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Abstract

In this paper, we study a new generalization for the notion of fuzzy automata, which we called hesitant L-
fuzzy automaton (HLFA). We present the formulations of the mathematics framework for the theory of HLFA.
Moreover, we present the concepts of hesitant L-fuzzy behavior and inverse hesitant L-fuzzy behavior recognized
by a type of HLFA. After that, for any hesitant L-fuzzy language we present a minimal complete accessible
deterministic hesitant L-fuzzy automaton recognizing that. Finally, we present an algorithm, which determines
states of the minimal hesitant L-fuzzy automaton and we present the time complexity of the algorithm.
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1 Introduction

The theory of fuzzy sets was introduced by L.A. Zadeh in 1965 [22]. Recently, the concept of hesitant fuzzy set
was introduced by Torra and Narukawa [19, 20]. Their approach permits the membership values of elements to
be an arbitrary subset of [0, 1]. This concept can react to the human’s hesitancy more objectively than the other
classical extension of fuzzy sets. In other words, hesitant fuzzy sets are quite suitable for the situation where we
have a set of possible values rather than a margin of error or some possibility distribution on the possible values.
Observe that hesitant fuzzy sets can be seen as multi-fuzzy sets, i.e., sets of fuzzy sets. Inspired by Goguen’s
approach, Dehmiry, Mashinchi and Mesiar [5] extends the valuation set of hesitant fuzzy sets to a lattice rather
than [0, 1] and introduces hesitant L-fuzzy sets.

W.G.Wee [21] introduced the idea of fuzzy automata. E.T. Lee and L.A. Zadeh [9] in 1969 gave the concept of
fuzzy finite state automata. Fuzzy finite automata have many important applications [7, 10, 13, 14, 15, 16, 17, 18].

Recently, Costa and Bedregal in [4] using the concepts of typical hesitant fuzzy set [19, 2] introduced the
concept of nondeterministic typical hesitant fuzzy automaton and presented a subclass, called deterministic typical
hesitant fuzzy automaton, which generalizes the notion of deterministic finite automaton.
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State minimization is a fundamental problem in automata theory. There are many papers on the minimization
problem of fuzzy finite automata. For example, minimization of mealy type of fuzzy finite automata in discussed
in [3], minimization of fuzzy finite automata with crisp final states without outputs in studied in [1], minimizing
the deterministic finite automaton with fuzzy (final) states in [12]. Myhill-Neroded’s theorem has been extended
to fuzzy regular language and also an algorithm is given for minimizing the deterministic finite automaton with
fuzzy (final) states in [8, 12].

In this paper, the theory of hesitant L-fuzzy automaton will be presented, characterizing the behaviors and
languages computed by hesitant L-fuzzy automata. This work has the following division, first this introduction,
then in Section 2, presents all the basic definitions and notations. Section 3, presents the notion of hesitant L-fuzzy
automaton (HLFA) and hesitant L-fuzzy behavior (HLFB). After that, some of the closure properties for the HLFA
are considered. Moreover, we present the concepts of HLFB and inverse hesitant L-fuzzy behavior recognized by
a type of HLFA. Also, we show that if β1 and β2 are two HLFBs, then β1 tβ2 is so. Section 4, gives a congruence
relation by considering the HLFB, and by using the equivalence classes presents an HLFA recognized HLFB.
Section 5, for any hesitant L-fuzzy language A, we present a minimal complete deterministic hesitant L-fuzzy
automaton recognizing A. Also, we present an algorithm to determines states of the minimal hesitant L-fuzzy
automaton with time complexity of O(|Q|2|X||Q|−1).

2 Preliminaries

In this section, we present all the basic definitions and notations that are used throughout the text.

Definition 1. [5] Let X denotes a universal set and (L,�L) be an arbitrary lattice. Then a hesitant L-fuzzy set of
X is a mapping

H :X → 2L

x 7→ H(x).

The value H(x) denotes the membership degree of x in H and is named hesitant L-fuzzy element (HLFE).

Definition 2. [5] For A,B ∈ 2L, the function t : 2L × 2L → 2L is computed by:

A tB = {a ∨ b|a ∈ A and b ∈ B},

and the function u : 2L × 2L → 2L is computed by:

A uB = {a ∧ b|a ∈ A and b ∈ B}.

Definition 3. [5] Let (L,�) be an arbitrary lattice and S be a real valued non-constant function such that

S : L→ R

a 7→ S(a).

The function S is said a score function on L if the following condition is satisfied:

A1 � A2 ⇒ S(A1) ≤ S(A2),

for every A1, A2 ∈ L.
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Definition 4. [5] Let Cs be a function on L such that Cs : L→ L such that

Cs : L→ L

A 7→ Cs(A)

The function Cs is said complement function on L based on score function S if the following conditions satisfied:

1. Global boundary condition: CS(∨L) = ∧L, CS(∧L) = ∨L.

2. Local boundary condition: CS(∨A) = ∧(Cs(A)), CS(∧A) = ∨(Cs(A)), for every A ∈ L.

3. Monotonicity: if S(A1) < S(A2), then S(CS(A1)) > S(CS(A2)), for every A1, A2 ∈ L.

4. CS(CS(A)) = A, for every A ∈ L.

Definition 5. [5] The complement of an H ∈ HLFE related to a score function is defined as follows:

Hc = Cs(H),

where S is a score function of L.

Theorem 1. [5] (De Morgan’s laws) Let H1 and H2 be in HLFE and let S be a score function of L. Then the
following laws are valid:

i. (H1 uH2)c = Hc
1 tHc

2 ,

ii. (H1 tH2)c = Hc
1 uHc

2 .

Let L be the set of finite singelton subsets of [0, 1]. On the lattice (L,�), one complement function can be
defined as follows:

CS(H) = tli∈H{1− li},

for every H ∈ L.

Definition 6. [6] A finite automaton is a 5-tuple A = (Q,X, q0, ϕ, F ) such that

1. Q is a finite nonempty set of states,

2. X is a finite nonempty set of input symbols,

3. q0 ∈ Q is the initial states,

4. ϕ : Q×X → Q is a transition function,

5. F ⊆ Q is the final states.

Definition 7. [10] A partial fuzzy automaton (pfa) is a 5-tuple A = (Q,X, ι, δ, τ), where

1. Q is a finite nonempty set of states,

2. X is a finite nonempty set of input symbols,
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3. ι is a fuzzy subset of Q, i.e., ι : Q→ [0, 1], called the initial fuzzy states,

4. δ : Q×X → Q is a function, call the transition function,

5. τ is a fuzzy subset of Q, i.e., τ : Q→ [0, 1], called the final fuzzy states.

Definition 8. [6] Let A = (Q,X, q0, ϕ, F ) be a finite automaton. Then A computes the language fA subset of
X∗ by fA = {u ∈ X∗|ϕ(q0, u) ∈ F} where u ∈ X∗.

The subset A of X∗ is called recognizable language if there exists a finite automatonA such that A = fA. The
cardinality of A is defined by |A| = |Q|, where Q is the states of A.

3 Hesitant L-fuzzy behavior and automaton

In this section, at first, we present the notion of hesitant L-fuzzy automaton and hesitant L-fuzzy behavior. After
that, some of the closure properties for the hesitant L-fuzzy automata such as union and complement are considered,
also, the behavior of them are discussed.

Definition 9. A sequential automaton consist of three main structures, the transition structure, the input and output
structure. A hesitant L-fuzzy automaton (HLFA) is a quintuple A = (Q,X, ι, δ, τ), where

1. Q is a finite non-empty set of states,

2. X is a finite set of input symbols,

3. ι : Q→ 2L is the hesitant L-fuzzy set on Q of initial states,

4. δ : Q×X ×Q→ 2L is a transition hesitant L-fuzzy set,

5. τ : Q→ 2L is the hesitant L-fuzzy set of final states.

For a hesitant L-fuzzy automaton A = (Q,X, ι, δ, τ), the hesitant L-fuzzy set δ is extended into a function δ∗ :

Q×X∗ ×Q→ 2L using the recursion:

δ∗(q,Λ, p) =

{0} if q 6= p

{1} otherwise
,

and
δ∗(q, ua, p) = tr∈Q[δ∗(q, u, r) u δ(r, a, p))],

where u ∈ X∗ and a ∈ X .

Now, we study the concepts of hesitant L-fuzzy behavior and inverse hesitant L-fuzzy behavior recognized by
a type of hesitant L-fuzzy automaton. Also, we show that if β1 and β2 are regular, then β1 t β2 is regular, too.

Definition 10. Let A = (Q,X, ι, δ, τ) be an HLFA. Then A computes the hesitant L-fuzzy behavior (HLFB)
βA : X∗ → 2L is defined by

β(u) = tq,p∈Q(ι(q) u δ∗(q, u, p) u τ(p)),

where u ∈ X∗.
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Definition 11. Let X be a nonempty set of symbols. An HLFS β is called regular if there exists an HLFA
A = (Q,X, ι, δ, τ) such that β = βA.

Definition 12. Let X be a nonempty set of symbols, β1 : X∗ → 2L and β2 : X∗ → 2L be regular. Then the union
of β1 and β2, denoted by β1 t β2, is given by (β1 t β2)(u) = β1(u) t β2(u), for every u ∈ X∗.

Theorem 2. Let β1 and β2 be regular on X∗. Then β1 t β2 is regular.

Proof. Let β1 and β2 be regular. Then there exist two HLFAsA1 = (Q1, X, ι1, δ1, τ1) andA2 = (Q2, X, ι2, δ2, τ2)

such that β1 = βA1 and β2 = βA2 . Without loss of generality, let Q1∩Q2 = ∅. Now, considerA = (Q,X, ι, δ, τ)

as follows:

1. Q = Q1 ∪Q2,

2.

ι(q) =

ι1(q) if q ∈ Q1

ι2(q) if q ∈ Q2

,

for every q ∈ Q.

3.

δ(q, a, q′) =


δ1(q, a, q′) if q, q′ ∈ Q1

δ2(q, a, q′) if q, q′ ∈ Q2

{0} otherwise

,

for every q, q′ ∈ Q1 ∪Q2.

4.

τ(q) =

τ1(q) if q ∈ Q1

τ2(q) if q ∈ Q2

.

Now, we have βA(u) = tq,p∈Qι(q) u δ(q, u, p) u τ(p). By definition δ, if p ∈ Q1 and q ∈ Q2, then
δ(p, a, q) = {0}. So Without loss of generality, let p1, ..., pk, q1, ..., qk ∈ Q1 and p′1, ..., p

′
r, q
′
1, ..., q

′
r ∈ Q2

such that

βA(u) = tp,q∈Qι(q) u δ(q, u, p) u τ(p) = (ι(p1) u δ(p1, u, q1) u τ(q1)) t (ι(p2) u δ(p2, u, q2) u τ(q2))t

... t (ι(pk) u δ(pk, u, qk) u τ(qk)) t (ι(p′1) u δ(p′1, u, q′1) u τ(q′1))t

... t (ι(p′r) u δ(p′r, u, q′r) u τ(q′r))

= βA1
(u) t βA2

(u).

Example 1. Let the bounded lattice L as Figure 1. Let two HLFAsA1 = (Q1, X, ι1, δ1, τ1) andA2 = (Q2, X, ι2,

δ2, τ2) such thatQ1 = {q1, q2, q3}, X = {a, b}, ι1(q1) = {α, γ}, δ1(q1, a, q2) = {β, γ}, δ1(q1, b, q2) = {α}, δ1(q1,

a, q3) = {α, γ}, τ1(q2) = {γ}, τ1(q3) = {β} andQ2 = {p1, p2, p3}, ι2(p1) = {η}, δ2(p1, a, p2) = {β, ξ}, δ2(p1, a,
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Figure 1: The bounded lattice L of Example 1

p3) = {β, η}, δ2(p2, b, p3) = {α}, τ2(p2) = {η}, τ2(p3) = {ξ}. Now, consider A = (Q,X, ι, δ, τ) such that
Q = {q1, q2, q3, p1, p2, p3}, X = {a, b} and

ι(q1) = {α, γ}, ι(p1) = {η}

δ(q1, a, q2) = {β, γ}, δ(q1, b, q2) = {α},

δ(q1, a, q3) = {α, γ}, δ(p1, a, p2) = {β, ξ},

δ(p1, a, p3) = {β, η}, δ(p2, b, p3) = {α},

and

τ(q2) = {γ}, τ(q3) = {β}

τ(p2) = {η}, τ(p3) = {ξ}.

Therefore,

βA(a) = tp,q∈Qι(p) u δ(p, a, q) u τ(q)

= (ι(q1) u δ(q1, a, q2) u τ(q2)) t (ι(q1) u δ(q1, a, q3) u τ(q3))

t (ι(p1) u δ(p1, a, p2) u τ(p2)) t (ι(p1) u δ(p1, a, p3) u τ(p3))

= ({α, γ} u {β, γ} u {γ}) t ({α, γ} u {α, γ} u {β})

t ({η} u {β, ξ} u {η}) t ({η} u {β, η} u {ξ})

= {α, β, γ} t {α, β} t {β, η} t {β, η}

= {β, η, γ, ξ}.
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Also, we have βA1
(a) and βA2

(a) as follows:

βA1
(a) = tp,q∈Q1

ι1(p) u δ1(p, a, q) u τ1(q)

= (ι1(q1) u δ1(q1, a, q2) u τ1(q2)) t (ι1(q1) u δ1(q1, a, q3) u τ1(q3))

= ({α, γ} u {β, γ} u {γ}) t ({α, γ} u {α, γ} u {β})

= {α, β, γ} t {α, β}

= {α, β, γ},

and

βA2(a) = tp,q∈Q2ι2(p) u δ2(p, a, q) u τ2(q)

= (ι2(p1) u δ2(p1, a, p2) u τ2(p2)) t (ι2(p1) u δ2(p1, a, p3) u τ2(p3))

= ({η} u {β, ξ} u {η}) t ({η} u {β, η} u {ξ})

= {β, η} u {β, η}

= {β, η}.

So, we have
βA1(a) t βA2(a) = {α, β, γ} t {β, η} = {β, η, γ, ξ}.

Hence, clearly, βA1
(a) t βA2

(a) = βA(a)

Corollary 1. Let {Hi}i∈I be a finite family of regular HLFB, for every i ∈ I . Then ti∈IHi is regular.

Definition 13. Let A = (Q,X, ι, δ, τ) be an HLFA. Then the inverse hesitant L-fuzzy behavior β̄ : X∗ → 2L is
defined by

β̄(u) = uq,p∈Q(ι(q) t δ∗(q, u, p) t τ(p)),

where u ∈ X∗.

Theorem 3. Let A = (Q,X, ι, δ, τ) be an HLFA. Then there exists an HLFA Ac such that β̄Ac(u) = CS(βA(u)),
for every u ∈ X∗.

Proof. Let Ac = (Q,X, ιc, δc, τ c), where ιc = CS(ι), δc(p, a, q) = CS(δ) and τ c = CS(τ). By considering
Theorem 1, we have

δc(p,Λ, q) =

{1} if p 6= q

{0} if p = q
,

and

CS(δ) = δc(p, ua, q) = (δ(p, ua, q))c = (tq′∈Qδ(p, u, q′) u δ(q′, a, q))c (1)

= uq′∈Qδc(p, u, q′) t δc(q′, a, q), (2)
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where u ∈ X∗, a ∈ X and p, q ∈ Q. Now, by considering Definition 5 and Theorem 1, we have

β̄Ac(u) = up,q∈Q(ιc(p) t δc∗(p, u, q) t τ c(q))

= up,q∈Q(ι(p) u δ∗(p, u, q) u τ(q))c

=
(
tp,q∈Q ι(p) u δ∗(p, u, q) u τ(q)

)c
= (βA(u))c

= CS(βA(u)).

Example 2. Let A = (Q,X, ι, δ, τ) be an HLFA, where Q = {q1, q2, q3}, ι(q1) = {0.5, 0.7}, X = {a, b},

δ(q1, a, q1) = {0.3, 0.4}, δ(q1, b, q2) = {0.2, 0.4},

δ(q1, a, q3) = {0.6, 0.7}, δ(q2, a, q1) = {0.7},

δ(q3, b, q2) = {0.1, 0.4},

and τ(q2) = {0.6}. By considering CS(H) = tli∈H{1 − li}, for every H ∈ 2L, we have Ac as follows:
Ac = (Q,X, ιc, δc, τ c), where ιc(q1) = {0.3, 0.5},

δc(q1, a, q1) = {0.6, 0.7}, δc(q1, b, q2) = {0.6, 0.8}

δc(q1, a, q3) = {0.3, 0.4}, δc(q2, a, q1) = {0.3}

δc(q3, b, q2) = {0.6, 0.9}, τ c(q2) = {0.4}.

So, we have

β̄Ac(ab) = up,q∈Q
(
ιc(p) t δc(p, ab, q) t τ c(q)

)
= ιc(q1) t δc(q1, ab, q2) t τ c(q2).

By considering (1), we have

δc(q1, ab, q2) = (δc(q1, a, q1) t δc(q1, b, q2)) u (δc(q1, a, q3) t δc(q3, b, q2))

= ({0.6, 0.7} t {0.6, 0.8}) u ({0.3, 0.4} t {0.6, 0.9})

= {0.6, 0.7, 0.8} u {0.6, 0.9}

= {0.6, 0.7, 0.8}.

So,

β̄Ac(ab) = ιc(q1) t δc(q1, ab, q2) t τ c(q2)

= {0.3, 0.5} t {0.6, 0.7, 0.8} t {0.4}

= {0.6, 0.7, 0.8}.
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In the other hand

δ(q1, ab, q2) = (δ(q1, a, q1) u δ(q1, b, q2)) t (δ(q1, a, q3) u δ(q3, b, q2))

= ({0.3, 0.4} u {0.2, 0, 4}) t ({0.6, 0.7} u {0.1, 0.4})

= {0.2, 0.3, 0.4} t {0.1, 0.4}

= {0.2, 0.3, 0.4}.

Then we have βA(ab) as follow:

βA(ab) = ι(q1) u δ(q1, ab, q2) u τ(q2)

= {0.5, 0.7} u {0.2, 0.3, 0.4} u {0.6}

= {0.2, 0.3, 0.4}.

Hence, CS(βA(ab)) = {0.6, 0.7, 0.8}.

Now, we show that if β is an HLFB recognized by an incomplete HLFAA, then there exists a complete HLFA
Ac of A such that βAc = βA. We also prove that if A is regular, then there exists a complete accessible HLFA
Aca such that βAca = A.

Definition 14. Let A = (Q,X, ι, δ, τ) be an HLFA. Then A is called complete if for every q ∈ Q and a ∈ X ,
there exist p ∈ Q and 0 6= α ∈ L such that α ∈ δ(q, a, p).

Theorem 4. Let A = (Q,X, ι, δ, τ) be an incomplete HLFA. Then there exists a complete HLFA Ac such that
βA = βAc

.

Proof. Let A = (Q,X, ι, δ, τ) be an incomplete HLFA. Let Ac = (Qc, X, ιc, δc, τc) as follows: Qc = Q ∪ {t},
where t /∈ Q and define

ιc : Qc → 2L

ιc(q) =

ι(q) if q ∈ Q

{0} if q = t
,

τc : Qc → 2L

τc(q) =

τ(q) if q ∈ Q

{0} if q = t
,

and δc : Qc ×X ×Qc → 2L, for every p, q ∈ Q and a ∈ X consider δc(p, a, q) = δ(p, a, q), also consider

δc(p, a, t) =

{α} if tq∈Q δ(p, a, q) = {0}

{0} otherwise
,

and

δc(t, a, p) =

{α} if p = t

{0} otherwise
,
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where a ∈ X . Clearly, Ac is a complete HLFA. By considering the definition of Ac we have

βA(x) = tp,q∈Qι(p) u δ(p, x, q) u τ(q)

= tp,q∈Qιc(p) u δc(p, x, q) u τc(q)

= (tp,q∈Qιc(p) u δc(p, x, q) u τc(q)) t (tq∈Qιc(t) u δc(t, x, q) u τc(q)) t (tp∈Qιc(p) u δc(p, x, t) u τc(t))

= tp,q∈Qc
ιc(p) u δc(p, x, q) u τc(q)

= βAc
(x).

Definition 15. LetA = (Q,X, ι, δ, τ) be an HLFA. Let S = {q ∈ Q| t {t{ι(p)u δ∗(p, x, q)|p ∈ Q}|x ∈ X∗} 6=
{0}}. Then we say that A is accessible if S = Q.

Theorem 5. Let A = (Q,X, ι, δ, τ) be an HLFA. Then there exists a complete accessible HLFA Aca such that
βA(x) = βAca(x), where βA(x) 6= {0}, for some x ∈ X∗.

Proof. By Theorem 4, there exists a complete HLFA Ac = (Qc, X, ιc, δc, τc) such that βA = βAc
. Now, consider

HLFA Aca as follows: Aca = (Qca, X, ιca, δca, τca) such that Qca = {q ∈ Qc| t {t{ιc(p) u δ∗c (p, x, q)|p ∈
Q}|x ∈ X∗} 6= {0}} and δca is the restriction of δc over Qca ×X ×Qca, ιca is the restriction of ιc over Qca and
τca is the restriction of τc over Qca. Now, let βAc

(x) = tp,q∈Qιc(p) u δ∗c (p, x, q) u τc(q) 6= {0}. Without loss of
generality let p1, p2, ..., pk, q1, q2, ..., qk ∈ Qc, not necessarily distinct, such that

tp,q∈Qιc(p) u δ∗c (p, x, q) u τc(q) = (ιc(p1) u δ∗c (p1, x, q1) u τc(q1))

t (ιc(p2) u δ∗c (p2, x, q2) u τc(q2)) t ... t (ιc(pk) u δ∗c (pk, x, qk) u τc(qk)).

If ιc(pi)uδ∗c (pi, x, qi) = {0}, for i ∈ {1, ..., k}, then ιc(pi)uδ∗c (pi, x, qi)uτc(qi) = {0} and {0}tH = H , where
H ∈ 2L. Without loss of generality, let ιc(pi)uδ∗c (pi, x, qi) = {0}, for 1 ≤ i ≤ r and ιc(pj)uδ∗c (pj , x, qj) 6= {0},
for r < j ≤ k. By using βAc

(x) 6= {0} we have

(ιc(p1) u δ∗c (p1, x, q1) u τc(q1)) t (ιc(p2) u δ∗c (p2, x, q2) u τc(q2))

t ... t (ιc(pk) u δ∗c (pk, x, qk) u τc(qk))

= (ιc(pr+1) u δ∗c (pr+1, x, qr+1) u τc(qr+1)) t (ιc(pr+2) u δ∗c (pr+2, x, qr+2) u τc(qr+2))

t ... t (ιc(pk) u δ∗c (pk, x, qk) u τc(qk))

= (ιca(pr+1) u δ∗c (pr+1, x, qr+1) u τca(qr+1)) t ... t (ιca(pk) u δ∗c (pk, x, qk) u τca(qk))

= βAca
(x).

Hence, the claim holds.

4 Equivalence classes and properties of hesitant L-fuzzy behavior

In this section, by considering the hesitant L-fuzzy behavior β we give a congruence relation, and by using the
equivalence classes we present an HLFA recognized β.
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Definition 16. Let A = (Q,X, ι, δ, τ) be an HLFA. Let Q = {q1, q2, ..., qn} and ι(qi) = li, where li ⊆ L and
1 ≤ i ≤ n. Define p−1τ : X∗ → 2L by (p−1τ)(x) = tq∈Qι(p) u δ∗(p, x, q) u τ(q), where p ∈ Q and x ∈ X∗.
Also, consider

(p1, p2, ..., pn)−1τ(x) = tni=1,q∈Qli u δ∗(pi, x, q) u τ(q) = tni=1(p−1
i τ)(x), ,

for every x ∈ X∗. Now, letM = {(p1, p2, ..., pn)−1τ |pi ∈ Q, 1 ≤ i ≤ n}.M is a finite HLFS, since Q is a finite
set. Let β be a hesitant L-fuzzy set on X∗. Then for every u ∈ X∗, define

u−1β : X∗ → 2L

u−1β(v) = β(uv)

for every v ∈ X∗.

Theorem 6. Let β be an HLFB. Then N = {u−1β|u ∈ X∗} is a finite hesitant L-fuzzy set.

Proof. Let β be an HLFB. Then

(u−1β)(x) = β(ux)

= tq,p∈Q(ι(q) u δ∗(q, ux, p) u τ(p))

= tp∈Q(ι(q1) u δ∗(q1, ux, p) u τ(p)) t tp∈Q(ι(q2) u δ∗(q2, ux, p) u τ(p))

t ... t tp∈Q(ι(qn) u δ∗(qn, ux, p) u τ(p))

= tp∈Q(l1 u δ∗(q1, ux, p) u τ(p)) t tp∈Q(l2 u δ∗(q2, ux, p) u τ(p))

t ... t tp∈Q(ln u δ∗(qn, ux, p) u τ(p))

= (q1, q2, ..., qn)−1τ(ux),

where u, x ∈ X∗. Therefore, (u−1β)(x) = (q1, q2, ..., qn)−1τ(ux) ∈M. So,

N = {u−1β|u ∈ X∗} = {(p1, p2, ..., pn)−1τ |pi ∈ Q, 1 ≤ i ≤ n} =M.

SinceM is a finite HLFS, then N is a finite HLFS, too.

Theorem 7. Let β be an HLFS on X∗. Then the following are equivalent:

1. β is an HLFB,

2. K = {(u, v) ∈ X∗ ×X∗|u−1β = v−1β} is a right congruence of finite index,

3. R = {(u, v) ∈ X∗ ×X∗|β(xuy) = β(xvy) for every x, y ∈ X∗} is a right congruence of finite index.

Proof. 1.⇒ 2. It is obvious that K is a equivalence relation on X∗. By considering Theorem 6, N is a finite set,
so we can say that K is a finite set. Let uKv. Then u−1β = v−1β. Therefore, u−1β(w) = v−1β(w), for every
w ∈ X∗. Then β(uw) = β(vw), for every w ∈ X∗. Now, by considering w = xy we have β(uxy) = β(vxy), for
every y ∈ X∗. So, (ux)−1β = (vx)−1β. Hence, K is a right congruence of finite index.
=========================
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2. ⇒ 1. Let A = (Q,X, ι, δ, τ) be an HLFA, where Q is the set of all K-equivalence classes, and ι, δ and τ
are as follows:

ι : Q→ 2L

ι([x]) =

{1} if [x] = [Λ]

{0} if [x] 6= [Λ]
,

δ : Q×X ×Q→ 2L

δ([x], a, [y]) =

{1} if [y] = [xa]

{0} otherwise
,

and

τ :Q→ 2L

τ([x]) = β(x),

for every [x], [y] ∈ Q and a ∈ X . Now, we show that δ is well-defined. Let [u] = [v] and [x] = [y]. Then
uKv and xKy. Since K is right congruence, so uaKva. Then [ua] = [x], implies that [va] = [y]. Therefore,
δ([u], a, [x]) = δ([v], a, [y]). Hence, δ is well-defined.

Now, let [x] = [y]. Then xKy implies that x−1β = y−1β. Therefore, x−1β(Λ) = y−1β(Λ) implies that
β(x) = β(y). So, τ([x]) = τ([y]). Let x ∈ X∗. Then

βA(x) = tp,q∈Qι(p) u δ∗(p, x, q) u τ(q) = t[x],[y]ι([x]) u δ∗([x], x, [y]) u τ([y])

= ι([Λ]) u δ∗([Λ], x, [x]) u τ([x])

= {1} u {1} u τ([x])

= τ([x])

= β(x).

Hence, β is a regular HLFB.
1.⇒ 3. Let β be regular. Clearly,R is a finite set. Now, let uRv. Then β(xuw) = β(xvw), for every x,w ∈ X∗.
So, β(xuay) = β(xvay), where w = ay and x, y ∈ X∗. Then uaRva. Therefore,R is a right congruence.
3.⇒ 1. The proof of this part is similar to 2⇒ 1.

5 Minimization of hesitant L-fuzzy automaton

In this section, at first, we present the notion of hesitant L-fuzzy language. Also, we show that for any hesitant
L-fuzzy language A, there exists a minimal complete deterministic hesitant L-fuzzy automaton recognizing A.

In this section, let L be a lattice such that for every α 6= 0 and β 6= {0} belong L, we have been α ∧ β 6= 0.

Definition 17. Let A = (Q,X, ι, δ, τ) be an HLFA. Then the hesitant L-fuzzy language recognized by A is a
subset of X∗ by LA = {x ∈ X∗|ι(p) u δ∗(p, x, q) u τ(q) 6= {0}, for some p, q ∈ Q} = {x ∈ X∗|β(x) 6= {0}}.

12



The subset A of X∗ is called recognizable hesitant L-fuzzy language if there exists an HLFA A such that
A = LA.

Definition 18. Let A = (Q,X, ι, δ, τ) be an HLFA. Then we say A is deterministic if the following holds:

1. There exists a unique q0 ∈ Q such that ι(q0) = {1}.

2. For every q ∈ Q and a ∈ X , there exists at most one q′ ∈ Q such that δ(q, a, q′) 6= {0}.

Corollary 2. Let A = (Q,X, ι, δ, τ) be an HLFA andA be a complete deterministic HLFA. Then for every p ∈ Q
and a ∈ X , there exists exactly one state q ∈ Q such that δ(q, a, p) 6= {0}.

Theorem 8. LetA = (Q,X, ι, δ, τ) be an HLFA and ι(q) 6= {0}, for some q ∈ Q. Then there exists a deterministic
HLFA Ad such that LA = LAd

.

Proof. Let Qx = {q′ ∈ Q|ι(q) u δ∗(q, x, q′) 6= {0}, for some q ∈ Q}, for every x ∈ X∗. Then QΛ = {q′ ∈
Q|ι(q) 6= {0}}. Let Qd = {Qx|x ∈ X∗}. Define δd : Qd ×X ×Qd → 2L by

δd(Qy, a,Qx) =

{α} if Qya = Qx

{0} otherwise
,

let ιd : Qd → 2L by ιd(QΛ) = {α} and ιd(Q′) = {0} for every Q′ 6= QΛ also, define τq : Qd → 2L by

τd(Qx) =

{α} if q ∈ Qx, andτ(q) 6= {0}

{0} otherwise
,

where α ∈ L. Clearly, δd, ιd and τd are well-defined. It is easy to see thatA = (Qd, X, ιd, δd, τd) is a deterministic
HLFA. Now, we show that LA = LAd

. Let x ∈ LA. Then tp,q∈Qι(p) u δ∗(p, x, q) u τ(q) 6= {0}. So,
ι(p) u δ∗(p, x, q) u τ(q) 6= {0}, for some p, q ∈ Q. Therefore, ι(p) 6= {0}, δ∗(p, x, q) 6= {0} and τ(q) 6= {0}.
So, ιd(QΛ) = {α}, δd(QΛ, x,Qx) = {α}, since q ∈ Qx and τ(q) 6= {0}, so τd(Qx) = {α}. Therefore,
ιd(QΛ)u δd(QΛ,x,Qx)u τd(Qx) 6= {0}. So, x ∈ LAd

. Now, let x ∈ LAd
. Then tQ,Q′∈Qd

ιd(Q)u δd(Q, x,Q′)u
τd(Q′) 6= {0}. By definition ιd and δd we have

tQ,Q′∈Qd
ιd(Q) u δd(Q, x,Q′) u τd(Q′) = ιd(QΛ) u δd(QΛ, x,Qx) u τd(Qx) 6= {0}

Then ιd(QΛ) 6= {0}, δd(QΛ, x,Qx) 6= {0} and τd(Qx) 6= {0}. Since τd(Qx) 6= {0}, then there exists q′ ∈ Qx

such that τ(q′) 6= {0}. By definitionQx, ι(p)uδ∗(p, x, q′) 6= {0}, so ι(p)uδ∗(p, x, q′)uτ(q′) 6= {0}. Therefore,
x ∈ LA. Hence, the claim holds.

Definition 19. Let L be an HLFL and let A be an HLFA. We say that A is minimal HLFA if and only if for every
complete accessible deterministic HLFA A′ recognizable L, |A| ≤ |A′|.

Definition 20. For every hesitant L-fuzzy language L ⊆ X∗ and u ∈ X∗, the subset Lu = {v ∈ X∗|uv ∈ L} of
X∗ is called a right quotient of L with respect to u.
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Let QL = {Lu|u ∈ X∗} be the set of all right quotient of L and ιL : QL → 2L defined by ιL(LΛ) = {1} and
ιL(Lu) = {0}, where Lu 6= LΛ. Also, let δL : QL ×X ×QL → 2L defined by

δL(Lu, a,Lv) =

{1} if Lua = Lv

{0} otherwise
,

and τL : QL → 2L defined by

τL(Lu) =

{1} if u ∈ L

{0} otherwise
,

where 0 6= β ∈ L. We show that AL = (QL, X, ιL, δL, τL) is a finite HLFA.

Lemma 1. Let L ⊆ X∗ and QL be a finite set. Then L is a recognizable hesitant L-fuzzy language.

Proof. LetAL = (QL, X, ιL, δL, τL) be an HLFA. We show that LAL = L. If w ∈ L, then τL(Lw) = {1}. Also,
δL(LΛ, w,Lw) = {1} and by considering definition ιL we have ιL(LΛ)u δL(LΛ, w,Lw)u τL(Lw) = {1}. Then
tp,q∈QLιL(p) u δL(p, w, q) u τL(q) 6= {0}. Hence, w ∈ L(AL). Now, let w ∈ L(AL). By definition of ιL we
have

tp,q∈QLιL(p) u δL(p, w, q) u τL(q) = tq∈QLιL(LΛ) u δL(LΛ, w, q) u τL(q) 6= {0}.

Now, by considering definitions δL and τL, we have q = Lw and τL(Lw) 6= {0}. Then τL(Lw) 6= {0} implies
that w ∈ L. Hence, L(AL) = L.

Theorem 9. Let L be a recognizable hesitant L-fuzzy language. Then AL = (QL, X, ιL, δL, τL) is a minimal
HLFA.

Proof. LetL be a recognizable HLFL. Then there exists a complete, accessible deterministic HLFAA = (Q,X, ι, δ,

τ) such that ι(q0) 6= {0} and L(AL) = L. Define a map ϕ : Q → QL by ϕ(p) = Lu, where δ∗(q0, u, p) 6= {0}.
Clearly, ϕ is well-defined and surjective so, |QL| ≤ |Q| and QL is finite. Hence, AL is a minimal HLFA.

The following algorithm determines the states of minimal automaton.

Algorithm1: (Determines the states of minimal hesitant L-fuzzy automaton)

Step 1. input: accessible deterministic HLFA, A = (Q,X, ι, δ, τ),

Step 2. Xl = {x ∈ X∗||x| = l}, let l = 0,

Step 3. q1κlq2 if and only if τ(q1) 6= {0} ⇔ τ(q2) 6= {0},

Step 4. l = l + 1,

Step 5. q1κlq2 if and only if q1κl−1q2 and

{w ∈ X∗|δ(q1, w, q) u τ(q) 6= {0}, |w| = l} = {w ∈ X∗|δ(q2, w, q) u τ(q) 6= {0}, |w| = l},
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Step 6. if κl+1 = κl, go to next step,
else go to Step 4,

Step 7. κ = κl,

Step 8. output: κ

Now, let q1κq2, since A is accessible and deterministic, then there exist u, v ∈ X∗ such that δ(q0, u, q1) 6= {0}
and δ(q0, u, q2) 6= {0}. Hence, by considering Algorithm 1, Lu = Lv .

Steps 4 to 6 of Algorithm 1, are a loop. The loop must be repeated at most O(|Q|) times. The order of time
complexity to calculate l = 0 is O(|Q|2), to calculate l = 1 is O(|Q|2|X|), to calculate l = 2 is O(|Q|2|X|2).
Then the time complexity of calculating this algorithm is O(|Q|2|X||Q|).

6 Conclusion

In this paper, we present the theory of hesitant L-fuzzy automaton and hesitant L-fuzzy behavior and hesitant L-
fuzzy language. We present some of the closure properties for the HLFA such as union and complement. For any
hesitant L-fuzzy language A, we present a minimal complete accessible deterministic hesitant L-fuzzy automaton
recognizing A. Also, we give an algorithm to determines states of the minimal hesitant L-fuzzy automaton.
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