would make sense also for algebras in BCRL

but there is a relevant difference: in CIRL every filter is a subalgebra, so the
second condition above implies that any tight algebra is simple. Since in BCRL

a filter is not in general a subalgebra, simplicity may not hold. Therefore we
give a different and more general definition.

We say an algebra A ∈ BCRL is rigid if:

• |A| > 2;

• A is subdirectly irreducible;

• A has no proper subalgebras different from {0, 1};

• for all proper nontrivial θ ∈ Con(A), A/θ ∼= 2.

It is clear from the definition that the algebras G3 and N4 are rigid. Observe
that any stiff algebra in the sense of [13, 17] is rigid; the following results will
show the importance of finite rigid algebras.

Lemma 2.6. Let A ∈ BCRL be rigid; then A has at most one proper nontrivial
congruence, i.e. Con(A) is either the two or three-element chain.

Proof. If µ is the monolith and it is a proper congruence (otherwise we are
done), then A/µ ∼= 2. If θ ) µ, it must be the congruence θ = A × A, as it
must have a pair (a, b) such that (a, 0), (b, 1) ∈ µ.

Theorem 2.7. The following results hold in BCRL.

1. If A ∈ BCRL is a finite subdirectly irreducible algebra, then V(A) is an
almost minimal variety if and only if A is rigid.

2. If A ∈ BCRL satisfies that the 0-free reduct of A is a tight algebra in CIRL,
then it is rigid.

Proof. The first part is immediate, as the definition of rigid algebras and Lemma
2.6 characterize the finitely generated covers of V(2) = BA.

For the second part, it is clear that if the 0-free reduct of A is tight, then
any a 6= 0, 1 generates the whole A as an algebra in CIRL, but as it contains
0 it implies that A has no subalgebras other than A and {0, 1} as an alge-
bra in BCRL. Moreover, as filters are subalgebras in CIRL, we have that A is
subdirectly irreducible and does not have any non-trivial proper congruences.
Therefore A is rigid.

The converse of the second part of Theorem 2.7 is false, however, as there
are new covers of the atom V(2) = BA. For instance, the reader can verify that
the algebra described in Figure 1 is rigid, but it is clearly not tight as an algebra
in CIRL (and it is neither G3 nor N4, so by Theorem 2.5 it is a distinct cover).

We will now proceed to show the importance of rigid algebras for BKL.

10



0 = ab

b = ¬a = ¬a2

a2 = a3

a

1

Figure 1: An algebra that generates a cover of V(2) in BCRL but not in CIRL.

Lemma 2.8. Let A ∈ BCRL be rigid having a non-trivial proper congruence;
then there exists a proper admissible subalgebra of K(A) such that its only proper
nontrivial quotient is isomorphic to K3.

Proof. By Lemma 2.6, let µ be the proper monolith of A and let θ = CgK(A)(µ),

so that θ− = µ. Clearly K(A)/θ ∼= K4, and consider the set

B = {(a, b) ∈ K(A) : (a, b)/θ ∈ K3} = {(a, b) ∈ K(A) : ((a, b), (0, 0)) 6∈ θ}.

Then B is nonempty ((0, 1), (1, 0), (1, 1) ∈ B); clearly it is the universe of an
admissible subalgebra B of K(A) and moreover B/(θ ∩ B × B) ∼= K3. As
θ ∩B ×B is the only proper nontrivial congruence of B, the Lemma holds.

Theorem 2.9. Let A ∈ BKL be a finite subdirectly irreducible algebra that
generates an almost minimal variety different from V(K4) = K(BA). Then A−

is rigid.
On the other hand, let A be a finite rigid algebra in BCRL such that 0 is

meet irreducible. Then K(A) has a subalgebra that generates an almost minimal
variety different from K(BA).

Proof. Suppose that A is a finite subdirectly irreducible algebra generating an
almost minimal variety different from K(BA). Clearly |A−| > 2, and any proper
subalgebra of A must be isomorphic with K3. This implies that A− cannot
have proper subalgebras different from {0, 1}. Consider now a proper nontrivial
θ ∈ Con(A−) and let α = CgA(θ). Then α is proper nontrivial in Con(A) and
hence we must have A/θ ∼= K3. This implies that (A/α)− = A−/θ = 2 so A−

is rigid.
Conversely, let A be a finite rigid algebra such that 0 is meet irreducible.

Since A is finite and subdirectly irreducible, so is K(A). As A is rigid, it does
not have proper subalgebras different from {0, 1}, so the subalgebras of K(A)
are only K3, K4 and the admissible subalgebras. As 0 is meet irreducible in
A, K(A) \ {(0, 0)} is the universe of an admissible subalgebra B of K(A) (see
Lemma 4.8 in [3]) that does not contain (0, 0), so K4 is not a subalgebra of B

(see Lemma 2.3).
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By Lemma 2.8 there is an admissible subalgebra C ≤ K(A) with the prop-
erty that its only nontrivial quotient is K3 (if it has one).

Therefore the minimal admissible subalgebra K0(A) satisfies that its only
subalgebras are K3 and K0(A), and its only non-trivial quotient (if any) is K3.
By Jónsson’s Lemma we conclude that K0(A) generates a cover of the atom in
Λ(BKL).

2.2 Other almost minimal varieties

We will now consider some examples of non-finitely generated covers of V(K3).

Lemma 2.10. Let A ∈ BKL satisfy that K4 6≤ A. Then each B ∈ SPu(A)
satisfies K4 6≤ B.

Proof. By Lemma 2.3, K4 6≤ A is equivalent to the non-existence of an element
o such that o =∼ o and o ∧ 1 = 0. But this is first-order definable by the
sentence given by ϕ(x) : (x ≈ x→ 1) and ψ(x) : (x ∧ 1 ≈ 0)

∀x(¬ϕ(x) ∨ ¬ψ(x)).

Therefore if it is true for A, then it is true for any ultrapower, and clearly for
any subalgebra B ∈ SPu(A).

We will use this Lemma to construct two covers.

First we will show that K0(2 ⊕ Cω) generates an almost minimal variety
different from K(BA). Observe that by Theorem 1.8, we have that the universe
of K0(2 ⊕ Cω) is K(2 ⊕ Cω) \ {(0, 0)}. Therefore K4 6≤ K0(2 ⊕ Cω) and by
Lemma 2.10 we have that K4 6∈ SPu(K0(2 ⊕ Cω)).

Now, in 2⊕ Cω we have the first-order formula

∀x((x ≈ 0) ∨ (¬x ≈ 0)),

Therefore, if A ∈ SPu(K0(2⊕Cω)) and θ is a congruence in A with A/θ ≤ K4,
F = θ ∩ A− is a filter in A− such that A−/F ∼= 2. Then if a ∈ A− satisfies
a ∼F 0, ¬a ∈ F and therefore a = 0 by the first-order formula preserved in
Pu(2 ⊕ Cω). Thus as (0, 0) is not an element of A, we have that A/θ ∼= K3.
This shows that K4 6∈ HSPu(K0(2⊕Cω)), and therefore K4 6∈ V(K0(2⊕Cω)).

To show that the variety is minimal, if B ∈ HSPu(K0(2 ⊕ Cω)), by using
Lemma 1.3 and the well-known properties of cancellative hoops we can deduce
that either B− ∼= 2 or B− ∼= 2⊕A for some totally ordered cancellative hoop A.
In case B− ∼= 2, then B ∼= K3 (as we showed that K4 6∈ HSPu(K0(2⊕ Cω))).
Otherwise B ≤ K(2 ⊕ A) and (0, 0) /∈ B; but then B ∼= K0(2 ⊕ C) for some
subalgebra C ≤ B and 2⊕Cω ≤ 2⊕C. It follows thatK0(2⊕Cω) ≤ K(2⊕C) ∼=
B. This is enough to prove thatK0(2⊕Cω) generates an almost minimal variety
not above K(BA).

We will now use a similar argument to show that K0( L
ω
1 ) generates an

almost minimal variety above V(K3). Observe that the Chang algebra satisfies
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 Lω
1
∼= (Cω)

δ1 , that is the disconnected rotation of the cancellative hoop Cω, and
we can identify Cω with the radical (and only filter) of  Lω

1 . It can be shown
that the universe of K0( L

ω
1 ) is K( Lω

1 ) \ {(a, b) : ¬a,¬b ∈ Cω}. It is clear that
K4 6≤ K0( L

ω
1 ) and by Lemma 2.10 we have that K4 6∈ SPu(K0( L

ω
1 )).

Now, if A ∈ SPu(K0( L
ω
1 )) and θ is a congruence in A with A/θ ≤ K4,

F = θ ∩ A− is a filter in A− such that A−/F ∼= 2. As  Lω
1 satisfies the first-

order formula

∀x((x2 ≈ 0) ∨ (¬x→ x ≈ 1)),

then if a ∈ A− satisfies a ∼F 0, it must be a2 = 0. But K0( L
ω
1 ) satisfies the

first-order formula

∀x(((x ∧ 1)2 ≈ 0) ⇒ ¬(((x → 1) ∧ 1)2 ≈ 0)),

there does not exist x ∈ A such that x/θ = (0, 0), so A/θ ∼= K3. This shows
that K4 6∈ HSPu(K0( L

ω
1 )), and therefore K4 6∈ V(K0( L

ω
1 )).

To show that the variety is minimal, suppose that B ∈ HSPu(K0( L
ω
1 ));

certainly K0(L
ω
1 ) satisfies a first order sentence that says that its negative part

(i.e. Lω
1 ) is totally ordered. It follows that B satisfies the same sentence, i.e.

B− is totally ordered as well. Since B− belongs to the variety generated by
the Chang algebra, either B− ∼= 2 or B− ∼= (A)δ1 for some totally ordered
cancellative hoop A. In case B− ∼= 2, then B ∼= K3 (as we showed that
K4 6∈ HSPu(K0( L

ω
1 ))). Otherwise B ≤ K((A)δ1) and (0, 0) /∈ B; but then

K0( L
ω
1 ) ≤ B. This is enough to prove thatK0( L

ω
1 ) generates an almost minimal

variety not above K(BA).

3 Lattices of subvarieties

In this section we will consider the lattices of subvarieties of K(V) for some
specific V ⊆ BCRL. Some results are very similar to the ones obtained for the
unbounded cases in [3], some are substantially different and some are totally
new in the sense that deal with varieties that have no corresponding known
unbounded counterpart. We will omit all the proofs that are simple rewritings
of the proofs in [3] and we will illustrate in more details the new cases.

3.1 Bounded Basic K-Lattices

In this Section we will deal with different suvbarieties of K(BL) but first we will
mention some basic results.

The finitely generated minimal varieties are K(BA), V(K0(G3)) and all
V(K0( Lp)) for p prime. The non-finitely generated ones are V(K0(2 ⊕ Cω))
and V(K0( L

ω
1 )).

Observe also that if A ∈ BL is subdirectly, then A ∼= B ⊕ D, where B

is a Wajsberg algebra (actually a chain) and D is a basic hoop. Then all
the admissible subalgebras of K(A) are in one to one correspondence with the
admissible subalgebras of K(B), which in turn are in one to one correspondence
with the lattice filters of B by Theorems 1.8 and 1.6.
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3.1.1 Bounded Wajsberg K-lattices

LetWA be the variety ofWajsberg algebras; a bounded K-lattice A is a bounded

Wajsberg K-lattice if A− ∈ WA. The lattice Λ(WA) is well known [18] and
it is simpler than the lattice of subvarieties of Wajsberg hoops [4]; this simplifi-
cation is reflected also in the structure of Λ(K(WH)). Since Wajsberg algebras
are involutive, if  Ln is the n + 1-element Wajsberg chain, then its admissible
subalgebras can be described exactly as in [3], Section 5: if a is the only coatom
of  Ln then

Km,n = {(u, v) : u⊕ v ≥ am}

is the universe of an admissible subalgebra Km,n = K( Ln, F ) of K( Ln), for
F = 〈am〉 the filter generated by am. Now similarly to [3] we can show:

Theorem 3.1. The only almost minimal varieties in Λ(K(WA)) are K(BA),
V(K0,p) for p prime, and V(K0( L

ω
1 )).

We define
 Lω
n = Γ(Z×l Z, (n, 0)),

where ×l is the lexicographic product and Γ is the Mundici functor [19].
Each proper subvariety of WA has only finitely many subvarieties (we say

sometimes that has finite height): if V is proper than there is a finite subset X
of { Ln : n ∈ N} and a finite subset Y ⊆ { Lω

m : m ∈ N} with V = V(X ∪ Y ) [4].
Recalling Theorem 1.6, we have that

• K( Ln, F ) ≤ K( Lm, G) if and only if n|m and 〈F 〉m ⊆ G, where 〈F 〉m is
the lattice filter generated by F ⊆  Ln, viewed as a subset of  Lm. This
can be simplified as each lattice filter in  Ln is principal, and therefore if
F = 〈xr〉n and G = 〈xs〉m, then Kr,n = K( Ln, F ) ≤ K( Lm, G) = Ks,n if
and only if there is a k ∈ N with nk = m and s ≥ rk.

• K( Ln, F ) ≤ K( Lω
m, G) if and only if n|m and 〈F 〉m ⊆ G.

• K( Lω
n , F ) ≤ K( Lω

m, G) if and only if n|m and 〈F 〉m ⊆ G.

We stress that we can obtain all the results in Section 6.3 for finitely gen-
erated varieties of Wajsberg K-lattices with an even simpler presentation. This
is a straightforward, albeit lengthy, exercise and we leave it to the interested
reader. As a small example, in Picture 2 we include the lattice of subvarieties
of V(K( L4)).

For the case of non-finitely generated varieties, observe that in K( Lω
n , F ), if

F is a lattice filter properly containing the radical, and if θ is the congruence in
K( Lω

n , F ) generated by the radical of  Lω
n , then K( Lω

n , F )/θ
∼= K4. Therefore in

this case the structure of the lattice of subvarieties becomes much more complex.

3.1.2 Bounded Gödel and Product K-lattices

Let’s consider the variety GA of Gödel algebras; it is obvious that its lattice of
subvarieties is identical to the one of Gödel hoops. If we look at K(GA) things
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V(K3)

T

V(K4) = K((BA)) V(K0,2)

V(K1,2)V(K0,4)

V(K1,4)

V(K( L2))

V(K2,4)

V(K3,4)

V(K( L4))

Figure 2: Λ(V(K( L4)))

are different though. Observe first that the following Theorem from [3] still
holds.

Theorem 3.2. The nontrivial subalgebras (up to isomorphism) of Kn2 are the
algebras Km2 and Km2−1 for m = 2, . . . , n.

However, it is no longer true (as in the unbounded case) that Kn2−1 has
a subalgebra isomorphic with Km2 for m < n, neither it is true that Kn2−1

has Km2 as a homomorphic image for m < n (this is due to the fact that a
homomorphism f : Gn → Gm satisfies f(x) = 0 only for x = 0). In particular
Λ(K(GA)) is no longer a chain; with standard calculations one can show that it
is the lattice in Figure 3.

A BL-algebra is a product algebra if it satisfies the equation

¬y ∨ ((x→ xy) → y) ≈ 1.

The variety PA of product algebras has been studied in [12]; joining the results
therein with the results about product K-lattices in [3] we get:

Lemma 3.3. The subdirectly irreducible algebras in K(PA) are exactly K3, K4,
K0(2 ⊕ C) and K(2 ⊕ C) for any totally ordered cancellative hoop C.

Then it is easily checked that Λ(K(PA)) is the lattice in Figure 4.
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T

V(K3)

V(K8)

V(K15)

V(K
(n−1)2−1

)

V(K
n2−1

)

V(K4) = V(K(2))

V(K9) = V(K(2 ⊕ 2))

V(K
(n−1)2

) = V(K(2 ⊕ · · · ⊕ 2))

K(GA)

Figure 3: Λ(K(GA))

T

V(K0(2⊕Cω))

K(PA) = V(K(2⊕Cω))

K(BA) = V(K4)

V(K3)

Figure 4: Λ(K(PA))
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3.2 Nilpotent minimum K-lattices

Let’s consider the variety generated by connected and disconnected rotations of
Gödel chains, that is the variety NM of nilpotent minimum algebras. This
variety has been completely described in [14]; these are the highlights:

• the variety NM is the subvariety of BCRL axiomatized by (P), i.e. they
are MTL algebras, ¬¬x ≈ x (which gives involution) and

(xy → 0) ∨ ((x ∧ y) → xy) ≈ 1;

• the finite NM-chains are exactly connected or disconnected rotations of
Gödel chains; more precisely if Nk denotes the k-element nilpotent min-
imum chain, then we have that N2n is the disconnected rotation of the
Gödel chain Gn and N2n+1 is the connected rotation of Gn (of course G0

is the trivial algebra). Clearly N2 = 2 and N3 =  L2;

• we define Nω to be the nilpotent minimum algebra whose universe is the
real interval [0, 1] the order is the natural order and the operations are:

xy =

{

0, if y ≤ 1− x;
min(x, y), otherwise.

x→ y

{

1, if x ≤ y;
max((1− x), y), otherwise.

It is clear that ¬x = 1 − x and hence ¬(1/2) = 1/2. It follows that
[0, 1] \ {1/2} is the universe of a subalgebra of Nω that we denote by N∗

ω;

• N2k,N2k+1 ≤ N2n+1 for k ≤ n; N2k ≤ N2n for k ≤ n; N2n ≤ N∗
ω for all

n; N2n+1 ≤ Nω for all n;

• H(N2n+1) = {Nk : k ≤ 2n+ 1}, H(N2n) = {N2k : k ≤ n};

• the variety NM is generated by all the chains {N2n+1 : n ∈ N} or by any
infinite chain having an element a such that ¬a = a; hence NM = V(Nω);

• every subvariety of NM is generated by its finite algebras, so it has the
finite model property and each splitting algebra is finite;

• NM
∗ = V(N∗

ω) = V({N2k : k ∈ N}) is a proper subvariety of NM.

Now putting together all we know, we observe that:

Lemma 3.4. For every n ∈ N, HSPu(K(N2n+1)) ⊆ SK({Nk : k ≤ 2n + 1})
and HSPu(K(N2n)) ⊆ SK({N2k : k ≤ n}).

Proof. We compute:

HSPu(K(N2n+1)) ⊆ SK(HSPu(N2n+1)) = SK(HS(N2n+1))

= SK(HS(Gδ2
n )) = SK(HS(Gn)

δ2)

= SK(HS({Gk : k ≤ 2n+ 1}δ2))

= SK({Nk : k ≤ 2n+ 1});

the second point follows by a similar argument.
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It is easy to see that the non-admissible subalgebras of K(N2n) are exactly
the admissible subalgebras of K(N2k) with k ≤ n and the non admissible sub-
algebras of K(N2n+1) are exactly the admissible subalgebras of K(N2k) and
K(N2k+1) with k ≤ n. Since NM is involutive the admissible subalgebras can
be computed using Theorem 1.6; it follows that that K(Nk) has k admissible
subalgebras and they can be found by computing x⊕ y = (x→ 0) → y on each
Nk. As an example in Figure 5 we draw the proper admissible subalgebras of
K(N5), where N5 = {0 < ¬a < b = ¬b < a < 1}.

x⊕ y ≥ ¬a x⊕ y ≥ b x⊕ y ≥ a x⊕ y ≥ 1

Figure 5: The admissible subalgebras of K(N5)

In order to describe the lattice of subvarieties of K(NM), we first observe
that  L2 and N4 are the only rigid algebras in NM, therefore each one generates
a cover of V(K3) different from K(BA).

Then we observe that there exist retractions γ2n : N2n → 2 for each k.
Thus if we consider K(N2n, F ) for some lattice filter F containing x such
that γ2n(x) = 0 (that is lattice filters strictly greater than the radical), then
we will have K4 ∈ H(K(N2n, F )) by considering the morphism f(a, b) =
(γ2n(a), γ2n(b)). It is also easy to see that if the filter F is contained in the
radical (i.e. γ2n(x) = 1 for each x ∈ F ), then K4 6∈ H(K(N2n, F )). Moreover,
if we consider a morphism γ2n,2k : N2n → N2k, then K(N2k) ∈ H(K(N2n, F ))
if and only if the lattice filter F contains an element x such that γ2n,2k(x) = 0.

The case of N2n+1 is similar, if we consider a morphism γ2n+1,2k+1 : N2n+1 →
N2k+1, then K(N2k+1) ∈ H(K(N2n+1, F )) if and only if the lattice filter F con-
tains an element x such that γ2n+1,2k+1(x) = 0. In Figure 6 we describe the
lattice of subvarieties of V(K(N5)).

To simplify notation, we name K0( L2) ≤ K1( L2) ≤ K( L2), K0(N4) ≤
K1(N4) ≤ K2(N4) ≤ K(N4) and K0(N5) ≤ K1(N5) ≤ K2(N5) ≤ K3(N5) ≤
K(N5) the admissible subalgebras of  L2, N4 and N5, respectively. From the
previous observations, we recall that

• K4 ≤ K( L2) and K(N4) ≤ K(N5),

• K0( L2) ≤ K0(N5) and K0(N4) ≤ K0(N5),

• K1( L2) ≤ K2(N5),

• K1(N4) ≤ K1(N5),
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• K2(N4) ≤ K3(N5),

• K4 ∈ H(K2(N4)),

• K( L2) ∈ H(K3(N5)).

With this information, the reader can verify that the lattice of subvarieties
of V(K(N5)) is effectively the one drawn in Figure 6.

V(K3)

V(K0( L2))
K(BA) = V(K4)

V(K0(N4))

V(K1( L2)) V(K1(N4))

V(K0(N5))

V(K1(N5))

V(K( L2))

V(K2(N5))

V(K2(N4))

V(K3(N5))

V(K(N4))

V(K(N5))

T

Figure 6: Λ(V(K(N5)))

3.3 Drastic product K-lattices

A drastic product chain, briefly a DP-chain, is chain in BCRL where the
monoid operation (which determines the entire structure) is defined as

ab =

{

0, if a, b 6= 1;
a ∧ b, otherwise.

We denote by DPn the DP-chain with n-elements; note that each DP-chain
is simple and DPn has subalgebras isomorphic with DPk for all k ≤ n. In
particular DP3

∼=  L2. DP-chains have been considered (under a different name)
by C. Noguera in his PhD Thesis [20] and investigated in [6]. In details:
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• the variety DP generated by all DP-chains is axiomatized with respect to
MTL by x ∨ ¬(x2) ≈ 1;

• DP is generated by any infinite chain o by any infinite set of finite chains;

• hence any proper subvariety of DP is generated by a single finite chain
and thus Λ(DP) is a chain of order ω + 1.

We remark that any DP-chain has a coatom a1; in fact if D is an infinite DP-
chain and u, v ∈ D \ {0, 1} then ¬u = ¬v and we can take a to be that common
value; moreover in a DP-chain with coatom a1

x→ y =







1, if x ≤ y;
a1, if 1 > x > y;
y, if x = 1.

The main difference between this example and the previous ones is that in
general the admissible subalgebras of K(DPn) do not form a chain; as a matter
of fact they form a chain if and only if n ≤ 4 and this will be clear after our
description of the lattice of admissible subalgebras of K(DPn).

To investigate the admissible subalgebras of the Kalman product of each
DP-chain DPn, we assume n ≥ 4 (as DP2

∼= 2 and DP3
∼=  L2, those cases

have already been considered), and let

DPn = {0 = an−1 ≺ an−2 ≺ · · · ≺ a1 ≺ 1}.

Define

K∅
n = {(x, 1), (1, x), (x, a1), (a1, x) : x ∈ DPn}.

Lemma 3.5. For n ≥ 4, K∅
n is the smallest admissible subalgebra of K(DPn).

Moreover, every sublattice of K(DPn) closed under ∼ and containing K∅
n is the

universe of an admissible subalgebra of K(DPn).

Proof. To show that each admissible subalgebra of DPn contains K∅
n, observe

that, for i = 1, . . . , n− 2,

(ai, 1) · (1, 0) = (ai,¬ai) = (ai, a1),

and then if i = 2, . . . , n− 2,

(a1, ai) · (a1, a1) = (0, a1) = (an−1, a1),

so the elements (ai, a1), (a1, ai) belong to each admissible subalgebra.
As K∅

n is clearly the universe of a sublattice closed under ∼, we only need
to show that any sublattice of K(DPn) closed under ∼ and containing K∅

n is
closed under the product. To show this, observe that for i, j, k, l = 1, . . . , n− 1,

(ai, aj) · (ak, al) = (0, ai → al ∧ ak → aj),

(ai, aj) · (ak, 1) = (0, ak → aj),

(ai, aj) · (1, ak) = (ai, aj),

and each implication is either a1 or 1.
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To describe all the subalgebras, consider the lattice with universe

Xn = {(ai, aj) : i ≥ j > 1}

where the ordering is given coordinate-wise.

(an−1, a2) = (0, a2)

(an−1, an−1) = (0, 0)

(a2, a2)

Figure 7: The lattice Xn.

Now, for each up-set U of Xn consider

KU
n = K∅

n ∪ {(x, y) : (x, y) ∈ U or (y, x) ∈ U}.

From this definition and the previous results, the following Theorem is im-
mediate.

Theorem 3.6. For n ≥ 4, the admissible subalgebras of K(DPn) are KU
n , for

each U up-set of Xn. Moreover, KU
n ⊂ KW

n if and only if U ⊂W .

We also note:

Corollary 3.7. The lattice of admissible subalgebras of K(DPn) is a chain if
and only if n ≤ 4.

Figures 8 and 9 show all the admissible subalgebras ofK(DP4) andK(DP5).

Since the non admissible subalgebras of K(DPn) are exactly the admissible
subalgebras of K(DPm) with m ≤ n, in principle we can draw the entire lattice
of subalgebras. For that we use the following result, in which we use that in the

inclusion DPm ≤ DPn, the coatom a
(m)
1 goes to the coatom a

(n)
1 , each a

(m)
k for

k = 2, . . . ,m− 2 goes to a
(n)
k , and a

(m)
m−1 = 0 goes to a

(n)
n−1 = 0.

Theorem 3.8. 1. for each 4 ≤ n, K0,2 ≤ K1,2 ≤ K∅
n;

2. for each 4 ≤ m < n, KU
m ≤ KŨ

n , where Ũ is the up-set of Xn generated by
each (ai, aj) ∈ U with i, j < m− 1, each (an−1, aj) if (am−1, aj) ∈ U and
j < m− 1, and (an−1, an−1) if (am−1, am−1) ∈ U .
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K
∅
4 = K0(DP4) K

↑(a2,a2)
4 K

↑(a3,a2)
4

Figure 8: The proper admissible subalgebras of K(DP4)

K
∅
5 = K0(DP5) K

↑(a2,a2)
5 K

↑(a3,a2)
5

K
↑(a4,a2)
5 K

↑(a3,a3)
5 K

↑(a4,a2),(a3,a3)
5

K
↑(a4,a3)
5

Figure 9: The proper admissible subalgebras of K(DP5)
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From here, and using the fact that none of KU
n has proper non-trivial con-

gruences, using the same techniques that we have employed throughout this
paper, we can describe Λ(K(DPn)).

The lattices Λ(K(DP4)) and Λ(K(DP5)) are in Figures 10 and 11, respec-
tively; we have used the same names before for the admissible subalgebras of
K(DP3) = K( L2). Unfortunately Λ(K(DPn)) becomes very intricate as soon
as n > 4, and it is borderline impossible to draw it by hands.

T

V(K3)

V(K4)

V(K0,2)

V(K1,2)

V(K( L2)) = V(K2,2)

V(K∅
4
)

V(K
↑(a2,a2)
4

)

V(K
↑(a3,a2)
4

)

V(K(DP4)) = V(K
↑(a3,a3)
4

)

Figure 10: The lattice Λ(K(DP4))

T

V(K3)

V(K0((L2))) = V(K0,2)K(BA = V(K4)

V(K1,2)

V(K((L2)))
K0(DP4) = K∅

4

V(K
↑(a2,a2)
4

)

V(K
↑(a3,a2)
4

)

V(K(DP4))

K0(DP5) = K∅
5

V(K
↑(a2,a2)
5

)

V(K
↑(a3,a2)
5

)

V(K
↑(a4,a2)
5

)

V(K
↑(a3,a3)
5

)

V(K
↑(a4,a2),(a3,a3)
5

)

V(K(DP5))

V(K
↑(a4,a3)
5

)

Figure 11: The lattice Λ(K(DP5))
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3.4 Stonean K-lattices

Stonean residuated lattices are bounded residuated lattices satisfying

¬x ∨ ¬¬x ≈ 1.

We call the variety of Stonean residuated lattices SRL. Here we list some
properties of Stonean residuated lattices that will be useful in what follows; they
can be found in [10]

• Stonean residuated lattices are pseudocomplemented, i.e. they satisfy x∧
¬x = 0.

• They satisfy ¬(x ∧ y) = ¬x ∨ ¬y. Moreover all elements of the form ¬x
are Boolean.

• They satisfy x = ¬¬x(¬¬x → x), and as ¬¬x is Boolean this is equivalent
to x = ¬¬x ∧ (¬x ∨ x).

• All directly indecomposable Stonean residuated lattices are of the form
2 ⊕ D for some D ∈ CIRL and viceversa.

• As subdirectly irreducible algebras are directly indecomposable, and fil-
ters in 2 ⊕ D ∈ SRL are either filters of D or the whole algebra 2 ⊕ D,
subdirectly irreducible algebras in SRL are of the form 2 ⊕ D for some
subdirectly irreducible D ∈ CIRL.

In [9], as pseudocomplemented lattices satisfy the Glivenko equation

¬¬(¬¬x → x) = 1,

they present in Theorem 5.17 a bijective corresponence between good lattice
filters of a pseudocomplemented distributive residuated lattice A and good ad-
missible subalgebras of K(A). This result can be adapted and improved for
Stonean residuated lattices.

Let A ∈ SRL; a lattice filter F in A is called good if ¬¬x ∈ F implies x ∈ F .

Lemma 3.9. Good lattice filters in A ∈ SRL are exactly the lattice filters con-
taining all dense elements D = {x ∈ A : ¬x = 0}.

Proof. If F is a good filter and ¬x = 0, then clearly ¬¬x = 1 ∈ F , so x ∈ F
and the filter contains all dense elements. Reciprocally, if F is a lattice filter
containing all dense elements and ¬¬x ∈ F , recalling that x = ¬¬x ∧ (¬x ∨ x)
and that ¬x ∨ x is dense, ¬¬x,¬x ∨ x ∈ F so x ∈ F .

We say that an admissible subalgebra S ofK(A) is good provided (¬¬a,¬¬b) ∈
S implies (a, b) ∈ S.

Lemma 3.10. Let A ∈ SRL. All admissible subalgebras of K(A) are good.
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Proof. Let S be an admissible subalgebra ofK(A) and suppose (¬¬a,¬¬b) ∈ S.
As (1, b), (a,¬a), (¬b, b), (¬¬b,¬¬a) ∈ S and recalling that the elements ¬a,¬b
are Boolean, the following element is in S:

(((¬b, b) ∧ (¬¬b,¬¬a)) ∨ (a,¬a)) ∧ (1, b) = (((0, b ∨ ¬¬a)) ∨ (a,¬a)) ∧ (1, b)

= (a, (b ∨ ¬¬a) ∧ ¬a) ∧ (1, b)

= (a, (b ∧ ¬a) ∨ (¬¬a ∧ ¬a)) ∧ (1, b)

= (a, b ∧ ¬a) ∧ (1, b)

= (a, b).

From Theorem 1.8 it is clear that the only admissible subalgebras ofK(2⊕D)
for D ∈ CIRL are K(2 ⊕ D) and the subalgebra with universe K(2 ⊕ D) \
{(0, 0)}. However, from the previous results and Theorem 6.10 in [9] we have a
better description of admissible subalgebras for K(A) where A is any Stonean
residuated lattice.

Theorem 3.11. For each A ∈ SRL, the correspondence

F 7→ SF

defines a bijection from the set of lattice filters of A containing all dense el-
ements onto the set of all admissible subalgebras of K(A), where SF is the
subalgebra of K(A) with universe

{(a, b) ∈ K(A) : ¬a → ¬¬b ∈ F}.

Observe that in particular if A ∈ SRL is directly indecomposable, then
there is only one proper filter containing all dense elements, so the only proper
admissible subalgebra of K(A) will have universe K(A) \ {(0, 0)}.

With these results in consideration, we can investigate the lattice Λ(K(SRL)).
Not surprisingly it has highly complex, but we will get some information about
the bottom part of the lattice.

Clearly V(K3) is the only atom, and the next result is also immediate.

Theorem 3.12. The only finitely generated almost minimal varieties of K(SRL)
are V(K4) = K(BA) and V(K8) = V(K0(2 ⊕ 2)).

Proof. It is clear that V(K4) is an almost minimal variety. Moreover, the only
(up to isomorphism) rigid finite Stonean residuated lattice is 2 ⊕ 2 = G3, and
the conclusion follows.

From the properties of Stonean residuated lattices, we can say something
more going upwards in the lattice of subvarieties of K(SRL).

Lemma 3.13. If A ∈ SRL and f : A → 2 is a morphism, then f(x) = 0 implies
x = 0.
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Proof. It is enough to show this for subdirectly irreducible algebras. In this case
we have that A ∼= 2⊕D for some R ∈ CIRL, and if x ∈ D ¬x = 0, so f(¬x) = 0
and f(x) = 1.

Corollary 3.14. If A ∈ SRL is subdirectly irreducible, then K4 6∈ V(K0(A)).

Proof. Recall that “K4 6≤ A” is first-order definable, so as it holds in K0(A) it
will be true for any ultrapower. From the previous result we have that K4 6∈
HSPu(K0(A)).

Lemma 3.15. Let D ∈ CIRL be finite and subdirectly irreducible. Then V(2 ⊕
D) covers V(2 ⊕ 2) in Λ(SRL) if and only if V(D) covers V(2) = GBA in
Λ(CIRL).

From these results, we obtain the following.

Theorem 3.16. Let A ∈ K(SRL) be finite and subdirectly irreducible. Then
V(A) is a cover of V(K8) but not of V(K4) = K(BA) if and only if A ∼=
K0(2 ⊕ D) for some D ∈ CIRL finite and subdirectly irreducible that generates
a cover of V(2) = GBA in Λ(CIRL).

Therefore if D ∈ CIRL is finite, subdirectly irreducible and generates a cover
of V(2) = GBA in Λ(CIRL), the lattice of subvarieties of V(K(2 ⊕ D)) will be
as in Figure 12.

T

PKL = V(K3)

K(BA) = V(K4)

V(K8)

V(K0(2 ⊕ D))

V(K9)

V(K(2 ⊕ D))

Figure 12: Λ(V(K(2 ⊕ D)))

For the case of non-finitely generated almost minimal varieties, an example
will be V(K0(2⊕Cω)). If A ∈ CIRL is infinite and generates an almost minimal
variety in Λ(CIRL) different from cancellative hoops CH, then V(K0(2 ⊕ A))
will be another example of the cover. In Figure 13 we consider the lattice of
subvarieties of V(K(2 ⊕ Cω),K(2 ⊕  L2))
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T

PKL = V(K3)

K(BA) = V(K4)

V(K8)

V(K0(2 ⊕  L2))

V(K9)

V(K(2 ⊕  L2))

V(K0(2 ⊕ Cω))

K(PA) = V(K(2 ⊕ Cω))

V(K(2 ⊕ Cω), K(2 ⊕  L2))

Figure 13: Λ(V(K(2 ⊕ Cω),K(2 ⊕  L2)))

Conclusions and future work

One of the most interesting features of the Kalman construction (at least from
our point of view) is that it allows us to explore previously unexplored parts of
the lattice of subvarieties of CRL, by lifting properties of integral commutative
residuated lattices that we already know. In fact Section 3 of this paper and
Section 6 of [3] are completely devoted to the purpose and we believe that
we have shown that such an enterprize is at least useful. In particular the
combination of the Kalman construction with other well known construction,
such as the ordinal sum or the disconnected rotation, seems to be a very powerful
tool and deserves to be investigated more.

Another possibility is to concentrate on a specific variety, e.g. K(BL) and
investigate its algebraic properties. What are its splitting algebras? What
are its projective members? Is there a canonical representation for subdirectly
irreducible algebras? We believe that these are all very interesting questions
and we propose to investigate them further.
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[2] P. Aglianò, N. Galatos, and M. Marcos, Almost minimal varieties of com-
mutative integral residuated lattices, (2020), Preprint.
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