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Abstract

In this paper we are interested in a class of fuzzy numbers which is uniquely iden-

tified by their membership functions. The function space, denoted by Xh,p, will be

constructed by combining a class of nonlinear mappings h (subjective perception) and

a class of probability density functions (PDF) p (objective entity), respectively. Under

our assumptions, we prove that there always exists a class of h to fulfill the observed

outcome for a given class of p. Especially, we prove that the common triangular number

can be interpreted by a function pair (h, p). As an example, we consider a sample func-

tion space Xh,p where h is the tangent function and p is chosen as the Gaussian kernel

with free variable µ. By means of the free variable µ (which is also the expectation

of p(x;µ)), we define the addition, scalar multiplication and subtraction on Xh,p. We

claim that, under our definitions, Xh,p has a linear algebra. Some numerical examples

are provided to illustrate the proposed approach.

Key Words. Fuzzy numbers; Basic concepts; Probability density function; Gaussian kernel;

Fuzzy arithmetic; Gaussian probability density membership function (G-PDMF)

1 Introduction

Fuzzy numbers and fuzzy set theory are topics originated from Zadeh ([27]) by dealing

with the imprecise quantities and uncertainty. Since then, they have been successfully applied
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in a wide area of topics from pure and applied mathematics, computer science and other

related fields, such as fuzzy logic, fuzzy information, soft computing, fuzzy control, etc.

In general, a fuzzy number can be uniquely determined by its membership function.

In many applications, the membership functions of fuzzy numbers are based on subjective

perceptions rather than data or other objective entities involved. The construction of an

appropriate membership function is the cornerstone upon which fuzzy set theory has evolved.

See, for instance, [3, 13, 21, 23, 24, 15] and the references therein.

In this paper, we consider a class of fuzzy numbers, denoted by Xh,p, in which the

membership function is carried out by the transformation of the probability density function

p combining a nonlinear mapping h. Some basic assumptions will be made on the pair (h, p)

such as continuity and monotonicity. The exact definition of the space Xh,p will be stated

in (2.3). We prove that, under the limited information of the fuzzy number, there exists

at least one pair (h, p) such that the corresponding membership function fulfills the given

data. The details of the description are put in Theorem 3.1 and 3.2, respectively. Note that

comparing to some of the existing methods for obtaining the membership function we listed

in the preliminary, one of the advantages of our methodology is that it includes the subjective

factor as well as the objective information. More precisely, we determine the membership

function in two steps: we first put the subjective perception on the type of the pair (h, p)

with undetermined parameters. Secondly, by means of the information in the given data, we

objectively determine the parameters and identify the exclusive membership function of the

fuzzy number.

Once the membership functions of the fuzzy numbers are identified, one of the basic is-

sues is how to perform the arithmetic operations on them. In the fuzzy world, the arithmetic

operations on real numbers in the classical crisp set level turns to be the algebraic operations

on the membership functions. There have been amount of papers studying the fundamental

definitions of the operations and corresponding algebraical structures. For instance, trian-

gular norms is introduced to concern the binary operations on the interval [0, 1](see, for

instance, [12]). The interactive fuzzy numbers and corresponding arithmetic operators are

proposed by means of joint possibility distributions ([26, 5, 7]). Especially, the proposed

addition and subtraction can reach the minimum norm compared to other mothod given by

sup-J extension principle ([8]). The intuitionistic fuzzy set and the corresponding probabilis-

tic addition is constructed and has been successfully handled the fuzzy aggregation problem

for expert systems ([1, 2, 19, 25]). Furthermore, when one considers the fuzzy differential

equation, a common definition of (generalized-) Hukuhara differentiability is required, in

which the difference between two fuzzy numbers has to be designed by means of α-cut of the

corresponding membership functions ([6, 11, 17]).

To specify the class of functions under consideration, we fix h as the tangent function

and p is given by the Gaussian kernel p(·, µ), i.e. with σ = 1 and µ to be undetermined

(see the exact definition in Formula (4.3)). Note that they both fulfill those assumptions in

Definitions 2.3–2.5 as we stated in the preliminaries. We call the function as the form in (4.3)

the Gaussian Probability Density Membership Function (G-PDMF) and the corresponding
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functional space as G-PDMF Space.

We design the arithmetic operations, such as addition, scalar multiplication and subtrac-

tion on the class of G-PDMFs by means of the expectation parameter µ. The arithmetic

operations between fuzzy numbers are transforming to the arithmetic operations between

the corresponding parameters µ. As we shall see in Definition 4.1 and Theorem 4.3, the

advantage of our design is that we introduce a linear structure on the G-PDMF Space via µ

and α-cuts representation is not needed during the computational implemetation. Our work

also can be seen as an attempt to make a bridge between probability and fuzzy theory.

The paper is organized as follows. In section 2, the basic concept on fuzzy number and

some requirements of the membership function are given. In section 3, we establish a class

of membership function space by introducing a nonlinear map h and the probability density

function p, along with the fact that they fulfill the demands of fuzzy numbers. We also give

a constructive proof to show that the common triangular number can be described by our

methodology. In section 4, we define a sample function space Xh,p and address the arithmetic

operations on the G-PDMF. In section 5, some numerical examples and corresponding graphs

are shown to illustrate the operations under consideration. In section 6, we present a final

remark to make a complete summary of the paper.

2 Preliminaries

The formulation of membership functions is the crucial step in the design of fuzzy system.

There are several methods to develop them. We summarize some of them as follows:

1) L-R linear functions, which is the simplest possible model ([4]);

2) Rational functions of polynomials ([9, 10]);

3) B-Spline MF ([20]);

4) Piecewise linear functions ([22] and refs [8-20] in it).

In all of these definitions of fuzzy numbers, the membership function needs to satisfy the

following assumptions:

Definition 2.1 A fuzzy number A is a fuzzy subset of the real line R with membership

function fA which possesses the following properties:

a) fA is fuzzy convex,

b) fA is normal i.e., ∃x0 ∈ R such that fA(x0) = 1,

c) fA is upper semi-continuous,

d) The closure of the set {x ∈ R|fA(x) > 0} is compact.
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Definition 2.1 is straightforward and has been used extensively in practical applications

([18]). However, the above conditions are too vague and a particular class of functions, named

as monotonic fuzzy numbers, is introduced with the following more precise assumptions:

Definition 2.2 A monotonic fuzzy number b̃, denoted by b̃ = (a, b, c), is defined as a mem-

bership function f(x) which possesses the following properties ([4] ):

a) f(x) is increasing on the interval [a, b] and decreasing on [b, c],

b) f(x) = 1 for x = b, f(x) = 0 for x ≤ a or x ≥ c,

c) f(x) is upper semi-continuous,

where a, b, c, are real numbers satisfying −∞ < a ≤ b ≤ c < +∞.

Clearly, a class of triangular fuzzy numbers is a subset of the class of monotonic fuzzy

numbers. It is due to the fact that, in the definition of the triangular fuzzy numbers, the

function in the condition a) of Definition 2.2 is restricted by linear ones ([14]).

Now we construct a function space containing membership functions satisfying all re-

quirements above.

To start with, we first define a nonlinear mapping h− from [a, b] to R, which is crucial to

describe the fuzzy number b̃ = (a, b, c).

Definition 2.3 Let h− be a function defined on the interval (a, b). We say h− is a left

auxiliary function (LAF) of the fuzzy number b̃, if h− satisfies

a) limx→a+ h
−(x) = −∞, limx→b− h

−(x) = +∞,

b) h− is continuous on (a, b),

c) h− is increasing on (a, b).

Similarly, we define h+ on the right side [b, c] as follows:

Definition 2.4 We say h+ is a right auxiliary function (RAF) of b̃, if h+ : (b, c)→ R
satisfies

a) limx→b+ h
+(x) = +∞, limx→c− h

+(x) = −∞,

b) h+ is continuous on (b, c),

c) h+ is decreasing on (b, c).

The probability density function is defined by

Definition 2.5 We say p− and p+ are probability density functions (PDFs), if p−

and p+ both satisfy
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Figure 1: Shape of the LAF Figure 2: Shape of the RAF

a)

∫ +∞

−∞
p−(y)dy = 1,

∫ +∞

−∞
p+(y)dy = 1,

b) p−(t) ≥ 0, p+(t) ≥ 0, ∀t ∈ (−∞,+∞).

Note that to construct the desired memebership function, we need two different PDFs

on intervals (a, b) and (b, c). In fact, p− is the PDF used on (a, b) and p+ is the PDF used

on (b, c), respectively.

Based on above functions h−, h+ and p−, p+, the fuzzy number b̃ is constructed by

Definition 2.6 We say b̃ is a fuzzy number generated by h−, h+ and p−, p+, if the member-

ship function of b̃ has the form

f(x) =



0, x ∈ (−∞, a]∫ h−(x)

−∞
p−(y)dy, x ∈ (a, b)

1, x = b∫ h+(x)

−∞
p+(y)dy, x ∈ (b, c)

0, x ∈ [c,+∞)

(2.1)

Note that h− and h+ can be derived from the same function h ∈ H([0, 1]) with

H([0, 1]) = {h
∣∣∣h is a LAF on [0, 1]}, (2.2)

i.e. h satisfies Definition 2.3 with a = 0 and b = 1. For simplicity, in the sequel, we only

consider the case that h− and h+ is originated from the same h ∈ H([0, 1]), i.e.,

h−(x) = h(
x− a
b− a

), h+(x) = h(
c− x
c− b

).

Similarly, we take p− and p+ is originated from the same class of PDFs.
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Let h ∈ H([0, 1]) and p = (p−, p+) satisfy Definition 2.5, we call the function space

Xh,p := {fh,p(x) : R→ [0, 1] is as the form of (2.1) : a ≤ b ≤ c} (2.3)

a Probability Density Membership Function (PDMF) space.

To sum up, we have:

Theorem 2.1 The PDMF in the space Xh,p as the form in (2.1) fulfills all requirements in

Definition 2.1 and Definition 2.2.

Proof: It is straightforward.

3 PDMFs with control points

In this section we consider the case that some control points are predetermined on the

shape of the membership function fh,p ∈ Xh,p.

Theorem 3.1 Let

P = (x−, y−) ∈ (a, b)× (0, 1), Q = (x+, y+) ∈ (b, c)× (0, 1). (3.1)

Then there exists at least one pair (h, p) such that the graph of fh,p passes through P and Q,

i.e., fh,p(x
−) = y− and fh,p(x

+) = y+.

Proof: We first fix a function h ∈ H([0, 1]) satisfying (2.2). Set

z− = h−(x−) = h(
x− − a
b− a

), z+ = h+(x+) = h(
c− x+

c− b
)

Thus −∞ < z−, z+ < +∞. We now construct functions p−, p+ from R to R+ ∪ {0} as

follows:

p−(t) =


0, t ∈ (−∞, z− − 1]

y−, t ∈ (z− − 1, z−]

1− y−, t ∈ (z−, z− + 1]

0, t ∈ (z− + 1,+∞)

p+(t) =


0, t ∈ (−∞, z+ − 1]

y+, t ∈ (z+ − 1, z+]

1− y+, t ∈ (z+, z+ + 1]

0, t ∈ (z+ + 1,+∞)

By direct computation, we have p−(t), p+(t) ≥ 0,∀t ∈ R and∫ +∞

−∞
p−(t)dt = 1,

∫ z−

−∞
p−(t)dt = y−,

∫ +∞

−∞
p+(t)dt = 1,

∫ z+

−∞
p+(t)dt = y+.
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Hence p−, p+ satisfy Definition 2.5 and∫ h−(x−)

−∞
p−(t)dt = y−,

∫ h+(x+)

−∞
p+(t)dt = y+,

which means fh,p(x
−) = y− and fh,p(x

+) = y+ with h = (h−, h+), p = (p−, p+). This

completes the proof.

Consequently, we have the following theorem for finite number of control points.

Theorem 3.2 Let Pi = (x−i , y
−
i ) ∈ (a, b) × (0, 1), i = 1, · · · ,m satisfy a < x−1 · · · < x−m < b

and 0 < y−1 · · · < y−m < 1, Qj = (x+j , y
+
j ) ∈ (b, c) × (0, 1), j = 1, · · · , n satisfy b < x+1 · · · <

x−n < c and 0 < y+n < · · · < y+1 < 1. Then there exists at least one pair (h, p) such that the

graph of fh,p passes through all points Pi’s and Qj’s, i.e., fh,p(x
−
i ) = y−i , i = 1, · · · ,m and

fh,p(x
+
j ) = y+j , j = 1, · · · , n.

Proof: We first fix a function h ∈ H([0, 1]) satisfying (2.2). Set

z−i = h(
x−i −a
b−a ), i = 1, · · · ,m.

The monotony of h indicates that z−i < z−i′ for all 1 ≤ i < i′ ≤ m. We now construct a

function p− : R→ R+ ∪ {0} as follows:

p−(t) =



0, t ∈ (−∞, z−1 − 1]

y−1 , t ∈ (z−1 − 1, z−1 ]

y−2 − y−1
z−2 − z−1

, t ∈ (z−1 , z
−
2 ]

y−3 − y−2
z−3 − z−2

, t ∈ (z−2 , z
−
3 ]

· · · ,
y−m − y−m−1
z−m − z−m−1

, t ∈ (z−m−1, z
−
m]

1− y−m, t ∈ (z−m, z
−
m + 1]

0, t ∈ (z−m + 1,+∞)

By direct computation, we have p−(t) ≥ 0,∀t ∈ R and∫ +∞

−∞
p−(t)dt = 1,

∫ z−i

−∞
p−(t)dt = y−i .

So the function p− satisfies Definition 2.5 and

∫ h(
x−
i
−a

b−a )

−∞
p−(t)dt = y−i , i = 1, · · · ,m.
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The similar result can be proven for points Qj(j = 1, · · · , n) and the function h. In fact, by

the same procedure, we can construct a function p+ satisfying Definition 2.5 and∫ h(
c−x+

j
c−b )

−∞
p+(t)dt = y+j , j = 1, · · · , n.

Hence, fh,p(x
−
i ) = y−i (i = 1, · · · ,m) and fh,p(x

+
j ) = y+j (j = 1, · · · , n). This completes the

proof.

Note that the membership function we construct there can be seen as a similar form of

pentagon fuzzy numbers with m = n = 1 ([16]) and B-spline fuzzy numbers with n + m

control points ([20]), respectively.

As a direct consequence of our result, we have following theorem:

Theorem 3.3 There exists at least one pair (h, p) such that the triangular fuzzy number

(a, b, c) is in the PDMF space Xh,p.

Proof: Recall that a triangular fuzzy number determined by the triplet (a, b, c) of real

numbers with a < b < c has a membership function as follows:

(a, b, c) =



0, x ∈ (−∞, a]

x− a
b− a

, x ∈ (a, b)

1, x = b

c− x
c− b

, x ∈ (b, c)

0, x ∈ [c,+∞)

We first fix µ ∈ R and p−(t) = p+(t) = p(t;µ) = 1√
2π
e−

1
2
(t−µ)2 . Notice that the standard

normal cumulative distribution function F (x) =
∫ x
−∞

1√
2π
e−

t2

2 dt is a strictly monotonic func-

tion on R. According to the inverse function theorem, the inverse function of F exists, i.e.

its quantile function Q(y) = inf{x ∈ R : y ≤ F (x)} exists. Hence, for all x− ∈ (a, b), we can

set z− satisfying the equation∫ z−

−∞
p(t;µ)dt =

∫ z−−µ−

−∞

1√
2π
e−

t2

2 dt =
x− − a
b− a

.

Since 0 < x−−a
b−a < 1, we can define a function h : (0, 1)→ (−∞,+∞) such that

h(
x− − a
b− a

) = z−.

By direct computation, we have ∫ h(x
−−a
b−a )

−∞
p(t)dt =

x− − a
b− a

.
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and for all x+ ∈ (b, c), ∫ h( c−x
+

c−b )

−∞
p(t)dt =

c− x+

c− b
.

We now verify that h is a LAF as in Definition 2.3. In fact, we have

Claim a) h(0) = −∞, h(1) = +∞.

Proof:Set h(0) = z−0 , i.e. ∫ z−0

−∞

1√
2π
e−

1
2
(t−µ)2dt = 0.

Consequently z−0 = −∞. Similarly we can prove h(1) = +∞.

Claim b) h is increasing.

Proof: For all x−1 , x
−
2 ∈ (a, b), x−1 < x−2 , we suppose that h(x−i ) = z−i (i = 1, 2)

which means∫ z−1

−∞

1√
2π
e−

(t−µ)2
2 dt =

x−1 − a
b− a

,

∫ z−2

−∞

1√
2π
e−

(t−µ)2
2 dt =

x−2 − a
b− a

.

After linear transformation, we have∫ z−1 −µ

−∞

1√
2π
e−

t2

2 dt =
x−1 − a
b− a

,

∫ z−2 −µ

−∞

1√
2π
e−

t2

2 dt =
x−2 − a
b− a

.

The monotony of standard normal cumulative distribution function indicates that

z−1 < z−2 , i.e. h(x−1 ) < h(x−2 ).

Claim c) h is a continuous function.

Proof: We first fix x−0 ∈ (a, b). Then according to inverse function theorem, there

exists a z−0 which satisfies z−0 = h(x−0 ). For all ε > 0, we set z−0 − ε = h(x−1 ) and

z−0 + ε = h(x−2 ), then ∃ δ = min{x−0 − x−1 , x−2 − x−0 } > 0, s.t. if |x− x−0 | < δ, we

have |z − z−0 | < ε.

Consequently the function h we constructed above satisfies Definition 2.3 and fh,p(x) =

(a, b, c). This completes the proof.

4 Gaussian PDMFs with σ = 1

In this section we first establish a sample space by taking h as a tangent function and p

as a Gaussian membership function with the standard deviation σ = 1, respectively. Two

control points P and Q will be given on the shape of the membership function fh,p(x).

The expectation µ of the Gaussian Kernel will be determined by the control points P and

Q. Consequently, by means of the parameter µ, we design the operations on fh,p(x) such

as addition, scalar multiplication and subtraction. Some properties and advantages of our

definitions are given.
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4.1 Definitions

Set

h(x) = tan(πx− π

2
), x ∈ (0, 1), p(t) = p(t;µ) =

1√
2π
e−

1
2
(t−µ)2 , t ∈ R. (4.1)

Denoted by

ϕ(x; a, b) =
x− a
b− a

, x ∈ [a, b]; ϕ(x; b, c) =
x− b
c− b

, x ∈ [b, c],

the LMF and RMF are given by

h−(x) = h(ϕ(x; a, b)) = tan(
π

b− a
(x− a)− π

2
), x ∈ (a, b),

h+(x) = h(1− ϕ(x; b, c)) = tan(
π

c− b
(c− x)− π

2
), x ∈ (b, c).

(4.2)

Moreover, we assume that there are two control points P (x−, y−), Q(x+, y+) on each side of

the central value b with a < x− < b < x+ < c. The corresponding membership function as

in (2.1) has the exact form

fh,p(x) =



0, x ∈ (−∞, a]

f−(x;µ−, a, b), x ∈ (a, b)

1, x = b

f+(x;µ+, b, c), x ∈ (b, c)

0, x ∈ [c,+∞)

(4.3)

where f− and f+ is given by

f−(x;µ−, a, b) =

∫ h−(x)

−∞
p(t;µ−)dt

=

∫ tan( π
b−a (x−a)−

π
2
)

−∞

1√
2π
e−

1
2
(t−µ−)2dt, x ∈ (a, b)

f+(x;µ+, b, c) =

∫ h+(x)

−∞
p(t;µ+)dt

=

∫ tan( π
c−b (c−x)−

π
2
)

−∞

1√
2π
e−

1
2
(t−µ+)2dt, x ∈ (b, c).

The following Theorem holds:

Theorem 4.1 The function space Xh,p is a PDMFS as the form in (2.3) if p, h are taken

as in (4.1). Moreover, there exists a unique pair (µ−, µ+) for any (P,Q) given by (3.1). We

call the above PDMFS as a Gaussian PDMFS, abbreviated by G-PDMFS.

Some remarks are in order.
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Remark 4.1 Note that the pair (h, p) we designed as in (4.1) is the subjective perception

we offer to the class of the membership functions under consideration. The parameter µ−

(resp. µ+) is remained to be uniquely determined by the pre-given information P (x−, y−)

(resp. Q(x+, y+)). We emphasize that, rather than the tangent function, there are plenty of

possibilities to choose h as a pre-designed function, such as Logit function or inverse sigmoid

function, etc.

Remark 4.2 As a direct consequence of Theorem 4.1, it is reasonable to give two equivalent

notations of the G-PDMF as

〈(a, b, c);P,Q〉 ⇐⇒ 〈(a, b, c);µ−, µ+〉. (4.4)

As we shall see in the proof, (µ−, µ+) can be uniquely identified by means of the inverse

function of Formula (4.5).

Remark 4.3 Mathematically speaking, ranking fuzzy numbers can be seen as ranking the

functions as the form of (4.3) in G-PDMF space. Various definitions of ranking methods

can be designed based on either of the two equivalent notations in (4.4). For instance, b1 � b2
if (µ−1 )2+(µ+

1 )2 ≤ (µ−2 )2+(µ+
2 )2, with bi = 〈(a, b, c);µ−i , µ+

i 〉, i = 1, 2. The detail of the design

is beyond the scope of this paper and will be discussed elsewhere.

Proof: For (h, p) given in (4.1), it is obvious that h belongs to H([0, 1]) and p is a

PDF. We only need to verify that (µ−, µ+) is uniquely determined by (P,Q). In fact, set

z− = h−(x−) = h(
x− a
b− a

), it follows that

∫ z−

−∞
p(t;µ−)dt =

∫ z−

−∞

1√
2π
e−

(t−µ−)2

2 dt = y−. (4.5)

According to inverse function theorem, the inverse function of standard normal cumulative

distribution function exists. Thus there must exist a µ− satisfying the equation above. To

verify the µ− is unique, we suppose that there exists two values µ1 and µ2 satisfying∫ z−

−∞

1√
2π
e−

(t−µ1)
2

2 dt = y−,

∫ z−

−∞

1√
2π
e−

(t−µ2)
2

2 dt = y−.

Consequently, ∫ z−−µ1

−∞

1√
2π
e−

t2

2 dt = y−,

∫ z−−µ2

−∞

1√
2π
e−

t2

2 dt = y−.

The monotony of standard normal cumulative distribution function indicates that µ1 = µ2.

The proof for µ+ is similar and we omit it.
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4.2 Operational laws

For h and the PDF p given by (4.1), we now design operational laws of the G-PDMFS

Xh,p(R) = {b̃
∣∣∣b̃ = 〈(a, b, c);µ−, µ+〉 has the form of (4.3)}, (4.6)

such as addition, scalar multiplication and subtraction.

Definition 4.1 Let b̃1 = 〈(a1, b1, c1);µ−1 , µ+
1 〉 and b̃2 = 〈(a2, b2, c2);µ−2 , µ+

2 〉 be two G-PDMFs

in Xh,p, then

(1) b̃1 ⊕ b̃2 = 〈(a1 + a2, b1 + b2, c1 + c2);µ
−
1 + µ−2 , µ

+
1 + µ+

2 〉.

(2) λb̃1 =


〈(λa1, λb1, λc1);λµ−1 , λµ+

1 〉,∀λ ≥ 0.

〈(λc1, λb1, λa1);λµ+
1 , λµ

−
1 〉,∀λ < 0.

(3) b̃1 	 b̃2 = 〈(a1 − c2, b1 − b2, c1 − a2);µ−1 − µ+
2 , µ

+
1 − µ−2 〉.

Some remarks are in order:

Remark 4.4 To adapt the rules of the standard arithmetic addition on real numbers, it is

mandatory to require that, for b̃3 = b̃1⊕b̃2, the membership function of b̃3 satisfies f(b1+b2) =

1. Nevertheless, the definitions on the endpoints a3, c3 can be varied in several ways. In fact,

it is reasonable to choose any a3, b3 such that

• a3 ∈ [a1 + a2, b1 + b2 −min{b1 − a1, b2 − a2}],

• c3 ∈ [b1 + b2 +min{c1 − b1, c2 − b2}, c1 + c2],

depending on the real-world situations for the fuzzy system. We speculate that different

choices of endpoints may leads to diverse properties. The same methodology holds true on

the design of scalar multiplication and subtraction. Especially, to obey the rule that a ≤ b ≤ c

for any G-PDMF 〈(a, b, c);µ−, µ+〉, it is natural to design the scalar multiplication separately

for different sign of λ as in (2) of Definition 4.1.

Remark 4.5 Note that it is straightforward to define the subtraction on Xh,p as a general-

ization of its scalar multiplication with λ = −1 (see Formula (3) of Definition 4.1). Hence,

the class of G-PMDFs has a linear algebra generated by the expectation µ of the Gaussian

Kernel. We believe that this kind of definitions between two G-PMDFs can be further ex-

ploited to some kind of fuzzy differentiation and integration. Consequently, one can construct

corresponding fuzzy differential equations and further works need to be done.
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Remark 4.6 Note that according to Formula (3), the subtraction of two G-PDMFs is straight-

forward since (µ−, µ+) can be uniquely identified via the inverse function of Formula (4.5), as

we claimed in Remark 4.2. More precisely, set two G-PDMFs b̃1 and b̃2 with the information

b̃1 = 〈(a1, b1, c1);P1, Q1〉, b̃2 = 〈(a2, b2, c2);P2, Q2〉. (4.7)

Their subtraction b̃1 	 b̃2, denoted by X̃, will be computed by two steps:

1. By means of the inverse function of Formula (4.5), we compute the corresponding

expectation values µ and (4.7) turns to

b̃1 = 〈(a1, b1, c1);µ−1 , µ+
1 〉, b̃2 = 〈(a2, b2, c2);µ−2 , µ+

2 〉.

2. We compute X̃ directly by Formula (3).

With this procedure, one can easily construct the method of solving the toy fuzzy equation

b̃2⊕ X̃ = b̃1 with direct computation X̃ = b̃1	 b̃2. A specific example is also stated in Section

5.

Remark 4.7 Note that the operations via α-cut is not needed in our design with the nu-

merical implementation in Remark 4.6. Frankly speaking, the initial datum is given by

〈(a, b, c);P,Q〉 with P = (x−, y−) and Q = (x+, y+), which is the partial information of

the fuzzy number. Notice that we do not know the value of f(x) at other points other that

x = a, b, c, x−, x+ on the interval [a, c]. Once we obtain the parameters (µ−, µ+), the shape of

the membership function is fixed and the corresponding arithmetic operations between fuzzy

numbers are transforming to the arithmetic operations of (µ−, µ+) and we have all informa-

tion of the fuzzy number.

The following properties hold:

Theorem 4.2 Let b̃1 = 〈(a1, b1, c1);µ−1 , µ+
1 〉, and b̃2 = 〈(a2, b2, c2);µ−2 , µ+

2 〉 be two G-PDMFs

in Xh,p, then there exist G-PDMFs b̃3, b̃4, b̃5 ∈ Xh,p such that b̃3 = b̃1 ⊕ b̃2 , b̃4 = b̃1 	 b̃2 and

b̃5 = λb̃1(∀λ ∈ R), respectively.

Proof: Since b̃1, b̃2 are two G-PDMFs, we have a1, b1, c1, µ
−
1 , µ

+
1 , a2, b2, c2, µ

−
2 , µ

+
2 ∈ R.

Thus a1 + a2, b1 + b2, c1 + c2, a1 − c2, b1 − b2, c1 − a2, µ
−
1 + µ−2 , µ

+
1 + µ+

2 , µ
−
1 − µ+

2 , µ
+
1 −

µ−2 , λa1, λb1, λc1, λµ
−
1 , λµ

+
1 ∈ R. It follows from Definition 4.1 that

b̃3 = 〈(a1 + a2, b1 + b2, c1 + c2);µ
−
1 + µ−2 , µ

+
1 + µ+

2 〉,
b̃4 = 〈(a1 − c2, b1 − b2, c1 − a2);µ−1 − µ+

2 , µ
+
1 − µ−2 〉,

b̃5 =


〈(λa1, λb1, λc1);λµ−1 , λµ+

1 〉,∀λ ≥ 0.

〈(λc1, λb1, λa1);λµ+
1 , λµ

−
1 〉,∀λ < 0.

It is easy to verify that b̃3, b̃4, b̃5 are also G-PDMFs.
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Theorem 4.3 Let b̃i = 〈(ai, bi, ci);µ−i , µ+
i 〉, i = 1, 2, 3 be three G-PDMFs in Xh,p, then for

all λ, λ1, λ2 ∈ R, we have

(1) b̃1 ⊕ b̃2 = b̃2 ⊕ b̃1, (b̃1 ⊕ b̃2)⊕ b̃3 = b̃1 ⊕ (b̃2 ⊕ b̃3);

(2) b̃1 	 b̃2 = −(b̃2 	 b̃1), (b̃1 	 b̃2)	 b̃3 = b̃1 	 (b̃2 ⊕ b̃3);

(3) λ(b̃1 ⊕ b̃2) = λb̃1 ⊕ λb̃2, for all λ ∈ R;

(4) λ1b̃1 ⊕ λ2b̃1 = (λ1 + λ2)b̃1, for all λ1, λ2 ∈ R and λ1λ2 ≥ 0;

(5) b̃1 ⊕ (−1)b̃2 = b̃1 	 b̃2.

Proof: Assertion (1) is trivial.

For (2), by the operational law (3) in Definition 4.1, we have

b̃1 	 b̃2 = 〈(a1 − c2, b1 − b2, c1 − a2);µ−1 − µ+
2 , µ

+
1 − µ−2 〉,

b̃2 	 b̃1 = 〈(a2 − c1, b2 − b1, c2 − a1);µ−2 − µ+
1 , µ

+
2 − µ−1 〉.

Then, by the operational law (2) in Definition 4.1, it follows that

−(b̃2 	 b̃1) = 〈(−(c2 − a1),−(b2 − b1),−(a2 − c1);−(µ+
2 − µ−1 ),−(µ−2 − µ+

1 )〉.
= 〈(a1 − c2, b1 − b2, c1 − a2);µ−1 − µ+

2 , µ
+
1 − µ−2 〉.

Hence

b̃1 	 b̃2 = −(b̃2 	 b̃1).

Also since

(b̃1 	 b̃2)	 b̃3 = 〈(a1 − c2 − c3, b1 − b2 − b3, c1 − a2 − a3);µ−1 − µ+
2 − µ+

3 , µ
+
1 − µ−2 − µ−3 〉

and

b̃2 ⊕ b̃3 = 〈(a2 + a3, b2 + b3, c2 + c3);µ
−
2 + µ−3 , µ

+
2 + µ+

3 〉,

then

b̃1 	 (b̃2 ⊕ b̃3) = 〈(a1 − (c2 + c3), b1 − (b2 + b3), c1 − (a2 + a3));µ
−
1 − (µ+

2 + µ+
3 ), µ+

1 − (µ−2 + µ−3 )〉
= 〈(a1 − c2 − c3, b1 − b2 − b3, c1 − a2 − a3);µ−1 − µ+

2 − µ+
3 , µ

+
1 − µ−2 − µ−3 )〉

= (b̃1 	 b̃2)	 b̃3.

For (3), first we assume that λ ≥ 0. Then, by the operational law as in Definition 4.1, it

follows that

λ(b̃1 ⊕ b̃2) = 〈(λ(a1 + a2), λ(b1 + b2), λ(c1 + c2));λ(µ−1 + µ−2 ), λ(µ+
1 + µ+

2 )〉.

Since

λb̃1 = 〈(λa1, λb1, λc1);λµ−1 , λµ+
1 〉, λb̃2 = 〈(λa2, λb2, λc2);λµ−2 , λµ+

2 〉,
14



then

λb̃1 ⊕ λb̃2 = 〈(λa1 + λa2, λb1 + λb2, λc1 + λc2);λµ
−
1 + λµ−2 , λµ

+
1 + λµ+

2 〉,
hence

λ(b̃1 ⊕ b̃2) = λb̃1 ⊕ λb̃2.
For the case λ < 0, we have

λ(b̃1 ⊕ b̃2) = 〈(λ(c1 + c2)), λ(b1 + b2), λ(a1 + a2));λ(µ+
1 + µ+

2 ), λ(µ−1 + µ−2 )〉,
λb̃1 = 〈(λc1, λb1, λa1);λµ+

1 , λµ
−
1 〉,

λb̃2 = 〈(λc2, λb2, λa2);λµ+
2 , λµ

−
2 〉.

then

λb̃1 ⊕ λb̃2 = 〈(λc1 + λc2, λb1 + λb2, λa1 + λa2);λµ
+
1 + λµ+

2 , λµ
−
1 + λµ−2 〉,

= 〈(λ(c1 + c2)), λ(b1 + b2), λ(a1 + a2));λ(µ+
1 + µ+

2 ), λ(µ−1 + µ−2 )〉,
= λ(b̃1 ⊕ b̃2)

For (4), we first assume the case λ1 ≥ 0, λ2 ≥ 0. Since

λ1b̃1 = 〈(λ1a1, λ1b1, λ1c1);λ1µ−1 , λ1µ+
1 〉, λ2b̃1 = 〈(λ2a1, λ2b1, λ2c1);λ2µ−1 , λ2µ+

1 〉,

then

λ1b̃1 ⊕ λ2b̃1 = 〈(λ1a1 + λ2a1, λ1b1 + λ2b1, λ1c1 + λ2c1);λ1µ
−
1 + λ2µ

−
1 , λ1µ

+
1 + λ2µ

+
1 〉

= 〈((λ1 + λ2)a1, (λ1 + λ2)b1, (λ1 + λ2)c1); (λ1 + λ2)µ
−
1 , (λ1 + λ2)µ

+
1 〉

= (λ1 + λ2)〈(a1, b1, c1);µ−1 , µ+
1 〉

= (λ1 + λ2)b̃1.

Secondly, for the case λ1 ≤ 0, λ2 ≤ 0, we have

λ1b̃1 = 〈(λ1c1, λ1b1, λ1a1);λ1µ+
1 , λ1µ

−
1 〉, λ2b̃1 = 〈(λ2c1, λ2b1, λ2a1);λ2µ+

1 , λ2µ
−
1 〉.

Then

λ1b̃1 ⊕ λ2b̃1 = 〈(λ1c1 + λ2c1, λ1b1 + λ2b1, λ1a1 + λ2a1);λ1µ
+
1 + λ2µ

+
1 , λ1µ

−
1 + λ2µ

−
1 〉

= 〈((λ1 + λ2)c1, (λ1 + λ2)b1, (λ1 + λ2)a1); (λ1 + λ2)µ
+
1 , (λ1 + λ2)µ

−
1 〉

= (λ1 + λ2)〈(a1, b1, c1);µ−1 , µ+
1 〉

= (λ1 + λ2)b̃1.

For (5), since

(−1)b̃2 = 〈(−c2,−b2,−a2);−µ+
2 ,−µ−2 〉,

then

b̃1 ⊕ (−1)b̃2 = 〈(a1 − c2, b1 − b2, c1 − a2);µ−1 − µ+
2 , µ

+
1 − µ−2 〉.

Also by the operational law (3) in Definition 4.1, we have

b̃1 	 b̃2 = 〈(a1 − c2, b1 − b2, c1 − a2);µ−1 − µ+
2 , µ

+
1 − µ−2 〉.

Thus

b̃1 ⊕ (−1)b̃2 = b̃1 	 b̃2,
which completes the proof.

15



5 Examples

In this section we present some visual graphs to illustrate the shape of G-PDMFs and

results of their fuzzy arithmetic operations. Recall that the original data will be given as

the form 〈(a, b, c);P,Q〉 where

P = (x−, y−) ∈ (a, b)× (0, 1), Q = (x+, y+) ∈ (b, c)× (0, 1).

To facilitate the operations, we first compute the expectations (µ−, µ+) of the corresponding

Gaussian Kernels. It can be done via Formula (4.5) according to Theorem 4.1. In the sequel,

we use the notation 〈(a, b, c);µ−, µ+〉 to facilitate the operations.

Example 1. (Addition) Let b̃1 = 〈(−1, 0, 1); (−0.5, 0.5), (0.5, 0.5)〉, b̃2 = 〈(−1, 1, 4); (0, 0.5),

(2.5, 0.5)〉 be two Gaussian PDMFs in Xh,p with (h, p) = (tan,N (µ, 1)) as in Subsection

4.1. According to Theorem 4.1, (µ−, µ+) can be computed via Formula (4.5). Hence,

b̃1 = 〈(−1, 0, 1); 0, 0〉 and b̃2〈(−1, 1, 4); 0, 0〉.
By means of the operation law (1) in Definition 4.1, we have

b̃1 ⊕ b̃2 = 〈(−1, 0, 1); 0, 0〉 ⊕ 〈(−1, 1, 4); 0, 0〉 = 〈(−2, 1, 5); 0, 0〉.

Figure 3: b̃1 (pecked line), b̃2 (dash line) and

b̃1 ⊕ b̃2 (solid line)

Figure 4: Three results based on MIN, MAX

and Formula (1) in Definition 4.1

Figure 3 shows the shape of b̃1, b̃2 and b̃1 ⊕ b̃2, respectively. Figure 4 presents the fuzzy

additions on the two Gaussian PDMFs b̃1, b̃2 using MAX, MIN and our operation law (1)

in Definition 4.1. In Figure 4, MIN produces the lowest membership value for the resulting

fuzzy number for all x ∈ R. Interestingly, our design produces partially larger value than

the one caused by the MAX operation, which may be useful in the realistic application.

Example 2. (Scalar multiplication) Let b̃3 = 〈(−1, 1, 2); (0, 0.75), (1.5, 0.6)〉 be a Gaus-

sian PDMF inXh,p. As above, we can approximately rewrite b̃3 as 〈(−1, 1, 2);−0.6745,−0.4399〉.
The Gaussian PDMF resulting from fuzzy scalar multiplication is calculated using the op-

eration law (2) in Definition 4.1:

3 b̃3 = 3 〈(−1, 1, 2);−0.6745,−0.4399〉 = 〈(−3, 3, 6);−2.0225,−1.3197〉.
(−2) b̃3 = (−2)〈(−1, 1, 2);−0.6745,−0.4399〉 = 〈(−4,−2, 2); 0.8798, 1.3490〉
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Figure 5 and 6 show the 3b̃3 and (−2)b̃3, respectively:

Figure 5: The graph of 3b̃3 Figure 6: The graph of (−2)b̃3

Figure 5 (resp. 6) shows the fuzzy scalar multiplication with opposite (resp. negative) λ.

When λ > 0, the membership value turns to be larger than the original one. Moreover, the

support of the fuzzy number spreads and leads to more uncertainty. For the case λ < 0, the

graph of resulting fuzzy number is mirror flipped and shifted to the left horizontally, which

is in accordance with our definition in 4.1.

Example 3. (Subtraction) Set b̃1, b̃3 be as above. The Gaussian PDMF resulting from

fuzzy subtraction is calculated using the operation law (3) in Definition 4.1:

b̃3 	 b̃1 = 〈(−1, 1, 2);−0.6745,−0.4399〉 	 〈(−1, 0, 1); 0, 0〉 = 〈(−2, 1, 3);−0.6745,−0.4399〉.

Figure 5 shows the Gaussian PDMF b̃3 	 b̃1. Note that, the support of the fuzzy number

Figure 7: Fuzzy subtraction b̃3 	 b̃1

resulting from fuzzy subtraction using our proposed method is larger than the support of

MIN and MAX.

We emphasize that, all fuzzy computations in this examples happen in the same function

space, saying, G-PDMFS.
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6 Final remarks

In this paper we presented a new class of fuzzy numbers Xh,p in which each fuzzy number

is uniquely identified by a membership function f(x) with the form (2.1). More precisely,

f(x) is constructed by combining a class of nonlinear mapping h (see Definition 2.3 and

Definition 2.4) and a class of probability density function p (See Definition 2.5). Here h can

be seen as the subjective perception and p as the objective entity, respectively. The existence

of the pair (h, p) is shown for any pre-given information (a, b, c;P,Q) of the fuzzy number.

Especially, the common triangular number can also be interpreted by a function pair (h, p).

Next we consider a sample function space Xh,p with h being the tangent function and p

being the Gaussian-type function with free variable µ. We define the arithmetic operations

on Xh,p via the free variable µ which is the expectation of p(x;µ). Under our definitions,

Xh,p has a linear algebra.

Finally, we provide some numerical examples and graphs of the proposed addition, scalar

multiplication and subtraction on the PDMF space Xh,p.
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