
http://wrap.warwick.ac.uk

Original citation:
Cao, Junwei, 1973-, Spooner, Daniel P., Jarvis, Stephen A., 1970- and Nudd, G. R..
(2005) Grid load balancing using intelligent agents. Future Generation Computer
Systems, Volume 21 (Number 1). pp. 135-149. ISSN 0167-739X

Permanent WRAP url:
http://wrap.warwick.ac.uk/7469

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
“NOTICE: this is the author’s version of a work that was accepted for publication in
Future Generation Computer Systems. Changes resulting from the publishing process,
such as peer review, editing, corrections, structural formatting, and other quality control
mechanisms may not be reflected in this document. Changes may have been made to
this work since it was submitted for publication. A definitive version was subsequently
published in Future Generation Computer Systems, Volume 21 (Number 1) (2005)
DOI: http://dx.doi.org/10.1016/j.future.2004.09.032

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/7469
http://dx.doi.org/10.1016/j.future.2004.09.032
mailto:publications@warwick.ac.uk

- 1 -

Grid Load Balancing Using Intelligent Agents

Junwei Cao1, Daniel P. Spooner*, Stephen A. Jarvis*, and Graham R. Nudd*
C&C Research Laboratories, NEC Europe Ltd., Sankt Augustin, Germany
*Department of Computer Science, University of Warwick, Coventry, UK

Email address for correspondence: cao@ccrl-nece.de

Abstract. Workload and resource management are essential functionalities in the software infrastructure for
grid computing. The management and scheduling of dynamic grid resources in a scalable way requires new
technologies to implement a next generation intelligent grid environment. This work demonstrates that AI
technologies can be utilised to achieve effective workload and resource management. A combination of
intelligent agents and multi-agent approaches is applied for both local grid resource scheduling and global
grid load balancing. Each agent is a representative of a local grid resource and utilises predictive application
performance data and iterative heuristic algorithms to engineer local load balancing across multiple hosts. At
a higher level of the global grid, agents cooperate with each other to balance workload using a peer-to-peer
service advertisement and discovery mechanism. A case study is included with corresponding experimental
results to demonstrate that intelligent agents are effective to achieve resource scheduling and load balancing,
improve application execution performance and maximise resource utilisation.

Keywords: Load Balancing; Grid Computing; Intelligent Agents; Multi-agent Systems; Genetic Algorithm;
Service Advertisement and Discovery.

1 This work was carried out when the author was with the University of Warwick.

1. Introduction

Grid computing originated from a new computing
infrastructure for scientific research and cooperation [36,
20] and is becoming a mainstream technology for large-
scale resource sharing and distributed system integration
[21]. Current efforts towards making the global
infrastructure a reality provide technologies on both grid
services and application enabling [6].

Workload and resource management are essential
functionalities and provided at the service level of the
grid software infrastructure. Two main challenges that
must be addressed are scalability and adaptability. Grid
resources are distributed geographically in a large-scale
way and resource performance changes quickly over time.
Grid tasks from users require resources with different
QoS requirements. Effective management and
scheduling has to be achieved in an intelligent and
autonomous way.

Software agents have been accepted to be a powerful
high-level abstraction for modelling of complex software
systems [26]. In our previous work, an agent-based
methodology is developed for building large-scale
distributed systems with highly dynamic behaviours [9,
10]. This has been used in the implementation of an
agent-based resource management system for
metacomputing [11] and grid computing [12, 13, 14].

This work focuses on grid load balancing issues
using a combination of both intelligent agents and multi-
agent approaches. Each agent is responsible for resource
scheduling and load balancing across multiple hosts /

processors in a local grid. The agent couples application
performance data with iterative heuristic algorithms to
dynamically minimise task makespan and host idle time,
whilst meeting the deadline requirements for each task.
The algorithm is based on an evolutionary process and is
therefore able to absorb system changes such as the
addition or deletion of tasks, or changes in the number of
hosts / processors available in a local grid.

At the global grid level, each agent is a
representative of a grid resource and acts as a service
provider of high performance computing power. Agents
are organised into a hierarchy and cooperate with each
other to discover available grid resources for tasks using
a peer-to-peer mechanism for service advertisement and
discovery.

Agents are equipped with existing PACE application
performance prediction capabilities [8, 32]. The key
features of the PACE toolkit include good level of
predictive accuracy, rapid evaluation time and a method
for cross-platform comparison. These features enable the
PACE performance data to be utilized on the fly for
agents to perform grid resource scheduling [15, 16].

Several metrics are considered to measure the load
balancing performance of grid agents. A case study is
included and corresponding results conclude that
intelligent agents, supported by application performance
prediction, iterative heuristic algorithms and service
discovery capabilities, are effective to achieve overall
resource scheduling and load balancing, improve
application execution performance and maximise
resource utilisation.

- 2 -

2. Grid agents

This work combines intelligent agents and multi-agent
approaches. The agent structure and hierarchy are
described below.

2.1. Agent structure

Each agent is implemented for managing hosts /
processors of a local grid resource and scheduling
incoming tasks to achieve local load balancing. Each
agent provides a high-level representation of a grid
resource and therefore characterises these resources as
high performance computing service providers in a
wider grid environment. The layered structure of each
agent is illustrated in Figure 1 and explained below.

Agent

Local Management Layer

Coordination Layer

Communication Layer

Networks

Agent

Local Management Layer

Coordination Layer

Communication Layer

Figure 1. Agent structure.

• Communication Layer. Agents in the system must be
able to communicate with each other or with users
using common data models and communication
protocols. The communication layer provides an
agent with an interface to heterogeneous networks
and operating systems.

• Coordination Layer. The request an agent receives
from the communication layer should be explained
and submitted to the coordination layer, which
decides how the agent should act on the request
according to its own knowledge. For example, if an
agent receives a service discovery request, it must
decide whether it has related service information.
This is described in detail in Section 4.

• Local Management Layer. This layer performs
functions of an agent for local grid load balancing.
Detailed scheduling algorithms are described in
Section 3. This layer is also responsible for
submitting local service information to the
coordination layer for agent decision making.

2.2. Agent hierarchy

Agents are organised into a hierarchy in a higher level
global grid environment, as shown in Figure 2. The

broker is an agent that heads the whole hierarchy. A
coordinator is an agent that heads a sub-hierarchy. A
leaf-node is actually termed an agent in this description.

B

C

A

A
C

A A
B

C

A

: Broker

: Coordinator

: Agent

Figure 2. Agent hierarchy.

The broker and coordinators are also agents except
that they are in a special position in the hierarchy. All
the agents have the same functionality despite their
different positions. The broker does not have any more
priorities than coordinators or agents. The hierarchy of
homogeneous agents provides a high-level abstraction of
a grid environment.

The agent hierarchy can represent an open and
dynamic system. New agents can join the hierarchy or
existing agents can leave the hierarchy at any time. The
hierarchy exists only logically and each agent can
contact others as long as it has their identities.

The hierarchical model can also address partly the
problem of scalability. When the number of agents
increases, the hierarchy may lead to many system
activities being processed in a local domain. In this way
the system may scale well and does not need to rely on
one or a few central agents, which may otherwise
become system bottlenecks.

Service is another important concept. In other
methodologies, a client is abstracted into a request
sender; a server is abstracted into a service provider; and
a matchmaker is an abstraction of a router between a
client and corresponding server. In this work, an agent
contains all of the above abstractions, which provides a
simple and uniform abstraction of the functions in the
grid management system. The service information
provided at each local grid resource can be advertised
throughout the hierarchy and agents can cooperate with
each other to discover available resources. These are
introduced in detail in Section 4.

2.3. Performance prediction

Performance prediction for parallel programs plays a key
role for agents to perform resource scheduling and load
balancing. Agents are integrated with existing PACE
application performance prediction capabilities.

The PACE evaluation engine is the kernel of the
PACE toolkit. The evaluation engine combines the

- 3 -

PACE resource model (including performance related
information of the hardware on which the parallel
program will be executed) and application model
(including all performance related information of the
parallel program, e.g. MPI or PVM programs) at run
time to produce evaluation results, e.g. estimation of
execution time. Agents are equipped with the PACE
evaluation engine and use predictive application
performance data for scheduling. Detailed introduction
to the PACE toolkit is out of the scope of this paper but
the use of PACE performance prediction for both local
grid and global grid load balancing is described below in
Sections 3 and 4 respectively.

3. Local grid load balancing

In this section, a local grid resource is considered to be a
cluster of workstations or a multiprocessor, which is
abstracted uniformly as peer-to-peer networked hosts.
Two algorithms are considered in the local management
layer of each agent to perform local grid load balancing.

3.1. First-come-first-served algorithm

Consider a grid resource with n hosts where each host Hi
has its own type tyi. A PACE resource model can be used
to describe the performance information of this host:

{ }niHH i ,......,2,1| == (1)

{ }ty ty i ni= =| , ,......,1 2 (2)

Let m be the number of considered tasks T. The

arrival time of each task Tj is tj. A PACE application
model tmj can be used to describe the application level
performance information of each task. The user
requirement of deadline for the task execution is
represented as tr j. Each task Tj also has two scheduled
attributes – a start time tsj and an end time tej. The task
set can then be expressed as follows:

{ }mjTT j ,......,2,1| == (3)

{ }mjtetstrtmttetstrtmt jjjjj ,......,2,1|),,,,(),,,,(== (4)

MTj is the set of hosts that are allocated to task Tj:

{ }mjMTMT j ,......,2,1| == (5)

{ }jij llHMT
l

,......,2,1| == (6)

where l j is the number of hosts that are allocated to task
Tj. M then is a 2D array, which describes the mapping
relationships between hosts and tasks using Boolean
values.

{ }M M i n j mij= = =| , ,......, ; , ,......,12 12 (7)

ji

ji
ij MTH

MTH

if

if
M

∉
∈=

0

1 (8)

The PACE evaluation engine can produce

performance prediction information based on the
application model tmj and resource models ty. An
appropriate subset of hosts H (note that H cannot be an
empty set Φ) can be selected, and this is evaluated and
expressed as follows:

()jj tmtyevaltexetytytyHHH ,,,,, =Φ≠⊆Φ≠⊆∀ (9)

The function of the agent local management is to

find the earliest possible time for each task to complete,
adhering to the sequence of the task arrivals.

()j

HHH
j tete

Φ≠⊆∀
=

,
min (10)

A task has the possibility of being allocated to any

selection of hosts. The agent should consider all these
possibilities and choose the earliest task end time. In any
of these situations, the end time is equal to the earliest
possible start time plus the execution time, which is
described as follows:

jjj texetste += . (11)

The earliest possible start time for the task Tj on a

selection of hosts is the latest free time of all the selected
hosts if there are still tasks running on the selected hosts.
If there is no task running on the selected hosts when the
task Tj arrives at time tj, Tj can be executed on these
hosts immediately. These are expressed as follows:

()=
∈∀

ij
HHi

jj tdtts
i,

max,max , (12)

where tdij is the latest free time of host Hi at the time tj.
This equals the maximum end times of tasks that are
allocated to the host Hi before the task Tj arrives:

()p

Mjp
ij tetd

ip 1,
max

=<∀
= . (13)

In summary, tej can be calculated as follows:

()  + =
=<∀∈∀Φ≠⊆∀

jp
MjpHHi

j
HHH

j texetette
ipi 1,,,

maxmax,maxmin .

(14)

It is not necessarily the case that scheduling all hosts
to a task will achieve higher performance. On the one
hand, the start time of task execution may be earlier if
only a number of processors are selected; on the other

- 4 -

hand, with some tasks, execution time may become
longer if too many hosts are allocated. The complexity of
the above algorithm is determined by the number of
possible host selections, which can be calculated as:

C C Cn n n
n n1 2 2 1+ + + = −...... . (15)

It is clear that if the number of hosts of a grid

resource increases, the scheduling complexity will
increase exponentially. This is based on a first-come-
first-served policy that means the sequence of the task
arrivals determines that of task executions. Reordering
the task set may optimise the task execution further, but
will increase the algorithm complexity. This is addressed
using an iterative heuristic algorithm described below.

3.2. Genetic algorithm

When tasks can be reordered, the scheduling objective is
also changed. Rather than looking for an earliest
completion time for each task individually, the
scheduling algorithm described in this section focuses on
the makespan ω, which represents the latest completion
time when all the tasks are considered together and is
subsequently defined as:

{ }j
mj

te
≤≤

=
1
maxω , (16)

The goal is to minimise function (16), at the same

time
jj trtej ≤∀ , should also be satisfied as far as

possible. In order to obtain near optimal solutions to this
combinatorial optimisation problem, the approach taken
in this work is to find schedules that meet the above
criteria through the use of an iterative heuristic method –
in this case a genetic algorithm (GA). The process
involves building a set of schedules and identifying
solutions that have desirable characteristics. These are
then carried into the next generation.

The technique requires a coding scheme that can
represent all legitimate solutions to the optimisation
problem. Any possible solution is uniquely represented
by a particular string, and strings are manipulated in
various ways until the algorithm converges on a near
optimal solution. In order for this manipulation to
proceed in the correct direction, a method of prescribing
a quality value (or fitness) to each solution string is
required. The algorithm for providing this value is called
the fitness function fv.

The coding scheme we have developed for this
problem consists of two parts: an ordering part Sk, which
specifies the order in which the tasks are to be executed
and a mapping part Mijk, which specifies the host
allocation to each task. Let k be the number of schedules
in the scheduling set. The ordering of Mijk is
commensurate with the task order. An example of the

coding scheme and its associated schedule are shown in
Figure 3. The execution times of the various tasks are
provided by the PACE function and are associated with
the task object for evaluation by the fitness function fv.

3 5 2 1 6 4

11010 01010 11110 01000 10111 01001

map of map of map of map of map of map of
task #3 task #5 task #2 task #1 task #6 task #4

task ordering

task #1

task #2

task #3

task #5

task #4

task #6

1

3

5

4

2

time

ho
st

Figure 3. An example coding scheme and corresponding Gantt
chart representing the associate schedule.

A combined cost function is used which considers

makespan, idle time and deadline. It is straightforward
to calculate the makespan, ωk, of the schedule k
represented by Sk and Mijk. Let Tjk be the reordered task
set according to the ordering part of the coding scheme,
Sk.

()=
=<∀=∀ pk

MjpMi
jk tets

ipkijk 1,1,
maxmax (17)

jkjkjk texetste += (18)

{ }jk
mj

k te
≤≤

=
1
maxω (19)

The timing calculation described above is similar to

that given in the function (14). One difference is that
since all of the tasks are considered together, the order is
defined according to Sk instead of the task arrival time tj.
So the consideration of tj is not necessary in (17) as
opposed to the function (12). Another aspect is that the
host selection is defined using Mijk and the PACE
evaluation result texejk is calculated directly using
corresponding resource models, while in the function
(14), different possible host selections H have all to be
considered and compared.

The nature of the idle time should also be taken into
account. This is represented using the average idle time
of all hosts φk.

- 5 -

{ } { }
()
n

tsteM

tste

m

j

n

i
jkjkijk

jk
mj

jk
mj

k

∑∑
= =

≤≤≤≤

−
−−= 1 1

11
minmaxϕ (20)

Idle time at the front of the schedule is particularly

undesirable as this is the processing time which will be
wasted first, and is least likely to be recovered by further
iterations of the GA or if more tasks are added. Solutions
that have large idle times are penalised by weighting
pockets of idle time to give φk, which penalises early idle
time more than later idle time. This is not described in
detail here.

The contract penalty θk is derived from the expected
deadline times tr and task completion time te.

()
m

trte
m

j
jjk

k

∑
=

−
= 1θ (21)

The cost value for the schedule k, represented by Sk

and Mijk, is derived from these metrics and their impact
predetermined by:

cim
k

c
k

i
k

m
k

c
WWW

WWW
f

++
++

=
θϕω (22)

The cost value is then normalised to a fitness value

using a dynamic scaling technique:

minmax

max

cc

k
cck

v ff

ff
f

−
−

= , (23)

where fc

max and fc
min represent the best and worst cost

values in the scheduling set.
The genetic algorithm utilises a fixed population size

and stochastic remainder selection. Specialised crossover
and mutation functions are developed for use with the
two-part coding scheme. The crossover function first
splices the two ordering strings at a random location,
and then reorders the pairs to produce legitimate
solutions. The mapping parts are crossed over by first
reordering them to be consistent with the new task order,
and then performing a single-point (binary) crossover.
The reordering is necessary to preserve the node
mapping associated with a particular task from one
generation to the next. The mutation stage is also two-
part, with a switching operator randomly applied to the
ordering parts, and a random bit-flip applied to the
mapping parts.

In the actual agent implementation using the above
algorithm, the system dynamism must be considered.
One advantage of the iterative algorithm described in
this section is that it is an evolutionary process and is
therefore able to absorb system changes such as the

addition or deletion of tasks, or changes in the number of
hosts available in the grid resource.

The two scheduling algorithms are both implemented
and can be switched from one to another in the agent.
The algorithms provide a fine-grained solution to
dynamic task scheduling and load balancing across
multiple hosts of a local grid resource. However, the
same methodology cannot be applied directly to a large-
scale grid environment, since the algorithms do not scale
to thousands of hosts and tasks. An additional
mechanism is required for multiple agents to work
together and achieve global grid load balancing.

4. Global grid load balancing

In this work, a grid is a collection of multiple local grid
resources that are distributed geographically in a wide
area. The problem that is addressed in this section is the
discovery of available grid resources that provide the
optimum execution performance for globally grid-
submitted tasks. The service discovery process indirectly
results in a load balancing effect across multiple grid
resources.

4.1. Service advertisement and discovery

An agent takes its local grid resource as one of its
capabilities. An agent can also receive many service
advertisements from nearby agents and store this
information in its coordination layer as its own
knowledge. All of the service information are organised
into Agent Capability Tables (ACTs). An agent can
choose to maintain different kinds of ACTs according to
different sources of service information. These include:

• T_ACT (This ACT). In the coordination layer of each
agent, T_ACT is used to record service information
of the local grid resource. The local management
layer is responsible for collecting this information
and reporting it to the coordination layer.

• L_ACT (Local ACT). Each agent can have one
L_ACT to record the service information received
from its lower agents in the hierarchy. The services
recorded in L_ACT are provided by grid resources in
its local scope.

• G_ACT (Global ACT). The G_ACT in an agent is
actually a record of the service information received
from its upper agent in the hierarchy. The service
information recorded in G_ACT is provided by the
agents, which have the same upper agent as the agent
itself.

There are basically two ways to maintain the contents
of ACTs in an agent: data-pull and data-push, each of
which has two approaches: periodic and event-driven.

- 6 -

• Data-pull. An agent asks other agents for their
service information either periodically or when a
request arrives.

• Data-push. An agent submits its service information
to other agents in the hierarchy periodically or when
the service information is changed.

Apart from service advertisement, another important
process among agents is service discovery. Discovering
available services is also a cooperative activity. Within
each agent, its own service provided by the local grid
resource is evaluated first. If the requirement can be met
locally, the discovery ends successfully. Otherwise
service information in both L_ACT and G_ACT is
evaluated and the request dispatched to the agent, which
is able to provide the best requirement/resource match. If
no service can meet the requirement, the request is
submitted to the upper agent. When the head of the
hierarchy is reached and the available service is still not
found, the discovery terminates unsuccessfully
(representing a request for computing resource which is
not supported by the available grid).

While the process of service advertisement and
discovery is not motivated by grid scheduling and load
balancing, it can result in an indirect coarse-grained load
balancing effect. A task tends to be dispatched to a grid
resource that has less workload and can meet the
application execution deadline. The discovery process
does not aim to find the best service for each request, but
endeavours to find an available service provided by a
neighbouring agent. While this may decrease the load
balancing effect, the trade-off is reasonable as grid users
prefers to find a satisfactory resource as fast and as local
as possible.

The advertisement and discovery mechanism also
allows possible system scalability. Most requests are
processed in a local domain and need not to be submitted
to a wider area. Both advertisement and discovery
requests are processed between neighbouring agents and
the system has no central structure, which otherwise
might act as a potential bottleneck.

4.2. System implementation

Agents are implemented using Java and data are
represented in an XML format. An agent is responsible
for collecting service information of the local grid
resource. An example of this service information can be
found below.

<agentgrid type=”service”>
 <address>gem.dcs.warwick.ac.uk</address>
 <port>1000</port>
 <type>SunUltra10</type>
 <nproc>16</nproc>
 <environment>mpi</environment>
 <environment>pvm</environment>
 <environment>test</environment>
 <freetime>Nov 15 04:43:10 2001</freetime>
<agentgrid>

The agent identity is provided by a tuple of the
address and port used to initiate communication. The
hardware model and the number of processors are also
provided. The example specifies a single cluster, in this
case a cluster of 16 SunUltra10 workstations. To
simplify the problem, the hosts within each grid resource
are configured to be homogeneous. The application
execution environments that are supported by the current
agent implementation include MPI, PVM, and a test
mode that is designed for the experiments described in
this work. Under test mode, tasks are not actually
executed and predictive application execution times are
scheduled and assumed to be accurate. The latest
scheduling makespan ω indicates the earliest
(approximate) time that corresponding grid resource
become available for more tasks. Due to the effect of load
balancing, it is reasonable to assume that all of hosts
within a grid resource have approximately the same
freetime. The agents use this item to estimate the
workload of each grid resource and make decisions on
where to dispatch incoming tasks. This item changes
over time and must be frequently updated. Service
advertisement is therefore important among the agents.

A portal has been developed which allows users to
submit requests destined for the grid resources. An
example request is given below.

<agentgrid type=”request”>
 <application>
 <name>sweep3d</name>
 <binary>
 <file>binary/sweep3d</file>
 <inputfile>input/input.50</inputfile>
 </binary>
 <performance>
 <datatype>pacemodel</datatype>
 <modelname>model/sweep3d</modelname>
 </performance>
 </application>
 <requirement>
 <environment>test</environment>
 <deadline>Nov 15 04:43:17 2001</deadline>
 </requirement>
 <email>junwei</email>
</agentgrid>

A user is required to specify the details of the

application, the requirements and contact information
for each request. Application information includes
binary executable files and also the corresponding PACE
application performance model tmr. In the current
implementation we assume that both binary and model
files are pre-compiled and available in all local file
systems. In the requirements, both the application
execution environment and the required deadline time trr
should be specified. Currently the user’s email address is
used as the contact information.

Service discovery processes are triggered by the
arrival of a request at an agent, where the kernel of this
process is the matchmaking between service and request
information. The match is straightforward whether an
agent can provide the required application execution
environment. The expected execution completion time

- 7 -

for a given task on a given resource can be estimated
using:

{ }),(min
,,,

r
tytytyHHH

r tmtyevalte
Φ≠⊆Φ≠⊆∀

+=ω . (24)

For a grid resource with homogeneous hosts, the

PACE evaluation function is called n times. If
rr trte ≤ ,

the resource is considered to be able to meet the required
deadline. Otherwise, the resource is not considered
available for the incoming task. This performance
estimation of local grid resources at the global level is
simple but efficient. However, when the task is
dispatched to the corresponding agent, the actual
situation may differ from the scenario considered in (24).
The agent may change the task order and advance or
postpone a specific task execution in order to balance the
workload on different hosts, and in so doing maximise
resource utilisation whilst maintaining the deadline
contracts of each user.

Service discovery for a request within an agent
involves multiple matchmaking processes. An agent
always gives priority to the local grid resource. Only
when the local resource is unavailable is the service
information of other grid resources evaluated and the
request dispatched to another agent. In order to measure
the effect of this mechanism for grid scheduling and load
balancing, several performance metrics are defined and
many experiments are carried out.

5. Performance evaluation

Experiments are carried out for performance evaluation
of grid load balancing using intelligent agents described
in above sections. Performance metrics are predefined
and experimental results are included in this section.

5.1. Performance metrics

There are a number of performance criteria that can be
used to describe resource management and scheduling
systems. What is considered as high performance
depends on the system requirements. In this work there
are several common statistics that can be investigated
quantitatively and used to characterise the effect of
scheduling and load balancing.

5.1.1. Total application execution time

This defines the period of time t, when a set of m parallel
tasks T are scheduled onto resources H with n hosts.
Note that the host set H here is slightly different from
that defined in (1), because it may include those either at
multiple grid resources or within a single grid resource.

{ } { }jmjj
mj

tstet
≤≤≤≤

−=
11
minmax (25)

5.1.2. Average advance time of application execution
completion

This can be calculated directly using:

m

tetr
m

j
jj∑

=
−

= 1

)(

ε , (26)

which is negative when most deadlines fail.

5.1.3. Average resource utilisation rate

The resource utilisation rate υi of each host Hi is
calculated as follows:

%100

)(
1,

×
−

=
∑

=∀

t

tste
ijMj

jj

iυ . (27)

The average resource utilisation rate υ of all hosts H

is:

n

n

i
i∑

== 1

υ
υ , (28)

where υ is in the range 0 … 1.

5.1.4. Load balancing level

The mean square deviation of υi is defined as:

n
d

n

i
i∑

=

−
= 1

2)(υυ
, (29)

and the relative deviation of d over υ that describes the
load balancing level of the system is:

%100)1(×−=
υ

β d . (30)

The most effective load balancing is achieved when d
equals zero and β equals 100%. The four aspects of the
system described above can be applied both to a grid
resource or a grid environment that consists of multiple
grid resources. These performance metrics are also
interrelated. For example, if the workload is balanced
across all the considered hosts, the resource utilisation
rate is usually high and the tasks finish quickly. Another
metrics that can only applied for measurement of grid
agents is the number of network packets used for service
advertisement and discovery.

- 8 -

5.2. Experimental design

The experimental system is configured with twelve
agents, illustrated by the hierarchy shown in Figure 4.

S1
(SGIOrigin2000, 16)

S2
(SGIOrigin2000, 16)

S4
(SunUltra10, 16)

S3
(SunUltra10, 16)

S5
(SunUltra5, 16)

S6
(SunUltra5, 16)

S12
(SunSPARCstati

on2, 16)

S11
(SunSPARCstati

on2, 16)

S8
(SunUltra1, 16)

S7
(SunUltra5, 16)

S10
(SunUltra1, 16)

S9
(SunUltra1, 16)

Figure 4. Case study: agents and resources.

These agents are named S1……S12 (for the sake of

brevity) and represent heterogeneous hardware resources
containing sixteen hosts / processors per resource. As
shown in Figure 4, the resources range in their
computational capabilities. The SGI multiprocessor is
the most powerful, followed by the Sun Ultra 10, 5, 1,
and SPARCStation 2 in turn.

In the experimental system, each agent maintains a
set of service information for the other agents in the
system. Each agent pulls service information from its
lower and upper agents every ten seconds. All of the
agents employ identical strategies with the exception of
the agent at the head of the hierarchy (S1) that does not
have an upper agent.

The applications used in the experiments include
typical scientific computing programs. Each application
has been modelled and evaluated using PACE. An
example of the PACE predications for the system S1
(which represents the most powerful resource in the
experiment) can be found in Table 1.

 Number of Processors/Hosts
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sweep3d
[4,200]

50 40 30 25 23 20 17 15 13 11 9 7 6 5 4 4

fft
[10,100]

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

improc
[20,192]

48 41 35 30 26 23 21 20 20 21 23 26 30 35 41 48

closure
[2, 36]

9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2

jacobi
[6,160]

40 35 30 25 23 20 17 15 13 11 10 9 8 7 6 6

memsort
[10,68]

17 16 15 14 13 12 11 10 10 11 12 13 14 15 16 17

cpi
[2,128]

32 26 21 17 14 11 9 7 5 4 3 2 4 7 12 20

Table 1. Case study: applications and requirements.

As shown in the table, different applications have
different performance scenarios that have a significant
impact on the task scheduling results.

During each experiment, requests for one of the
seven test applications are sent at one second intervals to
randomly selected agents. The required execution time
deadline for the application is also selected randomly
from a given domain; the bounds of the application
requirements can be also found in Table 1. The request
phase of each experiment lasts for ten minutes during
which 600 task execution requests are sent out to the
agents. While the selection of agents, applications and
requirements are random, the seed is set to the same so
that the workload for each experiment is identical.

While the experiments use the same resource
configurations and application workloads described
above, different combinations of local grid scheduling
algorithms and global grid mechanisms are applied as
shown in Table 2.

 Experiment Number
 1 2 3
First-come-first-served algorithm √
Iterative heuristic algorithm √ √
Service advertisement & discovery √

Table 2. Case study: experimental design.

5.3. Experimental results

The experimental results are given in Table 3; this
includes the three metrics applied to each agent and to
all the grid resources in the system.

 Experiment Number
 1 2 3
 ε(s) υ(%) β(%) ε(s) υ(%) β(%) ε(s) υ(%) β(%)
S1 42 7 71 52 9 89 29 81 96
S2 11 9 78 34 9 89 23 81 95
S3 -135 13 62 23 13 92 24 77 87
S4 -328 22 45 -30 28 96 44 82 94
S5 -607 32 56 -492 58 95 38 82 94
S6 -321 25 56 -123 29 90 42 78 92
S7 -261 23 57 10 25 92 38 84 93
S8 -695 33 52 -513 52 90 42 82 91
S9 -806 45 58 -724 63 90 30 80 84
S10 -405 28 61 -129 34 94 25 81 94
S11 -1095 44 50 -816 73 92 35 75 89
S12 -859 41 46 -550 67 91 26 78 90
Total -475 26 31 -295 38 42 32 80 90

Table 3. Case study: experimental results.

5.3.1. Experiment 1

In the first experiment, each agent is configured with the
first-come-first-served algorithm for local grid resource
scheduling. Agents are not organised for cooperation.
The experimental scenario is visualised in Figure 5.

- 9 -

Figure 5. Experimental scenario I.

The algorithm does not consider makespan, idletime
or deadline. Each agent receives approximately 50 task
requests on average, which results in only the powerful
platforms (SGI multiprocessors S1 and S2) meeting the
requirements. The slower machines including the Sun
SPARCstations clusters S11 and S12 impose serious
delays in task execution with long task queues (see
Figure 5). The total task execution time is about 46
minutes. The overall average delay for task execution is
approximately 8 minutes. It is apparent that the high
performance platforms are not utilised effectively, and
the lack of proper scheduling overloads clusters like S11
that is only 44% utilised. The average utilisation of grid
resources is only 26%. The workload for each host in
each grid resource is also unbalanced. For example the
load balancing level of S12 is as low as 46%. The overall
grid workload is also unbalanced at 31%.

5.3.2. Experiment 2

In experiment 2, the iterative heuristic algorithm is used
in place of the first-come-first-serve algorithm although
no higher-level agent cooperation mechanism is applied.
The experimental scenario is visualised in Figure 6.

Figure 6. Experimental scenario II.

The algorithm aims to minimise makespan and idle
time, whilst meeting deadlines. Compared to those of
experiment 1, almost all metrics are improved. Task
executions are completed earlier. The total task
execution time is improved from 46 to 36 minutes and

the average task execution delay is reduced to
approximately 5 minutes. However, resources such as S11
and S12 remain overloaded and the GA scheduling is not
able to find solutions that satisfy all the deadlines.
Generally, resources are better utilised as a result of the
better scheduling, such as the use of S11 that increases
from 44% to 73%. The overall average utilisation also
improves from 26% to 38%. While load balancing on
each grid resources is significantly improved, the lack of
any higher-level load-balancing mechanism results in a
slightly improved overall grid load balancing to 42% (as
opposed to 31% in experiment 1).

5.3.3. Experiment 3

In experiment 3, the service advertisement and discovery
mechanism is enabled for high-level load balancing. The
experimental scenario is visualised in Figure 7.

Figure 7. Experimental scenario III.

Service discovery results in a new distribution of
requests to the agents, where the more powerful platform
receives more requests. As shown in Figure 7, powerful
platform like S1 receives 16% of tasks, which is four
times of tasks received by relatively slow platform S11.
The total task execution time is also dramatically
decreased to 11 minutes. As a result, the majority of task
execution requirements can be met and all grid resources
are well utilised (80% on average). The load balancing
of the overall grid is significantly improved from 42%
(in experiment 2) to 90%. The load balancing on
resources such as S1 and S2 are only marginally
improved by the GA scheduling when the workload is
higher. None of other agents show an improvement in
local grid load balancing.

Experimental results in Table 3 are also illustrated in
Figures 8, 9, and 10, showing the effect on the
performance metrics given in Section 5.1. The curves
indicate that different platforms exhibit different trends
when agents are configured with more scheduling and
load balancing mechanisms. Among these the curves for
S1, S2, (which are the most powerful) and S11, S12, (which
are the least powerful) are representative and are
therefore emphasised, whilst others are indicated using

- 10 -

grey lines. The curve for the overall grid is illustrated
using a bold line.

5.3.4. Application execution

In Figure 8, it is apparent that both the GA scheduling
and the service discovery mechanism contribute to
improving the application execution completion.

-1200

-1000

-800

-600

-400

-200

0

200

1 2 3

Experiment Number

ε (s) S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

Total

Figure 8. Case study: trends I for experimental results on

advance times of application execution completion ε.

The curve implies that the more a resource is loaded
the more significant the effect is. For example, S1 and S2
are not overloaded during the three experiments, and
therefore the value of ε only changes slightly. S11 and S12
are heavily overloaded during the experiments 1 and 2,
and therefore the improvement of ε in the experiments 2
and 3 is more significant. The situations of S3 … S10 are
distributed between these two extremes. The curve for
the overall grid provides an average estimation for all
situations, which indicates that the service discovery
mechanism contributes more towards the improvement
in application executions than GA scheduling.

5.3.5. Resource utilisation

The curves in Figure 9 illustrate similar trends to those
of Figure 8. S1, S2 and S11, S12 still represent the two
extreme situations between which the other platforms are
distributed.

The curve for the overall grid indicates that the
service discovery mechanism contributes more to
maximising resource utilisation. However, overloaded
platforms like S11 and S12 benefit mainly from the GA
scheduling, which is more effective at load balancing
when the workload is high; lightly-loaded platforms like
S1 and S2 chiefly benefit from the service discovery
mechanism, which can dispatch more tasks to them.

0

10

20

30

40

50

60

70

80

90

1 2 3

Experiment Number

υ (%) S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

Total

Figure 9. Case study: trends II for experimental results on

resource utilisation rate υ.

5.3.6. Load balancing

Curves in Figure 10 demonstrate that local and global
grid load balancing are achieved in different ways.

0

10
20

30
40

50

60
70

80
90

100

1 2 3

Experiment Number

β (%) S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

Total

Figure 10. Case study: trends III for experimental results on

load balancing level β.

While S1, S2 and S11, S12 are two representative
situations, the global situation is not simply an average
of local trends as those illustrated in Figures 8 and 9. In
the second experiment when the GA scheduling is
enabled, the load balancing of hosts or processors within
a local grid resource are significantly improved. In the
third experiment, when the service discovery mechanism
is enabled, the overall grid load balancing is improved
dramatically. It is clear that the GA scheduling
contributes more to local grid load balancing and the
service discovery mechanism contributes more to global
grid load balancing. The coupling of both as described in
this work is therefore a good choice to achieve load
balancing at both local and global grid levels.

- 11 -

5.4. Agent performance

Additional experiments are carried out to compare the
performance of grid agents when different service
advertisement and discovery strategies are applied.
These are introduced briefly in this section.

A centralised controlling mechanism is designed for
the agents. Each agent is assumed to have the pre-
knowledge of any other agents. Each time an agent
receives a task execution request, it will contact all of the
other agents for quoting of completion time. The best bid
is chosen and the request is dispatched to the available
grid resource directly in one step. This is actually an
event-driven data-pull strategy, which means that full
advertisement results in no necessary discovery.

The service advertisement strategy used in the last
section is periodic data-pull, where service information
is only transferred among neighbouring agents. This
results that service discovery has also to be processed
step by step. This distributed strategy means that not full
advertisement results in necessary discovery steps. The
experimental results introduced below indicate that
balancing the overhead for advertisement and discovery
in this way can lead to a better agent performance.

The details of the experimental design are not
included, though actually very similar to that introduced
in Section 5.2. One difference is that in these
experiments, the number of grid agents is changed to
enable the system scalability to be investigated.

5.4.1. Total application execution time

Figure 11 provides a comparison of total application
execution time for the two strategies.

0

20
40

60

80

100
120

140

160

4 6 8 10 12 14 16 18 20

Agent Number

t
(m

in
s)

Centralised
Distributed

Figure 11. Comparison of total application execution time

between the centralised and distributed strategies.

The total task execution time decreases when the
number of agents and grid resources increases. It is clear
that the centralised strategy leads to a bit better load
balancing results, since tasks finish in a less time under
the centralised control. This is more obvious when the
number of the agents increases.

It is reasonable that a centralised strategy can achieve
a better scheduling, because full service advertisement
leads to full knowledge on the performance of all grid
resources. However, under a distributed mechanism,
each agent has only up-to-date information on its
neighbouring agents, which limit the scheduling effect.

5.4.2. Average advance time of application execution
completion

Similar comparison for the two strategies is included in
Figure 12 in terms of the average advance time of
application execution time.

-70

-60

-50

-40

-30

-20

-10

0

4 6 8 10 12 14 16 18 20

Agent Numberε (mins)
Centralised
Distributed

Figure 12. Comparison of average advance time of application
execution completion between the centralised and distributed

strategies.

Tasks are executed quicker when the number of
agents increases. It is clear that the centralised strategy
leads to a bit better result again. The reason is similar to
that described in the last section. The result values are
negative since the workload of these experiments is quite
heavy and grid resources cannot meet the deadline
requirements of task execution averagely.

5.4.3. Network packets

0

5000

10000

15000

20000

25000

4 6 8 10 12 14 16 18 20

Agent Number

p
ac

ke
ts

Centralised
Distributed

Figure 13. Comparison of network packets between the

centralised and distributed strategies.

- 12 -

A different result is included in Figure 13 that provides a
comparison of the network packets involved during the
experiments of the two strategies.

The number of network messages used for service
advertisement and discovery increases linearly with the
number of agents. It is clear that the distributed strategy
significantly decreases the amount of network traffic.
The strategy of only passing messages among
neighbouring agents improves the system scalability as
the agent number increases.

6. Related work

In this work, local grid load balancing is performed in
each agent using AI scheduling algorithms. The on-the-
fly use of predictive performance data for scheduling
described in this work is similar to that of AppLeS [5],
Ninf [30] and Nimrod [2]. While AppLeS and Ninf
management and scheduling are also based on
performance evaluation techniques, they utilise the NWS
[39] resource monitoring service. Nimrod has a number
of similarities to this work, including a parametric
engine and heuristic algorithms [1] for scheduling jobs.
There are also many job scheduling systems, such as
Condor [28], EASY [27], Maui [25], LSF [40] and PBS
[24]. Most of these support batch queuing using the
FCFS algorithm. The main advantage of GA scheduling
used in this work for job scheduling is the quality of
service (QoS) and multiple performance metrics support.

This work also focuses on the cooperation of local
grid and global grid levels of management and
scheduling. The OGSA and its implementation, the
Globus toolkit [19], is becoming a standard for grid
service and application development, which is based on
web services protocols and standards [31]. Some existing
systems use the Globus toolkit to integrate with the grid
computing environment, including Condor-G [22],
Nimrod/G [3], though a centralised control structure is
applied in both implementations. Another grid
computing infrastructure, Legion [23], is developed
using an object-oriented methodology that provides
similar functionalities to the Globus. In this work, a
multi-agent approach is considered. Agents are used to
control the query process and to make resource discovery
decisions based on internal logic rather than relying on a
fixed-function query engine.

Agent-based grid management is also used in JAMM
[7, 38] and NetSolve [17, 18], where a centralised
broker/agents architecture is developed. In this work,
agents perform peer-to-peer service advertisement and
discovery to achieve global grid load balancing.
Compared with another “Agent Grid” work described in
[33], rather than using a collection of many predefined
specialised agents, grid load balancing in this work uses
a hierarchy of homogeneous agents that can be
reconfigured with different roles at running time. While
there are also several other related projects that have a

focus on agent-based grid computing [29, 34, 37], the
emphases of these works are quite different. In this work,
performance for grid load balancing is investigated in a
quantitative way that cannot found in any other work.

There are many other enterprise computing and
middleware technologies that are being adopted for grid
management, such as CORBA [35] and Jini [4].
Compared with these methods, the most important
advantage of an agent-based approach is that it can
provide a clear high-level abstraction of the grid
environment that is extensible and compatible for
integration of future grid services and toolkits.

7. Conclusions

This work addresses grid load balancing issues using a
combination of intelligent agents and multi-agent
approaches. For local grid load balancing, the iterative
heuristic algorithm is more efficient than the first-come-
first-served algorithm. For global grid load balancing, a
peer-to-peer service advertisement and discovery
technique is proven to be effective. The use of a
distributed agent strategy can reduce the network
overhead significantly and make the system scale well
rather than using a centralised control, as well as
achieving a reasonable good resource utilisation and
meeting application execution deadlines.

Further experiments will be carried out using the grid
testbed being built at Warwick. Since a large deployment
of the system is impossible due to the absence of a large-
scale grid testbed, a grid modelling and simulation
environment is under development to enable
performance and scalability of the agent system to be
investigated when thousands of grid resources and
agents are involved.

The next generation grid computing environment
must be intelligent and autonomous to meet
requirements of self management. Related research
topics include semantic grids [41] and knowledge grids
[42]. The agent-based approach described in this work is
an initial attempt towards a distributed framework for
building such an intelligent grid environment. Future
work includes the extension of the agent framework with
new features, e.g. automatic QoS negotiation, self-
organising coordination, semantic integration,
knowledge-based reasoning, and ontology-based service
brokering.

References

[1] A. Abraham, R. Buyya, and B. Nath, Nature’s heuristics

for scheduling jobs on computational grids, in:
Proceedings of 8th IEEE International Conference on
Advanced Computing and Communications (Cochin,
India, 2000).

[2] D. Abramson, R. Sosic, J. Giddy, and B. Hall, Nimrod: a
tool for performing parameterized simulations using

- 13 -

distributed workstations, in: Proceedings 4th IEEE
International Symposium on High Performance
Distributed Computing (HPDC ’95) (Pentagon City, VA,
USA, 1995).

[3] D. Abramson, J. Giddy, and L. Kotler, High performance
parametric modelling with Nimrod/G: killer application
for the global grid, in: Proceedings 14th International
Parallel and Distributed Processing Symposium
(Cancun, Mexico, 2000).

[4] K. Amold, B. O’Sullivan, R. Scheifer, J. Waldo, and A.
Woolrath, The Jini Specification (Addison Wesley,
1999).

[5] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G.
Shao, Application-level scheduling on distributed
heterogeneous networks, in: Proceedings
Supercomputing ’96 (Pittsburgh, PA, USA, 1996).

[6] F. Berman, A. J. G. Hey, and G. Fox, Grid Computing:
Making The Global Infrastructure a Reality (John Wiley
& Sons, 2003).

[7] C. Brooks, B. Tierney, and W. Johnston, JAVA agents
for distributed system management, LBNL Report
(1997).

[8] J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R.
Nudd, Performance modelling of parallel and distributed
computing using PACE, in: Proceedings of 19th IEEE
International Performance, Computing and
Communication Conference (IPCCC ’00) (Phoenix, AZ,
USA, 2000) pp. 485-492.

[9] J. Cao, D. J. Kerbyson, and G. R. Nudd, Dynamic
application integration using agent-based operational
administration, in: Proceedings of 5th International
Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology (PAAM ’00)
(Manchester, UK, 2000) pp. 393-396.

[10] J. Cao, D. J. Kerbyson, and G. R. Nudd, High
performance service discovery in large-scale multi-agent
and mobile-agent systems, International Journal of
Software Engineering and Knowledge Engineering 11(5)
(2001) 621-641.

[11] J. Cao, D. J. Kerbyson and G. R. Nudd, Use of agent-
based service discovery for resource management in
metacomputing environment, in: Proceedings of 7th
International Euro-Par Conference (Manchester, UK,
2001), Lecture Notes on Computer Science Volume 2150
pp. 882-886.

[12] J. Cao, D. J. Kerbyson, and G. R. Nudd, Performance
evaluation of an agent-based resource management
infrastructure for grid computing, in: Proceedings of 1st
IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid ’01) (Brisbane,
Australia, 2001) pp. 311-318.

[13] J. Cao, D. P. Spooner, J. D. Turner, S. A. Jarvis, D. J.
Kerbyson, S. Saini, and G. R. Nudd, Agent-based
resource management for grid computing, in:
Proceedings of 2nd Workshop on Agent-based Cluster
and Grid Computing (AgentGrid ’02) (Berlin, Germany,
2002) pp. 350-351.

[14] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G. R.
Nudd, ARMS: an agent-based resource management
system for grid computing, Scientific Programming
(Special Issue on Grid Computing) 10(2) (2002) 135-
148.

[15] J. Cao, S. A. Jarvis, D. P. Spooner, J. D. Turner, D. J.
Kerbyson, and G. R. Nudd, Performance prediction
technology for agent-based resource management in grid
environments, in: Proceedings of 11th IEEE
Heterogeneous Computing Workshop (HCW ’02) (Fort
Lauderdale, FL, USA, 2002).

[16] J. Cao, D. P. Spooner, S. A. Jarvis, S. Saini, and G. R.
Nudd, Agent-based grid load balancing using
performance-driven task scheduling, in: Proceedings of
17th IEEE International Parallel and Distributed
Processing Symposium (IPDPS ’03) (Nice, France, 2003).

[17] H. Casanova, and J. Dongarra, Using agent-based
software for scientific computing in the NetSolve system,
Parallel Computing 24(12-13) (1998) 1777-1790.

[18] H. Casanova, and J. Dongarra, Applying NetSolve’s
network-enabled server, IEEE Computational Science &
Engineering 5(3) (1998) 57-67.

[19] I. Foster and C. Kesselman, Globus: a metacomputing
infrastructure toolkit, International Journal of High
Performance Computing Applications 2 (1997) 115-128.

[20] I. Foster and C. Kesselman, The GRID: Blueprint for a
New Computing Infrastructure (Morgan-Kaufmann,
1998).

[21] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, Grid
services for distributed system integration, IEEE
Computer 35(6) (2002) 37-46.

[22] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S.
Tuecke, Condor-G: a computation management agent for
multi-institutional grids, Cluster Computing 5(3) (2002)
237-246.

[23] A. Grimshaw, W. A. Wulf, and the Legion team, The
Legion vision of a worldwide virtual computer,
Communications of the ACM 40(1) (1997) 39-45.

[24] R. L. Henderson, Job scheduling under the Portable
Batch System, in: Proceeding of 1st Workshop on Job
Scheduling Strategies for Parallel Processing (Santa
Barbara, CA, USA, 1995), Lecture Notes in Computer
Science Volume 949 pp. 279-294.

[25] D. Jackson, Q. Snell, and M. Clement, Core algorithms
of the Maui scheduler, in: Proceedings of 7th Workshop
on Job Scheduling Strategies for Parallel Processing
(Cambridge, MA, USA, 2001), Lecture Notes Computer
Science Volume 2221 pp 87-102.

[26] N. R. Jennings and M. J. Wooldridge (eds), Agent
Technology: Foundations, Applications, and Markets
(Springer Verlag, 1998).

[27] D. Lifka, The ANL/IBM SP scheduling system, in:
Proceeding of 1st Workshop on Job Scheduling Strategies
for Parallel Processing, 9th IEEE International Parallel
Processing Symposium (Santa Barbara, CA, USA, 1995),
Lecture Notes in Computer Science Volume 949 pp. 187-
191.

[28] M. Litzkow, M. Livny, and M. Mutka, Condor – a hunter
of idle workstations, in: Proceedings of 8th International
Conference on Distributed Computing Systems (ICDCS
’88) (San Jose, CA, USA, 1988) pp. 104-111.

[29] L. Moreau, Agents for the grid: a comparison for web
services (part 1: the transport layer), in: Proceedings of
2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid ’02) (Berlin,
Germany, 2002) pp. 220-228.

[30] H. Nakada, M. Sato, and S. Sekiguchi, Design and
implementations of Ninf: towards a global computing

- 14 -

infrastructure, Future Generation Computing Systems 5-
6 (1999) 649-658.

[31] E. Newcomer, Understanding Web Services: XML,
WSDL, SOAP, and UDDI (Addison Wesley, 2002).

[32] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C.
Perry, J. S. Harper, and D. V. Wilcox, PACE – a toolset
for the performance prediction of parallel and distributed
systems, International Journal of High Performance
Computing Applications 14(3) (2000) 228-251.

[33] O. F. Rana, and D. W. Walker, The agent grid: agent-
based resource integration in PSEs, in: Proceedings of
16th IMACS World Congress on Scientific Computation,
Applied Mathematics and Simulation (Lausanne,
Switzerland, 2000).

[34] W. Shen, Y. Li, H. Ghenniwa, and C. Wang, Adaptive
negotiation for agent-based grid computing, in:
Proceedings of AAMAS Workshop on Agentcities:
Challenges in Open Agent Environments (Bologna, Italy,
2002) pp. 32-36.

[35] D. Slama, J. Garbis, and P. Russell, Enterprise Corba
(Prentice Hall, 1999).

[36] R. Stevens, P. Woodward, T. DeFanti, and C. Catlett,
From the I-WAY to the national technology grid,
Communications of the ACM 40(11) (1997) 50-60.

[37] C. Thompson, Characterizing the agent grid, Technical
Report, Object Services and Consulting Inc. (1998)
http://www.objs.com/agility/tech-reports/9812-grid.html.

[38] B. Tierney, W. Johnston, J. Lee, and M. Thompson, A
data intensive distributed computing architecture for grid
applications, Future Generation Computer Systems 16(5)
(2000) 473-481.

[39] R. Wolski, N. T. Spring, and J. Hayes, The network
weather service: a distributed resource performance
forecasting service for metacomputing, Future
Generation Computing Systems 15(5-6) (1999) 757-768.

[40] S. Zhou, LSF: load sharing in large-scale heterogeneous
distributed systems, in: Proceedings of 1992 Workshop
on Cluster Computing (1992).

[41] H. Zhuge, Semantics, resource and grid, Future
Generation Computer Systems 20(1) (2004) 1-5.

[42] H. Zhuge, China’s E-Science Knowledge Grid
Environment, IEEE Intelligent Systems 19(1) (2004) 13-
17.

Biographies

Junwei Cao is currently a Research
Scientist at C&C Research Laboratories,
NEC Europe Ltd., Germany. He has
been involved in several grid computing
projects and working on both grid
infrastructure implementation and grid-
enabled application development. His
research is focused on the use of agents,
workflow and performance techniques
for grid resource management and job

scheduling. Before joining NEC in 2002, Dr Cao was a
Research Assistant in the High Performance System Group at
the University of Warwick, UK. He received his PhD in
Computer Science from Warwick in 2001. He is a member of
the IEEE Computer Society and the ACM.

Daniel P. Spooner is a newly-appointed
Lecturer in the Department of Computer
Science and is a member of the High
Performance System Group. He has 15
referred publications on the generation
and application of analytical
performance models to Grid computing
systems. He has collaborated with

NASA on the development of performance-aware schedulers
and has extended these through the e-Science Programme for
multi-domain resource management. He has worked at the
Performance and Architectures Laboratory at the Los Alamos
National Laboratory on performance tools development for
ASCI applications and architectures.

Stephen A. Jarvis is a Senior Lecturer
in the High Performance System Group
at the University of Warwick. He has
authored over 50 referred publications
(including three books) in the area of
software and performance evaluation.
While previously at the Oxford
University Computing Laboratory, he
worked on performance tools for a

number of different programming paradigms including the
Bulk Synchronous Parallel (BSP) programming library – with
Oxford Parallel and Sychron Ltd – and the Glasgow Haskell
Compiler – with Glasgow University and Microsoft Research
in Cambridge. He has close research links with IBM, including
current projects with IBM’s TJ Watson Research Center in
New York and with their development centre at Hursley Park
in the UK. Dr Jarvis sits on a number of international
programme committees for high-performance computing,
autonomic computing and active middleware; he is also the
Manager of the Midlands e-Science Technical Forum on Grid
Technologies.

Graham R. Nudd is Head of the High
Performance Computing Group and
Chairman of the Computer Science
Department at the University of
Warwick. His primary research
interests are in the management and
application of distributed computing.
Prior to joining Warwick in 1984, he
was employed at the Hughes Research
Laboratories in Malibu, California.

