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Abstract

A concept of multi-valued cognitive maps is introduced in this paper. The
concept expands the fuzzy one. However, all variables and weights are not
linearly ordered in the concept, but are only partially-ordered. Such an ap-
proach allows us to operate in cognitive maps with partially-ordered linguis-
tic variables directly, without vague fuzzification/defuzzification methods.
Hence, we may consider more subtle differences in degrees of experts’ uncer-
tainty, than in the fuzzy case. We prove the convergence of such cognitive
maps and give a simple computational example which demonstrates using
such a partially-ordered uncertainty degree scale.

Keywords: multi-valued neural networks, multi-valued cognitive maps,
fuzzy cognitive maps, linguistic variable lattice
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1. Introduction

The fuzzy cognitive map (FCM) concept was introduced by B. Kosko in
[1]. FCMs are considered as feedback models of causality, in which fuzzy
values are assigned to concepts and causal relationships amongst them. An
increase in the value of a concept implies a corresponding positive or neg-
ative increase in values of other concepts connected to it, according to the
relationships. The concepts are also called nodes, and the relationships are
called weights. Thus, we obtain a network similar to a neural network in
which all the variables and weights take values in the interval [0, 1].
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Fuzzy cognitive maps have been studied and used in various fields of engi-
neering and hard sciences [2]. Their role is especially important in investiga-
tions of the behavior of complex dynamic systems [3], [4], [5], [6]. This is due
to the fact that human knowledge uncertainty affects the systems definition
and processing [7]. However, fuzzy modelling of uncertainty is rather poor:
the theory operates with only linearly-ordered experts’ valuations, which in
reality can be unordered: e.g., “yes and no” and “neither yes nor no”.

The main contribution and the novelty of this paper is that we use a
lattice (i.e., a partially-ordered set) in cognitive maps as the scale of experts’
valuations (i.e., weights) and as the set of variables (i.e., concept values),
instead of a linearly-ordered set. Thus, we may consider more subtle differ-
ences in degrees of experts’ uncertainty, than in the fuzzy case. The approach
continues the line of investigations in which a system state is estimated, not
by numbers, but by various objects (sets, graphs, images, etc.) making up
different lattices: [8], [9], [10], [11]. Also, exactly this concept was used in the
research dedicated to the related area of multi-valued neural networks: [12],
[13], [14]. Similar to these papers, we call such cognitive maps multi-valued
ones (MVCM’s).

Thus, all the variables and weights are partially-ordered linguistic ones
here, and we do not use numbers in the cognitive maps’ calculations1. Nev-
ertheless, such maps converge, and we consider the conditions of convergence
(Sec. 3). In Sec. 4 we represent a learning algorithm for weights, applicable
when we know the desired range for output values. In Sec. 5 we consider a
simple computational model of a hybrid energy system. In Sec, 6 we discuss
our experimental results and compare them with the previous ones. We give
the necessary definitions used in the text in Sec. 2, and we conclude the
paper in Sec. 7.

2. Backgrounds

2.1. Lattices [15]

Definition 2.1. A lattice is a partially-ordered set having, for any two el-
ements, their exact upper bound or join ∨ (sup, max) and the exact lower

1Let us note, we do not consider the problems of comparing different expert opinions
and calculating their mean: we need a theory of multi-valued numbers (i.e., the lattice
subsets), as an analog of fuzzy ones, to do this. The decision of the problem is left for the
future.
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bound or meet ∧ (inf, min).

Definition 2.2. The exact upper bound of a subset X ⊆ P of a partially-
ordered set P is the smallest P -element a, larger than all the elements of X:
min(a) ∈ P : a ≥ x, ∀x ∈ P .

Definition 2.3. The exact lower bound is dually defined as the largest
P -element, smaller than all the elements of X.

Definition 2.4. A complete lattice is a lattice in which any two subsets
have a join and a meet. This means that in a non-empty complete lattice
there is the largest “>” and the smallest “0” elements.

If we take such a lattice as a scale of truth values in a multi-valued logic,
then the largest element will correspond to complete truth (true), the smallest
to complete falsehood (false), and intermediate elements will correspond to
partial truth in the same way as the elements of the segment [0,1] evaluate
partial truth in fuzzy logic.

In logics, with such a scale of truth values, implication can be determined
by multiplying lattice elements, or internally, only from lattice operations.

Definition 2.5. Lattice elements, from which all the others are obtained by
join and meet operations are called generators of the lattice.

Definition 2.6. A lattice is called atomic if every two of its generators
have null meets.

Definition 2.7. A Brouwer lattice is a lattice that has internal implica-
tions.

Definition 2.8. In such a lattice, the implication c = a⇒ b is defined as
the largest c : a ∧ b = a ∧ c.

Distribution laws for join and meet are satisfied in Brouwer lattices. The
converse is true only for finite lattices.
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2.2. Residuated Lattices [16]

In non-distributive lattices, the implication cannot be defined. However,
we may introduce a multiplication of the lattice elements and use it to define
an external implication.

Definition 2.9. A residuated lattice is an algebra (L,∨,∧, ·, 1,→,←)
satisfying the following conditions:

• (L,∨,∧) is a lattice;

• (L, ·, 1) is a monoid;

• (→,←) is a pair of residuals of the operation ·, that means

∀x, y ∈ L : x · y 6 z ⇔ y 6 x→ z ⇔ x 6 z ← y

In this case, the operation · is order preserving in each argument and for all
a, b ∈ L both the sets {y ∈ L|a · y 6 b} and {x ∈ L|x · a 6 b} each contains
a greatest element (a→ b and b← a respectively).

The monoid multiplication · is distributive over ∨:

x · (y ∨ z) = (x · y) ∨ (x · z).

Also, x · 0 = 0 · x = 0. A special case of residuated lattices is a Heyting
algebra, when the monoid multiplication coincides with ∧.

In non-commutative monoids, residuals → and ← can be understood as
having a temporal quality: x · y 6 z means “x then y entails z,” y 6 x→ z
means “y estimates the transition had x then z,” and x 6 z ← y means
“x estimates the opportunity if-ever y then z.” You may think about x, y,
and z as bet, win, and rich correspondingly (Wikipedia).

Definition 2.10. A residuated lattice A is said to be integrally closed if
it satisfies the equations x · y 6 x =⇒ y 6 1 and y · x 6 x =⇒ y 6 1, or
equivalently, the equations x→ x = 1 and x← x = 1
[17].

Any upper or lower bounded integrally closed residuated lattice L is integral,
i.e., a 6 1, ∀a ∈ L [17].
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Figure 1: An example of a cognitive map

3. Cognitive Map Convergence

A graphical representation of an example of a (multi-valued) cognitive
map (MVCM) is depicted in Fig. 1. The expert knowledge on the behaviour
of the system is stored in the structure of such a graphical representation of
the map. Each concept Ci represents a characteristic of the system under con-
sideration. It may represent goals, events, actions, states, etc. of the system.
Each Ci is characterized by an element Ai of a lattice L, which represents
the value of the concept, and it is obtained from an expert opinion about
the real value of the systems’ variable representing this concept. Causality
between concepts allows degrees of causality, which also belong to the lattice
L; thus, the weights wij’s of the connections are the lattice elements and
represent the expert uncertainty degrees of the concepts’ mutual influences.
The value of wij indicates how strongly concept Ci influences concept Cj. A
simple example of such a lattice of experts’ opinions and uncertainty degrees
is depicted in Fig. 2.

The equation that calculates the values of concepts of FCM’s with n
nodes, can be written in its general form as:

Ak
i = f(

n∑
j=1,j 6=i

wjiA
k−1
j + diiA

k−1
i ). (1)

Here Ak
i is the value of the concept Ci at discrete time k, and dii is a value

of self-feedback to node i. All values belong to the interval [0, 1], and the
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Figure 2: An example of an uncertainty degree lattice

function f normalizes its argument up to this interval. Existence and unique-
ness of solutions of (1) in FCM’s are proved in [18] for some such trimming
functions f ’s.

We use the equation (1) for MVCM’s in the following form:

Ak
i = ck−1i · fk−1

i ·
n∨

j=1

wji · Ak−1
j (2)

where all quantities take values in a residuated atomic lattice L, and we
use the monoid multiplication and the lattice join, instead of the sum and
numeric multiplication. We restrict ourselves to atomic lattices, since we
prove the maps’ convergence only in this case. Thus, the example of the
simple possible lattice in Fig. 2 is out of our consideration, and we consider
a more complicated variant in our modelling example.

We do not need the quantities fk
i ’s and cki ’s in (2) to norm the joins, since

all joins are inside the lattice. Thus, we use picking up of these quantities’
values in order to provide the map convergence. Although fi’s and ci’s do
not normalize wA, they play the role of adjusting function: for each wA we
get corresponding fi and ci values.

Theorem 3.1. Multi-Valued Cognitive Maps determined by equation (2) where
concepts and weights take values in a finite atomic residuated and integrally-
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closed lattice L (hence, L is integral), converge under a suitable choice of cki ’s
and fk

i ’s.

Proof 3.1. Denotation 1. We denote the set of generators of a lattice
element w by {w} and the matrix of such sets by {w}ij. The matrix elements
are the sets of generators of, e.g., the weight matrix elements.

Matrices wij and {w}ij are one-to-one correspondent to each other in
atomic lattices.

Denotation 2. A minus sign will denote the difference operation

{A} − {B} = ({A} ∪ {B})	 ({A} ∩ {B}), (3)

where 	 is the set difference2.

For convenience, in what follows, we will omit the curly braces, thus, we use
A1 − A0 instead of {A1} − {A0}.

The map (2) converges, if

Ak+1
i − Ak

i ⊂ Ak
i − Ak−1

i , (4)

since the lattice L is bounded below by ∅. The process of calculating Ai stops
when Ak+1

i = Ak
i = Ak−1

i for all i. Let us consider the following sequence of
inequalities:

A3
i − A2

i ⊂ A2
i − A1

i ⊂ A1
i − A0

i ;

A3
i ∪ A2

i 	 A3
i ∩ A2

i ⊂ A2
i ∪ A1

i 	 A2
i ∩ A1

i ⊂ A1
i ∪ A0

i 	 A1
i ∩ A0

i ;
A3

i ∪ A2
i ⊆ A2

i ∪ A1
i ⊆ A1

i ∪ A0
i ,

A3
i ∩ A2

i ⊇ A2
i ∩ A1

i ⊇ A1
i ∩ A0

i ,

and equalities cannot occur simultaneously.

Hence,

A2
i ⊆ A1

i ∪ A0
i

A3
i ⊆ A2

i ∪ A1
i ,

...

Ak
i ⊆ Ak−1

i ∪ Ak−2
i ; (5)

2Given set A and set B, the set difference of set B from set A is the set of all element
in A, but not in B.
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Ak
i ⊇ Ak−1

i ∩ Ak−2
i , (6)

and equalities cannot occur simultaneously up to the end of the process in or-
der to satisfy (4). Substituting (2) into 5, and passing to the lattice notation,
we get:

c1i · f 1
i ·

n∨
j=1

wji · (c0j · f 0
j ·

n∨
l=1

wlj · A0
l ) 6 (c0i · f 0

i ·
n∨

j=1

wji · A0
j) ∨ A0

i ; (7)

c2i · f 2
i ·

n∨
j=1

wji · A2
j 6 c1i · f 1

i ·
n∨

i=1

wji · (c0j · f 0
j ·

n∨
l=1

wlj · A0
l )∨

∨ c0i · f 0
i ·

n∨
j=1

wji · A0
j . (8)

Since all ci 6 1 in the integral lattice, we may define fk
i ’s as right residuals3:

f 1
i = [A1

i ∨ A0
i ]← (

n∨
j=1

wji · A1
j) =

= [c0i · f 0
i ·

n∨
j=1

wji · A0
j ∨ A0

i ]← (
n∨

j=1

wji · c0j · f 0
j ·

n∨
l=1

wlj · A0
l ); (9)

f 2
i = [A2

i ∨ A1
i ]← (

n∨
j=1

wji · A2
j) =

= [c1i · f 1
i · (

n∨
i=1

wji · c0j · f 0
j ·

n∨
l=1

wlj · A0
l ) ∨ c0i · f 0

i ·
n∨

j=1

wji · A0
j ]←

← (
n∨

j=1

wji · (c1j · f 1
j ·

n∨
l=1

wlj · (c0l · f 0
l ·

n∨
m=1

wml · A0
m))). (10)

...

fk
i = [Ak

i ∨ Ak−1
i ]← (

n∨
j=1

wji · Ak
j ) (11)

3Since, a · b 6 c means for a maximal a: a = c← b
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By recursion, we can obtain all the fk
i ’s so as to satisfy the expressions (5).

Also, fk
i ’s and cki ’s must satisfy (6) in order to satisfy (4). However, (6)

holds for such chosen fk
i ’s. Indeed, it must be Ak+1

i = cki · fk
i ·

∨n
i=1wjiA

k
j >

Ak
i ∧ Ak−1

i .
Let us denote

rki = [Ak
i ∧ Ak−1

i ]←
n∨

i=1

wji · Ak
j . (12)

Then, it should be cki · fk
i > rki and cki · fk

i = rki only if Ak+1
i = Ak

i ∧Ak−1
i . In

this case, rki ·
∨n

i=1 wji · Ak
j = Ak

i ∧ Ak−1
i . Since,

fk
i ·

n∨
i=1

wji ·Ak
j = {[Ak

i ∨Ak−1
i ]← (

n∨
j=1

wji ·Ak
j )}·

n∨
i=1

wji ·Ak
j 6 [Ak

i ∨Ak−1
i ] (13)

and

rki ·
n∨

i=1

wji · Ak
j 6 [Ak

i ∧ Ak−1
i ], (14)

where such fk
i and rki are maximal at satisfying the inequalities, we obtain

fk
i > rki , since the lattice is integrally-closed. We may restrict from below
cki > rki ← fk

i where it may be cki = rki ← fk
i only if [rki ← fk

i ] · fk
i = rki .

It must be cki > rki ← fk
i if fk

i ·
∨n

i=1wji ·Ak
j = Ak

i ∨Ak−1
i in (5) in order to

avoid the simultaneous equality in (5) and (6). However, the simultaneity is
not possible up to the end of the process, because, in this case, rki ← fk

i 6= 1,
since

fk
i ·

n∨
i=1

wji · Ak
j = Ak

i ∨ Ak−1
i > Ak

i ∧ Ak−1
i > rki ·

n∨
i=1

wji · Ak
j . (15)

Hence, fk
i > rki up to the end of the process. Only at the end of the process,

fk
i = rki and cki = 1. Therefore, the process converges if cki > rki ← fk

i .
Thus, we can always choose cki = 1 in (2), and MVCM’s converge.

However, the decision of (2) is not unique: different sets of generators of
initial node values may lead to different final values (unlike metric spaces
under certain conditions [18]) due to the fact that the lattice used is not
linearly ordered. We may use a learning algorithm if such a situation is
undesirable, and we know the required set of possible output values.
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4. Learning Weight Values

We are based on ideas of [19] when constructing the required algorithm.
However, we do not need two criterions to evaluate the final stage, due to the
convergence of the multi-valued cognitive map. Also, the learning algorithm
may be applied only to the final node values, not at every step (as in [19]);
this is again due to the convergence. Finally, the algorithm is synchronous,
unlike [19]. Hence, we do not need additional expert suppositions about the
firing sequence.

Let us consider the following expressions:

Ak
i = fk−1

i ·
n∨

i=1

[(wk−1
ji ⊕4wk−1

ji ) · (Ak−1
j ⊕4Ak−1

j )] =

= fk−1
i ·

n∨
i=1

(wk−1
ji · Ak−1

j )⊕4Ak
i ; (16)

4Ak
i = fk−1

i ·
n∨

i=1

(4wk−1
ji · Ak−1

j )⊕ F (wk−2, Ak−2,4wk−2,4Ak−2). (17)

Here, we have introduced a change in weights and concepts in order to pick
up their values such that the output concepts Ak

i would find themselves in
demanding output regions {docj}i4. Such output sets of lattice L elements
should be established by experts for given initial values. The operation ⊕
means the join or difference (see below) depending on what you need: increase
Ak

i or decrease it. The term F (wk−2, Ak−2,4wk−2,4Ak−2) in (17) should not
be considered, since, such a term is absent at the first step, and all Ak−1

j ’s

and wk−1
ji are already calculated at the k’s step.

Let us consider the difference genk
ri = docri − Ak

i of a concept with one
of its desired output values. The result is the number of generators in the
symmetric difference (3) of generator sets of r’s desired output concept for
Ak

i and Ak
i at the k’s step. The number should be added to, or deducted

from, the concept generator number in order for the concept to become equal
to the desired value. Hence,

4Ak
i 6 genk

ri. (18)

4docji means j’s possible value of desired output concept set of Ak
i
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Thus, we obtain the following expression using (17):

4wk−1
ji = (fk−1

i → genri)← Ak−1
j . (19)

Then, we should deduct 4w from w if Ak
i > docri: wk

ji = wk−1
ji 	4wk−1

ji (let
us note that the set difference operation 	 is used here, not the symmetric
difference (3), since we need to decrease exactly the number of generators).
Otherwise, we take their join: wk

ji = wk−1
ji ∨4wk−1

ji .

In the case of incomparable Ak
i and docri, the concept first increases under

the algorithm work, up to it becoming greater than the desired value, and,
after that, it decreases as is described above.

If we have negative weight values, the sequence is inverse: we join 4w
and w if Ak

i > docri and take the difference otherwise.
Such a comparison may be made with all elements of the desired out-

put set, in order to choose the most suitable learned weight matrix. This
algorithm describes the weight correction at every step. However, it is not
necessary: we may check the condition of hitting the required region at the
end of the process of firing the map, since the process converges. Thus, we
may calculate (19) only once at an iteration cycle if the condition is not sat-
isfied. Such a calculation can be more suitable (e.g., it changes the initial
weights less) if some concepts get the desired values only at the end of the
process. In this case, they should not be corrected with the others. Nat-
urally, changing concepts at every step can give another result in this case
(see Sec. 6)

5. Modelling Hybrid Energy Systems

We use the problem formulation of a modelling example from [20], with-
out, however, a feedback to natural concepts. Indeed, it is hard to under-
stand how the energy system functioning can influence sun insolation or wind.
Thus, we consider the example of a Hybrid Energy System combining wind
and photovoltaic subsystems; its cognitive map model is depicted in Fig. 1.

The model includes the following five concepts:

• C1: sun insolation;

• C2: environment temperature;

• C3: wind;

11



Figure 3: Lattices L1 and L2

• C4: PV-subsystem;

• C5: Wind-Turbine-subsystem.

In this model there are two energy source decision concepts (outputs), i.e.,
the two energy sources are considered: the C4: PV-subsystem and the C5:
Wind-Turbine-subsystem. Concepts C1–C3 of nature and technical factors
influence the subsystems and determine how each energy source will function
in this model. The concept’s initial values can be obtained from experts’
assessments of measurements, which take values in a lattice of linguistic
variables. The experts’ assessments of concept influence take values also in
this lattice. Detailed information for hybrid renewable energy systems is
given in [5], [21]. The case study from the literature was examined in [20],
and we consider it here using a multi-valued scale for weights and values in
the cognitive map (2) where all ci = 1 due to Theorem 3.1.

We use the bi-lattice L that is built from two lattices the L1 and the L2

(Fig. 3), 4) by direct multiplication ×, as the scale of experts’ assessments.
However, we consider the bi-lattice as the lattice where the unique par-

tial order is generated by atoms ba0, b, bn0, 0c, and 0d Fig. 4. We use two
linearly-ordered branches in the lattice L1 in order to regularly obtain the
distributive and atomic lattice L. Then, we may use the meet ∧ as the
monoid multiplication. In this case, both residuals are equal and coincide
with the lattice implication ⇒. The nodes c and d in the L1, correspond-
ing to the medium value, may be interpreted as “not high” and “not weak”

12



Figure 4: The b-c-h path in the uncertainty degree lattice L = L2 × L1 which is used in
the modelling example. The d-branch values are the same as in the c-branch, by replacing
c to d in the names

13



Table 1: Weights in the cognitive map for Hybrid Energy Systems

C1 C2 C3 C4 C5

C1 Th born 0 hora b
C2 0 0 0 Tb 0
C3 0 ca0c Th bora hn0h
C4 0 0 0 0 0
C5 0 0 0 0 0

uncertainty degrees (this difference is not reflected in the interpretations in
Fig. 4). There is not a universal method to build a monoid for a residuated
lattice, and one should use some heuristics to determine the multiplication.
Thus, we do not consider a general residual construction here and propose
to investigate variants to do it in future.

It is possible to use the L1 built from only one linearly-ordered branch.
Then, the L would be built by a quasi-direct multiplication to be an atomic
lattice: the node 0h must be connected with 0 directly. However, we consider
the lattice L = L2 × L1 for more variety.

A variant of the lattice L2 was proposed in [22] as the interpretation of
N. A. Vasil’ev’s logic ideas. Vasil’ev has suggested three types of statement:
positive, negative and indifferent, instead of only positive and negative. He
considered also intermediate types as a hesitation between these main ones.
Similarly, we consider here three main uncertainty degrees: ba0, b, bn0 (Fig.
3) — some assessment “b”, the assessment “bn0: Neither b nor 0”, and the
estimation “ba0: b and 0” — and the same at the levels c − d and h Fig.
4. The estimation, e.g., “born: b or bn0” is the join of b and bn0 and can
be considered as the hesitation between b and “Neither b nor 0”. Similarly,
“bora: b or ba0” is the join of b and ba0 and can be considered as the hesitation
between b and “b and 0” and so on. Thus, we obtain many different variants
of uncertainty degrees in assessments, available to experts.

The connections between the concepts of the cognitive map are repre-
sented in Table 1, and the initial concept values are determined in Table 2.
We tried to more or less match the data from [20]. In Case 1, all concept
values are concentrated in one L branch (b-c-h). In Cases 2 and 3, one initial
concept value belongs to the b-d-h branch of the L.

14



Table 2: Initial concept values

Case 1 Case 2 Case 3
C1 horn horn horn
C2 c c b
C3 c d d
C4 c h h
C5 0c caorn c

Thus, we calculate the map concepts’ values by (2) in the following form:

Ck
i = fk−1

i ∧
5∨

j=1

(wji ∧ Ck−1
j ) (20)

where coefficients are calculated by (11) in the following form:

fk
i = [

5∨
j=1

(wji ∧ Ck
j )]⇒ [Ck

i ∨ Ck−1
i ]. (21)

The nodes are triggered simultaneously, and their values interact with ones
to be updated through this process of interaction in the same iteration step.
We take values f 0

i = Th. Hence, natural concepts the C1 and the C3 do not
change unlike (1) (taken from [20]) where they are changed due to the sigmoid
transfer function f . However, such a choice of the f 0

i is not necessary: these
values may be chosen arbitrarily.

Here, the lattice of weights and values satisfies the conditions of Theo-
rem 3.1 where the lattice top element Th coincides with the monoid neutral
element, and the monoid multiplication coincides with the lattice meet. The
calculation results are represented in Tables 3 – 4.

We see that the final state depends on initial values and on distribution
of them over L1-branches. The result is also dependant on weight values, as
even they are of the same degree of uncertainty. However, the final states
are more or less equal in degrees of uncertainty in these cases (see also Sec.
6). Moreover, these final states are stable: if we take them as initial ones,
we obtain them at the end. Thus, the model corresponds well to the idea
of the stationary state of the system under constant insolation and wind.
Let us note one more time, that these natural factors are not changed by a
transfer function in model iterations, unlike [20]. However, we can change
them outwardly in order to compare results with the similar ones of [20].
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Table 3: Iterations of concept values, Case 1

Table 4: Iterations of concept values, Case 2 and Case 3

16



Table 5: Iterations of concept values, Case 3, C1 = const and the C3 increases

Table 6: Iterations of concept values, Case 3, the C1 decreases and the C3 increases

6. Discussion

6.1. Natural concepts’ changing

We consider only Case 3 here. Let insolation first be a constant — C1 =
const— and wind C3 increases: Table 5. We see the environment temperature
C2 has changed the uncertainty value but remains at the same L1 level. The
output of the photovoltaic subsystem C4 as expected, has not changed, and
the wind-turbine C5 output has increased.

Let us decrease the insolation value else: Table 6. We see the environ-
ment temperature C2 has changed the uncertainty value but less than in the
previous case. The output of the photovoltaic subsystem C4 has slightly de-
creased, and the wind-turbine C5 output has increased its L1 level but less
than in the previous case. This result is intuitionally clear; it corresponds
with our weight definitions, and it is perhaps better than in [20] where the C5

and the C2 may be greater than here (with all the ambiguity in establishing
the correspondence between numbers and lattice elements).

6.2. Weights with negative values

However, some negative number values are used in the weight matrix in
[20]. The members in the sum (which define the map) with such weights

17



Table 7: Weights with negative elements in the cognitive map for Hybrid Energy Systems

C1 C2 C3 C4 C5

C1 Th born 0 hora b
C2 0 0 0 - Tb 0
C3 0 - ca0c Th bora hn0h
C4 0 0 0 0 0
C5 0 0 0 0 0

Table 8: Iterations of concept values with weights negative elements, Case 3, C1 = const
and C3 = const

deducted from the sum. We can also use a similar deduction with the help
of (3). We mark such weight matrix members with the minus sign. Sets of
generators of the lattice elements, including such weights in the join, will be
deducted from the join by (3). Thus, we consider the following weight matrix
corresponding to the similar one of [20] and Table 1: Table 7.

Let us consider again first that insolation is constant — C1 = const—
and the wind C3 = const is constant too: Table 8. This is almost Table 4.
Only, the C4 has slightly decreased its uncertainty value.

Let us increase the wind value: Table 9. Again, this is almost Table 5,

Table 9: Iterations of concept values with the weights’ negative elements, Case 3, C1 =
const and the concept C3 increases
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Table 10: Iterations of concept values with weights’ negative elements, Case 3, the C1

decreases and the C3 increases

Table 11: Iterations of concept values with weights’ negative elements, Case 3, the C1

decreases and the C3 increases, initial C5 = d

and the C4 has the same decrease as in the previous case.
Let us decrease else the insolation value: Table 10. This is almost Table

6. Only, the C4 has slightly decreased its uncertainty value. Thus, we see
the results do not change qualitatively.

6.3. The dependence on initial values

However, what happens if we change, e.g., the wind initial value? Let it
be in Case 3 (Table 2) C5 = d instead of C5 = c. In the uncertainty sense,
such a replacement changes almost nothing intuitively. The results are in
Table 11. We see that wind-turbine output even decreases, though, the wind
value increases. All other values are the same. Removing minus from the
weight matrix elements only replaces the C4 uncertainty value to the same
in Table 6. Thus, initial values can influence the modelled system behaviour
crucially in general.

The thing is that different sets of generators in initial values may really
lead to different final values, since the lattice used is not linearly ordered,
and all Ci’s lie inside the two initial ones: ∀k : Ck

i 6 C0
i ∨C1

i . In our case, ∀k
Ck

5 6 c∨d = h in Table 10, and Ck
5 6 d in Table 11; C1

5 = d in both the cases,
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it does not depend on C0
5 . Thus, different initial values may lead to different

system stable states. However, such a dependence may be excluded by the
learning process of weight elements, if we know the demanding output range
(see Sec. 4). We consider these calculations in the following subsection.

Also, such effects of intuitive contradiction can be indirectly related to
our lattice determination: we went from the bi-lattice L2 × L1 to the lattice
L where the elements 0c and 0d are the same generators as b, ba0, and bn0.
Though, in the lattice L1, such values are more significant than the bottom
level (the level of b, ba0, and bn0 in the L). Hence, our real partial order
is generated by the number of generators of lattice elements, and it may be
different from the intuitive interpretation of L2 × L1 partial orders.

6.4. Learning

We use here the algorithm of Sec. 4 which trains weights so that the
output concepts would be inside the desired lattice L subsets. We use formula
(19) in the following form in our case:

4wk−1
ji = Ak−1

j ⇒ (fk−1
i ⇒ genri), (22)

since, both residuals become the lattice implication when the monoid multi-
plication is the meet.

We determine desired output concept sets for the C4 and the C5 as:

Doc4 = {0d, d, da0d, dn0d} (23)

Doc5 = {0h, h, ha0h, hn0h}. (24)

First, we apply the learning algorithm at the end of firing the map (Case 3,
initial C5 = d). Then we obtain the weight matrix in Table 12 instead of
Table 7.

In this case, we obtain the following iterations of concept values when
the weight matrix is in Table 12 for initial C5 = c and C5 = d, and the
comparison is made with the first elements of Doc4, Doc5: Table 13. We see
that final output concept values do not depend on the initial ones now.

If we apply learning at each iteration step, we will obtain different weights:
Table 14. We see that matrix elements for C4 calculation are also changed
in this case. We have seen, though, that it is not needed in reality: the C4

process converges in the desired region without learning. In Table 15, the
output concept results are also obtained with the learning process. We see,
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Table 12: Weight matrix obtained from the learning process of the C5 at the end of
iterations, Case 3, the C1 decreases and the C3 increases, initial C5 = d

Table 13: Iterations of concept values with weights from Table 12, Case 3, the C1 decreases
and the C3 increases, initial C5 = c and C5 = d.
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Table 14: Weight matrix obtained from the learning process of the C5 at each step of the
iterations, Case 3, the C1 decreases and the C3 increases, initial C5 = d

Table 15: Iterations of concept values with weights from Table 14, Case 3, the C1 decreases
and the C3 increases, initial C5 = c and C5 = d.

that the process leads to different final values of the C5 for initial ones c and
d, though, both of them are inside the desired output set.

If we use the learned matrix of Table 14 in the map firing, we will obtain
the output concept result for the initial C5 = c, which matches the same one
for the initial C5 = d and differs from the similar one in Table 15: Table 16.

We see that the output concepts converge in the desired range in all these
variants, and the output values do not depend on whether the initial one is
c or d (if we calculate them with the learned weight matrix), unlike the
previous Subsection.
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Table 16: Iterations of concept values without learning with weights from Table 14, Case
3, the C1 decreases and the C3 increases, initial C5 = c and C5 = d.

6.5. Runtime

Finally, all the calculations of implications in (21) were performed by the
quick algorithm of [12] and the resulting timing is depicted in Fig. 5.

7. Conclusion

We have considered the concept of cognitive maps in which all weights and
data take values in a partially-ordered set (exactly, in a lattice) of linguistic
quantities. Thus, experts get a wider scale for their linguistic assessments
than in a fuzzy case. Such maps converge under some limitations on the set
of map variable values. We give also the algorithm to learn the map weight
matrix in order to select values so that they are in the desired range of the
lattice.

We give a detailed consideration of a modelling example versus using a
fuzzy cognitive map. We obtain even more realistic results, since, in our
approach, immutable or externally modifiable concepts do not change by the
map recount. In ordinary fuzzy cognitive maps, such concepts are automat-
ically changed by a transfer (trimming) function.

Thus, it seems the consideration of multi-valued cognitive maps in the
paper demonstrates the self-consistency and correspondence to the reality
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Figure 5: Calculation elapsed time

of the approach, despite some ambiguity in interpretation of linguistic as-
sessments. Moreover, the approach also provides more opportunities than in
fuzzy maps for expert evaluations.

We have left for future investigations the problem of the comparison of
different expert opinions. You need to introduce some conception of multi-
valued numbers as the lattice subsets in order to do this. Also, we have left
for the future the investigation of variants to define a universal residuated
construction for the lattice used as a scale of linguistic values of map variables.
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