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Abstract. Workload and resource management are essential functionalities in the software infrastructure for 
grid computing. The management and scheduling of dynamic grid resources in a scalable way requires new 
technologies to implement a next generation intelligent grid environment. This work demonstrates that AI 
technologies can be utilised to achieve effective workload and resource management.  A combination of 
intelligent agents and multi-agent approaches is applied for both local grid resource scheduling and global 
grid load balancing. Each agent is a representative of a local grid resource and utilises predictive application 
performance data and iterative heuristic algorithms to engineer local load balancing across multiple hosts. At 
a higher level of the global grid, agents cooperate with each other to balance workload using a peer-to-peer 
service advertisement and discovery mechanism. A case study is included with corresponding experimental 
results to demonstrate that intelligent agents are effective to achieve resource scheduling and load balancing, 
improve application execution performance and maximise resource utilisation. 
 
Keywords: Load Balancing; Grid Computing; Intelligent Agents; Multi-agent Systems; Genetic Algorithm; 
Service Advertisement and Discovery. 
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1. Introduction 
 
Grid computing originated from a new computing 
infrastructure for scientific research and cooperation [36, 
20] and is becoming a mainstream technology for large-
scale resource sharing and distributed system integration 
[21]. Current efforts towards making the global 
infrastructure a reality provide technologies on both grid 
services and application enabling [6]. 

Workload and resource management are essential 
functionalities and provided at the service level of the 
grid software infrastructure. Two main challenges that 
must be addressed are scalability and adaptability. Grid 
resources are distributed geographically in a large-scale 
way and resource performance changes quickly over time. 
Grid tasks from users require resources with different 
QoS requirements. Effective management and 
scheduling has to be achieved in an intelligent and 
autonomous way. 

Software agents have been accepted to be a powerful 
high-level abstraction for modelling of complex software 
systems [26]. In our previous work, an agent-based 
methodology is developed for building large-scale 
distributed systems with highly dynamic behaviours [9, 
10]. This has been used in the implementation of an 
agent-based resource management system for 
metacomputing [11] and grid computing [12, 13, 14]. 

This work focuses on grid load balancing issues 
using a combination of both intelligent agents and multi-
agent approaches. Each agent is responsible for resource 
scheduling and load balancing across multiple hosts / 

processors in a local grid. The agent couples application 
performance data with iterative heuristic algorithms to 
dynamically minimise task makespan and host idle time, 
whilst meeting the deadline requirements for each task. 
The algorithm is based on an evolutionary process and is 
therefore able to absorb system changes such as the 
addition or deletion of tasks, or changes in the number of 
hosts / processors available in a local grid. 

At the global grid level, each agent is a 
representative of a grid resource and acts as a service 
provider of high performance computing power. Agents 
are organised into a hierarchy and cooperate with each 
other to discover available grid resources for tasks using 
a peer-to-peer mechanism for service advertisement and 
discovery. 

Agents are equipped with existing PACE application 
performance prediction capabilities [8, 32]. The key 
features of the PACE toolkit include good level of 
predictive accuracy, rapid evaluation time and a method 
for cross-platform comparison. These features enable the 
PACE performance data to be utilized on the fly for 
agents to perform grid resource scheduling [15, 16]. 

Several metrics are considered to measure the load 
balancing performance of grid agents. A case study is 
included and corresponding results conclude that 
intelligent agents, supported by application performance 
prediction, iterative heuristic algorithms and service 
discovery capabilities, are effective to achieve overall 
resource scheduling and load balancing, improve 
application execution performance and maximise 
resource utilisation. 
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2. Grid agents 
 
This work combines intelligent agents and multi-agent 
approaches. The agent structure and hierarchy are 
described below.  
 
2.1. Agent structure 
 
Each agent is implemented for managing hosts / 
processors of a local grid resource and scheduling 
incoming tasks to achieve local load balancing. Each 
agent provides a high-level representation of a grid 
resource and therefore characterises these resources as 
high performance computing service providers in a 
wider grid environment. The layered structure of each 
agent is illustrated in Figure 1 and explained below. 
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Figure 1. Agent structure. 

 

• Communication Layer. Agents in the system must be 
able to communicate with each other or with users 
using common data models and communication 
protocols. The communication layer provides an 
agent with an interface to heterogeneous networks 
and operating systems. 

• Coordination Layer. The request an agent receives 
from the communication layer should be explained 
and submitted to the coordination layer, which 
decides how the agent should act on the request 
according to its own knowledge. For example, if an 
agent receives a service discovery request, it must 
decide whether it has related service information. 
This is described in detail in Section 4. 

• Local Management Layer. This layer performs 
functions of an agent for local grid load balancing. 
Detailed scheduling algorithms are described in 
Section 3. This layer is also responsible for 
submitting local service information to the 
coordination layer for agent decision making. 

 
2.2. Agent hierarchy 
 
Agents are organised into a hierarchy in a higher level 
global grid environment, as shown in Figure 2. The 

broker is an agent that heads the whole hierarchy. A 
coordinator is an agent that heads a sub-hierarchy. A 
leaf-node is actually termed an agent in this description. 
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Figure 2. Agent hierarchy. 
 

The broker and coordinators are also agents except 
that they are in a special position in the hierarchy. All 
the agents have the same functionality despite their 
different positions. The broker does not have any more 
priorities than coordinators or agents. The hierarchy of 
homogeneous agents provides a high-level abstraction of 
a grid environment. 

The agent hierarchy can represent an open and 
dynamic system. New agents can join the hierarchy or 
existing agents can leave the hierarchy at any time. The 
hierarchy exists only logically and each agent can 
contact others as long as it has their identities. 

The hierarchical model can also address partly the 
problem of scalability. When the number of agents 
increases, the hierarchy may lead to many system 
activities being processed in a local domain. In this way 
the system may scale well and does not need to rely on 
one or a few central agents, which may otherwise 
become system bottlenecks. 

Service is another important concept. In other 
methodologies, a client is abstracted into a request 
sender; a server is abstracted into a service provider; and 
a matchmaker is an abstraction of a router between a 
client and corresponding server. In this work, an agent 
contains all of the above abstractions, which provides a 
simple and uniform abstraction of the functions in the 
grid management system. The service information 
provided at each local grid resource can be advertised 
throughout the hierarchy and agents can cooperate with 
each other to discover available resources. These are 
introduced in detail in Section 4. 
 
2.3. Performance prediction 
 
Performance prediction for parallel programs plays a key 
role for agents to perform resource scheduling and load 
balancing. Agents are integrated with existing PACE 
application performance prediction capabilities. 

The PACE evaluation engine is the kernel of the 
PACE toolkit. The evaluation engine combines the 
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PACE resource model (including performance related 
information of the hardware on which the parallel 
program will be executed) and application model 
(including all performance related information of the 
parallel program, e.g. MPI or PVM programs) at run 
time to produce evaluation results, e.g. estimation of 
execution time. Agents are equipped with the PACE 
evaluation engine and use predictive application 
performance data for scheduling. Detailed introduction 
to the PACE toolkit is out of the scope of this paper but 
the use of PACE performance prediction for both local 
grid and global grid load balancing is described below in 
Sections 3 and 4 respectively. 
 
3. Local grid load balancing 
 
In this section, a local grid resource is considered to be a 
cluster of workstations or a multiprocessor, which is 
abstracted uniformly as peer-to-peer networked hosts. 
Two algorithms are considered in the local management 
layer of each agent to perform local grid load balancing. 
 
3.1. First-come-first-served algorithm 
 
Consider a grid resource with n hosts where each host Hi 
has its own type tyi. A PACE resource model can be used 
to describe the performance information of this host: 

 
{ }niHH i ,......,2,1| ==    (1) 

{ }ty ty i ni= =| , ,......,1 2    (2) 

 
Let m be the number of considered tasks T. The 

arrival time of each task Tj is tj. A PACE application 
model tmj can be used to describe the application level 
performance information of each task. The user 
requirement of deadline for the task execution is 
represented as tr j. Each task Tj also has two scheduled 
attributes – a start time tsj and an end time tej. The task 
set can then be expressed as follows: 

 
{ }mjTT j ,......,2,1| ==    (3) 

{ }mjtetstrtmttetstrtmt jjjjj ,......,2,1|),,,,(),,,,( ==  (4) 

 
MTj is the set of hosts that are allocated to task Tj: 

 
{ }mjMTMT j ,......,2,1| ==   (5) 

{ }jij llHMT
l

,......,2,1| ==   (6) 

 
where l j is the number of hosts that are allocated to task 
Tj. M then is a 2D array, which describes the mapping 
relationships between hosts and tasks using Boolean 
values. 
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The PACE evaluation engine can produce 

performance prediction information based on the 
application model tmj and resource models ty. An 
appropriate subset of hosts H  (note that H  cannot be an 
empty set Φ) can be selected, and this is evaluated and 
expressed as follows: 

 
( )jj tmtyevaltexetytytyHHH ,,,,, =Φ≠⊆Φ≠⊆∀  (9) 

 
The function of the agent local management is to 

find the earliest possible time for each task to complete, 
adhering to the sequence of the task arrivals. 

 
( )j

HHH
j tete

Φ≠⊆∀
=

,
min   (10) 

 
A task has the possibility of being allocated to any 

selection of hosts. The agent should consider all these 
possibilities and choose the earliest task end time. In any 
of these situations, the end time is equal to the earliest 
possible start time plus the execution time, which is 
described as follows: 

 

jjj texetste += .   (11) 

 
The earliest possible start time for the task Tj on a 

selection of hosts is the latest free time of all the selected 
hosts if there are still tasks running on the selected hosts. 
If there is no task running on the selected hosts when the 
task Tj arrives at time tj, Tj can be executed on these 
hosts immediately. These are expressed as follows: 

 

( )=
∈∀

ij
HHi

jj tdtts
i,

max,max ,  (12) 

 
where tdij is the latest free time of host Hi at the time tj. 
This equals the maximum end times of tasks that are 
allocated to the host Hi before the task Tj arrives: 

 
( )p

Mjp
ij tetd

ip 1,
max

=<∀
= .  (13) 

 
In summary, tej can be calculated as follows: 

 

( )  + =
=<∀∈∀Φ≠⊆∀

jp
MjpHHi

j
HHH

j texetette
ipi 1,,,

maxmax,maxmin . 

(14) 
 

It is not necessarily the case that scheduling all hosts 
to a task will achieve higher performance. On the one 
hand, the start time of task execution may be earlier if 
only a number of processors are selected; on the other 
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hand, with some tasks, execution time may become 
longer if too many hosts are allocated. The complexity of 
the above algorithm is determined by the number of 
possible host selections, which can be calculated as: 
 

C C Cn n n
n n1 2 2 1+ + + = −...... .   (15) 

 
It is clear that if the number of hosts of a grid 

resource increases, the scheduling complexity will 
increase exponentially. This is based on a first-come-
first-served policy that means the sequence of the task 
arrivals determines that of task executions. Reordering 
the task set may optimise the task execution further, but 
will increase the algorithm complexity. This is addressed 
using an iterative heuristic algorithm described below. 
 
3.2. Genetic algorithm 
 
When tasks can be reordered, the scheduling objective is 
also changed. Rather than looking for an earliest 
completion time for each task individually, the 
scheduling algorithm described in this section focuses on 
the makespan ω, which represents the latest completion 
time when all the tasks are considered together and is 
subsequently defined as: 
 

{ }j
mj

te
≤≤

=
1
maxω ,   (16) 

 
The goal is to minimise function (16), at the same 

time 
jj trtej ≤∀ ,  should also be satisfied as far as 

possible. In order to obtain near optimal solutions to this 
combinatorial optimisation problem, the approach taken 
in this work is to find schedules that meet the above 
criteria through the use of an iterative heuristic method – 
in this case a genetic algorithm (GA). The process 
involves building a set of schedules and identifying 
solutions that have desirable characteristics. These are 
then carried into the next generation. 

The technique requires a coding scheme that can 
represent all legitimate solutions to the optimisation 
problem. Any possible solution is uniquely represented 
by a particular string, and strings are manipulated in 
various ways until the algorithm converges on a near 
optimal solution. In order for this manipulation to 
proceed in the correct direction, a method of prescribing 
a quality value (or fitness) to each solution string is 
required. The algorithm for providing this value is called 
the fitness function fv. 

The coding scheme we have developed for this 
problem consists of two parts: an ordering part Sk, which 
specifies the order in which the tasks are to be executed 
and a mapping part Mijk, which specifies the host 
allocation to each task. Let k be the number of schedules 
in the scheduling set. The ordering of Mijk is 
commensurate with the task order. An example of the 

coding scheme and its associated schedule are shown in 
Figure 3. The execution times of the various tasks are 
provided by the PACE function and are associated with 
the task object for evaluation by the fitness function fv. 
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Figure 3. An example coding scheme and corresponding Gantt 
chart representing the associate schedule. 

 
A combined cost function is used which considers 

makespan, idle time and deadline. It is straightforward 
to calculate the makespan, ωk, of the schedule k 
represented by Sk and Mijk. Let Tjk be the reordered task 
set according to the ordering part of the coding scheme, 
Sk. 
 

( )=
=<∀=∀ pk

MjpMi
jk tets

ipkijk 1,1,
maxmax   (17) 

jkjkjk texetste +=    (18) 

{ }jk
mj

k te
≤≤

=
1
maxω     (19) 

 
The timing calculation described above is similar to 

that given in the function (14). One difference is that 
since all of the tasks are considered together, the order is 
defined according to Sk instead of the task arrival time tj. 
So the consideration of tj is not necessary in (17) as 
opposed to the function (12). Another aspect is that the 
host selection is defined using Mijk and the PACE 
evaluation result texejk is calculated directly using 
corresponding resource models, while in the function 
(14), different possible host selections H  have all to be 
considered and compared. 

The nature of the idle time should also be taken into 
account. This is represented using the average idle time 
of all hosts φk. 
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Idle time at the front of the schedule is particularly 

undesirable as this is the processing time which will be 
wasted first, and is least likely to be recovered by further 
iterations of the GA or if more tasks are added. Solutions 
that have large idle times are penalised by weighting 
pockets of idle time to give φk, which penalises early idle 
time more than later idle time. This is not described in 
detail here. 

The contract penalty θk is derived from the expected 
deadline times tr and task completion time te. 
 

( )
m
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m

j
jjk

k

∑
=

−
= 1θ   (21) 

 
The cost value for the schedule k, represented by Sk 

and Mijk, is derived from these metrics and their impact 
predetermined by: 
  

cim
k

c
k

i
k

m
k

c
WWW

WWW
f

++
++

=
θϕω  (22) 

 
The cost value is then normalised to a fitness value 

using a dynamic scaling technique:  
 

minmax

max

cc

k
cck

v ff

ff
f

−
−

= ,  (23) 

 
where fc

max and fc
min represent the best and worst cost 

values in the scheduling set. 
The genetic algorithm utilises a fixed population size 

and stochastic remainder selection. Specialised crossover 
and mutation functions are developed for use with the 
two-part coding scheme. The crossover function first 
splices the two ordering strings at a random location, 
and then reorders the pairs to produce legitimate 
solutions. The mapping parts are crossed over by first 
reordering them to be consistent with the new task order, 
and then performing a single-point (binary) crossover. 
The reordering is necessary to preserve the node 
mapping associated with a particular task from one 
generation to the next. The mutation stage is also two-
part, with a switching operator randomly applied to the 
ordering parts, and a random bit-flip applied to the 
mapping parts. 

In the actual agent implementation using the above 
algorithm, the system dynamism must be considered. 
One advantage of the iterative algorithm described in 
this section is that it is an evolutionary process and is 
therefore able to absorb system changes such as the 

addition or deletion of tasks, or changes in the number of 
hosts available in the grid resource. 

The two scheduling algorithms are both implemented 
and can be switched from one to another in the agent. 
The algorithms provide a fine-grained solution to 
dynamic task scheduling and load balancing across 
multiple hosts of a local grid resource. However, the 
same methodology cannot be applied directly to a large-
scale grid environment, since the algorithms do not scale 
to thousands of hosts and tasks. An additional 
mechanism is required for multiple agents to work 
together and achieve global grid load balancing. 
 
4. Global grid load balancing 
 
In this work, a grid is a collection of multiple local grid 
resources that are distributed geographically in a wide 
area. The problem that is addressed in this section is the 
discovery of available grid resources that provide the 
optimum execution performance for globally grid-
submitted tasks. The service discovery process indirectly 
results in a load balancing effect across multiple grid 
resources. 
 
4.1. Service advertisement and discovery 
 
An agent takes its local grid resource as one of its 
capabilities. An agent can also receive many service 
advertisements from nearby agents and store this 
information in its coordination layer as its own 
knowledge. All of the service information are organised 
into Agent Capability Tables (ACTs). An agent can 
choose to maintain different kinds of ACTs according to 
different sources of service information. These include: 

• T_ACT (This ACT). In the coordination layer of each 
agent, T_ACT is used to record service information 
of the local grid resource. The local management 
layer is responsible for collecting this information 
and reporting it to the coordination layer. 

• L_ACT (Local ACT). Each agent can have one 
L_ACT to record the service information received 
from its lower agents in the hierarchy. The services 
recorded in L_ACT are provided by grid resources in 
its local scope. 

• G_ACT (Global ACT). The G_ACT in an agent is 
actually a record of the service information received 
from its upper agent in the hierarchy. The service 
information recorded in G_ACT is provided by the 
agents, which have the same upper agent as the agent 
itself. 

There are basically two ways to maintain the contents 
of ACTs in an agent: data-pull and data-push, each of 
which has two approaches: periodic and event-driven. 
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• Data-pull. An agent asks other agents for their 
service information either periodically or when a 
request arrives. 

• Data-push. An agent submits its service information 
to other agents in the hierarchy periodically or when 
the service information is changed. 

Apart from service advertisement, another important 
process among agents is service discovery. Discovering 
available services is also a cooperative activity. Within 
each agent, its own service provided by the local grid 
resource is evaluated first. If the requirement can be met 
locally, the discovery ends successfully. Otherwise 
service information in both L_ACT and G_ACT is 
evaluated and the request dispatched to the agent, which 
is able to provide the best requirement/resource match. If 
no service can meet the requirement, the request is 
submitted to the upper agent. When the head of the 
hierarchy is reached and the available service is still not 
found, the discovery terminates unsuccessfully 
(representing a request for computing resource which is 
not supported by the available grid). 

While the process of service advertisement and 
discovery is not motivated by grid scheduling and load 
balancing, it can result in an indirect coarse-grained load 
balancing effect. A task tends to be dispatched to a grid 
resource that has less workload and can meet the 
application execution deadline. The discovery process 
does not aim to find the best service for each request, but 
endeavours to find an available service provided by a 
neighbouring agent. While this may decrease the load 
balancing effect, the trade-off is reasonable as grid users 
prefers to find a satisfactory resource as fast and as local 
as possible. 

The advertisement and discovery mechanism also 
allows possible system scalability. Most requests are 
processed in a local domain and need not to be submitted 
to a wider area. Both advertisement and discovery 
requests are processed between neighbouring agents and 
the system has no central structure, which otherwise 
might act as a potential bottleneck. 
 
4.2. System implementation 
 
Agents are implemented using Java and data are 
represented in an XML format. An agent is responsible 
for collecting service information of the local grid 
resource. An example of this service information can be 
found below. 
 
<agentgrid type=”service”> 
  <address>gem.dcs.warwick.ac.uk</address> 
  <port>1000</port> 
  <type>SunUltra10</type> 
  <nproc>16</nproc> 
  <environment>mpi</environment> 
  <environment>pvm</environment> 
  <environment>test</environment> 
  <freetime>Nov 15 04:43:10 2001</freetime> 
<agentgrid> 

 

The agent identity is provided by a tuple of the 
address and port used to initiate communication. The 
hardware model and the number of processors are also 
provided. The example specifies a single cluster, in this 
case a cluster of 16 SunUltra10 workstations. To 
simplify the problem, the hosts within each grid resource 
are configured to be homogeneous. The application 
execution environments that are supported by the current 
agent implementation include MPI, PVM, and a test 
mode that is designed for the experiments described in 
this work. Under test mode, tasks are not actually 
executed and predictive application execution times are 
scheduled and assumed to be accurate. The latest 
scheduling makespan ω indicates the earliest 
(approximate) time that corresponding grid resource 
become available for more tasks. Due to the effect of load 
balancing, it is reasonable to assume that all of hosts 
within a grid resource have approximately the same 
freetime. The agents use this item to estimate the 
workload of each grid resource and make decisions on 
where to dispatch incoming tasks. This item changes 
over time and must be frequently updated. Service 
advertisement is therefore important among the agents. 

A portal has been developed which allows users to 
submit requests destined for the grid resources. An 
example request is given below. 
 
<agentgrid type=”request”> 
  <application> 
    <name>sweep3d</name> 
    <binary> 
      <file>binary/sweep3d</file> 
      <inputfile>input/input.50</inputfile> 
    </binary> 
    <performance> 
      <datatype>pacemodel</datatype> 
      <modelname>model/sweep3d</modelname> 
    </performance> 
  </application> 
  <requirement> 
    <environment>test</environment> 
    <deadline>Nov 15 04:43:17 2001</deadline> 
  </requirement> 
  <email>junwei</email> 
</agentgrid> 

 
A user is required to specify the details of the 

application, the requirements and contact information 
for each request. Application information includes 
binary executable files and also the corresponding PACE 
application performance model tmr. In the current 
implementation we assume that both binary and model 
files are pre-compiled and available in all local file 
systems. In the requirements, both the application 
execution environment and the required deadline time trr 
should be specified. Currently the user’s email address is 
used as the contact information. 

Service discovery processes are triggered by the 
arrival of a request at an agent, where the kernel of this 
process is the matchmaking between service and request 
information. The match is straightforward whether an 
agent can provide the required application execution 
environment. The expected execution completion time 
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for a given task on a given resource can be estimated 
using: 
 

{ }),(min
,,,

r
tytytyHHH

r tmtyevalte
Φ≠⊆Φ≠⊆∀

+=ω . (24) 

 
For a grid resource with homogeneous hosts, the 

PACE evaluation function is called n times. If 
rr trte ≤ , 

the resource is considered to be able to meet the required 
deadline. Otherwise, the resource is not considered 
available for the incoming task. This performance 
estimation of local grid resources at the global level is 
simple but efficient. However, when the task is 
dispatched to the corresponding agent, the actual 
situation may differ from the scenario considered in (24). 
The agent may change the task order and advance or 
postpone a specific task execution in order to balance the 
workload on different hosts, and in so doing maximise 
resource utilisation whilst maintaining the deadline 
contracts of each user. 

Service discovery for a request within an agent 
involves multiple matchmaking processes. An agent 
always gives priority to the local grid resource. Only 
when the local resource is unavailable is the service 
information of other grid resources evaluated and the 
request dispatched to another agent. In order to measure 
the effect of this mechanism for grid scheduling and load 
balancing, several performance metrics are defined and 
many experiments are carried out. 
 
5. Performance evaluation 
 
Experiments are carried out for performance evaluation 
of grid load balancing using intelligent agents described 
in above sections. Performance metrics are predefined 
and experimental results are included in this section. 
 
5.1. Performance metrics 
 
There are a number of performance criteria that can be 
used to describe resource management and scheduling 
systems. What is considered as high performance 
depends on the system requirements. In this work there 
are several common statistics that can be investigated 
quantitatively and used to characterise the effect of 
scheduling and load balancing. 
 
5.1.1. Total application execution time 
 
This defines the period of time t, when a set of m parallel 
tasks T are scheduled onto resources H with n hosts. 
Note that the host set H here is slightly different from 
that defined in (1), because it may include those either at 
multiple grid resources or within a single grid resource. 
 

{ } { }jmjj
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5.1.2. Average advance time of application execution 
completion 
 
This can be calculated directly using: 
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−
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which is negative when most deadlines fail. 
 
5.1.3. Average resource utilisation rate 
 
The resource utilisation rate υi of each host Hi is 
calculated as follows: 
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The average resource utilisation rate υ of all hosts H 

is: 
 

n

n

i
i∑

== 1

υ
υ ,   (28) 

 
where υ is in the range 0 … 1. 
 
5.1.4. Load balancing level 
 
The mean square deviation of υi is defined as: 
 

n
d

n

i
i∑

=

−
= 1

2)( υυ
,  (29) 

 
and the relative deviation of d over υ that describes the 
load balancing level of the system is: 
 

%100)1( ×−=
υ

β d .  (30) 

 
The most effective load balancing is achieved when d 
equals zero and β equals 100%. The four aspects of the 
system described above can be applied both to a grid 
resource or a grid environment that consists of multiple 
grid resources. These performance metrics are also 
interrelated. For example, if the workload is balanced 
across all the considered hosts, the resource utilisation 
rate is usually high and the tasks finish quickly. Another 
metrics that can only applied for measurement of grid 
agents is the number of network packets used for service 
advertisement and discovery. 
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5.2. Experimental design 
 
The experimental system is configured with twelve 
agents, illustrated by the hierarchy shown in Figure 4. 
 

S1 
(SGIOrigin2000, 16) 

S2 
(SGIOrigin2000, 16) 

S4 
(SunUltra10, 16) 

S3 
(SunUltra10, 16) 

S5 
(SunUltra5, 16) 

S6 
(SunUltra5, 16) 

S12 
(SunSPARCstati

on2, 16) 

S11 
(SunSPARCstati

on2, 16) 

S8 
(SunUltra1, 16) 

S7 
(SunUltra5, 16) 

S10 
(SunUltra1, 16) 

S9 
(SunUltra1, 16) 

 
Figure 4. Case study: agents and resources. 

 
These agents are named S1……S12 (for the sake of 

brevity) and represent heterogeneous hardware resources 
containing sixteen hosts / processors per resource. As 
shown in Figure 4, the resources range in their 
computational capabilities. The SGI multiprocessor is 
the most powerful, followed by the Sun Ultra 10, 5, 1, 
and SPARCStation 2 in turn. 

In the experimental system, each agent maintains a 
set of service information for the other agents in the 
system. Each agent pulls service information from its 
lower and upper agents every ten seconds. All of the 
agents employ identical strategies with the exception of 
the agent at the head of the hierarchy (S1) that does not 
have an upper agent. 

The applications used in the experiments include 
typical scientific computing programs. Each application 
has been modelled and evaluated using PACE. An 
example of the PACE predications for the system S1 
(which represents the most powerful resource in the 
experiment) can be found in Table 1. 
 

 Number of Processors/Hosts 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

sweep3d 
[4,200] 

50 40 30 25 23 20 17 15 13 11 9 7 6 5 4 4 

fft 
[10,100] 

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 

improc 
[20,192] 

48 41 35 30 26 23 21 20 20 21 23 26 30 35 41 48 

closure 
[2, 36] 

9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 

jacobi 
[6,160] 

40 35 30 25 23 20 17 15 13 11 10 9 8 7 6 6 

memsort 
[10,68] 

17 16 15 14 13 12 11 10 10 11 12 13 14 15 16 17 

cpi 
[2,128] 

32 26 21 17 14 11 9 7 5 4 3 2 4 7 12 20 

 
Table 1. Case study: applications and requirements. 

 

As shown in the table, different applications have 
different performance scenarios that have a significant 
impact on the task scheduling results. 

During each experiment, requests for one of the 
seven test applications are sent at one second intervals to 
randomly selected agents. The required execution time 
deadline for the application is also selected randomly 
from a given domain; the bounds of the application 
requirements can be also found in Table 1. The request 
phase of each experiment lasts for ten minutes during 
which 600 task execution requests are sent out to the 
agents. While the selection of agents, applications and 
requirements are random, the seed is set to the same so 
that the workload for each experiment is identical. 

While the experiments use the same resource 
configurations and application workloads described 
above, different combinations of local grid scheduling 
algorithms and global grid mechanisms are applied as 
shown in Table 2. 
 

 Experiment Number 
 1 2 3 
First-come-first-served algorithm √   
Iterative heuristic algorithm  √ √ 
Service advertisement & discovery   √ 

 
Table 2. Case study: experimental design. 

 
5.3. Experimental results 
 
The experimental results are given in Table 3; this 
includes the three metrics applied to each agent and to 
all the grid resources in the system. 
 
 Experiment Number 
 1 2 3 
 ε(s) υ(%) β(%) ε(s) υ(%) β(%) ε(s) υ(%) β(%) 
S1 42 7 71 52 9 89 29 81 96 
S2 11 9 78 34 9 89 23 81 95 
S3 -135 13 62 23 13 92 24 77 87 
S4 -328 22 45 -30 28 96 44 82 94 
S5 -607 32 56 -492 58 95 38 82 94 
S6 -321 25 56 -123 29 90 42 78 92 
S7 -261 23 57 10 25 92 38 84 93 
S8 -695 33 52 -513 52 90 42 82 91 
S9 -806 45 58 -724 63 90 30 80 84 
S10 -405 28 61 -129 34 94 25 81 94 
S11 -1095 44 50 -816 73 92 35 75 89 
S12 -859 41 46 -550 67 91 26 78 90 
Total -475 26 31 -295 38 42 32 80 90 

 
Table 3. Case study: experimental results. 

 
5.3.1. Experiment 1 
 
In the first experiment, each agent is configured with the 
first-come-first-served algorithm for local grid resource 
scheduling. Agents are not organised for cooperation. 
The experimental scenario is visualised in Figure 5. 
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Figure 5. Experimental scenario I. 
 

The algorithm does not consider makespan, idletime 
or deadline. Each agent receives approximately 50 task 
requests on average, which results in only the powerful 
platforms (SGI multiprocessors S1 and S2) meeting the 
requirements. The slower machines including the Sun 
SPARCstations clusters S11 and S12 impose serious 
delays in task execution with long task queues (see 
Figure 5). The total task execution time is about 46 
minutes. The overall average delay for task execution is 
approximately 8 minutes. It is apparent that the high 
performance platforms are not utilised effectively, and 
the lack of proper scheduling overloads clusters like S11 
that is only 44% utilised. The average utilisation of grid 
resources is only 26%. The workload for each host in 
each grid resource is also unbalanced. For example the 
load balancing level of S12 is as low as 46%. The overall 
grid workload is also unbalanced at 31%. 
 
5.3.2. Experiment 2 
 
In experiment 2, the iterative heuristic algorithm is used 
in place of the first-come-first-serve algorithm although 
no higher-level agent cooperation mechanism is applied. 
The experimental scenario is visualised in Figure 6. 
 

 
 

Figure 6. Experimental scenario II. 
 

The algorithm aims to minimise makespan and idle 
time, whilst meeting deadlines. Compared to those of 
experiment 1, almost all metrics are improved. Task 
executions are completed earlier. The total task 
execution time is improved from 46 to 36 minutes and 

the average task execution delay is reduced to 
approximately 5 minutes. However, resources such as S11 
and S12 remain overloaded and the GA scheduling is not 
able to find solutions that satisfy all the deadlines. 
Generally, resources are better utilised as a result of the 
better scheduling, such as the use of S11 that increases 
from 44% to 73%.  The overall average utilisation also 
improves from 26% to 38%. While load balancing on 
each grid resources is significantly improved, the lack of 
any higher-level load-balancing mechanism results in a 
slightly improved overall grid load balancing to 42%  (as 
opposed to 31% in experiment 1). 
 
5.3.3. Experiment 3 
 
In experiment 3, the service advertisement and discovery 
mechanism is enabled for high-level load balancing. The 
experimental scenario is visualised in Figure 7. 
 

 
 

Figure 7. Experimental scenario III. 
 

Service discovery results in a new distribution of 
requests to the agents, where the more powerful platform 
receives more requests. As shown in Figure 7, powerful 
platform like S1 receives 16% of tasks, which is four 
times of tasks received by relatively slow platform S11. 
The total task execution time is also dramatically 
decreased to 11 minutes. As a result, the majority of task 
execution requirements can be met and all grid resources 
are well utilised (80% on average). The load balancing 
of the overall grid is significantly improved from 42% 
(in experiment 2) to 90%. The load balancing on 
resources such as S1 and S2 are only marginally 
improved by the GA scheduling when the workload is 
higher. None of other agents show an improvement in 
local grid load balancing. 

Experimental results in Table 3 are also illustrated in 
Figures 8, 9, and 10, showing the effect on the 
performance metrics given in Section 5.1. The curves 
indicate that different platforms exhibit different trends 
when agents are configured with more scheduling and 
load balancing mechanisms. Among these the curves for 
S1, S2, (which are the most powerful) and S11, S12, (which 
are the least powerful) are representative and are 
therefore emphasised, whilst others are indicated using 
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grey lines. The curve for the overall grid is illustrated 
using a bold line. 
 
5.3.4. Application execution 
 
In Figure 8, it is apparent that both the GA scheduling 
and the service discovery mechanism contribute to 
improving the application execution completion. 
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Figure 8. Case study: trends I for experimental results on 

advance times of application execution completion ε. 
 

The curve implies that the more a resource is loaded 
the more significant the effect is. For example, S1 and S2 
are not overloaded during the three experiments, and 
therefore the value of ε only changes slightly. S11 and S12 
are heavily overloaded during the experiments 1 and 2, 
and therefore the improvement of ε in the experiments 2 
and 3 is more significant. The situations of S3 … S10 are 
distributed between these two extremes. The curve for 
the overall grid provides an average estimation for all 
situations, which indicates that the service discovery 
mechanism contributes more towards the improvement 
in application executions than GA scheduling. 
 
5.3.5. Resource utilisation 
 
The curves in Figure 9 illustrate similar trends to those 
of Figure 8. S1, S2 and S11, S12 still represent the two 
extreme situations between which the other platforms are 
distributed. 

The curve for the overall grid indicates that the 
service discovery mechanism contributes more to 
maximising resource utilisation. However, overloaded 
platforms like S11 and S12 benefit mainly from the GA 
scheduling, which is more effective at load balancing 
when the workload is high; lightly-loaded platforms like 
S1 and S2 chiefly benefit from the service discovery 
mechanism, which can dispatch more tasks to them. 
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Figure 9. Case study: trends II for experimental results on 

resource utilisation rate υ. 
 
5.3.6. Load balancing 
 
Curves in Figure 10 demonstrate that local and global 
grid load balancing are achieved in different ways. 
 

0

10
20

30
40

50

60
70

80
90

100

1 2 3

Experiment Number

β (%) S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

Total

 
Figure 10. Case study: trends III for experimental results on 

load balancing level β. 
 

While S1, S2 and S11, S12 are two representative 
situations, the global situation is not simply an average 
of local trends as those illustrated in Figures 8 and 9. In 
the second experiment when the GA scheduling is 
enabled, the load balancing of hosts or processors within 
a local grid resource are significantly improved. In the 
third experiment, when the service discovery mechanism 
is enabled, the overall grid load balancing is improved 
dramatically. It is clear that the GA scheduling 
contributes more to local grid load balancing and the 
service discovery mechanism contributes more to global 
grid load balancing. The coupling of both as described in 
this work is therefore a good choice to achieve load 
balancing at both local and global grid levels. 
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5.4. Agent performance 
 
Additional experiments are carried out to compare the 
performance of grid agents when different service 
advertisement and discovery strategies are applied. 
These are introduced briefly in this section. 

A centralised controlling mechanism is designed for 
the agents. Each agent is assumed to have the pre-
knowledge of any other agents. Each time an agent 
receives a task execution request, it will contact all of the 
other agents for quoting of completion time. The best bid 
is chosen and the request is dispatched to the available 
grid resource directly in one step. This is actually an 
event-driven data-pull strategy, which means that full 
advertisement results in no necessary discovery. 

The service advertisement strategy used in the last 
section is periodic data-pull, where service information 
is only transferred among neighbouring agents. This 
results that service discovery has also to be processed 
step by step. This distributed strategy means that not full 
advertisement results in necessary discovery steps. The 
experimental results introduced below indicate that 
balancing the overhead for advertisement and discovery 
in this way can lead to a better agent performance. 

The details of the experimental design are not 
included, though actually very similar to that introduced 
in Section 5.2. One difference is that in these 
experiments, the number of grid agents is changed to 
enable the system scalability to be investigated. 
 
5.4.1. Total application execution time 
 
Figure 11 provides a comparison of total application 
execution time for the two strategies.  
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Figure 11. Comparison of total application execution time 

between the centralised and distributed strategies. 
 

The total task execution time decreases when the 
number of agents and grid resources increases. It is clear 
that the centralised strategy leads to a bit better load 
balancing results, since tasks finish in a less time under 
the centralised control. This is more obvious when the 
number of the agents increases. 

It is reasonable that a centralised strategy can achieve 
a better scheduling, because full service advertisement 
leads to full knowledge on the performance of all grid 
resources. However, under a distributed mechanism, 
each agent has only up-to-date information on its 
neighbouring agents, which limit the scheduling effect. 
 
5.4.2. Average advance time of application execution 
completion 
 
Similar comparison for the two strategies is included in 
Figure 12 in terms of the average advance time of 
application execution time. 
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Figure 12. Comparison of average advance time of application 
execution completion between the centralised and distributed 

strategies. 
 

Tasks are executed quicker when the number of 
agents increases. It is clear that the centralised strategy 
leads to a bit better result again. The reason is similar to 
that described in the last section. The result values are 
negative since the workload of these experiments is quite 
heavy and grid resources cannot meet the deadline 
requirements of task execution averagely. 
 
5.4.3. Network packets 
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Figure 13. Comparison of network packets between the 

centralised and distributed strategies. 
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A different result is included in Figure 13 that provides a 
comparison of the network packets involved during the 
experiments of the two strategies. 

The number of network messages used for service 
advertisement and discovery increases linearly with the 
number of agents. It is clear that the distributed strategy 
significantly decreases the amount of network traffic. 
The strategy of only passing messages among 
neighbouring agents improves the system scalability as 
the agent number increases. 
 
6. Related work 
 
In this work, local grid load balancing is performed in 
each agent using AI scheduling algorithms. The on-the-
fly use of predictive performance data for scheduling 
described in this work is similar to that of AppLeS [5], 
Ninf [30] and Nimrod [2]. While AppLeS and Ninf 
management and scheduling are also based on 
performance evaluation techniques, they utilise the NWS 
[39] resource monitoring service. Nimrod has a number 
of similarities to this work, including a parametric 
engine and heuristic algorithms [1] for scheduling jobs. 
There are also many job scheduling systems, such as 
Condor [28], EASY [27], Maui [25], LSF [40] and PBS 
[24]. Most of these support batch queuing using the 
FCFS algorithm. The main advantage of GA scheduling 
used in this work for job scheduling is the quality of 
service (QoS) and multiple performance metrics support. 

This work also focuses on the cooperation of local 
grid and global grid levels of management and 
scheduling. The OGSA and its implementation, the 
Globus toolkit [19], is becoming a standard for grid 
service and application development, which is based on 
web services protocols and standards [31]. Some existing 
systems use the Globus toolkit to integrate with the grid 
computing environment, including Condor-G [22], 
Nimrod/G [3], though a centralised control structure is 
applied in both implementations. Another grid 
computing infrastructure, Legion [23], is developed 
using an object-oriented methodology that provides 
similar functionalities to the Globus.  In this work, a 
multi-agent approach is considered. Agents are used to 
control the query process and to make resource discovery 
decisions based on internal logic rather than relying on a 
fixed-function query engine. 

Agent-based grid management is also used in JAMM 
[7, 38] and NetSolve [17, 18], where a centralised 
broker/agents architecture is developed. In this work, 
agents perform peer-to-peer service advertisement and 
discovery to achieve global grid load balancing. 
Compared with another “Agent Grid” work described in 
[33], rather than using a collection of many predefined 
specialised agents, grid load balancing in this work uses 
a hierarchy of homogeneous agents that can be 
reconfigured with different roles at running time. While 
there are also several other related projects that have a 

focus on agent-based grid computing [29, 34, 37], the 
emphases of these works are quite different. In this work, 
performance for grid load balancing is investigated in a 
quantitative way that cannot found in any other work. 

There are many other enterprise computing and 
middleware technologies that are being adopted for grid 
management, such as CORBA [35] and Jini [4]. 
Compared with these methods, the most important 
advantage of an agent-based approach is that it can 
provide a clear high-level abstraction of the grid 
environment that is extensible and compatible for 
integration of future grid services and toolkits. 
 
7. Conclusions 
 
This work addresses grid load balancing issues using a 
combination of intelligent agents and multi-agent 
approaches. For local grid load balancing, the iterative 
heuristic algorithm is more efficient than the first-come-
first-served algorithm. For global grid load balancing, a 
peer-to-peer service advertisement and discovery 
technique is proven to be effective. The use of a 
distributed agent strategy can reduce the network 
overhead significantly and make the system scale well 
rather than using a centralised control, as well as 
achieving a reasonable good resource utilisation and 
meeting application execution deadlines. 

Further experiments will be carried out using the grid 
testbed being built at Warwick. Since a large deployment 
of the system is impossible due to the absence of a large-
scale grid testbed, a grid modelling and simulation 
environment is under development to enable 
performance and scalability of the agent system to be 
investigated when thousands of grid resources and 
agents are involved. 

The next generation grid computing environment 
must be intelligent and autonomous to meet 
requirements of self management. Related research 
topics include semantic grids [41] and knowledge grids 
[42]. The agent-based approach described in this work is 
an initial attempt towards a distributed framework for 
building such an intelligent grid environment. Future 
work includes the extension of the agent framework with 
new features, e.g. automatic QoS negotiation, self-
organising coordination, semantic integration, 
knowledge-based reasoning, and ontology-based service 
brokering. 
 
References 
 
[1] A. Abraham, R. Buyya, and B. Nath, Nature’s heuristics 

for scheduling jobs on computational grids, in: 
Proceedings of 8th IEEE International Conference on 
Advanced Computing and Communications (Cochin, 
India, 2000). 

[2] D. Abramson, R. Sosic, J. Giddy, and B. Hall, Nimrod: a 
tool for performing parameterized simulations using 



 

- 13 - 

distributed workstations, in: Proceedings 4th IEEE 
International Symposium on High Performance 
Distributed Computing (HPDC ’95) (Pentagon City, VA, 
USA, 1995). 

[3] D. Abramson, J. Giddy, and L. Kotler, High performance 
parametric modelling with Nimrod/G: killer application 
for the global grid, in: Proceedings 14th International 
Parallel and Distributed Processing Symposium 
(Cancun, Mexico, 2000). 

[4] K. Amold, B. O’Sullivan, R. Scheifer, J. Waldo, and A. 
Woolrath, The Jini Specification (Addison Wesley, 
1999). 

[5] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. 
Shao, Application-level scheduling on distributed 
heterogeneous networks, in: Proceedings 
Supercomputing ’96 (Pittsburgh, PA, USA, 1996). 

[6] F. Berman, A. J. G. Hey, and G. Fox, Grid Computing: 
Making The Global Infrastructure a Reality (John Wiley 
& Sons, 2003). 

[7] C. Brooks, B. Tierney, and W. Johnston, JAVA agents 
for distributed system management, LBNL Report 
(1997). 

[8] J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R. 
Nudd, Performance modelling of parallel and distributed 
computing using PACE, in: Proceedings of 19th IEEE 
International Performance, Computing and 
Communication Conference (IPCCC ’00) (Phoenix, AZ, 
USA, 2000) pp. 485-492. 

[9] J. Cao, D. J. Kerbyson, and G. R. Nudd, Dynamic 
application integration using agent-based operational 
administration, in: Proceedings of 5th International 
Conference on the Practical Application of Intelligent 
Agents and Multi-Agent Technology (PAAM ’00) 
(Manchester, UK, 2000) pp. 393-396. 

[10] J. Cao, D. J. Kerbyson, and G. R. Nudd, High 
performance service discovery in large-scale multi-agent 
and mobile-agent systems, International Journal of 
Software Engineering and Knowledge Engineering 11(5) 
(2001) 621-641. 

[11] J. Cao, D. J. Kerbyson and G. R. Nudd, Use of agent-
based service discovery for resource management in 
metacomputing environment, in: Proceedings of 7th 
International Euro-Par Conference (Manchester, UK, 
2001), Lecture Notes on Computer Science Volume 2150 
pp. 882-886. 

[12] J. Cao, D. J. Kerbyson, and G. R. Nudd, Performance 
evaluation of an agent-based resource management 
infrastructure for grid computing, in: Proceedings of 1st 
IEEE/ACM International Symposium on Cluster 
Computing and the Grid (CCGrid ’01) (Brisbane, 
Australia, 2001) pp. 311-318. 

[13] J. Cao, D. P. Spooner, J. D. Turner, S. A. Jarvis, D. J. 
Kerbyson, S. Saini, and G. R. Nudd, Agent-based 
resource management for grid computing, in: 
Proceedings of 2nd Workshop on Agent-based Cluster 
and Grid Computing (AgentGrid ’02) (Berlin, Germany, 
2002) pp. 350-351. 

[14] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G. R. 
Nudd, ARMS: an agent-based resource management 
system for grid computing, Scientific Programming 
(Special Issue on Grid Computing) 10(2) (2002) 135-
148. 

[15] J. Cao, S. A. Jarvis, D. P. Spooner, J. D. Turner, D. J. 
Kerbyson, and G. R. Nudd, Performance prediction 
technology for agent-based resource management in grid 
environments, in: Proceedings of 11th IEEE 
Heterogeneous Computing Workshop (HCW ’02) (Fort 
Lauderdale, FL, USA, 2002). 

[16] J. Cao, D. P. Spooner, S. A. Jarvis, S. Saini, and G. R. 
Nudd, Agent-based grid load balancing using 
performance-driven task scheduling, in: Proceedings of 
17th IEEE International Parallel and Distributed 
Processing Symposium (IPDPS ’03) (Nice, France, 2003). 

[17] H. Casanova, and J. Dongarra, Using agent-based 
software for scientific computing in the NetSolve system, 
Parallel Computing 24(12-13) (1998) 1777-1790. 

[18] H. Casanova, and J. Dongarra, Applying NetSolve’s 
network-enabled server, IEEE Computational Science & 
Engineering 5(3) (1998) 57-67. 

[19] I. Foster and C. Kesselman, Globus: a metacomputing 
infrastructure toolkit, International Journal of High 
Performance Computing Applications 2 (1997) 115-128. 

[20] I. Foster and C. Kesselman, The GRID: Blueprint for a 
New Computing Infrastructure (Morgan-Kaufmann, 
1998). 

[21] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, Grid 
services for distributed system integration, IEEE 
Computer 35(6) (2002) 37-46. 

[22] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. 
Tuecke, Condor-G: a computation management agent for 
multi-institutional grids, Cluster Computing 5(3) (2002) 
237-246. 

[23] A. Grimshaw, W. A. Wulf, and the Legion team, The 
Legion vision of a worldwide virtual computer, 
Communications of the ACM 40(1) (1997) 39-45. 

[24] R. L. Henderson, Job scheduling under the Portable 
Batch System, in: Proceeding of 1st Workshop on Job 
Scheduling Strategies for Parallel Processing (Santa 
Barbara, CA, USA, 1995), Lecture Notes in Computer 
Science Volume 949 pp. 279-294. 

[25] D. Jackson, Q. Snell, and M. Clement, Core algorithms 
of the Maui scheduler, in: Proceedings of 7th Workshop 
on Job Scheduling Strategies for Parallel Processing 
(Cambridge, MA, USA, 2001), Lecture Notes Computer 
Science Volume 2221 pp 87-102. 

[26] N. R. Jennings and M. J. Wooldridge (eds), Agent 
Technology: Foundations, Applications, and Markets 
(Springer Verlag, 1998). 

[27] D. Lifka, The ANL/IBM SP scheduling system, in: 
Proceeding of 1st Workshop on Job Scheduling Strategies 
for Parallel Processing, 9th IEEE International Parallel 
Processing Symposium (Santa Barbara, CA, USA, 1995), 
Lecture Notes in Computer Science Volume 949 pp. 187-
191. 

[28] M. Litzkow, M. Livny, and M. Mutka, Condor – a hunter 
of idle workstations, in: Proceedings of 8th International 
Conference on Distributed Computing Systems (ICDCS 
’88) (San Jose, CA, USA, 1988) pp. 104-111. 

[29] L. Moreau, Agents for the grid: a comparison for web 
services (part 1: the transport layer), in: Proceedings of 
2nd IEEE/ACM International Symposium on Cluster 
Computing and the Grid (CCGrid ’02) (Berlin, 
Germany, 2002) pp. 220-228. 

[30] H. Nakada, M. Sato, and S. Sekiguchi, Design and 
implementations of Ninf: towards a global computing 



 

- 14 - 

infrastructure, Future Generation Computing Systems 5-
6 (1999) 649-658. 

[31] E. Newcomer, Understanding Web Services: XML, 
WSDL, SOAP, and UDDI (Addison Wesley, 2002). 

[32] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. 
Perry, J. S. Harper, and D. V. Wilcox, PACE – a toolset 
for the performance prediction of parallel and distributed 
systems, International Journal of High Performance 
Computing Applications 14(3) (2000) 228-251. 

[33] O. F. Rana, and D. W. Walker, The agent grid: agent-
based resource integration in PSEs, in: Proceedings of 
16th IMACS World Congress on Scientific Computation, 
Applied Mathematics and Simulation (Lausanne, 
Switzerland, 2000). 

[34] W. Shen, Y. Li, H. Ghenniwa, and C. Wang, Adaptive 
negotiation for agent-based grid computing, in: 
Proceedings of AAMAS Workshop on Agentcities: 
Challenges in Open Agent Environments (Bologna, Italy, 
2002) pp. 32-36. 

[35] D. Slama, J. Garbis, and P. Russell, Enterprise Corba 
(Prentice Hall, 1999). 

[36] R. Stevens, P. Woodward, T. DeFanti, and C. Catlett, 
From the I-WAY to the national technology grid, 
Communications of the ACM 40(11) (1997) 50-60. 

[37] C. Thompson, Characterizing the agent grid, Technical 
Report, Object Services and Consulting Inc. (1998) 
http://www.objs.com/agility/tech-reports/9812-grid.html. 

[38] B. Tierney, W. Johnston, J. Lee, and M. Thompson, A 
data intensive distributed computing architecture for grid 
applications, Future Generation Computer Systems 16(5) 
(2000) 473-481. 

[39] R. Wolski, N. T. Spring, and J. Hayes, The network 
weather service: a distributed resource performance 
forecasting service for metacomputing, Future 
Generation Computing Systems 15(5-6) (1999) 757-768. 

[40] S. Zhou, LSF: load sharing in large-scale heterogeneous 
distributed systems, in: Proceedings of 1992 Workshop 
on Cluster Computing (1992). 

[41] H. Zhuge, Semantics, resource and grid, Future 
Generation Computer Systems 20(1) (2004) 1-5. 

[42] H. Zhuge, China’s E-Science Knowledge Grid 
Environment, IEEE Intelligent Systems 19(1) (2004) 13-
17. 

 
Biographies 
 

Junwei Cao is currently a Research 
Scientist at C&C Research Laboratories, 
NEC Europe Ltd., Germany. He has 
been involved in several grid computing 
projects and working on both grid 
infrastructure implementation and grid-
enabled application development. His 
research is focused on the use of agents, 
workflow and performance techniques 
for grid resource management and job 

scheduling. Before joining NEC in 2002, Dr Cao was a 
Research Assistant in the High Performance System Group at 
the University of Warwick, UK. He received his PhD in 
Computer Science from Warwick in 2001. He is a member of 
the IEEE Computer Society and the ACM. 
 

Daniel P. Spooner is a newly-appointed 
Lecturer in the Department of Computer 
Science and is a member of the High 
Performance System Group. He has 15 
referred publications on the generation 
and application of analytical 
performance models to Grid computing 
systems. He has collaborated with 

NASA on the development of performance-aware schedulers 
and has extended these through the e-Science Programme for 
multi-domain resource management. He has worked at the 
Performance and Architectures Laboratory at the Los Alamos 
National Laboratory on performance tools development for 
ASCI applications and architectures. 
 

Stephen A. Jarvis is a Senior Lecturer 
in the High Performance System Group 
at the University of Warwick. He has 
authored over 50 referred publications 
(including three books) in the area of 
software and performance evaluation. 
While previously at the Oxford 
University Computing Laboratory, he 
worked on performance tools for a 

number of different programming paradigms including the 
Bulk Synchronous Parallel (BSP) programming library – with 
Oxford Parallel and Sychron Ltd – and the Glasgow Haskell 
Compiler – with Glasgow University and Microsoft Research 
in Cambridge. He has close research links with IBM, including 
current projects with IBM’s TJ Watson Research Center in 
New York and with their development centre at Hursley Park 
in the UK. Dr Jarvis sits on a number of international 
programme committees for high-performance computing, 
autonomic computing and active middleware; he is also the 
Manager of the Midlands e-Science Technical Forum on Grid 
Technologies. 
 

Graham R. Nudd is Head of the High 
Performance Computing Group and 
Chairman of the Computer Science 
Department at the University of 
Warwick. His primary research 
interests are in the management and 
application of distributed computing. 
Prior to joining Warwick in 1984, he 
was employed at the Hughes Research 
Laboratories in Malibu, California. 


