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Abstract

Monitoring is the act of collecting information concerning the characteristics and status of resources of interest. Monitoring
grid resources is a lively research area given the challenges and manifold applications. The aim of this paper is to advance
the understanding of grid monitoring by introducing the involved concepts, requirements, phases, and related standardisation
activities, including Global Grid Forum’s Grid Monitoring Architecture. Based on a refinement of the latter, the paper proposes
a taxonomy of grid monitoring systems, which is employed to classify a wide range of projects and frameworks. The value of
the offered taxonomy lies in that it captures a given system’s scope, scalability, generality and flexibility. The paper concludes
with, among others, a discussion of the considered systems, as well as directions for future research.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

The grid is perceived as a large-scale distributed sys-
em that supports scattered communities to form Vir-
ual Organisations[1], in order to collaborate for the
ealisation of common goals. This collaboration takes
he form of managed sharing of on-line resources (e.g.,
oftware, hardware, data, instruments). However, grid
esources, may dynamically join and leave, hence fea-
uring a membership which varies over time; even in
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fairly static settings, resource availability is subjec
failures. Given this transient nature, users must be
ported in finding and keeping track of resources o
terest; this is the main purpose of Grid Informat
Services (GIS)[2,3]. In order for information service
to address the mentioned user needs, they mus
tematically collect information regarding the curr
and, sometimes, past status of grid resources; a
cess known asmonitoring.

In addition to information services, monitoring
also crucial in a variety of cases such as schedu
data replication, accounting, performance analysis
optimisation of distributed systems or individual ap
cations, self-tuning applications, and many more[4].
Also, given the increasing number of grid resour
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real-time monitoring of their availability and utilisa-
tion is becoming essential for effective management,
particularly regarding the detection of faults and bot-
tlenecks and in some cases even their automatic reso-
lution. Finally, identifying patterns of utilisation may
form valuable input for long-term resource planning of
grid infrastructures.

One may wonder how monitoring in the context
of the grid differs from traditional monitoring of
computer-related resources, which has been a research
topic for several decades (e.g.,[5]). Grid monitoring
is characterised by significant requirements including,
among others, scalable support for both pull and push
data delivery models applied over vast amounts of cur-
rent and past monitoring data that may be distributed
across organisations. In addition, a monitoring system’s
data format has to balance between extensibility and
self-description on one hand and compactness on the
other. The former is required to accommodate the ever-
expanding types of monitored resources, whereas the
latter is a prerequisite for non-intrusive and scalable
behaviour. The problem is further complicated by the
continuous evolution of grid middleware and the lack
of consensus regarding data representation, protocols
and semantics, leading toad hocsolutions of limited
interoperability. Existing proprietary network and host
monitoring applications lack the openness required for
interoperability and customisation, while they also im-
pose significant financial costs. Few of the equivalent
open source projects have a potential and in fact some
o
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Grid Monitoring Architecture and other standardisa-
tion/recommendation efforts promoted by the Global
Grid Forum (GGF). InSection 3, we propose a tax-
onomy of monitoring systems.Sections 4–7classify
the considered systems in order of increasing scope,
according to the proposed taxonomy.Section 8briefly
considers related work which is not intended to deliver
implemented systems. The paper is complemented, in
Section 9, by a summary and discussion of the consid-
ered systems, and concluded inSection 10.

2. Background

This section introduces the basic concepts and re-
lated terminology, as well as the main phases of a mon-
itoring model. A brief explanation of the most evident
requirements for monitoring systems, and an overview
of GGF’s Grid Monitoring Architecture, as well as
other standardisation activities follows.

2.1. Concepts and terminology

Having defined the type of monitoring we are con-
cerned with, it is important to note that people use dif-
ferent terms to refer to, more or less, the same con-
cepts. To this end, we explicitly set the following terms,
mainly drawn from[6]:

An entityas defined in[7], is any networked resource,
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f them are actually employed for grid monitoring.
The aim of this document is to advance the un

tanding of the issues involved in grid monitoring,
o provide a classification of related projects. The
er’s main contribution is a taxonomy of grid mo

oring systems and its application in a wide rang
onitoring systems. The key feature of the sugge

axonomy is that it allows the classification of mo
oring systems based on the provision and chara
stics of components defined in Global Grid Foru
rid Monitoring Architecture (GMA)[6]. The value
f the proposed taxonomy lies in that it reflects a g
ystem’s scope and consequently generality, scala
nd flexibility.

The structure of the remainder of the paper is as
ows. The next section defines the involved conce
ets the requirements of the considered problem, b
escribes the process of monitoring, and outlines
which can be considered useful, unique, ha
a considerable lifetime and general use. Typ
entities are processors, memories, storage m
ums, network links, applications and proces

An eventis a collection of timestamped, typed da
associated with an entity, and represented
specific structure.

An event typeis an identifier which uniquely maps
an event structure.

An event schemaor simply schema, defines the typ
structure and semantics of all events so t
given an event type, one can find the struc
and interpret the semantics of the correspon
event.

Asensoris a process monitoring an entity and gene
ing events. Sensors are distinguished in pas
(i.e., use readily available measurements, t
cally from operating system facilities) and a



S. Zanikolas, R. Sakellariou / Future Generation Computer Systems 21 (2005) 163–188 165

tive (i.e., estimate measurements using custom
benchmarks). The former typically provide OS-
specific measurements while the latter are more
intrusive.

2.2. The monitoring process

Monitoring distributed systems, and hence grids,
typically includes four stages[8,9]: (i) generationof
events, that is, sensors enquiring entities and encoding
the measurements according to a given schema; (ii)
processingof generated events is application-specific
and may take place during any stage of the monitoring
process, typical examples include filtering according
to some predefined criteria, or summarising a group
of events (i.e., computing the average); (iii)distribu-
tion refers to the transmission of the events from the
source to any interested parties; (iv) finally,presenta-
tion typically involves some further processing so that
the overwhelming number of received events will be
provided in a series of abstractions in order to enable
an end-user to draw conclusions about the operation
of the monitored system. A presentation, typically pro-
vided by a GUI application making use of visualisation
techniques, may either use a real-timestreamof events
or a recordedtraceusually retrieved from an archive.
However, in the context of grids, we generalise the last
stage asconsumptionsince the users of the monitoring
information are not necessarily humans and therefore
visualisation may not be involved.
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collection, processing and distribution of events. It can
be seen that a monitoring system with moderate per-
formance will be insufficient in heavy load scenarios
(many resources and/or users), whereas a system in-
flicting non-trivial intrusiveness degrades the capacity
of the monitored resources.

Extensibility: A monitoring system must be exten-
sible with respect to the supported resources and hence
the events generated by the latter. To this end, desirable
features include (i) an extensible and self-describing
event encoding method (i.e., data format); (ii) an event
schema service which allows controlled and dynamic
extensions/modifications; (iii) a producer-consumer
protocol that can accommodate new event types. At
the same time, (i) and (iii) must be compact to min-
imise the previously described intrusiveness, which is
so important for scalability.

Data delivery models: Monitoring information in-
cludes fairly static (e.g., software and hardware con-
figuration of a given node) and dynamic events (e.g.,
current processor load, memory), which suggests the
use of different measurement policies (e.g., periodic or
on demand). In addition, consumer patterns may vary
from sparse interactions to long lived subscriptions for
receiving a constant stream of events. In this regard,
the monitoring system must support both pull and push
data delivery models (further discussed in the next sec-
tion).

Portability: The portability of a monitoring system,
and particularly that of the sensors, is of major impor-
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.3. Requirements

A set of general requirements for monitoring s
ems that are considered important follows; these
ary considerably depending on the use cases that
o be supported by a specific system.
Scalability: Monitoring systems have to cope

ciently with a growing number of resources, eve
nd users. This scalability can be achieved as a r
f good performance and low intrusiveness. The
er guarantees that a monitoring system will ach

he needed throughput within an acceptable resp
ime in a variety of load scenarios. The latter refer
he intrusiveness imposed by the monitoring syste
he entities being monitored. Intrusiveness is typic
easured as a function of host (processor, mem

/O) and network load (bandwidth) generated by
ance; otherwise a system is unable to monitor spe
ypes of resources, and hence support their visibilit
he grid[10]. The concept of portability also applies
he generated events, meaning that any encapsu
easurements must be platform independent.
Security: Certain scenarios may require a moni

ng service to support security services such as a
ontrol, single or mutual authentication of parties,
ecure transport of monitoring information.

In addition, we have already mentioned that an e
s a collection of timestamped typed data; henc
imestamp is required to allow consumers to estima
vent’sfreshness. This in turn suggests the requirem
or a global notion of time between the component

monitoring system and its users. A global notio
ime in the Grid is needed anyhow (e.g., for security
ices), but in the context of monitoring there is a n
or a much higher accuracy of clock synchronisa
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Fig. 1. The GGF Grid Monitoring Architecture.

than what can be provided by established technologies
(such as the Network Time Protocol[11]).

2.4. A Grid Monitoring Architecture

In this section, we provide a brief overview of the
Grid Monitoring Architecture (GMA)[6] put together
by the Global Grid Forum to encourage discussion and
implementations (i.e., it is not a standard). The main
components of GMA are as follows (Fig. 1):

Aproduceris a process implementing at least one pro-
ducer Application Programming Interface (API)
for providing events.

A consumeris any process that receives events by us-
ing an implementation of at least one consumer
API.

A registryis a lookup service that allows producers to
publish the event types they generate, and con-
sumers to find out the events they are interested
in.1 Additionally, a registry holds the details re-
quired for establishing communication with reg-
istered parties (e.g., address, supported protocol
bindings, security requirements). Even for sys-
tems with no notion of events, registries can be
useful for producers and consumers discovering
each other.

Interactions: After discovering each other through
the registry, producers and consumers communicate
d es
t con-
s er-

ry
s col
(
w

Fig. 2. A republisher implements both producer and consumer in-
terfaces.

action consisting of a subscription for a specific event
type, a stream of events from a producer to a consumer,
and a termination of the subscription. Both the estab-
lishment and the termination of a subscription can be
initiated by any of the two parties. Aquery/response
is an one-off interaction initiated by a consumer and
followed by a single producer response containing one
or more events. Finally, anotificationcan be sent by
a producer to a consumer without any further interac-
tions.

In addition to the three core components, the GMA
defines a republisher (referred as compound compo-
nent or intermediary) and a schema repository.

A republisheris any single component implementing
both producer and consumer interfaces (Fig. 2)
for reasons such as filtering, aggregating, sum-
marising, broadcasting, and caching.

A schema repositoryholds the event schema, that is,
the collection of defined event types. If a sys-
tem is to support an extensible event schema,
such a repository must have an interface for dy-
namic and controlled addition, modification and
removal of any custom event types.

Republishers and the schema repository are consid-
ered as optional components, though one can easily see
that they are essential parts of any sophisticated moni-
toring framework. The schema repository may be part
o ents
m tri-
b

fine
i odel,
e d so
irectly (i.e., not through the registry). GMA defin
hree types of interactions between producers and
umers.Publish/subscriberefers to a three-phase int

1 The GMA document[6] refers to the registry as a directo
ervice, which implies a Lightweight Directory Access Proto
LDAP) -based engine. To this end, and in agreement with[12],
e prefer the term registry because it is engine-neutral.
f the registry, but in any case these two compon
ust be replicated and distributed to allow for dis

ution of load and robustness.
The GMA, being an architecture, does not de

mplementation details such as employed data m
vent schema, protocol bindings, registry engine an
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Fig. 3. Mapping GMA components to phases of monitoring. Square brackets and parenthesis indicate optional and grouped expressions respec-
tively, whereas “+” stands for at least one repetition of the preceding item (see text for further explanation).

on. Probably the most important feature of the GMA
is the separation of the discovery and retrieval opera-
tions (i.e., discover from the registry and retrieve from
producers or republishers).

Revisiting GMA: Because GMA’s components are
fairly general, we correlate its main components to
the phases of the monitoring process (as described in
Section 2.2). As shown inFig. 3, a sensor (shown by
a circle) must generate events (i.e., the first phase of
monitoring), may process them and may make them
available to local consumers only (e.g., through a lo-
cal file); a producer (depicted as a box) may imple-
ment its own sensors, may process events (generated
by built-in or external sensors) and must support their
distribution to remote consumers, hence the producer
interface; a republisher (shown as a rounded box) must
apply some type of processing to collected events and
make them available to other consumers; a hierarchy
of republishers (shown as a polygon) consists of one
or more (hence, the “+” sign) republishers; finally, a
consumer (depicted as an ellipse) may apply some pro-
cessing before presenting the results to the end-user or
application.

2.5. Other recommendations and standards

The Global Grid Forum, in addition to the GMA
document, hosts several other activities that relate
to grid monitoring. Among others, a simple XML-
b de-
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b ) is
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dard that provides the means for specifying concep-
tual information models for management systems. An-
other schema is the Grid Laboratory Uniform Envi-
ronment (GLUE), developed as part of the DataTag
project in order to facilitate interoperability between
selected US and EU Grid sites. The GLUE schema has
gained wide acceptance given its adoption by Globus
MDS3. Finally, the Grid Benchmark Research Group
(GB-WG) aims to specify metrics and benchmarks
to promote, among others, quantitative comparability
of grid hardware and middleware, applications, and
practices.

3. A scope-oriented taxonomy of monitoring
approaches and frameworks

The previous section has refined the GMA com-
ponents by mapping them to monitoring phases. This
section proposes a taxonomy of monitoring systems,
which is primarily concerned with a system’s provi-
sion of GMA components (as they were defined in
Fig. 3). The categories of the proposed taxonomy are
named from zero to three depending on the provision
and characteristics of a system’s producers and repub-
lishers (Fig. 4).

Level 0: Events flow from sensors to consumers in
either an on-line or an offline fashion (i.e., at
the time of measurements being taken or after-

Fig. 4. The categories of the proposed taxonomy of monitoring sys-
tems. Note that, although not shown to avoid clutter, the sensor sym-
bol can be omitted in systems where producers have built-in sensors.
ased producer-consumer protocol is informally
cribed in[13] to encourage interoperability. Rega
ng event types, the Network Measurements W
ng Group (NM-WG) is developing an XML schem
or exchanging network performance measurem
ithin the framework of the Open Grid Services

rastructure (OGSI). On the same topic, the C
ased Grid Schema Working Group (CGS-WG
orking towards the development of a Grid sche
ased on the Common Information Model (CI

14], an object oriented, platform-independent s
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wards, using a trace file). In the on-line case, the
sensors store locally any measurements, which
are accessed in an application-specific way. This
typically is via a web interface that provides in-
teractive access to HTML-formatted information
that includes measurements, hence not what one
would consider a generic API. The distinguish-
ing feature of level zero orself-containedsys-
tems is the lack of producer APIs that would
enable the distribution of events to remotely lo-
cated components, in a programmable fashion
(as opposed to non-programmable such as web
pages intended for interactive use).

Level 1: In first levelsystems, sensors are either sep-
arately implemented and hosted at the same ma-
chines with producers, or their functionality is
provided by producers. In either case, events are
remotely accessible via a generic API provided
by producers.

Level 2: In addition to producers,second levelmoni-
toring systems feature at least one type of repub-
lisher, which however has a fixed functionality.
Republishers of different functionality may be
stacked upon each other but only in predefined
ways. A second level system is differentiated by
a semantically equivalent first level system by the
distribution of the functionality (that would oth-
erwise be provided by a single producer) among
different hosts.

Level 3: Highly flexible monitoring systems, apart
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The taxonomy includes amultiplicity qualifier to
capture whether republishers in second level systems
within an organisation are centralised (i.e., one repub-
lisher), merely distributed, or distributed with support
for replication. The multiplicity (and distribution) of
producers over sensors (in systems of all levels) is
not significant since, according to the given definition,
at least one producer is required per monitored host.
The multiplicity of republishers over producers in third
level systems can vary based on the adopted hierarchy.

Another qualifier refers to thetype of entitiesthat
are primarily monitored by a considered system. This
qualifier can be any of hosts, networks, applications,
availability and generic. The last one denoting general-
purpose systems that support events for at least hosts
and networks.

Last, thestackablequalifier denotes whether a mon-
itoring system is intended to employ another system’s
producers or republishers, in other words operate on
top of it. A stackable, say, first level system can be
more promising than a non-stackable system of the
same level, because the former encapsulates (part of)
the functionality of another monitoring system.

Based on the above categories and qualifiers, con-
sidered systems are characterised using the form
L{0-3}. {H,N,A,V,G}.[S], where the number denotes
the level, the following letter the nature of monitored
entities (Hosts, Networks, Applications, Availability,
Generic), and an optional S implies whether the sys-
tem is stackable. Specifically for second level systems,
a (a)
a dis-
t up-
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i epli-
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p sys-
t ith
c ed
e ys-
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ys-
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t ill
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from producers, provide republishers that
configurable, allowing their organisation in
arbitrarily structured hierarchy. As explain
earlier, in a hierarchy of republishers every n
collects and processes events from lower l
producers or republishers for reasons suc
the provision of customised views or prepa
tion of higher-level events.Third levelsystems
have a potential for scalability and may form
standalone Grid Information Service (assum
support for a variety of grid resources). Whet
they actually are scalable depends on the m
plicity and distribution of components accord
to the arbitrary hierarchy that is adopted in s
cific deployments. Since the actual scalabilit
configuration-dependent, the taxonomy sim
highlights which systems have the potential
scalability.
n a, b or c letter follows the level number to denote
single centralised republisher; (b) more than one

ributed republisher; (c) distributed republishers s
orting data replication. For instance, L2c.H denot
econd level system concerning mainly hosts and
ng more than one republisher that supports data r
ation.
Goals and audience: The goal of the taxonomy is

rovide a simple means to describe a monitoring
em’s features with respect to: (i) its compliance w
ore GMA components; (ii) main target of monitor
ntities (e.g., network, hosts, etc.); (iii) whether a s

em can or has to operate on top of another system
Developers would be primarily interested in s

ems that provide their functionality via APIs; thus th
ould be looking first for L1 systems. Administrato

hat are interested in performance or reliability w
ave to look for at least L2b (distributed republishe
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and L2c (distributed and replicated republishers) sys-
tems, respectively; they can also identify systems that
depend or may operate on top of other systems with
the stackable qualifier. Users that need general-purpose
systems that, when appropriately deployed, can scale
beyond organisation-wide installations need to look for
L3 systems. Users and others can also find useful the
monitored entities qualifier to identify generic systems
or those primarily concerned with hosts, networks, ap-
plications, or availability.

4. Level 0: self-contained systems

A monitoring system is characterised as “self-
contained” when it does not expose its functionality
through a producer interface. To this end, such a sys-
tem can be used only in predefined and rigid ways
(e.g., through a GUI). The considered self-contained
systems, MapCenter and GridICE, support grid admin-
istrators in monitoring the availability (in the former)
and utilisation (in the latter) of grid resources, through
web front-ends.

4.1. MapCenter (L0.V.S)

MapCenter[15], developed as part of the EU Data-
Grid project, is a monitoring application which pro-
vides web users a visualisation of the availability and
distribution of services throughout a Grid. It is intended
a ity
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MapCenter has a number of coordinated threads,
polling specific ports of a set of hosts according to a
configuration file. In addition, there is support for auto-
matic discovery of UDP, TCP, and HTTP-based (e.g.,
grid) services, by means of probing to well-known ports
[16].

MapCenter’s configuration along with the retrieved
status information is kept in a flat text file. The lat-
ter is used to update periodically a set of HTML files
which present the previously mentioned logical views.
Of these, the graphical view illustrates the nodes on
a geographical map using localisation information re-
trieved from the WHOIS Internet service.

In the taxonomy’s context, MapCenter’s polling
threads are consideredsensorsbecause they merely
store locally any acquired events, as opposed to provid-
ing them via a producer API. To this end, MapCenter
is classified as L0.V.S because it lacks producers (level
zero), is concerned with hosts and services availability,
and operates on top of existing information services
(stackable). MapCenter can be converted to a first level
system by providing the monitoring events through a
producer API.

4.2. GridICE (L0.G.S)

GridICE[17], also known as the InterGrid Monitor
Map and EDT-Monitor[18], was developed as part of
the DataTag project in order to facilitate grid adminis-
trators. It provides status and utilisation information at
V ll as
b real-
t

ure
w odes
t net-
w The
m , host
a nded
b lu-
g
f on
s plu-
g in-
f ag-
g gger
a itor
a ss the
s a grid administration tool for tracking availabil
roblems. At the time of writing, MapCenter was
loyed in more than 10 major grid installations, incl

ng the EU DataGrid.
Overview: MapCenter builds and periodically u

ates a model of the network services available
rid, and provides this information in several logi
iews (sites, Virtual Organisations (VOs), applicatio
eographical) through a web interface. It is impor

o note that the information provided by MapCente
bout theavailability of grid nodes and their servic
e.g., the daemons of Globus’ Monitoring and Disc
ry Service (MDS), etc.); hence MapCenter does
eep details concerning configuration and utilisa
f resources. However, it does allow users to dyna
ally query an MDS server (using a PHP-based LD
lient), ping and otherwise interact with hosts (us
GI scripts).
irtual Organisation, site and resource level, as we
asic statistics derived from historical traces and

ime alerts, all through a web front-end.
Overview: GridICE has a centralised architect

here a main server periodically queries a set of n
o extract information about the status of grid and
ork services, and the utilisation of resources.
ain server is based on Nagios, an open source
nd network service monitor that can be easily exte
y the use of custom monitoring and notification p
ins. GridICE has an MDS plugin (seeSection 7.2)

or periodically querying Globus index informati
ervers and information providers, whereas other
ins can be built, say, for RGMA. The collected

ormation is stored in a DBMS and used to build
regate statistics (e.g., total memory per site), tri
lerts and dynamically configure Nagios to mon
ny newly discovered resources. End-users acce
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service through a PHP-based web front-end which in-
cludes logical views at VO, site and entity level as well
as a geographical map.

GridICE employs a custom extension of the GLUE
schema in order to support network-, and process-
related events. There are concerns in terms of scalabil-
ity given the centralised architecture and the frequent
polling that has to be performed. A way of resolving
this could be to distribute the overall load among sev-
eral Nagios servers organised in a hierarchy.

GridICE is a rather uncommon system in that it has
its own sensorsfor taking raw measurements within
monitored hosts and uses Globus MDS asproduc-
ers of those measurements. A Nagios server collects
events from MDS daemons as described earlier, con-
structs higher-level events and provides them through
the web. The Nagios server republishes raw measure-
ments as useful abstractions, yet without a producer
API and thus cannot be considered a republisher. On
this basis, GridICE can be classified either as a zero
or a first level system depending on whether the infor-
mation of interest is the abstracted events or the raw
measurements, respectively. GridICE can be converted
to a second level system by providing its abstractions
via a producer API.

5. Level 1: producer-only systems

As an example of a first level system, this section
p elf-
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progress against the requirements of its contract and
triggers corrective actions in case of violations.

Overview: Application adaptivity requires real-
time performance measurements (i.e., generation of
application-specific events), reasoning whether there is
a need for a corrective action and, if so, instructing the
application to perform the latter. Autopilot’s function-
ality is implemented in separate components, namely
sensors, actuators, clients and distributed name servers.

Applications instrumented for Autopilot include
sensors and actuators for remotely reading and writing
respectively, application-level variables. Sensors and
actuators are described by property lists (e.g., name,
location, type of variable measured/controlled, etc.),
have attached functions and register themselves to a
name service (i.e., aregistry). Property lists are used
by clients (i.e.,consumers) to lookup in the registry for
sensors. Attached functions implement data reduction
techniques (e.g., summarisation) in case of sensors or
perform requested actions in case of actuators.

An Autopilot client finds out “interesting” sen-
sors through the registry and subscribes for receiving
their events. Subsequently, a client uses an application-
specific logic—that is defined as a fuzzy logic rule
base—to make decisions and, if applicable, instruct
an actuator to perform adaptive actions. In addition,
clients manage sensors, in terms of activation and sam-
pling frequency, through appropriate actuators.

Autopilot’s events are represented in either binary or
ASCII encodings according to the PabloSelf-Defining
D ed
e ugh
t for-
m e or
d CII
e ngth
o

en-
s a-
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t ica-
t
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ms
t pur-
resents Autopilot, a framework for implementing s
dapting applications.

.1. Autopilot (L1.A)

Autopilot [19] is a framework for enabling applic
ions to dynamically adapt to changing environme
his run-time tuning ability is important for applic

ions having to choose among a variety of policies (
chedulers) as well as those that need to adapt to
amic environment, such as the grid. Autopilot’s m

deas are leveraged in the grid Application Deve
ent Software (GrADS) project[20], which aims to

acilitate end-users in the development, execution
uning of grid enabled applications. In GrADS, g
pplications are characterised with performance
uirements (specified in so-called “contracts”); am
thers, a real-time monitor compares an applicati
ataFormat[21]. As the name implies, SDDF encod
vents include descriptions of their structure, tho
he actual semantics are not specified. The binary
at can be employed between machines of sam
ifferent byte order conventions, whereas the AS
ncoding must be used in cases of different word le
r floating point representations.

In the context of the taxonomy, the Autopilot s
ors operate asproducerssince they not only take me
urements but also provide the means for acce
hem remotely. Combined with the focus on appl
ion monitoring, Autopilot is classified as L1.A.

. Level 2: producer and republisher systems

This section is concerned with monitoring syste
hat include producers and one or more special
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pose republishers. The considered systems, described
in alphabetical order, are listed here under the three
subcategories of second level systems.

Centralised republisher: an administration oriented
monitoring framework based on the CODE
framework; Hawkeye, an administration ori-
ented system for monitoring and management of
computer clusters; GridRM, a proposal for inte-
grating the diverse monitoring sources typically
available in a grid site.

Distributed republishers: HBM, an unreliable fault
detector of fail-stop failures; JAMM, a host mon-
itoring prototype with managed sensors; Mer-
cury, GridLab’s organisation-level monitoring
system; NetLogger, an application performance
analysis toolkit that was extended with com-
ponents for providing a producer interface and
controlling application-level sensors; OCM-G,
an interactive-applications monitoring system
for execution steering and performance analy-
sis; Remos, a prototype similar to NWS that
additionally provides logical views of network
topologies; SCALEA-G, an extensible, service-
oriented monitoring and performance analysis
system for both applications and resources.

Distributed republishers with replication: NWS, a
network monitoring and forecasting service pro-
viding end-to-end measurements and predic-
tions.
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producers and, based on a management logic (a series
of if-then statements, or an expert system), instructs
actors to perform specific actions.

Producers and actors register their location, events
and actions in an LDAP-basedregistrywhere managers
lookup for the appropriate producers and actors.

A management agent, consisting of an observer,
an actor and a manager, is placed in each Grid Re-
source and Allocation Manager (GRAM) and Grid In-
formation Service (GIS) server of a Globus installa-
tion. Events generated by management agents are for-
warded to an event archive which is discovered through
the registry. A GUI management front-end (i.e., acon-
sumer) retrieves events from the archive (arepublisher)
to illustrate the current status of hosts and networks.
Also, the management application allows a user to per-
form simple actions, such as Globus daemons and user
accounts management, based on what is advertised
in the registry. The GGF’s XML producer-consumer
protocol is employed for exchanging events, while
the event archive is an XML database queried using
XPath.

The CODE monitoring system is intended for hosts,
networks and services, and has a single instance of
a republisher per installation and thus is classified as
L2a.G.

6.2. GridRM (L2a.H.S)

Grid Resource Monitoring (GridRM)[24] is a re-
s y of
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.1. CODE-based monitoring system (L2a.G)

The considered system[22] is concerned with mon
toring and managing organisation-wide Globus-ba
rid installations, and is used in the NASA Informat
ower Grid (IPG). It is based on CODE[23], a frame
ork for Control and Observation in Distributed E
ironments, primarily intended to facilitate compu
ystems administration.
Overview: The CODE framework includes o

ervers, actors, managers and a directory service.
bserver process manages a set of sensors and pr

heir events through an event producer interface, h
cting as aproducer. Every actor process can be ask

hrough an actor interface, to perform specific acti
uch as restarting a daemon or sending an ema
anager process consumes the events from one or
s

earch project that aims to provide a unified wa
ccessing a diverse set of monitoring data sources
re typically found in grid environments (e.g., Sim
etwork Management Protocol (SNMP)[25], Ganglia
etLogger, Network Weather Service (NWS), etc.2

Overview: In GridRM, every organisation has
ava-based gateway that collects and normalises e
rom local monitoring systems. In this respect,
ry gateway operates as arepublisherof external (to
ridRM) producers. A global registry is used to sup
ort consumers in discovering gateways providing

ormation of interest.
Each gateway consists of a global and a local la

he former includes an abstract layer which interfa
ith platform-specific consumer APIs (Java, Web/G
ervices, etc.) and a security layer that applies a

2 Ganglia, NetLogger and NWS are considered in later secti
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ganisation’s access control policy. The local layer, has
several components including an abstract data layer
and a request handler. The latter receives consumer
queries from the global layer and collects real-time
or archived data from appropriate sources depending
on the query’s type (last state or historical). The ab-
stract data layer includes several JDBC-based drivers,
each one for retrieving data from a specific producer.
The Java Database Connectivity (JDBC) interface is
Java’s standard way of interoperating with databases;
GridRM hides the diversity of monitoring sources be-
hind JDBC’s widely used interface.

Gateways represent events according to the GLUE
schema. Consumers form and submit SQL queries us-
ing GLUE as the vocabulary, and gateways forward the
queries to the appropriate drivers.

GridRM is a research proposal that has to resolve
several issues. For instance, the GLUE schema is un-
der development and hence not complete; custom ex-
tensions must be made or adopted to support events for
networks, processes and applications. Also, it is not
clear whether the joining of information from several
gateways is performed by clients themselves or by gate-
ways (e.g., iteratively or recursively). In the latter case
and in addition to the load generated by the constant
conversion of collected events to the GLUE schema,
gateways are likely to become a bottleneck, whereas
they also pose a single point of failure.

In the context of the taxonomy, GridRM is classified
as L2a.H.S, namely a stackable second level system
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The central manager (republisher) indexes the cur-
rent state of nodes for fast query execution, and peri-
odically stores it into a round robin database to main-
tain an archive. The monitoring information in the cen-
tral manager, in addition to an API, can be accessed
via command line utilities, and web and GUI front-
ends.

Administrators can submit jobs to monitored nodes,
either for unconditional execution or to be triggered as
a response to specific events (e.g., when disk space is
running out).

Hawkeye is a second level, general-purpose mon-
itoring system with a centralised republisher, i.e.,
L2a.G.

6.4. HBM (L2b.V)

The Globus Heartbeat Monitor[29] (HBM) is an im-
plementation of an unreliable fault-detection service of
fail-stop failures of processes and hosts. A fault detec-
tor is considered unreliable if there is a possibility of
erroneously reporting failures. A fail-stop failure of a
component refers to the class of failures that are perma-
nent and can be detected by external components. HBM
was employed in early versions of Globus to verify the
availability of grid services, but has been dropped due
to the later adoption of soft-state protocols (i.e., ser-
vices subscribe to a registry and periodically renew
their subscription, which otherwise expires).

Overview: HBM consists of local monitors (produc-
e
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ith a centralised republisher per organisation, th
urrently focused on host events (GLUE must be
ended accordingly to consider GridRM a generic m
toring system).

.3. Hawkeye (L2a.G)

Hawkeye[26], is a monitoring and manageme
ool for clusters of computers. Although Hawkeye u
ome technology from Condor[27] it is available as
tandalone distribution for Linux and Solaris.
Overview: Every monitored node hosts a monit

ng agent (producer) that periodically calculates a s
f metrics, which reflect the host’s state, and com
icates them to a central manager. The metrics are
esented in XML-encoded Condor’s classified ad
isements (classads)[28], that is, simple attribute-valu
airs with optional use of expressions.
rs), data collectors (republishers) andconsumers. For
nstance, a consumer can be a program that is re
ible for the availability of specific services, or a p
ess of a distributed parallel program. In HBM, a
al monitor has to be running in monitored hosts,
osts of monitored processes. Every monitored
ess registers to the local monitor residing in the s
ost. A local monitor periodically detects the state
ll the monitored processes and communicates
tatus to interested data collectors. Upon the rece
essages from local monitors, data collectors ha
etermine the availability status of specific proces
nd notify accordingly any previously registe
onsumers.

With respect to the taxonomy, HBM is characteri
s L2b.V, namely a second level system with distribu
epublishers that is concerned with the availability
osts and processes.
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6.5. JAMM (L2b.G)

Java Agents for Monitoring and Management
(JAMM) [30] was an effort to leverage the achieve-
ments of NetLogger (seeSection 6.7) for building a
GMA-like monitoring system with managed sensors.

Overview: JAMM places a sensor manager per host,
implemented using Java RMI, in order to achieve dy-
namic activation of sensors either by (i) monitoring
network ports for incoming connections and enabling
sensors related to the load generated by the invoked
application, or (ii) after an explicit request made by a
GUI management application.

Every host is associated with a gateway where its
events are being sent using NetLogger’s Universal Log-
ger Message (ULM) format. Consumers can lookup in
an LDAP-based registry for available sensors and their
associated gateways, and retrieve the events they are
interested in, from the latter.

In the context of the taxonomy, JAMM’s sensors op-
erate asproducersbecause they generateanddissemi-
nate events; gateways serve asrepublishersthat aggre-
gate and optionally filter incoming events according to
consumer queries. Since there may be more than one
republishers but replication is not supported, JAMM is
classified as L2b.G.

6.6. Mercury (L2b.G)

Mercury [31–33] is a generic and extensible mon-
i ct.
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The monitoring service is where external consumers
submit their queries. Upon the receipt of such a query,
the monitoring service validates it against the site pol-
icy and, if valid, instructs the main monitor to perform
the query, which in turn coordinates the involved lo-
cal monitors. Eventually, the monitoring service re-
ceives the results from the main monitor, transforms the
platform-specific measurements to comparable values
and finally forwards them to the consumer.

Mercury defines a custom producer-consumer pro-
tocol that supports multi-channel communication and
uses External Data Representation (XDR) for the en-
coding of events. In addition, a library and a special
sensor are provided for the instrumentation of applica-
tions, so that a job can generate custom events which
are sent to the sensor and read by the local monitor.
Mercury also provides decision-making modules that
inform actuators on adapting the monitoring process
and steering applications.

The main monitor in Mercury may be deployed in
several instances to allow for load distribution. Com-
bined with the described architecture and the support
for events related to hosts, networks and applications,
Mercury is classified as L2b.G.

6.7. NetLogger (L2a.A)

The Network Application Logger Toolkit (NetLog-
ger)[37] is used for performance analysis of complex
systems such as client–server and/or multi-threaded
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toring system, built as part of the GridLab proje
he latter aims in the development of aGrid Appli-
ation Toolkitto facilitate developers in building gri
ware applications[34]. Mercury is a grid-enhance
ersion of the GRM distributed monitor[35,36] of
he P-GRADE graphical parallel program developm
nvironment. GRM is an instrumentation library
essage-passing applications in traditional paralle

ironments (such as clusters and supercomputers
Overview: Mercury consists of one local monit

er host (producer), a main monitor, and a monitorin
ervice (republisher). Local monitors employ a set
ensors, implemented as loadable modules, to co
nformation about the local node, including host sta
pplications, etc., and send it to the main monitor.

atter coordinates local monitors according to requ
eceived from the monitoring service and also se
equests from local (i.e., site-level) consumers.
pplications. NetLogger combines network, host
pplication events and thus provides an overall v

hat facilitates the identification of performance bot
ecks.
Overview: NetLogger consists of four componen

n API and its library (available for C, C++, Java, P
nd Python), tools for collecting and manipulating l
i.e., events), host and network sensors (typically w
ers of Unix monitoring programs), and a front-end
isualisation of real-time or historical events.

An application is manually instrumented by invo
ng NetLogger’s API calls typically before and af
disk/network) I/O requests and any time-consum
omputations. Events are tagged by the developer
textual description, and by the library with a tim

amp and some host- and network-related events
enerated events are stored to either a local file, a s
aemon or a remote host. Prior to transmission, ev
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are locally buffered to minimise the overhead imposed
in high rates of generation.

In terms of data encoding, NetLogger supports the
text-based Universal Logger Message format (ULM),
along with binary and XML-based encodings, allow-
ing developers to choose the imposed overhead. In ad-
dition, the API was extended to allow for dynamic
(de)activation of logging by periodically checking a
local or remote configuration file. Concerning robust-
ness, another extension to the API supports dynamic
fail-over to a secondary logging destination in case the
original remote host becomes unavailable.

GMA-like NetLogger application monitoring: In an
attempt to line up NetLogger with the GMA concepts,
Gunter et al.[38] extended NetLogger’s framework by
adding a monitoring activation service which is fur-
ther elaborated in[39]. An activation service consists
of three components: an activation manager and an ac-
tivation producer per installation (republisher), and an
activation node per host (producer).

An activation manager holds the logging detail re-
quired for applications instrumented with NetLogger
(including an option for deactivation of logging) and
a simple client is provided for setting these values re-
motely. Each activation node periodically queries the
activation manager for the required logging levels and
communicates this information to the local applica-
tions through configuration files that are periodically
checked by the latter. Applications are instructed to
log events in a local file wherefrom the activation node
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Given a registry where all components would be sub-
scribing their details, it would be far less intrusive to
have the activation manager to inform activation nodes
of logging level updates instead of the current design
where activation nodes have to poll activation managers
every 5 s.

NetLogger is classified as L2a.A, namely a second
level system with a centralised republisher that is in-
tended for application monitoring.

6.8. NWS (L2c.N)

The Network Weather Service is a portable (ANSI
C-based) and non-intrusive performance monitoring
and forecasting distributed system, primarily intended
to support scheduling and dynamic resource allocation
[40,10].

Overview: In NWS, a host employs sensors for es-
timating CPU load, memory utilisation and end-to-end
network bandwidth and latency for all possible sensor
pairs. Sensors combine passive and active monitoring
methods, to accomplish accurate measurements, and
are stateless to improve robustness and minimise intru-
siveness. Network sensors in particular employ a set
of techniques for avoiding conflicts among competing
sensors. Sensors are managed through a sensor con-
trol process and their events are sent to a memory ser-
vice, both of which can be replicated for distribution
of load and fault-tolerance. All components subscribe
to an LDAP-basedregistry(referred as name service),
u
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orwards them asynchronously to the activation p
ucer. The latter passively accepts events from ac

ion nodes and matches them to consumer subs
ions, expressed as simple filters.

All interactions among the activation service co
onents employ pyGMA, which is a Python SOA
ased implementation of producer, consumer and

stry interfaces similar to those defined in the G
ML producer-consumer protocol[13]. In contrast, th

ransfer of events from activation nodes to produ
an be done using any of the NetLogger transpor
ions, hence ULM, binary or XML formats.
Remarks: Considerable intrusiveness is introdu

ecause of activation nodes having to periodically
he activation manager, and applications to periodic
heck their configuration file. Also, instead of man
onfiguration, a registry could be used to support
ynamic discovery of activation service compone
sing a soft-state protocol.
A forecasting process consumes events from

emory service to generate load predictions usi
ariety of forecasting libraries. A CGI-based front-e
xposes current performance measurements and
ictions to end-users.

NWS has a small number of sophisticated
ortable sensors, while there are prototypes for

/O, Network File System (NFS) and system availa
ty. Current interfaces include C, LDAP and Glob

onitoring and Discovery Service (MDS) wrapp
hell scripts, whereas a prototype has been unde
elopment for the Open Grid Services Architect
OGSA)[41].

In terms of the taxonomy, NWS sensors operat
roducers(i.e., measure and disseminate events),
emory services and forecasters serve asrepublishers;

orecasters always operate on top of memory serv
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Since memory services can be configured for replica-
tion, NWS is classified as L2c.N.

More recently, Topomon[42] has extended NWS to
provide network topology information, which can be
used to compute minimum spanning trees between two
given hosts, in terms of latency or bandwidth. As part
of that extension, Topomon has a republisher operating
on top of NWS memory and forecasting processes, and
employs GGF’s XML producer-consumer protocol.

6.9. OCM-G (L2b.A)

OMIS Compliant Monitor (OCM-G)[43] is a mon-
itoring system for interactive grid applications, devel-
oped as part of the EU CrossGrid project[44]. OCM-G
is a grid-enhanced implementation of the On-line Mon-
itoring Interface Specification (OMIS)[45]. OMIS de-
fines a standard interface between instrumented appli-
cations and consumers.

Overview: OCM-G’s overall architecture is rather
similar to that of Mercury. There are per-host local
monitors and per-site service managers. Local monitors
have aproducerinterface for disseminating events gen-
erated by statically or dynamically instrumented ap-
plications (sensors). End-user performance tools (con-
sumers) address commands to service managers (re-
publishers), which in turn contact the local monitors of
the involved applications.

OCM-G supports three kinds of services: on-
demand retrieval of events; manipulation of running
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distributed republishers that is focused on application
monitoring.

6.10. Remos (L2b.N.S)

The Resource Monitoring System (Remos) provides
to network-aware applications an application program-
ming interface (API) for run-time enquiry of perfor-
mance measurements of local and wide area networks
[46,47].

Overview: Remos has a query-based interface fea-
turing two abstractions, namelyflows and network
topologies. A flow represents a communication link be-
tween two applications. In contrast, a network topology
graph provides a logical view of the physical intercon-
nection between compute and network nodes, anno-
tated with information on link capacity, current band-
width utilisation and latency.

Remos consists of several types of collectors, a mod-
eller and a prediction service. A variety of collectors
is employed to accommodate the heterogeneity of net-
works: SNMP and bridge collectors for SNMP-aware
routers and Ethernet switches respectively; benchmark
collectors for network links where SNMP is not avail-
able, typically wide area network (WAN) links. SNMP
and bridge collectors correspond torepublishersmak-
ing use of externalproducers(SNMP); benchmark col-
lectors areproducersimplementing active sensors.

In addition, every site has a master collector, which
accepts queries from modellers. A master collector co-
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OCM-G is intended to be customisable with resp
o performance/overhead tradeoffs (such as the b
ize for storing the events in local monitors). This is
o the emphasis on interactive applications, that req
ow-latency monitoring to support real-time user fe
ack. Also, OCM-G defines numerous low-level eve
so-called metrics) to allow performance tools to de
omposite events with custom semantics. In addi
CM-G allows enquiries for host- and network-rela
vents to facilitate performance analysis (i.e., as in
ogger), and supports certificate-based authentic
nd access control of users as well as local mon
nd service managers.

In the context of the taxonomy, OCM-G is ch
cterised as L2b.A, i.e., a second level system
rdinates the appropriate collectors for the execu
f a given query, and collects, merges and send
esults to the query’s originator, effectively acting
higher levelrepublisher. These results are raw me

urements and it is the modeller’s responsibility to b
he (flow or topology) abstractions before forward
hem to the application. Every application has its o
odeller, which is a process running on the same
hich makes modellers part ofconsumers.
In addition to current load measurements, Rem

PI supports predictions for host load and netw
vents (e.g., bandwidth utilisation and latency)
hich only the former was implemented at the t
f writing, using the RPS toolkit[48].

Because of the complexity involved in netwo
e.g., routing protocols, heterogeneity of devices, e
emos provides “best effort” measurements anno
ith statistical parameters (e.g., standard devia
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confidence). Remos’ design focuses on the provision of
a consistent interface, independently of the underlying
network technicalities, and on portability, hence the use
of SNMP and simple system-independent benchmarks.

Remos employs a variety of producers (external
SNMP producers, benchmark collectors) and repub-
lishers (SNMP collectors, master collectors, predictor),
which however have to be connected in a predefined
way. On this basis, Remos is classified as L2b.N.S,
that is, a stackable (since it operates on top of SNMP)
second level system with optional support for multiple
first-level republishers (SNMP collectors) per installa-
tion.

6.11. SCALEA-G (L2b.G)

SCALEA-G is an extensible, service-oriented3 in-
strumentation, monitoring and performance analysis
framework for hosts, networks and applications.

Overview: SCALEA-G[49] implements a variety of
grid services (see Section 7.2), including sensor, sensor
manager, instrumentation, archival, registry and client
services. A sensor manager service interacts with sen-
sor service instances, which may be on the same or dif-
ferent hosts. This implies that SCALEA-G sensors are
equivalent toproducersand sensor managers torepub-
lishers. An archival service provides persistent storage
of monitoring information. Producers and republishers
are registered in and discovered from a sensor repos-
itory and a directory service, respectively. (The direc-
t ined,
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G is complemented by GUI programs for configuring
the system and conducting performance analysis.

SCALEA-G is a second level general-purpose mon-
itoring system with distributed republishers, namely
L2b.G.

7. Level 3: hierarchy of republishers

This section focuses on third level monitoring sys-
tems, that is, frameworks featuring producers and gen-
eral purpose republishers which can form an arbi-
trarily structured hierarchy. The considered systems
are: Ganglia, a fairly scalable and widely used clus-
ter monitoring system; Globus MDS, the Monitoring
and Discovery Service of the most widely deployed
grid middleware; MonALISA, a Jini-based monitoring
prototype for large distributed systems; Paradyn with
Multicast/Reduction Network, a system for application
performance analysis; RGMA, a relational approach
to GMA, that is intended to operate as a standalone
Grid Information Service (GIS). MDS, MonALISA
and RGMA can be configured for stackable operation,
i.e., run on top of other monitoring systems. Among
others, both systems can be configured to retrieve and
query information provided by a Ganglia installation.

7.1. Ganglia (L3.G)

Ganglia[52] is an open source hierarchical moni-
toring system, primarily designed for computer clusters
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An application instrumentation service is partia
uilt on existing systems (SCALEA[50] and Dynins
51]) to support source-level and dynamic instrume
ion. Consumers interact with the instrumentation
ice using an XML-based instrumentation request
uage that defines request/response messages.

All messages are encoded in XML according
redefined schemas, and consumers can pose X
Query queries or establish subscriptions with se
anager services. Globus’ Grid Security Infrastruc

GSI) is employed to provide security services suc
onsumer authentication and authorisation. SCAL

3 SCALEA-G is implemented using the Open Grid Services
hitecture (OGSA), which has been superseded by the newly ad
eb Services Resource Framework (WSRF).
/

ut also used in grid installations. Ganglia at the t
f writing was deployed in more than 500 clusters
Overview: At the cluster level, membership is d

ermined with a broadcast, soft-state protocol—s
tate means that membership must be periodicall
ewed by explicit messages or otherwise expires
odes have a multi-threaded daemon (Ganglia m

oring daemon) performing the following tasks:

Collecting and broadcasting External Data Re
sentation (XDR) encoded events from the local h
Listening the broadcasts sent by other nodes
locally maintaining the cluster’s state.
Replying to consumer queries about any node in
local cluster, using XML encoded messages.

Given the above actions, a cluster’s status is r
ated among all nodes, which act asproducers, result-
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ing in distribution of load and fault-tolerance, but also
in high network and host intrusiveness.

An arbitrarily structured hierarchy ofrepublishers
(referred as Ganglia meta-daemons) periodically col-
lect and aggregate events from lower level data sources,
store them in round-robin databases, and provide them
on demand to higher level republishers. Data sources
may be either producers (on behalf of a cluster) or
other republishers (on behalf of several clusters); in
both cases an XML-encoding is employed.

Ganglia does not have a registry and therefore the
location of producers and republishers must be known
through out-of-band means. The databases serve as
archives and are also used by a web-based visuali-
sation application providing cluster- and node-level
statistics. Simple command line utilities are provided
for adding new event types and querying producers
and republishers.

Remarks: Ganglia introduces considerable, albeit
linear, overhead both at hosts and networks at clus-
ter and hierarchy levels, because of the multicast up-
dates in the former, and XML event encoding in the
latter. The network intrusiveness imposed by repub-
lishers connected through WAN links is of considerable
importance given the associated costs. Other concerns
include the availability of IP multicast, and the lack
of a registry since Ganglia was primarily intended for
clusters, which are fairly static compared to grids.

7.2. Globus MDS (L3.G.S)
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data model, entities are represented as one or more
LDAP objects defined as typed attribute-value pairs
and organised in a hierarchical structure, called the
Directory Information Tree (DIT).

The MDS framework consists of information
providers (sensors), Grid Resource Information Ser-
vices (GRIS—producers) and Grid Index Information
Services (GIIS—republishers). Both producers and re-
publishers are implemented as backends for the open
source OpenLDAP server implementation.

Producers collect events from information
providers, either from a set of shell scripts or from
loadable modules via an API. In addition, producers
provide their events to republishers or to consumers
using GRIP, and register themselves to one or more
republishers using GRRP.

Republishers form a hierarchy in which each node
typically aggregates the information provided by lower
level republishers (and producers in case of first level
republishers). Republishers use GRIP and GRRP as
part of the consumer and producer interfaces, though
custom implementations could offer alternative pro-
ducer interfaces (i.e., relational). Several roles may
be served by republishers, including the provision
of special purpose views (e.g. application-specific),
organisation-level views and so on.

Consumers may submit queries to either producers
or republishers, or discover producers through repub-
lishers, in any case using GRIP.

Remarks: The hierarchical data model along with
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The Monitoring and Discovery Service[2,3], for-
erly known as the Metacomputing Directory Serv

onstitutes the information infrastructure of the Glo
oolkit [53].
Overview: MDS 2.x is based on two core pro

ols: the Grid Information Protocol (GRIP) and
rid Registration Protocol (GRRP). The former

ows query/response interactions and search o
ions. GRIP is complemented by GRRP, which
or maintaining soft-state registrations between M
omponents.

The Lightweight Directory Access Protoc
LDAP) [54] is adopted as a data model and repre
ation (i.e., hierarchical and LDIF respectively—LDA
irectory Interchange Format), a query language
transport protocol for GRIP, and as a transport

ocol for GRRP. Given the LDAP-based hierarch
DAP’s referral capability (i.e., forward a query
n authoritative server) accommodates well the

or autonomy of resource providers and decentra
aintenance. Also, MDS supports security servi

uch as access control, through the use of the
ecurity Infrastructure (GSI)[55]. However, LDAP

eatures a non-declarative query interface that req
nowledge of the employed schema. In addition,
erformance of OpenLDAP’s update operatio
hich is by far the most frequently used—has b
ery much criticised.
MDS3: Globus was re-designed and implemente

art of theOpen Grid Services Architecture(OGSA)
41], a web services-based framework aiming to
ance interoperability among heterogeneous sys

hrough service orientation (i.e., hiding the underly
etails by means of consistent interfaces). In OG
verything is represented as a grid service, that is, a
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service that complies to some conventions, including
the implementation of a set of grid service interfaces
(portTypes in WSDL terminology). Every grid ser-
vice exposes its state and attributes through the imple-
mentation of the GridService portType and, optionally,
the Notification-Source portType, which correspond to
pull and push data delivery models, respectively.

In this respect, the functionality of the MDS2 Grid
Resource Information Service (GRIS) is encapsulated
within grid services. In OGSA, the equivalent of
the MDS2 Grid Index Information Service (GIIS) is
the Index Service which, among others, provides a
framework for aggregation and indexing of subscribed
grid services and lower level Index Services. Index
Services are organised in a hierarchical fashion just
like the GIISs in MDS2.

Information is represented in XML according to the
GLUE schema. Simple queries can be formed by spec-
ifying a grid service and one or more service data el-
ements, whereas more complex expressions are sup-
ported using XPath.

7.3. MonALISA (L3.G.S)

MonALISA (Monitoring Agents using a Large
Integrated Services Architecture)[56] is a Jini-based
[57], extensible monitoring framework for hosts and
networks in large-scale distributed systems. It can inter-
face with locally available monitoring and batch queue-
ing systems through the use of appropriate modules.
T ade
a ro-
n nts.
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Each station server hosts a multi-threaded monitor-
ing service, which collects data from locally available
monitoring sources (e.g., SNMP, Ganglia, LSF, PBS,
Hawkeye) using readily available modules. The
collected data are locally stored and indexed in either
an embedded or an external database, and provided on
demand to clients (i.e.,consumerservices).

A client, after discovering a service through the
lookup service, downloading its code and instantiating
a proxy, can submit real-time and historical queries
or subscribe for events of a given type. Custom
information (i.e., not part of the schema) can be
acquired by deploying a digitally signed agent filter to
the remote host. In addition, non-Java clients can use
a WSDL/SOAP binding.

Services and modules can be managed through an
administration GUI, allowing an authenticated user to
remotely configure what needs to be monitored. Also,
MonALISA has a facility for periodically checking
the availability of new versions and automatically
updating any obsolete services.

Current applications of MonALISA are a GUI
front-end featuring several forms of status visuali-
sation (maps, histograms, tables, etc.) and dynamic
optimisation of network routing for the needs of a
video conference application. Future plans include
building higher level services for supporting job
scheduling and data replication.

Concluding, MonALISA provides a general-
purpose and flexible framework, though it could be ar-
g lso,
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he collected information is locally stored and m
vailable to higher level services, including a GUI f
t-end for visualising the collected monitoring eve
Overview: MonALISA is based on the Dynam

istributed Services Architecture (DDSA)[58] which
ncludes one station server per site or facility withi
rid, and a number of Jini lookup discovery servi
i.e., equivalent toregistries). The latter can join an
eave dynamically, while information can be replica
mong discovery services of common groups.

A station server hosts, schedules, and resta
ecessary, a set of agent-based services. Each s
egisters to a set of discovery services wherefrom
e found from other services. The registration in

s lease-based, meaning that it has to be periodi
enewed, and includes contact information, e
ypes of interest and the code required to interact
given service.
ued that Java restricts the overall performance. A
ini is using multicast, which is not always ava
ble, and places scalability limits. In terms of the t
nomy, external (to MonALISA) monitoring sourc
reproducers, whereas monitoring services and ot
igher-level services serve asrepublishersby collect-

ng data from producers and providing higher le
bstractions, respectively. To this end, MonALISA
lassified as L3.G.S meaning that custom-built
ublishers can be structured in a custom hierar
variety of entities can be monitored; the system

tackable.

.4. Paradyn/MRNet (L3.A)

Paradyn[59] is a performance analysis toolkit f
ong running, parallel, distributed and sequential ap
ations. It supports dynamic instrumentation, tha
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insertion, modification and removal of instrumentation
code during program execution.

Paradyn originally had a first-level architecture (i.e.,
consumers and producers only), consisting of an end-
user GUI for application performance analysis and con-
trol, that consumes data originating from the processes
of an instrumented distributed application. Scalabil-
ity concerns arising from performance analysis of ap-
plications with hundreds of processes motivated the
development of Multicast/Reduction Network. MR-
Net [60,61] is a communication system, with support
for multicast and data aggregation services, for use
in parallel tools—available separately and as part of
Paradyn.

Overview: In addition to Paradyn’s end-user GUI
(consumer, referred as front-end), parallel processes of
an application (sensors) and a back-end per process
(producers), MRNet provides a program that can be run
in many instances in potentially different hosts to form
a custom hierarchy of internal processes (republishers)
that transfer data from producers to a single consumer
and vice versa. Producers and consumers can use MR-
Net’s communication facilities using the provided C++
library.

MRNet republishers support synchronisation and
transformation filters to determine when packets
should be forwarded up the hierarchy (e.g., wait for
a packet from every child node) and to apply packet-
specific data-reduction techniques (e.g., deliver to
the consumer the average of all producers’ measure-
m et-
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that the only difference between information and mon-
itoring services is that the data involved in the latter
have to be timestamped[62]. To this end, they have
built RGMA [12] as part of the EU DataGrid project; a
framework which combines grid monitoring and infor-
mation services based on the relational model. That is,
RGMA defines the GMA components, and hence their
interfaces, in relational terms.

Overview: In RGMA, producers are distinguished
in five different classes but we limit our discussion in
database and stream producers, which are indicative of
the main concepts.Database producersare employed
for static data stored in databases, whereasstream pro-
ducersfor dynamic data stored in memory resident cir-
cular buffers. New producers announce their relations
(i.e., event types) using an SQL “create table” query,
offer them via an SQL “insert” statement, and “drop”
their tables when they cease to exist. Aconsumeris
defined as an SQL “select” query. In order for a com-
ponent to act as either a consumer or a producer, it has
to instantiate a remote object (agent) and invoke meth-
ods from the appropriate (consumer or producer) API.

Theglobal schemaincludes a core set of relations,
while new relations can be dynamically created and
dropped by producers as previously described.Repub-
lishersare defined as one or more SQL queries that
provide a relational view on data received by produc-
ers or other republishers.

Theregistryholds the relations and views provided
by database producers, stream producers and repub-
l and
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ents as opposed to all values). Also, an MRN
nstrumented consumer uses multicast for sending
rol requests to producers, thus scaling better for l
umber of producers.

Paradyn with MRNet is reported[60] to scale well in
ettings of up to 500 producers per consumer, resu
n significantly improved scalability (compared to
riginal first level architecture) with respect to a vari
f performance metrics.

Paradyn/MRNet is classified as L3.A because
pplication-oriented and, in addition to consumer
roducers, provides a configurable republisher for
ting arbitrarily structured hierarchies of custom fu

ionality.

.5. RGMA (L3.G.S)

The Relational Grid Information Services Resea
roup of the Global Grid Forum supports the v
ishers. The registry includes the global schema
s centralised, while there are efforts for a distribu
mplementation. A mediator uses the informat
vailable in the registry and cooperates with consu
o dynamically construct query plans for queries
annot be satisfied by a single relation (i.e., involv
joins” from several producers).
Remarks: RGMA is implemented in Java Servle

nd its API is available for C++ and Java, while wrap
PI implementations exist for C, Perl and Python.
GMA implementation is considered stable but suf

n terms of performance[63].
RGMA can be used as a standalone grid infor

ion service assuming information providers and c
umers use the RGMA APIs. Some tools are avail
or supporting MDS2 information providers and c
umers (i.e., using an LDAP interface) but in the c
f performance degradation.
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Conceptually, RGMA provides access to the infor-
mation of a Virtual Organisation’s resources as if that
was stored in a single RDBMS; there are plans for ex-
tending this concept across VOs. Overall, the system
has a potential for good scalability given the (under
development) replication of the global schema and the
registry, and the combination of data sources into a hi-
erarchy of republishers.

8. Related work

Most relevant to this survey, is a white paper[64]
by the “Automatic Performance Analysis: Real Tools”
(APART) working group. This paper provides a di-
rectory of grid-oriented performance analysis systems,
which are characterised along a large number of fea-
tures. The paper also underlines the lack of any single
system that can serve the needs of all user classes. To
this end, the paper suggests three groups of systems
that combined can satisfy most user needs. As part of
that integration, it is noted that a lot of effort is needed
for the systems to interoperate.

Also relevant, though rather outdated, is a survey of
selected grid monitoring tools in[65]. For a brief dis-
cussion of related work on monitoring systems evalu-
ation seeSection 9.

Other work includes, WatchTower[66], a C++ li-
brary that allows applications to extract comprehensive

Table 1
Systems overview with respect to components mapping to GMA, sen

Features/project AutoPilot CODE Hawkeye ury

Classification L1.A L2a.G L2a.G L
Producer Instrumented

applications
Agent Agent Ex

sou
Republisher n/a Event

archive
Manager Ga

Registry Name service Directory
service

Manager Re

Archive – XML DB Round
robin DB

DB

Sensors
Monitored entities A H/N/S H/N/S H
Passive/active A P P D
Managed y y y n/a

Interactions (PR, PRC: producer–republisher, producer or republishe
PR n/a Both Both De
PRC Push Both Pull B ?

In the sensors category, parenthesis denote non-comprehensive mon

host and network monitoring events from Microsoft
Win32 operating systems, and apply data reduction
techniques; GridObserver[67], a web front-end which
appears rather similar to Ganglia (GridObserver was
not classified due to limited available information);
Ref. [68] discusses a set of sampling methods that
aim to minimise intrusiveness in large-scale systems;
Refs. [69] and [70] have pointers to numerous web
oriented systems and general-purpose network perfor-
mance measurement tools, respectively.

9. Discussion

Tables 1–4summarise the features of the systems
considered inSections 5–7. To start with,Tables 1 and
2 show the mapping of system components to that of
GMA (as they were defined inSection 2.4), as well as
characteristics of sensors and producer interactions.

GMA mapping: The registry functionality, if any, is
provided either by standalone components or is par-
tially (e.g., Mercury, Remos) or fully (e.g., MDS2,
Hawkeye) provided by a republisher.

Most of the considered systems provide the tools for
maintaining an archive into some form of a database (a
relational DBMS, an XML DB, etc.) and some of them
expose the archived data through a producer or a re-
publisher interface (e.g., RGMA, CODE). MonALISA
is interesting in that it provides the option of using
sors and interactions—part 1

GridRM NetLogger HBM JAMM Merc

2a.H L2a.A L2b.V L2b.G L2b.G
ternal
rce

Instrumented
applications

Local
monitor

Instrumented
applications

LM

teway Activation
producer

Data col-
lector

Gateway MM, MS

gistry Registry – Registry MM

MS DBMS – – DBMS

A (H/N) V H/N/A H/A/N
epends A (P) P P P

y n/a y y
r–consumer
pends Push Pull Push Both

oth? Push Push Pull Both

itoring of related entities.
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Table 2
Systems overview with respect to components mapping to GMA, sensors and interactions—part 2

Features/project OCM-G Remos SCALEAG NWS Ganglia MDS2 MonALISA Paradyn/
MRNet

RGMA

Classification L2b.A L2b.N L2b.G L2c.G L3.G L3.G.S L3.G.S L3.A L3.G.S
Producer Local

monitor
SNMP services
and benchmark
collectors

Sensor and/or
sensor manager

Memory
host

Monitoring
daemon

GRIS Monitoring
service

Backends Producers

Republisher Monitoring
service

SNMP and master
collector

Sensor manager Predictor Meta
daemon

GIIS Other
agents

Internal
processes

Republishers

Registry – Part of collectors Sensor repository
and directory
service

Name
service

– GIIS Lookup
service

– Registry

Archive – – Archival service – RRD tool – DBMS – DBMS
Sensors

Monitored entities A (H/N) N (H) A/H/N/S N (H) H/N H/N/P H/N A H/N/?
Passive/active A (?) P/A P/A P P Depends A? P?
Managed y n/a y n/a n n Depends y n

Interactions (PR, PRC: producer–republisher, producer or republisher–consumer
PR Both Pull? Both Pull Push Push Depends Both? ?
PRC Both Pull? Both Pull Pull Pull Both? Both? Both

In the sensors category, parenthesis denote non-comprehensive monitoring of related entities.
181
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Table 3
Systems overview with respect to events, implementation and other issues—part 1

Features/project Auto
pilot

CODE Hawkeye GridRM Net logger HBM JAMM Mercury

Events (Format: A, B, G, L, U, X, Xd = ASCII, Binary, GLUE, ULM, XML, XDR)
Format SDDF X X G X/U/B ? U Xd

Implementation
Language C++ C++, J C++ J C/Py C J C, J
API C++ C++, J C++, J JDBC C, C++, J, P, Py C? ? C
Tools V V W, G, CLI W V V V V
Availability y n y n y y y y

Miscellany
Key features App

steering
Globus
systems
management

Cluster stats/
management

Unified interface Fault de-
tection

Extensibility
and adaptivity

Security GSI GSI GSI – – – – GSI

Language/API: Co, J, Jp, Js, P, Py, W = CORBA, Java, Java Serve Pages, Java Servlets, Perl, Python, WSDL/SOAP; Tools: V, W = Visualisation
GUI, Web front-end.

an embedded or an external database per monitoring
service.

Sensors: Regarding the monitored entities, almost
all of the considered systems support host and net-
work events, though the degree of comprehensiveness
greatly varies (e.g., NWS is primarily intended for net-
works, NetLogger and OCM-G for applications, etc.).

Recall fromSection 2.1that a sensor, may be ei-
ther active or passive, depending on whether it actively
performs measurements (e.g., using benchmarking al-
gorithms) or passively collects performance data from
platform-specific facilities. This is a tradeoff between
intrusiveness on one hand, and potentially platform-
independent results on the other. To this end, an ideal
system would provide sensors in both types, to allow
developers to choose whichever is appropriate for a
given use. Apart from the application instrumentation
systems (Autopilot, NetLogger, OCM-G, and the in-
strumentation service of SCALEA-G) which require
active sensors, most of the considered systems employ
passive sensors. Exceptions include NWS (both types)
and Remos (active for WAN, passive for LAN links).

The managed property denotes whether dynamic
sensor (de)activation is possible, which applies only
to systems that support the push data delivery model.
This is supported by all relevant systems except Gan-
glia and MDS2.

Producers: The last sections ofTables 1 and 2refer
to the supported data delivery models, between pro-
ducers and republishers on one hand, and producers or

republishers with consumers on the other (denoted as
PR and PRC, respectively). Pull implies query-like in-
teractions and push refers to either subscription or one-
off interactions. Event delivery in subscriptions can be
conditional or unconditional (i.e., periodic). Periodic
event delivery can guarantee measurements of a given
frequency but is more intrusive. In managed sensors,
the frequency of measurements may be dynamically
configurable.

On-line application performance analysis and steer-
ing (as opposed topost mortemanalysis) require a
constant stream of events and thus are more suited
for push data delivery, whereas infrequent queries are
better served using pull mode. Particularly push-only
systems without managed sensors typically impose ex-
cessive overhead. Ideally, both modes should be sup-
ported or otherwise unnecessary overhead is imposed
(e.g., consumers establishing a short-lived subscription
in place of a query, or constantly posing queries due to
lack of subscriptions).

Events: In Tables 3 and 4, the format field indicates
the employed encoding of events, varying from heavy-
weight and self-describing approaches (XML) to very
compact but rigid formats (XDR). In any case, the em-
ployed event format greatly affects a system’s intrusive-
ness both in terms of host and network load for pro-
cessing and transmitting events, respectively. Again,
the ideal is to provide several options and let the user
determine what is appropriate for any given case, as is
with NetLogger’s ULM and Autopilot’s SDDF.
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Table 4
Systems overview with respect to events, implementation and other issues—part 2

Features/project OCM-G Remos SCALEA-G NWS Ganglia MDS2 MonA-
LISA

Paradyn/
MRNet

RGMA

Events (Format: B, G, L, U, X, Xd = Binary, GLUE, ULM, XML, XDR)
Format Java data types X Xd, X L X? X

Implementation
Language C J J C C C Jini C++ Js
API C, C++ J C, C++, J C, sh,

LDAPC
CLI
util

C, Co, J, Jp, P,
Py, sh, LDAP

J, W C++ C, C++,
J, P, Py

Tools V – V W W W V, W V V, W
Availability y y y y y y y y y

Miscellany
Key features Interactive

application
steering

Flows, topologies,
predictions

Services-based
unified system

Load
predictions

Cluster
stats

Custom views Corrective
actions

Scalable on-line
app analysis

Virtual
DBMS

Security GSI GSI GSI – GSI SSL/ X.509 – GSI

Language/API: Co, J, Jp, Js, P, Py, W = CORBA, Java, Java Server Pages, Java Servlets, Perl, Python, WSDL/SOAP; Tools: V, W = Visualisation/Analysis GUI, Web front-end.
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Implementation issues: Tables 3 and 4also refer to
the implementation language of the considered sys-
tems, the supported application programming inter-
faces (APIs) and tools, and whether the actual soft-
ware is distributed through the Internet. The language
itself is a good indication of a system’s host overhead
and overall performance; hence Java-based systems are
normally expected to have a worse performance com-
pared to C-based systems.

Concerning APIs, some of the production level
projects feature many options, whereas there is a ten-
dency (though not reflected in the tables) to provide
WSDL/SOAP bindings for interfacing with OGSA.

In terms of tools, almost all of the considered sys-
tems provide a standalone visualisation GUI, a web
front-end or both. Finally, most of the systems are freely
available, though licence restrictions greatly vary.

Miscellany: The diversity of the considered systems
is reflected in the key features row. These include high
level abstractions, such as network and processor load
predictions (NWS, Remos); a unified interface integrat-
ing other monitoring sources (GridRM); the organisa-
tion of monitoring information in custom views (e.g., in
MDS one can have different GIIS servers for available
software, processors, storage mediums and so on); the
correlation of host-, network- and application-related
events (NetLogger, OCM-G); the calculation of site- or
VO-level load (Ganglia, GridICE), the conceptualisa-
tion of a VO’s information services as a virtual DBMS
(RGMA), etc. Concerning automatic actions, some sys-
t nds
u an-
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t on-
m
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t es
f ment
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e re-
c sed
b eas
R for
t s
d ar-

gues that the latter suffers in terms of performance and
robustness.

Another study[63] describes a performance com-
parison of Hawkeye and a few versions of Globus
MDS2 and RGMA. One of the main conclusions is
that caching of events is most important for the perfor-
mance of all system components. Hawkeye, with the
exception of the producer (agent), which does not em-
ploy caching, generally appears to be more stable and
efficient in terms of imposed host load. Throughput and
response time vary considerably among different ver-
sions and components of every system. According to
the study, RGMA’s producers and registry appear to be
less scalable with respect to the number of concurrent
users and sensors (referred as information collectors).
Among the proposed suggestions is that (i) the repub-
lishers of the considered systems should be connected
to less than 100 producers; (ii) the number of concur-
rent consumers should be less than 400, 500 and 600
for RGMA, MDS and Hawkeye, respectively.

Remarks: One can easily see the lack of coordi-
nation, hence the overlapping functionality, between
projects. Also evident is the diversity of APIs and pro-
tocols which, along with implied or explicit but custom
semantics of event types, lead to interoperability prob-
lems. Coordination is clearly a political issue and one
can only hope that there will be a driving force to en-
courage consolidation or at least some form of closer
cooperation.

However, interoperability is more of a technical
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i ents
ems can be configured to trigger specific comma
nder certain circumstances, to facilitate systems m
gement (CODE, MapCenter, Hawkeye) or to al

he adaptation of applications to a dynamic envir
ent (Autopilot, OCM-G, MonALISA, Mercury).
In terms of security, many systems provide authe

ation and/or authorisation via the Grid Security Infr
ructure (GSI). MonALISA employs X.509 certificat
or the secure management, upgrade and deploy
f agents.
Evaluation: With respect to evaluation of monito

ng systems, we note, in agreement with[64], that the
xisting work is very limited. Mercury has been
ently reported as coping well with the high load po
y application monitoring based on GRM, wher
GMA’s performance has been proven insufficient

he same purpose[71]. An earlier paper[31] compare
esign characteristics of GRM and NetLogger, and
roblem. Communication paradigms and proto
n the considered systems vary from sockets (M
ury, NWS), LDAP (MDS2), Java RMI (JAMM), an
eb services (NetLogger’s pyGMA, CODE, Topom
DS3 and MonALISA). GGF’s producer-consum
rotocol [13] is not sufficient because it is more
methodology for designing producer-consumer

eractions using web services rather than a prot
pecification. Also, there is no commonly agreed e
chema either because of systems addressing (sli
ifferent problems or due to different views of the sa
roblems.

This problem can be faced in two ways; either ag
n a widely accepted platform-independent (e.g.,
ervices-based) protocol and event schema and as
ts adoption by monitoring systems, or extend infor
ion services to interoperate with a diverse set of m
toring sources in order to collect and transform ev
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to a common schema (e.g., GridRM, MonALISA). The
former places much less overhead on information ser-
vices and thus allows for better performance and scal-
ability, but requires a consensus on protocols and se-
mantics. In the latter approach, information services are
very likely to become performance bottlenecks given
the need to implement several protocols and normalise
collected events.

In addition to interoperability, which is a major ob-
stacle for connecting the existing grid installations into
a worldwide Grid, there is also the scalability require-
ment. In a worldwide Grid context, there is a need for
highly scalable monitoring services[72] (i) to build ef-
ficient, Grid-wide resource discovery end-user applica-
tions or services, such as resource brokers[73], search
engines[74] or directories of grid resources, or (ii) to
provide a variety of “global view” services to enhance
the understanding of the Grid.

Grid search enginesmay provide to users and pro-
grams an efficient means of resolving complex, large-
scope queries (i.e., involving the combination of infor-
mation from many organisations). However, end-users
may not be able to specify exactly their needs or be
unaware of the resources that are available throughout
the Grid. To this end,resource directorieswill sup-
port end-users to find the appropriate matches through
a browsable list of resources, offered in a variety
of classifications. The latter can be based on crite-
ria such as discipline (in case of collaborations, data
repositories, and on-line instruments), sharing policy,
p ad-
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10. Summary

This paper introduced the problem of grid monitor-
ing, including associated concepts, requirements and
stages. It also outlined the Grid Monitoring Architec-
ture of the Global Grid Forum and mapped its com-
ponents to phases of distributed systems monitoring.
More importantly, a taxonomy was defined to allow the
classification of monitoring systems with respect to (i)
compliance to core GMA components; (ii) main target
of monitored entities; and (iii) whether a system can or
has to operate on top of another system. The taxonomy
should be applicable to all monitoring systems because
its categories are specified with respect to fundamen-
tal monitoring functions (i.e., generation, processing,
distribution and consumption of monitoring data). Fur-
thermore, the taxonomy was used to classify a diverse
set of monitoring systems, ranging from application
instrumentation tools to standalone Grid Information
Services.

In addition, the paper underlined, in agreement with
[64], the need for more coordination and interoper-
ability among existing and future monitoring projects,
given the currently overlapping functionality and lack
of consensus regarding the employed protocols and
semantics. Finally, an unexplored field was identified
in the context of global monitoring, and motivated in
terms of potential applications.
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hysical location (e.g., continent, country, city),
inistration hierarchy (e.g., virtual organisation,
anisation, department) supported quality of ser
uarantees, hardware and software specifications
o on.

On the other hand,global view services, similarly
o Netcraft[75] and Alexa[76] for the worldwide web
ill provide a comprehensive quantitative and qua

ive characterisation of the Grid throughout time. T
ill help to understand the dynamics of the Grid, s
ort long-term capacity planning and contribute to
ealistic modelling and simulation by answering qu
ions such as: how many are the grid resource
he public worldwide Grid; what is their distributio
mong sites; which resource types are rare or pop
hich grid sites are most reliable; how these num
volve throughout time; how does the Grid’s evolut
elates to that of the Internet.
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