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Junwei Cadj Daniel P. SpoonerStephen A. Jarvisand Graham R. Nudd
C&C Research Laboratories, NEC Europe Ltd., Sankt Augustin, Germany
"Department of Computer Science, University of Warwick, Covesity,

Email address for correspondence: cao@cctrl-nece.de

Abstract. Workload and resource management are essential furltieshén the software infrastructure for
grid computing. The management and scheduling of dynamic gradinees in a scalable way requires new
technologies to implement a next generation intelliggid environment. This work demonstrates that Al
technologies can be utilised to achieve effective wadkl and resource management. A combination of
intelligent agents and multi-agent approaches is appliethdidr local grid resource scheduling and global
grid load balancing. Each agent is a representativelafah grid resource and utilises predictive application
performance data and iterative heuristic algorithmshgireer local load balancing across multiple hosts. At
a higher level of the global grid, agents cooperate ®étth other to balance workload using a peer-to-peer
service advertisement and discovery mechanism. A stasly is included with corresponding experimental
results to demonstrate that intelligent agents areteffeto achieve resource scheduling and load balancing,
improve application execution performance and maximiseiresaitilisation.

Keywords: Load Balancing; Grid Computing; Intelligent Agents; Mulgieat Systems; Genetic Algorithm;
Service Advertisement and Discovery.

1. Introduction processors in a local grid. The agent couples application
performance data with iterative heuristic algorithms to

Grid computing originated from a new computingdynamically minimise task makespan and host idle time,
infrastructure for scientific research and Coopera[mﬁ] whilst meeting the deadline requirements for each task.
20] and is becoming a mainstream technology for largdhe algorithm is based on an evolutionary process and is
scale resource sharing and distributed system integratiderefore able to absorb system changes such as the
[21]. Current efforts towards making the globa@ddition or deletion of tasks, or changes in the number o
infrastructure a reality provide technologies on botld grihosts / processors available in a local grid.
services and application enabling [6]. At the global grid level, each agent is a
Workload and resource management are essentigpresentative of a grid resource and acts as a service
functionalities and provided at the service level of therovider of high performance computing power. Agents
grid software infrastructure. Two main challenges tha&r€ organised into a hierarchy and cooperate with each
must be addressed are scalability and adaptability. Gi@¢her to discover available grid resources for tasksgusin
resources are distributed geographically in a large-scalePeer-to-peer mechanism for service advertisement and
way and resource performance changes quickly over tirfliscovery.
Grid tasks from users require resources with different Agents are equipped with existing PACE application
QoS requirements. Effective management an@erformance prediction capabilities [8, 32]. The key
scheduling has to be achieved in an intelligent arfgatures of the PACE toolkit include good level of
autonomous way. predictive accuracy, rapid evaluation time and a method
Software agents have been accepted to be a poweffll cross-platform comparison. These features enakle t
high-level abstraction for modelling of complex softward®ACE performance data to be utilized on the fly for
systems [26]. In our previous work, an agent-basetpents to perform grid resource scheduling [15, 16].
methodology is developed for building large-scale Several metrics are considered to measure the load
distributed systems with highly dynamic behaviours [galancing performance of grid agents. A case study is
10]. This has been used in the implementation of dAcluded and corresponding results conclude that
agent-based resource management system fBielligent agents, supported by application performance
metacomputing [11] and grid computing [12, 13, 14]. Pprediction, iterative heuristic algorithms and service
This work focuses on grid load balancing issuediscovery capabilities, are effective to achieve aller
using a combination of both intelligent agents and multiesource scheduling and load balancing, improve
agent approaches. Each agent is responsible for resougglication execution performance and maximise
scheduling and load balancing across multiple hosts‘¢source utilisation.

! This work was carried out when the author was with the UrityasWarwick.



broker is an agent that heads the whole hierarchy. A
2. Grid agents coordinator is an agent that heads a sub-hierarchy. A
leaf-node is actually termed an agent in this description
This work combines intelligent agents and multi-agent
approaches. The agent structure and hierarchy are e
described below. e

2.1. Agent structure @ e

Each agent is implemented for managing hosts / @ @ 'Bmker
processors of a local grid resource and scheduling @:Coordinator
incoming tasks to achieve local load balancing. Each

agent provides a high-level representation of a grid @Agem
resource and therefore characterises these resowgces a

high performance computing service providers in a . .

wider grid environment. The layered structure of each Figure 2. Agent hierarchy.

agent is illustrated in Figure 1 and explained below. ,
The broker and coordinators are also agents except

that they are in a special position in the hierardily.

Agent Agent the agents have the same functionality despite their
{ Local Management Laye { Local Management ,_aye} dif_fer_e.nt prc])sitions. J_he broker does not r?avr(]a_ anr)ém more
priorities than coordinators or agents. The hieramhy
1t — Ll it — il homogeneous agents provides a high-level abstraction of
[ Coordination Layer J [ Coordination Layer J a grid environment
1T : _@ it : _@ The agent hierarchy can represent an open and
{ Communication '-ayer] { Communication '-ayer} dynamic system. New agents can join the hierarchy or
existing agents can leave the hierarchy at any tirhe. T
< T > hierarchy exists only logically and each agent can
contact others as long as it has their identities.

Figure 1. Agent structure. The hierarchical model can also address partly the
problem of scalability. When the number of agents

. Communication LayerAgents in the system must bel"Créases, the hierarchy may lead to many system
able to communicate with each other or with userdctivities being processed in a local domain. In thay w
using common data models and communicatiol€ system may scale well and does. not need to rely on
protocols. The communication layer provides an€ Of & few central agents, which may otherwise

agent with an interface to heterogeneous networlk§COMe system bottlenecks.
and operating systems. Service is another important concept. In other

. Coordination Layer The request an agent receivednethodologies, a client is a_bstracted _into a request
from the communication layer should be explaine§€NJer; @ server is abstracted into a service proder;
and submitted to the coordination layer whict® Matchmaker is an abstraction of a router between a

decides how the agent should act on the requ ent and corresponding server. In this work, an agent
according to its own knowledge. For example, if affontains all of the above abstractions, which pravide
agent receives a service discovery request, it mwmple and uniform abstraction of the functions in the

decide whether it has related service informatiorﬂ”d, management system. The service |nformat!on
This is described in detail in Section 4. provided at each local grid resource can be advertised

* Local Management LayerThis layer performs thro#ghtcr)]ut tTe z!erarchy anql atﬁents can coop_?;]ate with
functions of an agent for local grid load balancingeaC othér 1o discover avaiiable resources. These are

Detailed scheduling algorithms are described iHﬁtroduced in detail in Section 4.
Section 3. This layer is also responsible for .
submitting local service information to the2-3- Performance prediction

coordination layer for agent decision making. o
Performance prediction for parallel programs plays a key

role for agents to perform resource scheduling and load
2.2. Agent hierarchy balancing. Agents are integrated with existing PACE
application performance prediction capabilities.
Agents are organised into a hierarchy in a higher level The PACE evaluation engine is the kernel of the
global grid environment, as shown in Figure 2. Th@ACE toolkit. The evaluation engine combines the



PACE resource model (including performance related it H OMT, ®)
information of the hardware on which the parallel M; = 0 if H,OMT,
program will be executed) and application model :

(including all performance related information of the The PACE evaluation engine can produce

parallel program, €.g. M.PI or PVM program_s) at run8]erformance prediction information based on the
time to produce evaluation results, e.g. estimation

execution time. Agents are equipped with the PACEppllcat!on modeltmy and resource _modelty. An
evaluation engine and use predictive applicatiofPProPriate subset of hosks (note thatH cannot be an
performance data for scheduling. Detailed introductioRMPLY Set®) can be selected, and this is evaluated and
to the PACE toolkit is out of the scope of this paper bigXPressed as follows:
the use of PACE performance prediction for both local __ _ _ _ . _
grid and global grid load balancing is described below ifdH O H,H # ®,ty Oty,ty # ®,texe = eva|(ty.tmj) 9)
Sections 3 and 4 respectively.

The function of the agent local management is to
3. Local grid load balancing find the earliest possible time for each task tmplete,

adhering to the sequence of the task arrivals.

In this section, a local grid resource is considerdutta
cluster of workstations or a multiprocessor, which is te = _min (ﬂaj) (20)
abstracted uniformly as peer-to-peer networked hosts. OHOH Hze
Two algorithms are considered in the local management

layer of each agent to perform local grid load balancing. A task has the possibility of being allocated ty an
selection of hosts. The agent should considerhabe

possibilities and choose the earliest task end.timany
of these situations, the end time is equal to #rdiest
possible start time plus the execution time, whigh
(gescribed as follows:

3.1. First-come-first-served algorithm

Consider a grid resource withhosts where each hddt
has its own typéy;. A PACE resource model can be use
to describe the performance information of this host:

@j :&j +a@ (11)
H={H, [i=12...n} @)
t —{t =12 } @) The earliest possible start time for the tdslon a
y=1w=Ls...... n selection of hosts is the latest free time of ladl $elected

) hosts if there are still tasks running on the getbbosts.
Let m be the number of considered tasksThe it there is no task running on the selected hostsnathe
arrival time of each tasKj is . A PACE application task T, arrives at timet;, T, can be executed on these

modeltm can be used to describe the application levglosis immediately. These are expressed as follows:
performance information of each task. The user

requirement of deadline for the task execution is _
represented as;. Each taskT; also has two scheduled ts; —ma{tj.
attributes — a start timsy and an end timég. The task
set can then be expressed as follows:

max (td, )j ) (12)

0i H; OH

wheretd; is the latest free time of hols§ at the timet.

T2l 1i=12 3) This equals the maximum end times of tasks that are
_{ i li=12,..... m} allocated to the ho$t; before the task; arrives:

(t,tmtr,ts,te) :{(tj,tmj,trj,tsj,tej)| j=12,...... m} (4)

td; = max [te,)- (13)

. Op<j,Mj, =1

MT; is the set of hosts that are allocated to Task

MT :{MTJ li=12....... ,m} ) In summaryte can be calculated as follows:
MT, ={H, [ =12......) } (6) _ _
te, = _min | maxt;, max( max (tep)j +texq |-
OHOH ,Hz® 0i,H;OH Op<j,M;p=1
wherel; is the number of hosts that are allocated to task (14)

T;. M then is a 2D array, which describes the mapping
relationships between hosts and tasks using Boolean |1 is not necessarily the case that schedulingi@ts
values. to a task will achieve higher performance. On the o

_ _ hand, the start time of task execution may be exaili
M ={ M;li=12,...... n;j=12,..... m} (7)  only a number of processors are selected; on ther ot



hand, with some tasks, execution time may beconoeding scheme and its associated schedule are sinown
longer if too many hosts are allocated. The conigl®f Figure 3. The execution times of the various testes
the above algorithm is determined by the number @fovided by the PACE function and are associatetl wi
possible host selections, which can be calculated a  the task object for evaluation by the fitness fiorcf,.

Cr+C+...#CQ=2"-1 (15) task ordering
: . . 3 5 2 1 6 4

It is clear that if the number of hosts of a grid
resource increases, the scheduling complexity will
: . . ) 11010 01010 11110 01000 10111 01001
increase exponentially. This is based on a firgteo |
first-served policy that means the sequence oftalsk | | | I |

; ; ; : map of map of map of map of map of map of
arrivals determines _tha_lt of task execuﬂons. Reorde task #3 task #5 fask #2 task #1 task #6 task #4
the task set may optimise the task execution fuortet

will increase the algorithm complexity. This is aelssed

using an iterative heuristic algorithm describekbie 1 I B e
task #:

3.2. Genetic algorithm - IIn task #:

. ... @ k #:
When tasks can be reordered, the scheduling olseisti g3 - as
also changed. Rather than looking for an earliest B sk

completion time for each task individually, the 4 |0 | e
scheduling algorithm described in this section $esuon )

N

the makespam, which represents the latest completion 5 i B B esc#
time when all the tasks are considered togetherisind -
subsequently defined as: time "
w= ma){tej}- (16) Figure 3. An example coQing scheme gnd corresponding Gantt
I<jsm chart representing the associate schedule.

The goal is to minimise function (16), at the same A combined cost function is used which considers
time [Ojte, <tr, should also be satisfied as far asnakespan, idle time and deadline. It is straightod

possible. In order to obtain near optimal solutitmghis [0 calculate the makespany, of the schedulek
combinatorial optimisation problem, the approadketa "€Presented b andMi. Let Ty be the reordered task
in this work is to find schedules that meet thevabo SEt according to the ordering part of the codirtgeste,
criteria through the use of an iterative heuristiethod —

in this case a genetic algorithm (GA). The process

involves building a set of schedules and identdyin ts, = max( max (tek)j (17)
solutions that have desirable characteristics. lae K oMy Op<i M2t P
then carried into the next generation. te, =ts, +texg, (18)
The technigue requires a coding scheme that can
" . . w :ma){te_ } (29)
represent all legitimate solutions to the optimdat K™ jejemt KK

problem. Any possible solution is uniquely représdn

by a particular string, and strings are manipuldated  The timing calculation described above is similar t

various ways until the algorithm converges on arneghat given in the function (14). One differencetfigt

optimal solution. In order for this manipulation tosince all of the tasks are considered togetherotter is

proceed in the correct direction, a method of pies  defined according t& instead of the task arrival time

a quality value (orfitnes$ to each solution string is So the consideration df is not necessary in (17) as

required. The algorithm for providing this valuecalled opposed to the function (12). Another aspect i$ tha

the fitness functiof,. host selection is defined usinily and the PACE
The coding scheme we have developed for thigvaluation resulttexg, is calculated directly using

problem consists of two parts: an ordering [&rtvhich  corresponding resource models, while in the fumctio

specifies the order in which the tasks are to leewted (14), different possible host selectioHs have all to be
and a mapping parMi, which specifies the host .gqsidered and compared.

allocation to each task. Lktbe the number of schedules  The nature of the idle time should also be takea in

in the scheduli_ng set. The ordering My is zccount. This is represented using the averageiidie
commensurate with the task order. An example of thg 5 hostsp.



n

addition or deletion of tasks, or changes in the number o
hosts available in the grid resource.

The two scheduling algorithms are both implemented
and can be switched from one to another in the agent.

Idle time at the front of the schedule is particularl%—he glgotrlth?s Erzv';.je a f(ljnel—gr;lnbe? sc_)Iut|on to
undesirable as this is the processing time which welll ynamic fask scheguling and load bajancing across

b™ .
wasted first, and is least likely to be recovered bthtenr multiple hosts of a local grid resource. However, the
iterations of the GA or if more tasks are added. Satstio >3 m_ethodqlogy cannot be applied Q|rectly to a large-
that have large idle times are penalised by weightin ale grid environment, since the algorithms do nd_e_sca
pockets of idle time to givey, which penalises early idle t thou.sandls of hOStS and taSkS‘ An additional
time more than later idle time. This is not described mechanism is required for multiple agents to work
detail here together and achieve global grid load balancing.

The contract penaltgy is derived from the expected
deadline times and task completion tintg

My (tejk —tsy )

M

11,
L

j=1i=1

(20)

= ma>{te' }— min{ts' }—
¢k I<jsm [ I<jsm (i

n

4. Global grid load balancing

In this work, a grid is a collection of multiple localidr
resources that are distributed geographically in a wide
area. The problem that is addressed in this sectithreis
discovery of available grid resources that provide the
optimum execution performance for globally grid-
The cost value for the schedikerepresented b  sypmitted tasks. The service discovery process indirectly

andMjy, is derived from these metrics and their impaglesyits in a load balancing effect across multiple grid
predetermined by: resources.

3

(te, -tr,)

m

L

6, (21)

fk - W, +Wi¢k +W°G, (22) 4.1 Service advertisement and discovery
Wm +WI +WC

[

An agent takes its local grid resource as one of its
The cost value is then normalised to a fitness valuspabilities. An agent can also receive many service
using a dynamic scaling technique: advertisements from nearby agents and store this
information in its coordination layer as its own
knowledge. All of the service information are organised
into Agent Capability Tables (ACTs). An agent can
choose to maintain different kinds of ACTs according to
ifferent sources of service information. These include

fk

_c c¢ ,
max _ § min
fc fc

oo fo = (23)

v

where f"® and f,"" represent the best and worst cosfI

values in the scheduling set.

The genetic algorithm utilises a fixed population size
and stochastic remainder selection. Specialised crassov
and mutation functions are developed for use with the
two-part coding scheme. The crossover function first
splices the two ordering strings at a random location,
and then reorders the pairs to produce legitimate
solutions. The mapping parts are crossed over by first
reordering them to be consistent with the new taskrprde
and then performing a single-point (binary) crossover.
The reordering is necessary to preserve the node
mapping associated with a particular task from one
generation to the next. The mutation stage is also two-
part, with a switching operator randomly applied to the
ordering parts, and a random bit-flip applied to the
mapping parts.

In the actual agent implementation using the above
algorithm, the system dynamism must be considered,
One advantage of the iterative algorithm described

T_ACT(This ACT). In the coordination layer of each
agent, T_ACT is used to record service information
of the local grid resource. The local management
layer is responsible for collecting this information
and reporting it to the coordination layer.

L_ACT (Local ACT). Each agent can have one
L_ACT to record the service information received
from its lower agents in the hierarchy. The services
recorded in L_ACT are provided by grid resources in
its local scope.

G_ACT (Global ACT). The G_ACT in an agent is
actually a record of the service information received
from its upper agent in the hierarchy. The service
information recorded in G_ACT is provided by the
agents, which have the same upper agent as the agent
itself.

There are basically two ways to maintain the casten
ACTs in an agent: data-pull and data-push, each of

this section is that it is an evolutionary procesd &n which has two approaches: periodic and event-driven.
therefore able to absorb system changes such as the



e Data-pull An agent asks other agents for their The agent identity is provided by a tuple of the
service information either periodically or when aaddressand port used to initiate communication. The
request arrives. hardware model and the number of processors are also

« Data-push An agent submits its service informationprovided. The example specifies a single cluster, in this
to other agents in the hierarchy periodically or whenase a cluster of 16 SunUltral0 workstations. To
the service information is changed. simplify the problem, the hosts within each grid reseurc

are configured to be homogeneous. The application

Apart from service advertisement, another importa ecution environments that are supported by the current

process among agents is service discovery. Discoveriggem implementation include MPI, PVM, andtest

available services is also a cooperative activitythiw mode that is designed for the experiments described in

each agent, its own service provided by the local g”[%is work. Undertest mode, tasks are not actually

resource is evaluated first. If the requirement can & Texecuted and predictive application execution times are

locally, the discovery ends successfully. Othermsg
L ) . .>Scheduled and assumed to be accurate. The latest
service information in both L ACT and G_ACT is . . !

luated and th ¢ dispatched to th ¢ hs heduling makespan® indicates the earliest
€valuated and the request dispatched 10 the agent, w (8 proximate) time that corresponding grid resource

is able to provide the best requirement/resource mHtChbecome available for more tasks. Due to the effelciaaf

no service can meet the requirement, the request H&Iancing, it is reasonable to assume that all ofshos
submitted to the upper agent. When the head of tk}ﬁ

hi h i hed and th i1abl icoll thin a grid resource have approximately the same
lerarchy Is reached and the available servicellsnsll - ¢oqtime The agents use this item to estimate the
found, the discovery terminates unsuccessfull

. ; 'UiYorkload of each grid resource and make decisions on
(representing a request for computing resource which Where to dispatch incoming tasks. This item changes
notvs\/t;]plpor:ﬁd by the avall?ble gr_ld). dvert ¢ over time and must be frequently updated. Service
. e the process ol service advertisement angy o tisement is therefore important among the agents.

discovery is not motivated by grid scheduling and loa A portal has been developed which allows users to

Ea:anc!ng, |tﬁcatn fstunkmt andlnglrﬁctgparste}]grgl:nad| s(ibmit requests destined for the grid resources. An
alancing effect. A task tends to be dispatched to a gr ample request is given below.
resource that has less workload and can meet the
application execution deadline. The discovery procesggentgrid type="request’>
does not aim to find the best service for each regbest, <application>
. . . . <name>sweep3d</name>

endeavours to find an available service provided by a<pinary>
neighbouring agent. While this may decrease the load <file>binary/sweep3d<ffile>

. . . <inputfile>input/input.50</inputfile>
balancing effect, the trade-off is reasonable as gm®asus  </pinary>

prefers to find a satisfactory resource as fast aridcas <performance>
<datatype>pacemodel</datatype>

as possible. <modelname>model/sweep3d</modelname>
The advertisement and discovery mechanism alsgfégg{ifc‘gg:ﬁg@
allows possible system scalability. Most requests arerequirement>
processed in a local domain and need not to be submittegénvifanment=testsjenvironment>
to a wider area. Both advertisement and discovery/requirement>
requests are processed between neighbouring agents agef]‘it'grji‘égwei<’emai'>
the system has no central structure, which otherwise
might act as a potential bottleneck. A user is required to specify the details of the
) ) application, the requirements and contact information
4.2. System implementation for each request. Application information includes
binary executable files and also the corresponding PACE
Agents are implemented using Java and data ai@plication performance modem. In the current
represented in an XML format. An agent is responsiblgnplementation we assume that both binary and model
for collecting service information of the local gridfijes are pre-compiled and available in all local file

resource. An example of this service information can bsystems. In the requirements, both the application

found below. execution environment and the required deadline time

arid ] should be specified. Currently the user’s email address is
<agentgrid type="service"> . :
<address>gem.dcs.warwick.ac.uk</address> used as_the antaCt information. .
<port>1000</port> Service discovery processes are triggered by the
<type>SunUltralO</type> ival of h he k disf
<nproc>16</nproc> | arrival of a request at an agent, where the kernelisf t
<environment>mpi</environment> process is the matchmaking between service and request
<enV|ronment>pvm</enV|ronment> . . . .
<environmentstest</environment> information. The match is straightforward whether an
<freetime>Nov 15 04:43:10 2001</freetime> agent can provide the required application execution

<agentgrid> . . . .
geng environment. The expected execution completion time



for a given task on a given resource can be estimated

using: 5.1.2. Average advance time of application execution
completion
te =w+  min _ {evalty,tm)}- (24)
DHOH HZ® by ye This can be calculated directly using:
For a grid resource with homogeneous hosts, the m
PACE evaluation function is called times. Ifte <tr,, D (tr, —te))
the resource is considered to be able to meet the eequir e=2—, (26)

deadline. Otherwise, the resource is not considered m

available for the incoming task. This performance . . . . .

S X . which is negative when most deadlines fail.
estimation of local grid resources at the global lésel
simple but efficient. However, when the task iss
dispatched to the corresponding agent, the actual
situation may differ from the scenario considered in.(24)|_ I .

he resource utilisation rate; of each hostH; is
The agent may change the task order and advance o i
- T alculated as follows:
postpone a specific task execution in order to balance e
workload on different hosts, and in so doing maximise o —t
resource utilisation whilst maintaining the deadline z_( & ~ts;)

_ DJ,MH =1 (27)

contracts of each user. U, R e— x100%-

Service discovery for a request within an agent
involves multiple matchmaking processes. An agent
always gives priority to the local grid resource. Onl s
when the local resource is unavailable is the service

information of other grid resources evaluated and the

1.3. Average resource utilisation rate

The average resource utilisation ratef all hostsH

n

request dispatched to another agent. In order to measure Zui
the effect of this mechanism for grid scheduling and load p=i (28)
balancing, several performance metrics are defined and n
many experiments are carried out. o

wherew is in the range 0 ... 1.
5. Performance evaluation .

5.1.4. Load balancing level
Experiments are carried out for performance evaluatior}1 deviati is defined as:
of grid load balancing using intelligent agents describel'® Mean square deviation:pis defined as:
in above sections. Performance metrics are predefined
and experimental results are included in this section.

(29)

5.1. Performance metrics

There are a number of performance criteria that @n Bnd the relative deviation of over » that describes the
used to describe resource management and schedulipgd balancing level of the system is:

systems. What is considered as high performance
depends on the system requirements. In this work there
are several common statistics that can be investigat
guantitatively and used to characterise the effect of

scheduling and load balancing. The most effective load balancing is achieved when

equals zero angd equals 100%. The four aspects of the
5.1.1. Total application execution time system described above can be applied both to a grid

resource or a grid environment that consists of multiple
This defines the period of timewhen a set a parallel  grid resources. These performance metrics are also
tasks T are scheduled onto resourddswith n hosts. interrelated. For example, if the workload is balanced
Note that the host séi here is slightly different from across all the considered hosts, the resource utiiisati
that defined in (1), because it may include those e#her rate js usually high and the tasks finish quickly. Another
multiple grid resources or within a single grid resource. metrics that can only applied for measurement of grid

agents is the number of network packets used for service

t = maxte, { - minits, } (25)  advertisement and discovery.

I<jsm I<jsm

B= (1—%) x100%- (30)



As shown in the table, different applications have
5.2. Experimental design different performance scenarios that have a significan
impact on the task scheduling results.
The experimental system is configured with twelve During each experiment, requests for one of the
agents, illustrated by the hierarchy shown in Figure 4. seven test applications are sent at one second ifg¢ova

randomly selected agents. The required execution time

deadline for the application is also selected randomly
‘ from a given domain; the bounds of the application

requirements can be also found in Table 1. The request

. phase of each experiment lasts for ten minutes during
which 600 task execution requests are sent out to the

on2 1) requirements are random, the seed is set to the same so

Suntiat, 15 that the workload for each experiment is identical.

s While the experiments use the same resource
configurations and application workloads described
above, different combinations of local grid scheduling
algorithms and global grid mechanisms are applied as

S
(SGIOrigin2000, 16)

S
(SunUltral0, 16
% &
(SunUltras, 16) (SunUltral, 16)

S
(SunuUltral, 16)

agents. While the selection of agents, applications and

Figure 4. Case study: agents and resources. shown in Table 2.
These agents are namé&d..... S;» (for the sake of lEXperimgntNumbesr
brevny).and represent heterogeneous hardware resourcegs————=——— algorithm
containing sixteen hosts / processors per resource. ASiterative heuristic algorithm N N
shown in Figure 4, the resources range in their Service advertisement & discovery V
computational capabilities. The SGI multiprocessor is . .
the most powerful, followed by the Sun Ultra 10, 5, 1, Table 2. Case study: experimental design.

and SPARCStation 2 in turn.
In the experimental system, each agent maintainsSe3. Experimental results
set of service information for the other agents he t
system. Each agent pulls service information from it§he experimental results are given in Table 3; this
lower and upper agents every ten seconds. All of thcludes the three metrics applied to each agent and to
agents employ identical strategies with the exception 8fl the grid resources in the system.
the agent at the head of the hierarcBy that does not
have an upper agent. Experiment Number

The applications used in the experiments include =S u(im) 5% | 25) D(;J) %) | 2(9) 0(03@ 50%)
typical scientific computing programs. Each applicatiod | 42 7 71| 52 9 89| 29 81 96

has been modelled and evaluated using PACE. /A | 11 9 78| 34 9 89| 23 8l 95
example of the PACE predications for the systm & |-135 13 62} 23 13 92 24 77 87

. ; 328 22 45| 30 28 96| 44 82 94
(which represents the most powerful resource in th%

. _ 607 32 56| -492 58 95 38 82 94
experiment) can be found in Table 1. 321 25 56| -123 29 90| 42 78 92

S
s, | 261 23 57| 10 25 92| 38 84 93
Number of Processors/Hosts S 695 33 52| 513 52 90 42 82 91

1 2 3 45 6 7 8 9 1al12 13141516 > |B806 45 58| -724 63 90 30 80 84
sweep3d50 40 30 2523 2017 151311 9 7 6 5 4 4 2o |405 28 61) -129 34 94 25 81 94

[4.200] Sy |-1095 44 50| 816 73 92| 35 75 89
fit 2524 2322212019 18 17 16 1514 1312 1110 S2 |-859 41 46| -550 67 91 26 78 90
[10,100] Tota| 475 26 31| 295 38 42 32 80 90
improc 48 41 35 30 26 23 21 20 20 21 23 26 30 35 41 48
[2|0'192] 6 08 8 7 766505 443322 Table 3. Case study: experimental results.
closure
[2, 36] .
jacobi 40 3530 2523201715131110 9 8 7 6 6  5.3.1. Experiment 1
[6,160]
Tl%mgé’]rm 16151413 1211101011 1213 141516 17 |y the first experiment, each agent is configured with th

cpi 3226211714119 7 5 4 3 2 4 7 1zo first-come-first-served algorithm for local grid resceirc
[2,128] scheduling. Agents are not organised for cooperation.
The experimental scenario is visualised in Figure 5.

Table 1. Case study: applications and requirements.



Agent Task Distribution %

A the average task execution delay is reduced to

approximately 5 minutes. However, resources such as
andS;, remain overloaded and the GA scheduling is not
able to find solutions that satisfy all the deadlines.
Generally, resources are better utilised as a resthteof
better scheduling, such as the useSgfthat increases
from 44% to 73%. The overall average utilisation also
improves from 26% to 38%. While load balancing on
each grid resources is significantly improved, the lack of
. any higher-level load-balancing mechanism results in a
1206.55 2793.05 slightly improved overall grid load balancing to 42% (as
opposed to 31% in experiment 1).

EE“"

S Y

|

e
o
@

Figure 5. Experimental scenario |.

. . . 5.3.3. Experiment 3
The algorithm does not consider makespan, idletime

or deadline. Each agent receives approximately 50 tagkeyneriment 3, the service advertisement and discovery

requests on average, which results in only the powerfylechanism is enabled for high-level load balancing. The
platforms (SGI multiprocessorS, and S) meeting the oy nerimental scenario is visualised in Figure 7.
requirements. The slower machines including the Sun

SPARCstations cluster§; and S, impose SEerious agent Task pistribution %
delays in task execution with long task queues (s¢ =0 I TNETEN TONN WY Y W)
; ; ; i 0z ([N I W W B W W ]
Figure 5). The total task execution time is about 4

minutes. The overall average delay for task execution 4 '
approximately 8 minutes. It is apparent that the hig =

performance platforms are not utilised effectively, an =
the lack of proper scheduling overloads clusters ke :
that is only 44% utilised. The average utilisation of gric ..
resources is only 26%. The workload for each host i <o
each grid resource is also unbalanced. For example 1 °*
load balancing level d&, is as low as 46%. The overall

grid workload is also unbalanced at 31%.

|

w

i!

oi
-]
@
=]
(=]
w

.0s 340.0s

Figure 7. Experimental scenario lll.
5.3.2. Experiment 2
Service discovery results in a new distribution of

In experiment 2, the iterative heuristic algorithm isduserequests to the agents, where the more powerful platform
in place of the first-come-first-serve algorithm altigh receives more requests. As shown in Figure 7, powerful
no higher-level agent cooperation mechanism is applieglatform like S, receives 16% of tasks, which is four
The experimental scenario is visualised in Figure 6. times of tasks received by relatively slow platfoSn.

The total task execution time is also dramatically

el SERRTUIANRG * decreased to 11 minutes. As a result, the majority kf tas
o> TN IEENTIE i execution requirements can be met and all grid resources
so3 (NI NN ] 5 are well utilised (80% on average). The load balancing
o TN T ] s

of the overall grid is significantly improved from 42%

E

(in experiment 2) to 90%. The load balancing on

¢ Y W NN ] s -
i i resources such a$§ and S are only marginally

Bl SENG B B R 5 — improved by the GA scheduling when the workload is
o '-3-:_:-3:_:'3‘ * higher. None of other agents show an improvement in
10 [ R W ’

local grid load balancing.

Experimental results in Table 3 are also illustrated in
0.0s 1099.0s 2198.0s Figures 8, 9, and 10, showing the effect on the
performance metrics given in Section 5.1. The curves
indicate that different platforms exhibit different tdsn
) ) L . ,when agents are configured with more scheduling and
_The algorithm aims to minimise makespan and idlgy;y pajancing mechanisms. Among these the curves for
time, .whllst meeting deadllnes.. Compa}red to those .S, (which are the most powerful) aS, Si,, (which
experiment 1, almost all metrics are improved. TasK.. the |east powerful) are representative and are

executions are completed earlier. The total taskerefore emphasised, whilst others are indicated using
execution time is improved from 46 to 36 minutes an

Figure 6. Experimental scenario II.



grey lines. The curve for the overall grid is illustdate —e—31
using a bold line. 90 ~ RN
80 - 3
5.3.4. Application execution 70 - s4
60 S5
In Figure 8, it is apparent that both the GA scheduling S 501 .
and the service discovery mechanism contribute to < 44 | 7
improving the application execution completion. 30 S8
20 S9
—e—31 10 : S10
&3 0 '%. . .| —8—s11
3 1 2 3 —&—S12
2 Experiment Number —¢Total
S6
S7 Figure 9. Case study: trends Il for experimental results on
8 resource utilisation rate
S9
S10 5.3.6. Load balancing
—HB—S11
—A—S12 Curves in Figure 10 demonstrate that local and global
—>—Total grid load balancing are achieved in different ways.
Experiment Number
——31
Figure 8. Case study: trends | for experimental results on 1001 -~ -
advance times of application execution completion gg T - s3
The curve implies that the more a resource is loaded 701 .
the more significant the effect is. For examiBeandS, = %99 =5
are not overloaded during the three experiments, and i 501 S6
therefore the value efonly changes slighthys;; andS;, 401 S
are heavily overloaded during the experiments 1 and 2, 301 S8
and therefore the improvementsin the experiments 2 201 S9
and 3 is more significant. The situationsf... S are 104 S10
distributed between these two extremes. The curve for 0 ' ' ‘| —&—si1
the overall grid provides an average estimation for all ! 2 3 —A—S12
situations, which indicates that the service discovery Experiment Number ——Total
mechanism contributes more towards the improvement
in application executions than GA scheduling. Figure 10. Case study: trends Ill for experimental results on

load balancing leveg.
5.3.5. Resource utilisation
While S, & and S5, S, are two representative

The curves in Figure 9 illustrate similar trends to thOSﬁtuationS’ the g|0ba| situation is not S|mp|y an agera
of Figure 8.5, $ and Sy, S still represent the two of |ocal trends as those illustrated in Figures 8 and 9. In
extreme situations between which the other platforres athe second experiment when the GA scheduling is
distributed. enabled, the load balancing of hosts or processorsnwith

The curve for the overall grid indicates that they |ocal grid resource are significantly improved. In the
service discovery mechanism contributes more f@ird experiment, when the service discovery mechanism
maximising resource utilisation. However, overloadegs enabled, the overall grid load balancing is improved
platforms likeS,; and S, benefit mainly from the GA dramatically. It is clear that the GA scheduling
scheduling, which is more effective at load balancingontributes more to local grid load balancing and the
when the workload is high; lightly-loaded platforms likeservice discovery mechanism contributes more to global
S and S chiefly benefit from the service discoverygrid load balancing. The coupling of both as described in
mechanism, which can dispatch more tasks to them.  this work is therefore a good choice to achieve load

balancing at both local and global grid levels.

-10 -



5.4. Agent performance It is reasonable that a centralised strategy careaehi

a better scheduling, because full service advertisement
Additional experiments are carried out to compare theads to full knowledge on the performance of all grid
performance of grid agents when different serviceesources. However, under a distributed mechanism,
advertisement and discovery strategies are appliegech agent has only up-to-date information on its
These are introduced briefly in this section. neighbouring agents, which limit the scheduling effect.

A centralised controlling mechanism is designed for

the agents. Each agent is assumed to have the pred.2. Average advance time of application execution
knowledge of any other agents. Each time an age@@mpletion
receives a task execution request, it will contactfathe
other agents for quoting of completion time. The bast biSimilar comparison for the two strategies is included in
is chosen and the request is dispatched to the availablgure 12 in terms of the average advance time of
grid resource directly in one step. This is actually aapplication execution time.

event-driven data-pull strategy, which means that full Agent Number

advertisement results in no necessary discovery. 0 T T T T —
The service advertisement strategy used in the last -10{4 6 8 10 12 20
section is periodic data-pull, where service information -20 -
is only transferred among neighbouring agents. This @ 30
results that service discovery has also to be pratesse E 40
step by step. This distributed strategy means that riot ful @
advertisement results in necessary discovery steps. The o C .
. . o 60 - entralisefl
experimental results introduced below indicate that Distributed

balancing the overhead for advertisement and discovery -70 -
in this way can lead to a better agent performance.
The details of the experimental design are not

included, though actually very similar to that ir]trOdUC(EdFi ure 12. Comparison of average advance time of application
in Section 5.2. One difference is that in these. 9 ' b g bp

. . ) execution completion between the centralised and distributed
experiments, the number of grid agents is changed to strategies.

enable the system scalability to be investigated.
Tasks are executed quicker when the number of

5.4.1. Total application execution time agents increases. It is clear that the centralisedest

) ) ) __ leads to a bit better result again. The reason idasirg
Figure 11 provides a comparison of total applicatioghat described in the last section. The result values a

execution time for the two strategies. negative since the workload of these experiments is quite
heavy and grid resources cannot meet the deadline
1604 e Centralisel requirements of task execution averagely.
140 + Distributed
1204 5.4.3. Network packets
& 100 -
c
£ 80 -
< 601 25000+
40 ~ DR N R Centralisef
20 4 20000+ Distributed
0 — T % 150004
4 6 8 10 12 14 16 18 20 X
©
Agent Number o 100004 )
50004 ,.-°~
Figure 11. Comparison of total application execution time 0 -
between the centralised and distributed strategies. 4 6 8 10 12 14 16 18 20
The total task execution time decreases when the Agent Number

number of agents and grid resources increases. It is clea

that the centralised strategy leads to a bit bettad lo  Figure 13. Comparison of network packets between the
balancing results, since tasks finish in a less tingeun centralised and distributed strategies.

the centralised control. This is more obvious whea th

number of the agents increases.
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A different result is included in Figure 13 that provides éocus on agent-based grid computing [29, 34, 37], the
comparison of the network packets involved during themphases of these works are quite different. In thi&wor
experiments of the two strategies. performance for grid load balancing is investigated in a
The number of network messages used for serviggantitative way that cannot found in any other work.
advertisement and discovery increases linearly with th There are many other enterprise computing and
number of agents. It is clear that the distributed egsat middleware technologies that are being adopted for grid
significantly decreases the amount of network traffiananagement, such as CORBA [35] and Jini [4].
The strategy of only passing messages amor@pmpared with these methods, the most important
neighbouring agents improves the system scalability asivantage of an agent-based approach is that it can

the agent number increases. provide a clear high-level abstraction of the grid
environment that is extensible and compatible for
6. Related work integration of future grid services and toolkits.

In this work, local grid load balancing is performed in/. Conclusions
each agent using Al scheduling algorithms. The on-the-
fly use of predictive performance data for schedulin@his work addresses grid load balancing issues using a
described in this work is similar to that of AppLeS [5],combination of intelligent agents and multi-agent
Ninf [30] and Nimrod [2]. While AppLeS and Ninf approaches. For local grid load balancing, the iterative
management and scheduling are also based bauristic algorithm is more efficient than the ficetme-
performance evaluation techniques, they utilise the NWBst-served algorithm. For global grid load balancing, a
[39] resource monitoring service. Nimrod has a numbegreer-to-peer service advertisement and discovery
of similarities to this work, including a parametrictechnique is proven to be effective. The use of a
engine and heuristic algorithms [1] for scheduling jobdistributed agent strategy can reduce the network
There are also many job scheduling systems, such @asrhead significantly and make the system scale well
Condor [28], EASY [27], Maui [25], LSF [40] and PBSrather than using a centralised control, as well as
[24]. Most of these support batch queuing using thachieving a reasonable good resource utilisation and
FCFS algorithm. The main advantage of GA schedulingeeting application execution deadlines.
used in this work for job scheduling is the quality of Further experiments will be carried out using the grid
service (QoS) and multiple performance metrics supportestbed being built at Warwick. Since a large deployment
This work also focuses on the cooperation of localf the system is impossible due to the absence afya-la
grid and global grid levels of management andcale grid testbed, a grid modelling and simulation
scheduling. The OGSA and its implementation, thenvironment is under development to enable
Globus toolkit [19], is becoming a standard for gricperformance and scalability of the agent system to be
service and application development, which is based amvestigated when thousands of grid resources and
web services protocols and standards [31]. Some existiagents are involved.
systems use the Globus toolkit to integrate with thé gri  The next generation grid computing environment
computing environment, including Condor-G [22],must be intelligent and autonomous to meet
Nimrod/G [3], though a centralised control structure isequirements of self management. Related research
applied in both implementations. Another gridtopics include semantic grids [41] and knowledge grids
computing infrastructure, Legion [23], is developed42]. The agent-based approach described in this work is
using an object-oriented methodology that providesn initial attempt towards a distributed framework for
similar functionalities to the Globus. In this work, building such an intelligent grid environment. Future
multi-agent approach is considered. Agents are usedwork includes the extension of the agent framework with
control the query process and to make resource discovesw features, e.g. automatic QoS negotiation, self-
decisions based on internal logic rather than relym@o organising  coordination,  semantic  integration,
fixed-function query engine. knowledge-based reasoning, and ontology-based service
Agent-based grid management is also used in JAMEYokering.
[7, 38] and NetSolve [17, 18], where a centralised
broker/agents architecture is developed. In this worlReferences
agents perform peer-to-peer service advertisement and
discovery to achieve global grid load balancing[i] A. Abraham, R. Buyya, and B. Nath, Nature’s heuristics
Compared with another “Agent Grid” work described in for scheduling jobs on computational grids, in:
[33], rather than using a collection of many predefined  Proceedings of '8 IEEE International Conference on
specialised agents, grid load balancing in this work uses Advanced Computing and Communicatio@ochin,
a hierarchy of homogeneous agents that can be India, 2000). , . .
reconfigured with different roles at running time. Whild2] ~D- Abramson, R. Sosic, J. Giddy, and B. Hall, Nimrod: a
there are also several other related projects thet ha tool for performing parameterized simulations using
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